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Abstract

The emerging coronavirus SARS-CoV-2 has caused a COVID-19 pandemic.
SARS-CoV-2 causes a generally mild, but sometimes severe and even life-
threatening infection, known as COVID-19. Currently, there exist no effec-
tive vaccines or drugs and, as such, global public authorities have so far relied
upon non pharmaceutical interventions (NPIs). Since COVID-19 symptoms
are aspecific and may resemble a common cold, if it should come back with
a seasonal pattern and coincide with the influenza season, this would be
particularly challenging, overwhelming and straining the healthcare systems,
particularly in resource-limited contexts, and would increase the likelihood
of nosocomial transmission. In the present study, we devised a mathematical
model focusing on the treatment of people complaining of influenza-like-
illness (ILI) symptoms, potentially at risk of contracting COVID-19 or other
emerging/re-emerging respiratory infectious agents during their admission at
the health-care setting, who will occupy the detection kits causing a severe
shortage of testing resources. The model is used to assess the effect of mass
influenza vaccination on the spread of COVID-19 and the other respiratory
pathogens in the case of a coincidence of the outbreak with the influenza
season. Here, we show that increasing influenza vaccine uptake or enhancing
the public health interventions would facilitate the management of respira-
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tory outbreaks coinciding with the peak flu season, especially, compensate
the shortage of the detection resources. However, how to increase influenza
vaccination coverage rate remains challenging. Public health decision- and
policy-makers should adopt evidence-informed strategies to improve influenza
vaccine uptake.

Keywords: coronavirus, pandemic outbreak, limited resources, influenza
season, influenza vaccination

1. Introduction

An emerging coronavirus, currently known as “Severe Acute Respira-
tory Syndrome coronavirus type 2” (SARS-CoV-2) and previously termed as
“2019 novel coronavirus” (2019-nCoV), has spread out from its first reported
epicenter and quickly become a pandemic [1, 2].

SARS-CoV-2 causes a generally mild, but sometimes severe and even
life-threatening infection, known as “coronavirus disease” (COVID-19). Cur-
rently, there exist no effective vaccines or drugs that can effectively prevent
or treat COVID-19 patients. As such, global public authorities have so far
relied upon behavioral, non pharmaceutical interventions (NPIs), such as use
of masks, social distancing, self-isolation, quarantine and even lock-down of
entire territories and communities, to contain or, at least, mitigate the bur-
den of the ongoing pandemic [3, 4, 5]. Despite the unprecedented nature
of some of these measures, western countries have found it difficult to fully
suppress/eradicate the outbreak and have preferred to mitigate it, deciding
to opt for a short-period of NPIs, which will be followed by gradual reopen-
ing the economy and return to a new normal. Resumption of daily working
and social activities is expected to cause further outbreak waves, due to the
re-increasing of contact rates.

In [6], Sajadi et al. provided the evidence that COVID-19 could perhaps
prevail at low levels and begin to rise again in late fall and winter in temper-
ate regions in the upcoming year. Since COVID-19 symptoms are aspecific
and may resemble a common cold, if it should come back with a seasonal
pattern and coincide with the influenza season, this would be particularly
challenging. From a clinical standpoint, it would be difficult to distinguish
between the two infectious agents, with the definition of COVID-19 cases
rather problematic. Moreover, diagnostic tests as well as human resources
are limited. Furthermore, currently commercially available rapid diagnostic
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tests are characterized by a good specificity but have a limited sensitivity, as
such not enabling a quick and reliable diagnosis of COVID-19. Altogether,
this would significantly impact downstream public health efforts to prop-
erly identify COVID-19 cases and contain the outbreak, overwhelming and
straining the healthcare systems, particularly in resource-limited contexts,
and would increase the likelihood of nosocomial transmission.

When the “Severe Acute Respiratory Syndrome” (SARS) outbreak caused
by the coronavirus SARS-CoV-1 occurred in mainland China in 2002, the
World Health Organization (WHO) has recommended to increase influenza
vaccination, considering that the actual coverage rate is still sub-optimal and
below the threshold. In particular, the WHO recommended a campaign tar-
geting high-risk groups, such as healthcare workers, the elderly and disabled
people, to be able to differentiate more quickly between the two infections
and to be more effective in counteracting the outbreak [7, 8, 9].

