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We investigate the effects of habitat complexity and multi-time delays on dynamics 
of a bio-economic predator–prey model. The differential–algebraic system theory is 
applied to transform the bio-economic model into a normal form, so that the local 
stability and existence of periodic solutions can be examined by varying the de-
lays and the habitat complexity parameter. The direction of Hopf bifurcation and 
the stability of bifurcated periodic solutions are investigated. We also discuss the ef-
fect of fluctuating environment on dynamical behavior of a corresponding stochastic 
delayed-differential–algebraic system and derive expressions for intensities of popu-
lation fluctuations. The model is also used to study the optimal harvesting strategy 
in order to maximize economic profit while sustaining the ecosystem. Numerical 
simulations are designed to illustrate the effectiveness of theoretical analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A predator–prey system, intensively studied in the literature (see [22,23,14,20]), is generally given by

{
ẋ(t) = xg(x) − yf(x, y),
ẏ(t) = βyf(x, y) − dy,

(1)

where x and y denote the number of preys and predators, respectively. In the model, g(x) is the per capita 
growth rate of the prey in the absence of predation. The trophic function f(x, y) denotes the amount of 
prey caught by a predator per unit of time, β is the rate of conversion of nutrients from the prey into the 
reproduction of the predator and d is the mortality rate of the predator in the absence of prey.
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There are different types of functional responses such as the prey-dependent type [25] (including the 
Holling I–III) and the predator-dependent type [12] (including the Beddinton–DeAngelis function and ratio-
dependent response). It is also noted that (see [5,17,19]) habitat complexity can reduce the probability of 
capturing a prey by decreasing encounter rates between predator and prey. This led to incorporating the 
influence of habitat complexity into the Holling II [11] type functional response as follows:

f(x) = α(1 − δ)x
1 + α(1 − δ)γx, (2)

where α and γ denote the attack coefficient and handing time for predation, respectively. The constant δ

(0 < δ < 1) is a nondimensional parameter that reflects the strength of habitat complexity. When the 
habitat complexity is ignored, i.e., δ = 0, the function (2) reduces to the classic Holling Type II functional 
response. Our work here is based on the aforementioned functional response.

It is well known that extensive and unregulated harvesting can cause species extinction, leading to the 
destruction of a natural predator–prey ecosystem. Regulated harvesting thus becomes a necessity to maintain 
an interactive biological system. However, such a regulation is always influenced by the cost-benefit of the 
harvesting activities. There has already an increasing body of literature for the modelling and analysis of 
bio-economic systems, often described by differential–algebraic equations (see, for example, [26,3,27,4,18]
and references therein). In particular, in [26], a stage-structure differential–algebraic predator–prey system 
subject to harvesting is proposed to investigate the effects of harvesting on population dynamics. A singularly 
induced bifurcation leading to impulses and stability switch occurs at some critical point of economic interest, 
yielding rapid expansion of the predator. Zhang et al. [27] studied a ratio-dependent prey–predator singular 
model and analyzed the direction and stability of periodic solutions. However, this work ignored the fact that 
biological processes normally do not take place instantaneously due to the interaction with environment 
and other species, such as gestation, maturity and hunting. Chakraborty et al. [3] introduced a single 
discrete gestation delay in a differential–algebraic bio-economic system and established Hopf bifurcations 
in the neighborhood of coexisting equilibrium point. Liao et al. [15] investigated Hopf bifurcations of a 
three-species predator–prey system with two delays. In their study, it is possible to rescale the time to 
regard the sum of these two delays as a natural bifurcation parameter. This idea was also utilized by Song 
et al. [21] and Ma [16], while other relevant studies such as [24,8] simplified their analysis by requiring 
the two delays be identical. However, since the delays describing different ecological interaction are always 
different, it is important to discuss the impact of each delay independently on the dynamics, respectively.

In this paper, we study the following differential–algebraic bio-economic model with two time delays and 
habitat complexity:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= rx

(
1 − x(t− τ1)

K

)
− α(1 − δ)xy

1 + αγ(1 − δ)x,

dy

dt
= βα(1 − δ)x(t− τ2)y

1 + αγ(1 − δ)x(t− τ2)
− dy − Ey,

E(py − w) −m = 0,

(3)

where r > 0 is the intrinsic growth rate of prey; K > 0 is the carrying capacity of prey; d is the intrinsic 
mortality rate of the predator species. We assume the prey dynamics is delayed by τ1 due to slow replacement 
of resources and the predator takes time τ2 to convert the food into its growth. In the model, the economics 
of harvesting is described by the algebraic equation, where E is the predator-dependent harvesting rate, 
p > 0 is the harvesting reward, Ew is the total fixed cost and m > 0 is the fixed profit.

