Section 1.1 Background 5

Although the majority of equations one is likely to encounter in practice fall into the

nonlinear category, knowing how to deal with the simpler linear equations is an important first
step (just as tangent lines help our understanding of complicated curves by providing local

approximations).
In Problems 1-12, a differential equation is given along with dy iy
the field or problem area in which it arises. Classify each as 8. Vi-y ’}f + 2x *! =0
5 dx” dx

an ordinary differential equation (ODE) or a partial differen-

tial equation (PDE), give the order, and indicate the indepen- (Kidder's equation, flow of gases through a porous

dent and dependent variables. If the equation is an ordinary medium)
dijferemial equation, indicate whether the equation is linear d*y dy
or nonlinear. 9L & 20 - e +xy=0
d’x dx (aerodynamics, stress analysis)
if 5 ot4— + 9 = 2cog v o )
dt dt d y
10y 8= E 21—

dx

(mechanical vibrations, electrical circuits, seismology) .
(deflection of beams)

N N 9N 1N
PR g T PR 2y=0 11. SR r——l\,j + — — + kN, where k is a constant
dx dx oF PRI Srior
(Hermite’s equation, quantum-mechanical harmonic (}uclear e ;
; ‘y i Oy
oscillator) 2. 22 _01(1-yP)=+9 =0
- dx* sy ) At
1 ‘_1}_/ = y_______( ) (van der Pol’s equation, triode vacuum tube)
dv = x(l —3y)
el 3 In Problems 13-16, write a differential equation that fits the
(competition between two species, ecology) physical description.
-~ 2, 9% 13. The rate of change of the population p of bacteria at
" e sancy o 0 time ¢ is proportional to the population at time 7.
& 14. The velocity at time ¢ of a particle moving along a straight
(Laplace’s equation, potential theory, electricity, heat, line is proportional to the fourth power of its position x.
aerodynamics) 15. The rate of change in the temperature T of coffee at
. time ¢ is proportional to the difference between the tem-
8 y[l & (_d_«‘) ] — (. where C is a constant perature M of the air at time and the temperature of the
dx g coffee at time 7.
(brachistochrone problem,* calculus of variations) 16. The rat.e of change of the mass A of salt at ime 715
proportional to the square of the mass of salt present
at time 7.

6. % = k(4—x)(1—x), where k is a constant

: g 17. Drag Race. Two drivers, Alison and Kevin, are par-
(chemical reaction rates) ticipating in a drag race. Beginning from a standing start,
they each proceed with a constant acceleration. Alison
covers the last 1/4 of the distance in 3 seconds, whereas
Kevin covers the last 1/3 of the distance in 4 seconds.

Who wins and by how much time?

f‘ 7. % = kp(P — p), where k and P are constants
;
/
 d

(logistic curve, epidemiology, economics)
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'Historical Footnote: In 1630 Galileo formulated the brachistochrone problem (BpaxioTos = shortest, xpovos = time), that is, to determine a
the shortest time. It was reproposed by John Bernoulli in 1696 and solved

path down which a particle will fall from one given point to another in
by him the following year.
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Section 1.2 Solutions and Initial Value Problems 13

Example 8 For the initial value problem
(11) e y(l) =6,

does Theorem 1 imply the existence of a unique solution?

Solution Dividing by 3 to conform to the statement of the theorem, we identify f(x,y) as (x* — xy*)/3
and df/dy as —xy. Both of these functions are continuous in any rectangle containing the point
(1, 6), so the hypotheses of Theorem 1 are satisfied. It then follows from the theorem that
the initial value problem (11) has a unique solution in an interval about x = 1 of the form
(1 —6,1+8), where 8 is some positive number.

Example 9 For the initial value problem

dy ,
(12 — = 3 ‘:’3 (D =
) dx e %

does Theorem 1 imply the existence of a unique solution?

Solution  Here f(x,y) = 3y*? and §f/ay = 2y'/*. Unfortunately df/dy is not continuous or even
defined when y = 0. Consequently, there is no rectangle containing (2,0) in which both f
and df/dy are continuous. Because the hypotheses of Theorem 1 do not hold, we cannot use
Theorem 1 to determine whether the initial value problem does or does not have a unique
solution. It turns out that this initial value problem has more than one solution. We refer you to
Problem 29 and Project G of Chapter 2 for the details. #

In Example 9 suppose the initial condition is changed to y(2) = L. Then, since f and
df/ay are continuous in any rectangle that contains the point (2, 1) but does not intersect the
x-axis—say, R = {(x,¥):0<x<10,0 <y < 5}—it follows from Theorem 1 that this new

initial value problem has a unique solution in some interval about x = 2.