A similar strategy would be valuable also for COVID-19. To test such
a hypothesis, we devised a mathematical model incorporating the treatment
of people complaining of ILI symptoms, potentially at risk of contracting
COVID-19 or other emerging/re-emerging respiratory infectious agents dur-
ing their admission at the health-care setting, where the competition of the
detection resources between the COVID-19 infected population and individ-
uals with ILI symptoms is considered. The main purpose of this study is
using the model to assess the effect of mass influenza vaccination and public
health interventions on the spread of COVID-19 in the case of a coincidence
of the outbreak with the influenza season.

2. Methodology

2.1. Data

We obtained the data of COVID-19 cases in China from January 23rd

to March 29th 2020 from the National Health Commission of the People’s
Republic of China [10]. The data information includes the cumulative num-
ber of confirmed cases, the cumulative number of death cases, the cumulative
number of cured cases, and the cumulative number of suspected cases, shown
in Fig.1. It should be mentioned that the number of suspected cases includes
the number of quarantined COVID-19 exposed cases, the number of quar-
antined COVID-19 infected cases but not confirmed yet, and the number of
quarantined individuals with clinical fever symptoms who are susceptible to
COVID-19.
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2.2. Model

Based on the epidemical progression of COVID-19 and the intervention
measures, we extended the classical SEIR model by including social dis-
tancing measures and including “cross-infected” individuals, those who are
having clinical fever symptoms and are considered as COVID-19 suspected
(and thus quarantined) due to their exposure to COVID-19 infected individ-
uals. The transmission diagram is shown in Fig.2. In the model, we divide
the total population N into ten compartments: susceptible (S), exposed (E),
symptomatic infected (I), asymptomatic infected (A), quarantined suscep-
tible (Sq), quarantined susceptible with fever symptoms (Sf ), quarantined
exposed (Eq), quarantined infected (Iq), confirmed and hospitalized (H),
and recovered (R).

With the implementation of contact tracing, a proportion of q of individ-
uals exposed to the virus is quarantined. Let the transmission probability
be β and the contact rate be c, then the quarantined individuals can move
to compartment Eq (or Sq) at a rate of βcq (or (1 − β)cq) if they are ef-
fectively infected (or not effectively infected). While the other proportion,
1−q, missed from the contact tracing, will move to the exposed compartment
E at a rate of βc(1 − q) once effectively infected or stay in the susceptible
compartment S otherwise.

Note that, due to clinical fever or illness-like symptoms, susceptible in-
dividuals may also be quarantined and move to the compartment Sf at a
transition rate of m, and they can be infected by the quarantined infected
individuals at a rate of βfcf . Based on the above assumptions and previous
studies [5, 11, 12], the transmission dynamics is governed by the following
model:

S ′ = − (βc(t)+c(t)q(t)(1−β))SI
N

− βAc(t)SA
N

−m(t)S + λSq + λfSf ,

E ′ = βc(t)(1−q(t))SI
N

+ βAc(t)SA
N

− σE,
I ′ = σρE − F1 (I, Iq, Sf )− α(t)I,
A′ = σ(1− ρ)E − γAA,
S ′q = c(t)q(t)(1−β)SI

N
− λSq,

S ′f = m(t)S − βfcfSfIq − λfSf ,
E ′q = βc(t)q(t)SI

N
+ βfcfSfIq − σqEq,

I ′q = σqEq − F2 (I, Iq, Sf )− α(t)Iq,
H ′ = F1 (I, Iq, Sf ) + F2 (I, Iq, Sf )− α(t)H − γH(t)H,
R′ = γAA+ γH(t)H.

(1)
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The detailed definitions of all the parameters and variables are listed in Table
1.