The initial conditions for the predator–prey subsystem (3) are

(x|[−τ,0], y|[−τ,0]) ∈ C+([−τ, 0];R2
+)
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with τ = max{τ1, τ2}; and when y(0) is given, the initial value of E(0) is given by m/(py(0) − w), so we 
always assume that y(0) > w/p.

Our model considers three phenomena, oscillations, fluctuation intensity and optimal harvesting, all 
appearing in any predator–prey system. We start with the pure ecological consideration, and study the 
local stability and Hopf bifurcations by varying the self-limitation and gestation delay and the habitat 
complexity metric. We then address the impact of environmental variation on these dynamic behaviors
by incorporating seasonality, temperature, sunshine and humidity, and the noise in the reproduction and 
mortality rate, and we establish the relationship between key ecological parameters such as time lags and 
fluctuation intensity for the model system to change its long-term behaviors. We finally address the issue of 
biological resources, by incorporating further harvesting policy. These considerations combined provide an 
integrative view how the predator–prey systems should be managed to scheme the delicate balance between 
optimal management of biological resources and sustainable development subject to uncertainty.

Our paper is organized as follows. In Section 2, we find the conditions for local stability and occurrence 
of Hopf bifurcations of system (3) around the interior equilibrium point in the presence of two delays. We 
discuss the direction of Hopf bifurcations and the stability of bifurcated periodic solutions by using the 
normal form theory and the center manifold theory in Section 3. In Section 4, we discuss the behavior of 
stochastic model and compute fluctuation intensity of populations. In Section 5, we consider the optimal 
harvesting strategy. Section 6 contains numerical simulations to illustrate the theoretical analysis, and 
Section 7 provides some additional remarks.

2. Local stability and Hopf bifurcation

Let P (x∗, y∗, E∗) be the interior equilibrium of model system (3), where

E∗ = m

py∗ − w
,

y∗ = r

α(1 − δ) (1 − x∗

K
)(1 + αγ(1 − δ)x∗),

and x∗ satisfies the following equation:

H(x) := Ax3 + Bx2 + Cx + D = 0,

where

A = −αγpr

K
(1 − δ)(β − γd),

B = pr

K
[(β − γd)(α(1 − δ)γK − 1) + γd],

C = (β − 2γd)pr − α(1 − δ)(mγ + w(β − γd)) + prd

αK(1 − δ) ,

D = −d( pr

α(1 − δ) − w) −m.

In order to obtain the linearization of system (3), we introduce the following translation to reduce 
system (3) into state space form:

⎛
⎝ x

y

E

⎞
⎠ =

⎛
⎜⎝

1 0 0
0 1 0

0 − pE∗

∗ 1

⎞
⎟⎠

⎛
⎝ x1

y1
E1

⎞
⎠ ,
py − w
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and then we can rewrite system (3) as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= rx1(1 − x1(t− τ1)

K
) − α(1 − δ)x1y1

1 + αγ(1 − δ)x1
,

dy1

dt
= βα(1 − δ)x1(t− τ2)y1

1 + αγ(1 − δ)x1(t− τ2)
− dy1 − (E1 −

pE∗y1

py∗ − w
)y1,

0 = (E1 −
pE∗y1

py∗ − w
)(py1 − w) −m.

(4)

We denote the corresponding interior equilibrium point of model (4) by P1(x∗
1, y

∗
1 , E

∗
1 ), and transform the 

equilibrium point into zero by x1 = x∗
1 + x2, y1 = y∗1 + y2 and E1 = E∗

1 + l(x2, y2), where

l(x2, y2) = pE∗(y∗1 + y2)
py∗1 − w

+ m

p(y∗1 + y2) − w
− pE∗y∗1

py∗1 − w
− E∗.

This transformation enables us to transform a differential–algebraic system to a system of differential equa-
tions for the new state variables (x2, y2) as follows:

⎧⎪⎪⎨
⎪⎪⎩

dx2

dt
= (x2 + x∗

1)[r(1 − x∗
1 + x2(t− τ1)

K
) − α(1 − δ)(y∗1 + y2)

1 + αγ(1 − δ)(x∗
1 + x2)

],

dy2

dt
= (y2 + y∗1)[ βα(1 − δ)(x∗

1 + x2(t− τ2))
1 + αγ(1 − δ)(x∗

1 + x2(t− τ2))
− d2 −E∗ − l(x2, y2) + pE∗(y∗1 + y2)

py∗1 − w
].