(b) Show that x.\'3 = _\‘_\‘3 sin x = 1 is an implicit solution to

dy o (megschsimr—l iy

dx 30— osinis)
on the interval (—, %). on the interval (0, 7/2).
(b) Show that ¢(x) = €* — x is an explicit solution to
Q_,, 2= ¥4 (1-2x)e ke In Problems 3-8, determine whether the given function is a
dx Y solution to the given differential equation.
he interval ( —%, = ). : 3 d%y
B e rens | 2) 3 ¢ o : B. y=sinx+x*, —+y=x 42
(¢) Show that ¢(x) = x* —x ' is an explicit solution Y
to x’d’y/dx* = 2y on the interval (0, ). S B ot gy 3l £ e
2. (a) Show that y>+x—3 = 0 is an implicit solution b g .
tody/dx = —1/(2y) on the interval (—.3). 5.8 = 24— ¢, dr2_9;+39: Y




14 Chapter 1 Introduction

- 2
‘,1,‘, +tx = S v
6. x=cos2t, dr
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er the given relation is an
quation. Assume

In Problems 913, determine wheth
function of X

. Eorential €
implicit solution to the given differe ”.m.ll e
] ine y itly a
that the relationship does define y implicitl

and use implicit differentiation.

ay- . x
9f 2+ 2 =14, 17\ o "
dy 2xy
10. y—Iny=x*+1, i — g 7
v =y
1F eV+y=x—1, (/*\ = ;*‘(’_;“:

dy

dx

12. X*—sin(x+y) =

- 3
13. siny+xy—x’ =2,

6xy’ + (y')%siny —2(y’)

Vo=

3n° =y

14. Show that ¢(x) = ¢; sinx+ ¢, cosx is a solution to
d*y/d +y = 0 for any choice of the constants ¢; and
€. Thus, ¢; sinx + ¢, cos x is a two-parameter family of
solutions to the differential equation.

15. Verify that ¢(x) = 2/(1 = ce*), where c is an arbitrary
constant, is a one-parameter family of solutions to

G iy

dx 2
Erapf; ’l)he 'soluu'on curves corresponding to ¢ = 0,
T 1, 22 using the same coordinate axes.

. 2 2
16. Verify th;t L wop = 1 whesieisan arbitrary nonzerg
constant, is a one-parameter family of implicit solutions to

dy Xy

e
and graph several of the soluti
. ution cuy; i S
coordinate axes. B e the g
17. Show that D)= Ce* + g
dyfdy= 3y = g R i
: ) any choice of
R the consty
Thus,' Ce + lisa One-parameter family of soluj o
the d1ﬁ6fent1al equation. Graph several of Utlons. to
curves using the same coordinate gxeg o

solution ¢

18. Let ¢ > 0. Show that the functiop $(x) =
is a solution to the initial value problem ; L )
2(0) = 1/c on the interva] gt ly/dx = 9,2
solution becomes unbounded as approaz N
the solution exists on the interval (=5 5) v ,
but not for larger 8, This illustrates ghyy inv%t,h By,

the existence interval can pe quite smal] g C R
€1 smalj)

large). Notice also that there
arg % ; o f
= 2xy” itself, or from, .

e is

ire large (1 ! %
uite 1arg uation dy/ dx

or q = s17 < » .

clue from Ihe{}::: the solution will “blow up™ at - % 3

. a1 yalue, We 8 i/ 2 424 = 1

initial hat the equation (dy/dx) 7

Show th ‘ e
19. ,ul_yalued)somuon, alues of m the ¢

s T which ovalues ©  Tuncg,
20. DC[Crmmemx . a solution tO the given equation,

Fume 8 8. 8
(/)(-\‘) -
) Q+6£+S-" PrA)
(a a dx
(1})'_,_ 2t.ljl+2_@ = ()
(b) ;"' 'y dx :
a3 ich values of m the fypu:
21. Determine for which 2 Pl o fitio
> $(z) = " is a solution to the given equation
s ) . 3
g (——3y =0
(a) 3r—" 1|.\(

22. Verify that the function ¢(x) = cje” + c.e ™ is 4 il
tion to the linear equation
i
iy d 3
d_) -+ _} . 2\, - 0
oo
for any choice of the constants ¢; and Jetermine ¢
and ¢, so that each of the following initial ¢ nditions is
satisfied.
@ y(0) =2, y'(0) =1
(b) )-(1):1’ ),(1) 0

In Problems 23-28, determine whether Theorem | implie

that Zze 8wen initial value problem has a unique solution.
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Show  thgy ¢](Valuf Problem (12) of Example *
SO]Uti()nS'H ! X) i Oand éZ(X) - (,\'_254 ar

€nc e :
€, this Initia] value problem has mu!

tipleSOI .
) Does m;on?ﬁi(fee also Project G in Chapter 2.,
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