A significant difference between the COVID-19 transmission dynamics
model in our previous studies [11, 12, 13] and the current study is the intro-
duction of two saturated functions

F1 (I, Iq, Sf ) =
δII

1 + ω(t) (I + Iq + Sf )

and

F2 (I, Iq, Sf ) =
δqIq

1 + ω(t) (I + Iq + Sf )
,

to describe the impact of “cross-infection” on the diagnose rate of the infected
class (I) and the detection rate of the quarantined infected class (Iq) with
limited testing capacity, respectively. δI and δq are the fastest diagnose rate of
infected individuals and quarantined infected individuals, respectively, that
the medical resources permit, 1

ω(t)
is the maximum number of individuals

who can be tested per unit time (day) (limited by the maximum testing
kits and staff to administrate the test) with limI→∞ F1 (I, Iq, Sf ) = δI

ω(t)
and

limIq→∞ F2 (I, Iq, Sf ) = δq
ω(t)

. In other word, 1
ω(t)

measures the testing capacity
per day. Here, we set the daily capacity as an increasing function of time t
because of the increasing production of detection kits and the improvement
of detection techniques. The function of 1

ω(t)
is of the following form:

1

ω(t)
=

(
1

ω0

− 1

ωb

)
e−rωt +

1

ωb
,

where 1
ω0

is the total number of available detection kits at the initial time (i.e.

January 23rd) with ω(0) = ω0, 1
ωb

is the maximum number of available tests

permitted with limt→∞ ω(t) = ωb > ω0, and rω is the exponential increasing
rate.

The saturation functions F1 (I, Iq, Sf ) and F2 (I, Iq, Sf ) are decreasing
functions with respect to Sf . This is because the quarantined COVID-19 sus-
ceptible individuals with fever symptoms belong to the COVID-19 suspected
population, and will be tested to confirm if they are COVID-19 positive or
not. These individuals will consume the detection kits and require staff time,
resulting in a slower detection rate of the COVID-19 infected cases.

Similarly to the previous studies [12, 13], as a result of the improvement
of medical treatment and the implementation of a series of strict control
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interventions adopted by the Chinese government since January 23rd, we
assume that the contact rate c, the quarantine rate q, the quarantine rate of
susceptible population with clinical fever symptoms m, disease-induced death
rate α, and recovery rate of confirmed individuals γH are time-dependent
functions. In more details, the contact rate c(t) is a decreasing function with
respect to time t, which is given by

c(t) = (c0 − cb) e−rct + cb,

where c0 is the contact rate at the initial time with c(0) = c0, cb is the mini-
mum contact rate under control measures and self-isolation with limt→∞ c(t) =
cb < c0, and rc is the exponential decreasing rate.

The quarantined rate q is an increasing function with respect to time t
due to the strengthened contact tracing, which takes the following form

q(t) = (q0 − qb) e−rqt + qb,

where qb is the quarantined rate at the initial time with q(0) = q0, qb is the
maximum quarantined rate under control measures with limt→∞ q(t) = qb >
q0, and rq is the exponential increasing rate.

The quarantined rate of susceptible population with clinical fever symp-
toms m(t) is a decreasing function with respect to time t, given by

m(t) = (m0 −mb) e
−rmt +mb,

where m0 denotes the quarantined rate of susceptible population with fever
symptoms at the initial time with m(0) = m0, mb is the minimum quaran-
tined rate of susceptible population with fever symptoms with limt→∞m(t) =
mb < m0, and rm is the exponential decreasing rate.

Due to the improvement of medical treatment and the strengthening of
the production and supply of prevention and control products [14], disease-
induced death rate α(t) decreases with respect to time t, and the recovery
rate of confirmed individuals γH(t) increases with respect to time t. Thus
α(t) and γH(t) take the following forms,

α(t) = (α0 − αb) e−rαt + αb, and γH(t) = (γH0 − γHb) e−rγt + γHb,

where α0 is the disease-induced death rate at the initial time with α(0) = α0,
αb is the minimum disease-induced death rate with limt→∞ α(t) = αb < α0,
and rα is the exponential decreasing rate. γH0 denotes the recovery rate of
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confirmed individuals at the initial time with γH(0) = γH0, γHb denotes the
maximum recovery rate of confirmed individuals with limt→∞ γH(t) = γHb >
γH0, and rγ denotes the exponential increasing rate.

Using the next generation matrix, we can define and calculate the effective
reproduction number Rt as follows:

Rt = max {R1(t), R2(t)} ,

where

R1(t) =
ρβc(t)(1− q(t))St

(α(t) + δI/ (1 + ω(t)Sft))N
+

(1− ρ)βAc(t)St
γAN

,

and

R2(t) =
βfcfSft

(α(t) + δq/ (1 + ω(t)Sft))
with St = S(t) and Sft = Sf (t).