(5)

The corresponding Jacobian matrix at the zero solution is given by

J =

⎛
⎜⎜⎝

α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

− rx∗
1

K
e−λτ1 − α(1 − δ)x∗

1
1 + αγ(1 − δ)x∗

1
(βα(1 − δ)y∗1

(1 + αγ(1 − δ)x∗
1)2

e−λτ2
pE∗y∗1
py∗1 − w

⎞
⎟⎟⎠ .

The characteristic equation is given by

λ2 + A1λ + A2 + (A3λ + A4)e−λτ1 + A5e
−λτ2 = 0, (6)

where

A1 = − α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

− pE∗y∗1
py∗1 − w

,

A2 = pα2γ(1 − δ)2x∗
1y

∗2
1 E∗

(1 + αγ(1 − δ)x∗
1)2(py∗1 − w) ,

A3 = rx∗
1

K
,

A4 = − rx∗
1y

∗
1E

∗

K(py∗1 − w) ,

A5 = βα2(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)3

.

In the case where τ1 = τ2 = 0, the characteristic equation (6) becomes

λ2 + (A1 + A3)λ + A2 + A4 + A5 = 0.
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Thus from the Routh–Hurwitz criteria, the interior equilibrium of model (4) in the absence of time delay is 
locally asymptotically stable if the following conditions are satisfied:

A1 + A3 > 0 and A2 + A4 + A5 > 0. (7)

Now, we discuss the effects of the two time delays on the stability at the positive equilibrium point P1 in 
the following four cases.

Case 1. τ1 = 0 and τ2 > 0.
In this case, the equation (6) can be reduced into

λ2 + (A1 + A3)λ + (A2 + A4) + A5e
−λτ2 = 0. (8)

If iω2(ω2 > 0) is a root of equation (8), then

−ω2
2 + (A1 + A3)iω2 + A2 + A4 + A5e

−iω2τ2 = 0.

Separating the real and imaginary parts, we obtain
{
−ω2

2 + A2 + A4 = −A5 cos(ω2τ2),
(A1 + A3)ω2 = A5 sin(ω2τ2),

(9)

from which we have

ω4
2 + ((A1 + A3)2 − 2(A2 + A4))ω2

2 + (A2 + A4)2 −A2
5 = 0. (10)

There is a unique positive real root ω20 satisfying the above equation if (7) holds and the following condition 
is satisfied:

A2 + A4 −A5 < 0. (11)

The corresponding τ2k > 0 such that the characteristic equation (8) has a pair of purely imaginary roots 
±iω20 are given by

τ2k = 1
ω20

arccos −ω2
20 + A2 + A4

−A5
+ 2kπ

ω20
, k = 0, 1, 2, · · · . (12)

If A2+A4−A5 > 0, equation (10) has no real root and the interior equilibrium of model (3) is asymptotically 
stable for any time delay τ2 > 0.

Differentiating both sides of (8) with respect to τ2 yields

sign
(

d

dτ2
Re(λ)

)
|τ2k = sign( ω4 − (A2 + A4)2 + A2

5
(A1 + A3 + τ2k(A2 + A4 − ω2

20))2 + ω2
20(2 + τ2k(A1 + A3))2

) > 0.

Theorem 1. Let (7), (11) hold and define τ20 > 0 as

τ20 = 1
ω20

arccos −ω2
20 + u1u4

u2u3
.

The positive equilibrium P of model (3) is locally asymptotically stable for τ2 < τ20 and there undergoes a 
Hopf bifurcation at P when τ2 = τ20. That is, the model (3) has a branch of periodic solutions bifurcating 
from the positive equilibrium P near τ2 = τ20.
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Case 2. τ1 > 0 and τ2 = 0.
Using a similar analysis as in the Case 1, we can obtain the following result:

Theorem 2. Assume that (7) holds and A2 +A5 −A4 < 0. Let ω10 be the unique positive real root satisfying 
the following equation:

ω4 + (A2
1 − 2A2 −A2

3 − 2A5)ω2 + (A2 + A5)2 −A2
4 = 0

and

τ10 = 1
ω10

arccos (A4 −A1A3)ω2
10 −A4(A2 + A5)

A2
4 + A3

3ω
2
10

.

Then the positive equilibrium P of model (3) is locally asymptotically stable for τ1 < τ10, and there undergoes 
a Hopf bifurcation at τ1 = τ10.

Case 3. τ1 > 0 and τ2 ∈ (0, τ20).
In this case, we consider τ1 as a parameter and τ2 being in the stable interval (0, τ20). Assume that, for 

some τ1 > 0, λ = iω is a root of the equation (6), where ω is a positive real number. If we substitute iω
into (6) and separate the real and imaginary parts, then we obtain the following transcendental equations:

{
−ω2 + A2 + A5 cos(ωτ2) = −A4 cos(ωτ1) −A3ω sin(ωτ1),
A1ω −A5 sin(ωτ2) = −A3ω cos(ωτ1) + A4 sin(ωτ1),

(13)

from which it follows that

ω4 + [A2
1 −A2

3 − 2A2 − 2A5 cos(ωτ2)]ω2 − 2A1A5ω sin(ωτ2)

+ A2
2 −A2

4 + A2
5 + 2A2A5 cos(ωτ2) = 0.

(14)

The equation (14) has a positive real root ω∗
10 if the condition (A2 +A5)2 < A2

4 holds. In addition, equation 
(13) can also be rewritten as

{
A5 cos(ωτ2) = −A4 cos(ωτ1) −A3ω sin(ωτ1) + ω2 −A2,

−A5 sin(ωτ2) = −A3ω cos(ωτ1) + A4 sin(ωτ1) −A1ω.
(15)

We define

τ∗1k = 1
ω∗

10
[arccos (ω∗2

10 −A2)2 + (A2
1 + A2

3)ω∗2
10 + A2

4 −A2
5

2
√

A2
4 + A2

3ω
∗2
10
√

(ω∗2
10 −A2)2 + A2

1ω
∗2
10

− φ1 + φ2] + 2kπ
ω∗

10
,

k = 0, 1, 2, · · · ,

where

φ1 = arctan A4

A3ω∗
10
,

φ2 = arctan ω∗2
10 −A2

A1ω∗
10

.

Using the Butler’s Lemma [7], it can be concluded that the interior positive equilibrium P1 remains stable 
for τ1 < τ∗10. We now examine whether the system (3) undergoes a Hopf bifurcation phenomenon at P when 
τ1 increases through τ∗10.
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Differentiating (6) with respect to τ1 and substituting the eigenvalue iω∗
10 and time delay τ1 = τ∗10, we 

obtain that

U

(
d(Re λ)
dτ1

)
|τ∗

10 + V

(
dω

dτ1

)
|τ∗

10 = R,

−V

(
d(Re λ)
dτ1

)
|τ∗

10 + U

(
dω

dτ1

)
|τ∗

10 = S,

(16)

where

U = A1 + A3 cosω∗
10τ

∗
10 − τ∗10(A4 cosω∗

10τ
∗
10 + A3ω

∗
10 sinω∗

10τ
∗
10)

−A5τ2 cosω∗
10τ2,

V = −2ω∗
10 + A3 sinω∗

10τ
∗
10 + τ∗10(A3ω

∗
10 cosω∗

10τ
∗
10 + −A4 sinω∗

10τ
∗
10)

−A5τ2 sinω∗
10τ2,

R = −ω∗
10(A3ω

∗
10 cosω∗

10τ
∗
10 −A4 sinω∗

10τ
∗
10),

S = ω∗
10(A3ω

∗
10 sinω∗

10τ
∗
10 + A4 cosω∗

10τ
∗
10).

From these equations, we conclude that
(
d(Re λ)
dτ1

)
|τ∗

10 = UR− V S

U2 + V 2 �= 0.

Therefore, we can obtain:

Theorem 3. Assume that (7) and the condition (A2 + A5)2 < A2
4 hold. Then the positive equilibrium P

of model (3) is locally asymptotically stable for τ1 ∈ [0, τ∗10) and there undergoes Hopf bifurcation when 
τ1 = τ∗10, where

τ∗10 = 1
ω∗

10
[arccos (ω∗2

10 −A2)2 + (A2
1 + A2

3)ω∗2
10 + A2

4 −A2
5

2
√
A2

4 + A2
3ω

∗2
10
√

(ω∗2
10 −A2)2 + A2

1ω
∗2
10

− φ1 + φ2],

where φ1 = arctan A4

A3ω∗
10

, φ2 = arctan ω∗2
10 −A2

A1ω∗
10

.