Note that R2(t) represents the effective reproduction number of cross-infected
individuals.

3. Main results

3.1. Parameter estimation process

In order to fit the model to the data, we firstly fixed some parameters
of our model from previous literature to reduce the complexity. In more
detail, the contact rate and the quarantined rate at the initial time are fixed
as c0 = 14.781 [11] and q0 = 1.0 × 10−4 [12], respectively. The incubation
period is fixed as 5 days [16], i.e. σ = 1/5, the releasing rate of quarantined
susceptible individuals is fixed as λ = 1/14 [11], while the recovery rate
of the asymptomatic infected individuals is fixed as γA = 0.13978 [11]. In
addition, we fix the initial quarantined susceptible population, confirmed
and hospitalized population, and recovered population as 7374, 771 and 34
respectively according to the data information.

By simultaneously fitting the proposed model to the cumulative number
of confirmed cases, cumulative number of death cases, cumulative number of
cured cases and cumulative number of suspected cases, we first estimated the
rest parameters and initial conditions using the least square method. The
best fitting curves are marked as red in Fig.3 with the blue circles representing
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the data from January 23rd to March 29th 2020. The detailed estimated values
of the parameters and initial conditions are listed in Table 1.

It’s worth mentioning that we use four time series of data to fit the model,
simultaneously, which can cross-validate the estimation results. Furthermore,
based on the available information, the least squares method with a priori
distribution for each parameter is used in this study. In another word, we im-
plicitly utilize a penalized least square method to select reasonable parameter
values falling in the ranges which were estimated in other published studies.
Particularly, our estimated minimum contact rate with control strategies is
2.0 which is consistent with contact surveys in study [15], and the transition
rate of quarantined exposed individuals to the quarantined infected class is
estimated as σq = 0.2 being in line with the incubation period [16]. It was
illustrated in [17] that it takes about 2 days from the start of sampling to the
return of results, indicating that our estimation value of fast diagnose rate
of infected individuals δI = 0.5 is reasonable. Furthermore, the estimated
initial number of detection kits per day 1/ω0 = 2000 is highly consistent with
the news reported in the Beijing News [17].

Furthermore, we use the coefficient of determination (R2) to estimate
the goodness of fit for our model fitting results. Given a data set with
n observed value y1, ..., yn. The corresponding estimated values from the
model are defined as f1, ..., fn and ȳ = 1

n

∑n
i=1 yi is the average observed

value, then the coefficient of determination value (R2) can be defined as
R2 = 1 − SSres

SStot
with SSres =

∑n
i=1 (yi − fi)2 denoting the sum of squares

of residuals and SStot =
∑n

i=1 (yi − ȳ)2 denoting the total sum of squares.
Therefore, we obtain the coefficients of determination for the model fitting
results in Fig.3(A-D) being 0.9905, 0.988, 0.9884 and 0.9868, respectively.
This indicates that the model fits the data very well.

3.2. Impacts of limited detection kits

Detection kits for COVID-19 were firstly introduced and used on January
16th 2020, but with very limited numbers. Since January 23rd 2020, detec-
tion kits were delivered to Hubei province from other provinces in China.
Since it took time to increase the production of kits and improve the level of
production technology, there was a serious shortage of detection kits during
the initial stage of the COVID-19 epidemics. To examine the impacts of the
limited detection kits on the COVID-19 epidemics in terms of the cumulative
number of confirmed cases, the cumulative number of cross-infected cases and
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the infected population (I(t)), we vary the increasing rate of the available de-
tection kits rω in Fig.4. It follows from Fig.4 that reducing rω will significantly
increase both the cumulative number of confirmed cases and cross-infected
cases, and the infected population of I(t) and daily cross-infected popula-
tion at the peak time. Particularly, the cumulatively confirmed cases and
cumulatively cross-infected cases will increase 3.5 times (about 2.084 × 105

cases) and 4.7 times (about 1.483×104 cases), respectively, if the exponential
increasing rate rω decreases by 80 percent. This means that deficiency and
delay of detection cause more serious outbreaks. In another word, speeding
up the production of detection kits and improve the detection capability play
an important role in reducing the final size of infections.