Case 4. τ1 ∈ (0, τ10) and τ2 > 0.
Using a similar analysis as in the Case 3, we can obtain:

Theorem 4. Assume that (7) and (A2+A4)2 < A2
5 hold. Let ω∗

20 be a positive real root satisfying the following 
equation:

ω4 −2A3 sin(ωτ1)ω3 + [A2
1 + A2

3 − 2A2 + 2(A1A3 −A4) cos(ωτ1)]ω2

+ 2(A2A3 −A1A4) sin(ωτ1)ω + A2
2 + A2

4 + 2A2A4 cos(ωτ1) −A2
5 = 0,

and

τ∗20 = 1
ω20∗

[arccos (−ω∗2
20 + A2)2 + (A2

1 −A2
3)2ω∗2

20 + +A2
5 −A2

4

−2A5
√
A2

1ω
∗2
20 + (−ω∗2

20 + A2)2
− ψ],
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where ψ = arctan A1ω
∗
20

−ω∗2
20 + A2

. Then the positive equilibrium P of model (3) is locally asymptotically stable 

for τ2 ∈ [0, τ∗20), and there undergoes Hopf bifurcation at τ2 = τ∗20.

3. Stability of bifurcated periodic solutions

In this section, we consider the direction of Hopf bifurcation, stability and period of the periodic solution 
bifurcating from the positive equilibrium P . Following the ideas of Hassard et al. [10], we derive the explicit 
formulae for determining these properties of Hopf bifurcation at the critical value τ∗10 for fixed τ∗2 ∈ (0, τ20)
by employing the normal form method and center manifold theorem. Without loss of generality, in this 
section we assume that τ∗2 < τ∗10. Let

u1 = x2 − x∗
2,

u2 = y2 − y∗2 ,

and u1(t) = x2(τ1t), u2(t) = y2(τ1t), τ1 = τ∗10 + μ, μ ∈ R. Then μ = 0 is the Hopf bifurcation value of 
system (5). Next, we work in the fixed phase space C = C([−1, 0], R2). In space C, system (5) is transformed 
into an FDE as

u̇(t) = Lμ(ut) + F (μ, ut), (17)

where u(t) = (u1(t), u2(t))T ∈ R2, and Lμ : C → R, F : R× C → R are given respectively by

Lμ(φ) = (τ∗10 + μ)(

⎛
⎜⎜⎝

α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

− α(1 − δ)x∗
1

1 + αγ(1 − δ)x∗
1

0 pE∗
1y

∗
1

py∗1 − w

⎞
⎟⎟⎠φ(0)

+

⎛
⎝ 0 0

βα(1 − δ)y∗1
(1 + αγ(1 − δ)x∗

1)2
0

⎞
⎠φ(− τ∗

2
τ∗
10

) +
(
−rx∗

1
K

0
0 0

)
φ(−1))

(18)

and

F (μ, φ) = (τ∗10 + μ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2γ(1 − δ)2y∗1
(1 + αγ(1 − δ)x∗

1)3
φ2

1(0) − α(1 − δ)
(1 + αγ(1 − δ)x∗

1)2
φ1(0)φ2(0)

− r

K
φ1(0)φ1(−1) − α3γ2(1 − δ)3y∗1

(1 + αγ(1 − δ)x∗
1)4

φ3
1(0)

+ α2γ(1 − δ)2

(1 + αγ(1 − δ)x∗
1)3

φ2
1(0)φ2(0) + · · ·

− βα2γ(1 − δ)2y∗1
(1 + αγ(1 − δ)x∗

1)3
φ2

1(−
τ∗2
τ∗10

) + βα(1 − δ)
(1 + αγ(1 − δ)x∗

1)2

· φ1(−
τ∗2
τ ′10

)φ2(0) − mpw

(py∗1 − w)3φ
2
2(0) + βα3γ2(1 − δ)3y∗1

(1 + αγ(1 − δ)x∗
1)4

· φ3
1(−

τ∗2
τ∗10

) − βα2γ(1 − δ)2

(1 + αγ(1 − δ)x∗
1)3

φ2
1(−

τ∗2
τ∗10

)φ2(0)

+ mp2w

(py∗1 − w)4φ
3
2(0) + · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where φ(θ) = (φ1(θ), φ2(θ))T ∈ C.
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By the Riesz representation theorem, there exists a 2 ×2 matrix η(θ, μ) of bounded variation for θ ∈ [−1, 0], 
such that

Lμφ =
0∫

−1

dη(θ, μ)φ(θ), for φ ∈ C.

In fact, we can choose

η(θ, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τ∗10 + μ)

⎛
⎜⎜⎝

α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

− rx∗
1

K

−α(1 − δ)x∗
1

1 + αγ(1 − δ)x∗
1

βα(1 − δ)y∗1
(1 + αγ(1 − δ)x∗

1)2
pE∗

1y
∗
1

py∗1 − w

⎞
⎟⎟⎠ , θ = 0,

(τ∗10 + μ)

⎛
⎜⎜⎝

−rx∗
1

K
0

βα(1 − δ)γy∗1
(1 + αγ(1 − δ)x∗

1)2
0

⎞
⎟⎟⎠ , θ ∈ [− τ∗2

τ∗10
, 0),

(τ∗10 + μ)

⎛
⎝−rx∗

1
K

0

0 0

⎞
⎠ , θ ∈ (−1,− τ∗2

τ∗10
),

02×2, θ = −1.

For φ ∈ C1([−1, 0], R2), define

A(μ)φ =

⎧⎪⎨
⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0
−1 dη(s, μ)φ(s), θ = 0,

and

R(μ)φ =
{

0, −1 ≤ θ < 0,
F (μ, φ), θ = 0.

Then system (17) is equivalent to

u̇t = A(μ)ut + R(μ)ut, (20)

where ut(θ) = u(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

⎧⎪⎨
⎪⎩
−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0,

and the bilinear form

〈ψ(s), φ(θ)〉 = ψ(0)φ(0) −
0∫

−1

θ∫
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (21)

where η(θ) = η(θ, 0). Then A = A(0) and A∗ are adjoint operators.
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Since ±iω∗
10τ

∗
10 are eigenvalues of A(0), they are also eigenvalues of A∗. Next, we need to compute the 

eigenvector of A(0) and A∗ corresponding to iω∗
10τ

∗
10 and −iω∗

10τ
∗
10, respectively.

Suppose that q(θ) = (1, Δ)T eiω∗
10τ

∗
10θ is the eigenvector of A(0) corresponding to iω∗

10τ
∗
10, then A(0)q(θ) =

iω∗
10τ

∗
10q(θ). The definition of A(0) and η(θ, μ) yields

⎛
⎜⎜⎝

α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

− rx∗
1

K
e−iω∗

10τ
∗
10 − α(1 − δ)x∗

1
1 + αγ(1 − δ)x∗

1

βα(1 − δ)y∗1
(1 + αγ(1 − δ)x∗

1)2
e−iω∗

10τ
∗
2

pE∗
1y

∗
1

py∗1 − w

⎞
⎟⎟⎠ q(0) = iω∗

10q(0).

Then we can obtain

Δ =
iω∗

10 + rx∗
1

K
e−iω∗

10τ
∗
10 − α2γ(1 − δ)2x∗

1y
∗
1

(1 + αγ(1 − δ)x∗
1)2

− α(1 − δ)x∗
1

1 + αγ(1 − δ)x∗
1

.

Similarly, let q∗(s) = D(1, Δ∗)eiω∗
10τ

∗
10s be the eigenvector of A∗ corresponding to −iω∗

10τ
∗
10, we can obtain

Δ∗ =
−iω∗

10 + rx∗
1

K
eiω

∗
10τ

∗
10 − α2γ(1 − δ)2x∗

1y
∗
1

(1 + αγ(1 − δ)x∗
1)2

βα(1 − δ)y∗1
(1 + αγ(1 − δ)x∗

1)2
eiω

∗
10τ

∗
2

.

By (21) we get

〈q∗(s), q(θ)〉

= D(1,Δ∗)(1,Δ)T −
0∫

−1

θ∫
ξ=0

D(1,Δ∗)e−iω∗
10τ

∗
10(ξ−θ)dη(θ)(1,Δ)T eiω

∗
10τ

∗
10ξdξ

= D

(
1 + Δ∗Δ − rx∗

1
K

e−iω∗
10τ

∗
10 + βα(1 − δ)y∗1τ∗2 Δ∗

τ∗10(1 + αγ(1 − δ)x∗
1)2

e−iω∗
10τ

∗
2

)
.

Then we obtain

D =
(

1 + Δ∗Δ − rx∗
1

K
e−iω∗

10τ
∗
10 + βα(1 − δ)y∗1τ∗2 Δ∗

τ∗10(1 + αγ(1 − δ)x∗
1)2

e−iω∗
10τ

∗
2

)−1

.