When faced with limited detection kits supply, we show the impacts of
public health interventions on the outbreak of COVID-19, as seen in Table 2.
In particular, increasing rc or rq remarkably reduces the cumulative number
of confirmed cases. Specifically, when rω is very small (rω = 0.1 × r0

ω), i.e.
the testing kits production increases very slowly, then 1). If rc increases by
5 times, the cumulative number of confirmed cases will decrease by 93.6%;
2). If rq increases by 5 times, the cumulative number of confirmed cases will
decrease by 78.7%. In addition, comparing the results in Table 2, we find
that the impact of increasing rc or rq on mitigating the epidemics weakens
as rω increases. This implies that rapid implementation of public health
interventions, such as reducing contact rate and enhancing quarantined rate,
is a good way to compensate the shortage of detection kits, and it is more
indispensable for countries with severer limited resource of detection kits.

It is also interesting to observe from Fig.5(A) that the estimated effec-
tive reproduction number (the blue curve) will first experience a short-period
increasing before it decreases below the threshold 1. However, we further ob-
serve that if we increase the rate of rω by 5 times (the red curve in Fig.5(A)),
the effective reproduction number will decrease below the threshold 1 di-
rectly. This indicates that due to the limited resource of the testing kits, the
fast-increased infected population will result in more infections as they are
not confirmed and hospitalized. And the situation will become worse if rω
is smaller, shown in Fig.5(A) as well. Furthermore, it follows from Fig.5(B)
and (C) that increasing rc or rq can avoid the magnification of the effective
reproduction number and make the threshold value reduce to 1 ahead of
time, which implies that reducing the contact rate quickly and increasing the
quarantined rate can effectively avert the short-term intensification of the
outbreak caused by the limited detection kits.
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3.3. Benefits of getting vaccinated against influenza

The COVID-19 outbreak in China coincided partially with flu season,
and it was difficult to distinguish COVID-19 accurately and rapidly from
influenza-like-illnesses. As a result, individuals with clinical fever symptoms
required medical treatment in high risk settings of COVID-19, and the risk
of cross-infection increased. Here we seek to use our transmission dynamics
model to explore the impact of mass influenza vaccination prior to the onset
of flu season on controlling the transmission of COVID-19.

Note that, in our model, we assumed that due to the influenza-like-illness
(ILI), the susceptible individuals (S) can be quarantined at a rate of m
(move to Sf ), which is proportion to the susceptible population. Further, we
assume that the susceptible population is vaccinated against influenza with
an vaccination coverage V r. Thus, the vaccinated population will not be
quarantined because of the clinical fever symptoms, consequently, the rate
at which the susceptible population is quarantined due to the ILI becomes
(1−V r)∗m∗S. Based on the above assumptions, we evaluate the impact of
the mass influenza vaccination on the transmission dynamics of COVID-19.

In Fig.6, by changing the vaccination coverage of V r and fixing all the
other parameters as the estimated baseline values, we examine the impact of
vaccination against influenza on the COVID-19 epidemics in China in terms
of the final size and the peak values. It follows from Fig.6 that increasing
the vaccination rate against influenza can remarkably reduce the cumulative
number of COVID-19 confirmed cases and cross-infected cases, and also re-
duce the peak number of I(t) and daily cross-infected population. In more
detail, we find that by a vaccination rate of 90%, the cumulative number of
confirmed cases can reduce by 23.0% (about 19062 total cases), moreover,
the cumulative number of cross-infected cases can reduce by 92.9% (about
3700 cases). This implies that mass influenza vaccination could contribute
significantly to the control of the outbreak of COVID-19 and significantly
reduce the risk of cross-infection.

In addition, in Fig.7 we illustrate the impact of getting vaccine against
influenza on the reduction of the cumulative number of confirmed cases and
cross-infected cases incorporating the effect of limited testing kits and public
health interventions, that is, with different increasing rate of available de-
tection kits rω or different decreasing rate of contact rate rc. As shown in
Fig.6, vaccination against influenza could reduce the cumulative numbers of
confirmed cases and cumulative cross-infected cases, hereafter referred as the
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reduced confirmed cases and reduced cross-infected cases, respectively. It fol-
lows from Fig.7(A1) and (A2) that getting vaccinated against influenza could
significantly reduce the cumulative number of confirmed cases and cross-
infected cases with respect to rω. We give the specific reduction rate with
respect to different rω and vaccination rate in Table 3. Specifically, when
the vaccination rate was 90%, the cumulative number of confirmed cases and
cross-infected cases could reduce by 51.5% and 91.4% with rω = 0.1 × r0