Clearly, the conditions 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q(θ)〉 = 0 are satisfied. Let ut be the solution of (20)
when μ = 0. Define

z(t) = 〈q∗, ut〉,

W (t, θ) = ut(θ) − 2Re{z(t)q(θ)}.
(22)

On the center manifold C0, we have

W (t, θ) = W (z(t), z(t), θ),

and
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W (z(t), z(t), θ) = W20(θ)
z2

2 + W11(θ)zz + W02(θ)
z2

2 + · · · , (23)

where z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note that W is 
real if ut is real. We only consider real solutions. For solution ut ∈ C0 of (20), since μ = 0, we have

ż(t) = iω∗
10τ

∗
10z + q∗(0)F (0,W (z, z, 0) + 2Re{z(t)q(θ)})〉

= iω∗
10τ

∗
10z + q∗(0)F0(z, z).

We rewrite this equation as

ż(t) = iω∗
10τ

∗
10z + g(z, z),

where

g(z, z) = q∗(0)F0(z, z)

= g20(θ)
z2

2 + g11(θ)zz + g02(θ)
z2

2 + g21(θ)
z2z

2 + · · · .
(24)

From (22) and (23), we have

ut = (u1t(θ), u2t(θ))

= W (t, θ) + 2Re{z(t)q(θ)},

where q(θ) = (1, Δ)T eiω∗
10τ

∗
10θ, then

u1t(0) = W (1)(t, 0) + z + z,

u2t(0) = W (2)(t, 0) + Δz + Δz,

u1t(−
τ∗2
τ∗10

) = W (1)(t,− τ∗2
τ∗10

) + ze−iω∗
10τ

∗
2 + zeiω

∗
10τ

∗
2 ,

u2t(−
τ∗2
τ ′10

) = W (2)(t,− τ∗2
τ ′10

) + Δze−iω∗
10τ

∗
2 + Δzeiω

∗
10τ

∗
2 ,

u1t(−1) = W (1)(t,−1) + ze−iω∗
10τ

∗
10 + zeiω

∗
10τ

∗
10 ,

u2t(−1) = W (2)(t,−1) + Δze−iω∗
10τ

∗
10 + Δzeiω

∗
10τ

∗
10 .

It follows, together with (19), the following expression:

g(z, z) = q∗(0)F0(z, z).

Comparing the coefficients with (24), we have

g20 = 2Dτ∗10[
α2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

− r

K
e−iω∗

10τ
∗
10 − α(1 − δ)Δ

(1 + αγ(1 − δ)x∗
1)2

+ Δ∗( βα(1 − δ)Δ
(1 + αγ(1 − δ)x∗

1)2
e−iω∗

10τ
∗
2 − βα2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

e−2iω∗
10τ

∗
2

− pE∗
1wΔ2

∗ 2 )],
(py1 − w)
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g11 = 2Dτ∗10[
α2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

− r

K
Re{eiω∗

10τ
∗
10} − α(1 − δ)Re{Δ}

(1 + αγ(1 − δ)x∗
1)2

+ Δ∗( βα(1 − δ)
(1 + αγ(1 − δ)x∗

1)2
Re{Δeiω

∗
10τ

∗
2 } − βα2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

− pE∗
1wΔΔ

(py∗1 − w)2 )],

g02 = 2Dτ∗10[
α2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

− r

K
eiω

∗
10τ

∗
10 − α(1 − δ)Δ

(1 + αγ(1 − δ)x∗
1)2

+ Δ∗( βα(1 − δ)Δ
(1 + αγ(1 − δ)x∗

1)2
eiω

∗
10τ

∗
2 − βα2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

e2iω∗
10τ

∗
2

− pE∗
1wΔ2

(py∗1 − w)2 )],

g21 = 2Dτ∗10{
α2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

(2W (1)
11 (0) + W

(1)
20 (0)) − r

K
(W (1)

11 (−1)

+ W
(1)
20 (−1)

2 + W 1
20(0)
2 eiω

∗
10τ

∗
10 + W

(1)
11 (0)e−iω∗

10τ
∗
10)

− α(1 − δ)
(1 + αγ(1 − δ)x∗

1)2
(W 2

11(0) + W
(2)
20 (0)
2 + W

(1)
20 (0)
2 Δ + W

(1)
11 (0)Δ)

− 3α3γ2(1 − δ)3y∗1
(1 + αγ(1 − δ)x∗

1)4
+ α2γ(1 − δ)2

(1 + αγ(1 − δ)x∗
1)3

(Δ + 2Δ)