ω,
respectively. We can further observe that the effects of getting vaccinated
against influenza weakens as rω increases. It means that getting vaccinated
against influenza could effectively control the outbreak of COVID-19. More-
over, mass influenza vaccination is more necessary when detection kits are
severely limited and under seriously shortage of supply. In another words,
mass influenza vaccination can be a much more effective control measure in
mitigating the COVID-19 epidemics in the early stage with a rapid growth
and the countries or areas with limited testing kits.

Similarly, Fig.7(B1) and (B2) illustrate the impact of getting vaccinated
on reducing the cumulative number of confirmed cases and cross-infected
cases with respect to rc, and the detailed reduction rate with respect to dif-
ferent rc and vaccination rate is given in Table 4. Specifically, for a 90%
vaccination rate, the cumulative number of confirmed cases could reduce by
30.8%, and the cumulative number of cross-infected cases could reduce by
92.0% with rc = 0.1×r0

c , showing that if the contact rate was not be fast con-
trolled and reduced, mass vaccination could effectively aid the containment
of COVID-19 outbreak.

4. Discussions and Conclusions

In the present mathematical modeling study, we have tested the hypoth-
esis that a mass influenza vaccination campaign would have a positive effect
on the management of people with non-specific symptoms and complaining
of ILIs, potentially at risk of developing the COVID-19 (or other emerg-
ing respiratory infections) during their admission at the health-care setting.
Our findings show that increasing influenza vaccination coverage rate to an
optimal threshold would facilitate the efforts of containing the COVID-19
outbreak.

According to some researchers, the SARS-CoV-2 had already been circu-
lating much earlier than late December 2019 but its correct identification was
hindered by a considerable amount of people complaining of influenza-like-
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illness (ILI) symptoms. In the case of the implementation of a mass influenza
vaccination campaign well before the onset of the influenza season, the ex-
posure of emerging/re-emerging respiratory pathogens would be unmasked,
facilitating their identification and the design of ad hoc public health in-
terventions. This would significantly alleviate the pressure on health-care
facilities, reducing the total number of people complaining of ILI symptoms,
and decreasing the transmission probability of COVID-19 or other emerging
infectious agents both among healthcare workers and, subsequently, among
people under investigation for their disease.

Influenza generates a relevant burden worldwide, both in terms of health-
care resources consumption and socio-economic impact. Despite the exis-
tence of effective vaccines and their importance as cost-effective preventative
tool, vaccination coverage rate still remains suboptimal. With respect to the
general population, healthcare workers are at a higher risk of exposure to cir-
culating respiratory pathogens, including influenza, potentially threatening
their own health and compromising patients’ safety. Influenza vaccine uptake
is suboptimal also among other targeted categories, including the elderly and
disabled people. An inadequate disease risk perception, a low health literacy,
perception of the societal effects of vaccination and alleged side-effects are
among the drivers of vaccine hesitancy.

Influenza vaccination would enable to better control and contain the
spread of COVID-19 or other emerging/re-emerging pathogens, in case of
coincidence of the outbreak with the influenza season. Mass influenza vac-
cination prior to the onset of the peak influenza season would significantly
decrease the number of ILIs among the general population and specifically
the elderly, with fewer persons with ILIs seeking for medical advice, par-
ticularly those in high-risk settings, with frailty, underlying co-morbidities
or disabled. As such, this would minimize the probability of not quickly
and accurately identifying circulating respiratory pathogens as well as the
possibility of ongoing nosocomial transmission.

However, how to increase influenza vaccination coverage rate remains
challenging. Mandatory policies for targeted categories are under debate in
several countries. Also, in this study, we did not consider the efficacy of the
influenza vaccine, and the vaccination coverage should be a effective vacci-
nation rate. However, we believe that this study provided a fundamental
framework for quantitatively evaluating the impact of vaccination against
influenza on mitigating the COVID-19 epidemics. Public health decision-
and policy-makers should adopt evidence-informed strategies to improve in-
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fluenza vaccine uptake, given its impact on respiratory pandemic outbreaks
coinciding with the peak influenza season and the shortage of medical per-
sonnel and equipment, including diagnostic tests.
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Table 1: Parameter estimates for the COVID-19 epidemics in China.
Parameter Definition Value Source

c(t) c0 Contact rate at the initial time 14.781 [11]

cb Minimum contact rate with control strategies 2.0 Estimated

rc Exponential decreasing rate of contact rate 0.1 Estimated

β Transmission probability from I to S per contact 0.18 Estimated

q(t) q0 Quarantined rate at the initial time 1.0× 10−4 [12]

qb Maximum quarantined rate with control strategies 0.9 Estimated

rq Exponential increasing rate of quarantined rate 0.1 Estimated

βA Transmission probability from A to S per contact 0.01 Estimated

m(t) m0
Quarantined rate of susceptible population with

fever symptoms at the initial time
2.0848× 10−4 Estimated

mb
Minimal quarantined rate of susceptibles

with fever symptoms
5.0001× 10−7 Estimated

rm Exponential decreasing rate of quarantined rate 0.0567 Estimated

λ Releasing rate of quarantined susceptibles 1/14 [11]

λf
Releasing rate of quarantined susceptibles

with fever symptoms
0.1 Estimated

ρ Ratio of symptomatic infection 0.5 Estimated

σ
Transition rate of exposed individuals to

the infected class
1/5 [16]

δI Fast diagnose rate of infected individuals 0.5 Estimated

1/ω(t) 1/ω0 Initial number of detection kits per day 2000 Estimated

1/ωb Maximal number of detection kits per day 1.0× 10−5 Estimated

rω
Exponential increasing rate of the number

of detection kits
0.885 Estimated

γA Recovery rate of asymptotic infected individuals 0.13978 [11]

α(t) α0 Disease-induced death rate at the initial time 0.012 Estimated

αb Minimal disease-induced death rate with treatment 0.0012 Estimated

rα
Exponential increasing rate of disease-induced

death rate
0.1129 Estimated

βf Transmission rate from Iq to Sf 3.0× 10−6 Estimated

cf Contact rate of suspected cases 2.0 Estimated

σq
Transition rate of quarantined exposed individuals

to the quarantined infected class
0.2 Estimated

δq Fast diagnose rate of quarantined individuals 1.0 Estimated

γH(t) γH0
Recovery rate of confirmed individuals

at the initial time
0.001 Estimated

γHb
Maximal recovery rate of confirmed individuals

with treatment
0.15 Estimated

rγ Exponential increasing rate of recovery rate 0.0123 Estimated

Variable Definition Initial value Source

S Susceptible population 1.5× 107 Estimated

E Exposed population 8216 Estimated

I Infected symptomatic population 1000 Estimated

A Infected asymptomatic population 1000 Estimated

Sq Quarantined susceptible population 7347 Data

Sf
Quarantined susceptible population

with fever symptoms
499.9975 Estimated

Eq Quarantined exposed population 100.0003 Estimated

Iq Quarantined infected population 250.0005 Estimated

H Confirmed and hospitalized population 771 Data

R Recovered population 34 Data
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Table 2: The impacts of public health interventions on the cumulative number of confirmed

cases when faced with limited detection kits supply.

The cumulative number of confirmed The cumulative number of confirmed

Value of rω cases with varying rc cases with varying rq

rc = r0c rc = 2 ∗ r0c rc = 5 ∗ r0c rq = r0q rq = 2 ∗ r0q rq = 5 ∗ r0q

rω = 0.1 ∗ r0ω 9.564× 105
1.859× 105 6.087× 104

9.564× 105
3.981× 105 2.035× 105

(-80.6%) (-93.6%) (-58.4%) (-78.7%)

rω = 0.4 ∗ r0ω 1.357× 105
5.910× 104 2.649× 104

1.357× 105
1.045× 105 7.759× 104

(-56.4%) (-80.5%) (-23.0%) (-42.8%)

rω = 0.7 ∗ r0ω 9.510× 104
4.539× 104 2.223× 104

9.510× 104
7.685× 104 6.003× 104

(-52.3%) (-76.6%) (-19.2%) (-36.9%)

rω = r0ω 8.302× 104
4.069× 104 2.070× 104

8.302× 104
6.80× 104 5.40× 104

(-51.0%) (-75.1%) (-18.1%) (-35.0%)

Note that r0
ω, r0

c and r0
q are the estimated value of rω, rc and rq, respectively.

Table 3: The impacts of getting vaccinated against influenza on the cumulative number of

confirmed cases and the cumulative number of cross-infected cases on with respect to rω.

Vaccination The cumulative number of confirmed cases The cumulative number of cross-infected cases

rate rω = 0.1 ∗ r0ω rω = 0.4 ∗ r0ω rω = 0.7 ∗ r0ω rω = 0.1 ∗ r0ω rω = 0.4 ∗ r0ω rω = 0.7 ∗ r0ω
0 9.564× 105 1.357× 105 9.510× 104 3.295× 104 7.427× 103 4.681× 103

30%
8.273× 105 1.189× 105 8.616× 104 2.245× 104 4.380× 103 2.844× 103

(-13.5%) (-12.4%) (-9.4%) (-31.9%) (-41.0%) (-39.2%)

60%
6.684× 105 1.017× 105 7.735× 104 1.226× 104 2.035× 103 1.395× 103

(-30.1%) (-25.1%) (-18.7%) (-62.8%) (-72.6%) (-70.2%)

90%
4.635× 105 8.386× 104 6.860× 104 2.830× 103 410.8 309.2

(-51.5%) (-38.2%) (-27.9%) (-91.4%) (-94.5%) (-93.4%)

Here r0
ω is the estimated value of rω.

Figure 2: Diagram of the model adopted in the study for illustrating the COVID-19 in-
fection dynamics. Interventions including intensive contact tracing followed by quarantine
and isolation are indicated. The total suspected cases consisting of quarantined susceptible
with clinical fever symptoms (Sf ), quarantined exposed (Eq), and quarantined infected
(Iq).
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Table 4: The impacts of getting vaccinated against influenza on the cumulative number of

confirmed cases and the cumulative number of cross-infected cases on with respect to rc.

Vaccination The cumulative number of confirmed cases The cumulative number of cross-infected cases

rate rc = 0.1 ∗ r0c rc = 0.5 ∗ r0c rc = r0c rc = 0.1 ∗ r0c rc = 0.5 ∗ r0c rc = r0c

0 7.907× 105 1.798× 105 8.302× 104 2.013× 104 8.363× 103 3.983× 103

30%
7.062× 105 1.632× 105 7.644× 104 1.314× 104 5.222× 103 2.460times103

(-10.7%) (-9.2%) (-7.9%) (-34.7%) (-37.6%) (-38.2%)

60%
6.249× 105 1.472× 105 7.010× 104 6.927× 103 2.641× 103 1.235× 103

(-21.0%) (-18.1%) (-15.6%) (-65.6%) (-68.4%) (-69.0%)

90%
5.468× 105 1.317× 105 6.393× 104 1.616× 103 601.2 283.0

(-30.8%) (-26.8%) (-23.0%) (-92.0%) (-92.8%) (-92.9%)

Here r0
c is the estimated value of rc.

Figure 3: Best model fitting result. The red curves are the best fitting curves, and the blue
circles denote the cumulatively confirmed cases, cumulatively death cases, cumulatively
cured cases and cumulatively suspected cases.

Figure 4: The effects of varying the increasing rate of available detection kits rω on the
COVID-19 epidemic in mainland China. r0ω denotes the estimated value of rω.

Figure 5: (A) Estimated effective reproduction number (blue curve) and the variation
of the effective reproduction number by varying rω; (B) The variation of the effective
reproduction number by varying rc; (C) The variation of the effective reproduction number
by varying rq. Here r0ω denotes the estimated value of the increasing rate of available
detection kits rω, r0c denotes the estimated value of the decreasing rate of contact rate rc,
and r0q denotes the estimated value of the increasing rate of quarantined rate rq.

Figure 6: The impacts of getting vaccinated against influenza on the COVID-19 epidemic
in mainland China. Here ”Vr” represents the vaccination rate against influenza.

Figure 7: The total reduction number of cumulatively confirmed cases and the reduction
of cumulatively cross-infected cases by different vaccination rate against influenza with
respect to rω (A1 and A2) and rc (B1 and B2). Here ”Vr” represents the vaccination rate
against influenza.
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