+ Δ∗[ βα(1 − δ)
(1 + αγ(1 − δ)x∗

1)2
(W (2)

11 (0)e−iω∗
10τ

∗
2 + W

(2)
20 (0)
2 eiω

∗
10τ

∗
2

+
W

(1)
20 (− τ∗2

τ∗10
)

2 Δ + W
(1)
11 (− τ∗2

τ∗10
)Δ) − βα2γ(1 − δ)2y∗1

(1 + αγ(1 − δ)x∗
1)3

· (2W (1)
11 (− τ∗2

τ∗10
)e−iω∗

10τ
∗
2 + W

(1)
20 (− τ∗2

τ∗10
)eiω

∗
10τ

∗
2 ) − pE∗

1w

(py∗1 − w)2

· (2W (2)
11 (0)Δ + W

(2)
20 (0)Δ) + 3βα3γ2(1 − δ)3y∗1

(1 + αγ(1 − δ)x∗
1)4

e−iω∗
10τ

∗
2

− βα2γ(1 − δ)2

(1 + αγ(1 − δ)x∗
1)3

(Δe−2iω∗
10τ

∗
2 + 2Δ) + 3mp2wΔ2Δ

(py∗1 − w)4 ]}.

We need to compute W20(θ) and W11(θ). From (20) and (22), we have

Ẇ = u̇t − żq − żq

=
{
AW − 2Re{q∗(0)F0q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q∗(0)F0q(θ)} + F0, θ = 0,

= AW + H(z, z, θ),

(25)

where

H(z, z, θ) = H20(θ)
z2

+ H11(θ)zz + H02(θ)
z2

+ · · · . (26)
2 2
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Note that on the center manifold C0 near the origin, we have

Ẇ = Wz ż + Wz ż.

Substituting the corresponding series into (25) and comparing the coefficients, we have

(A− 2iω∗
10τ

∗
10I)W20(θ) = −H20(θ),

AW11(θ) = −H11(θ).
(27)

From (25), we know that for θ ∈ [−1, 0)

H(z, z, θ) = −q∗(0)F0q(θ) − q∗(0)F 0q(θ) = −gq(θ) − gq(θ). (28)

Comparing the coefficients with (26), we obtain

H20(θ) = −g20q(θ) − g02q(θ),

H11(θ) = −g11q(θ) − g11q(θ).
(29)

From (27) and (29) and the definition of A, it follows that

Ẇ20(θ) = 2iω∗
10τ

∗
10W20(θ) + g20q(θ) + g02q(θ).

Notice that q(θ) = q(0)eiω∗
10τ

∗
10θ. Hence,

W20(θ) = ig20

ω∗
10τ

∗
10
q(0)eiω

∗
10τ

∗
10θ + ig02

3ω∗
10τ

∗
10
q(0)e−iω∗

10τ
∗
10θ + M1e

2iω∗
10τ

∗
10θ, (30)

where M1 =
(
M

(1)
1 ,M

(2)
1

)
∈ R2 is a constant vector.

Similarly, from (27) and (29), we obtain

W11(θ) = − ig11

ω∗
10τ

∗
10
q(0)eiω

∗
10τ

∗
10θ + ig11

ω∗
10τ

∗
10
q(0)e−iω∗

10τ
∗
10θ + M2, (31)

where M2 =
(
M

(1)
2 ,M

(2)
2

)
∈ R2 is also a constant vector.

In the following we shall find out constant vectors M1 and M2. From (25) and (26), we have

H20(0) = −g20q(0) − g02q(0) + 2τ∗10N1, (32)

H11(0) = −g11q(0) − g11q(0) + 2τ∗10N2, (33)

where

N1 =

⎛
⎜⎜⎜⎝

α2γ(1 − δ)2y∗1
(1 + αγ(1 − δ)x∗

1)3
− r

K
e−iω∗

10τ
∗
10 − α(1 − δ)Δ

(1 + αγ(1 − δ)x∗
1)2

βα(1 − δ)Δe−iω∗
10τ

∗
2

(1 + αγ(1 − δ)x∗
1)2

− βα2γ(1 − δ)2y∗1e−2iω∗
10τ

∗
2

(1 + αγ(1 − δ)x∗
1)3

− pE∗
1wΔ2

(py∗1 − w)2

⎞
⎟⎟⎟⎠ ,

N2 =

⎛
⎜⎜⎜⎝

α2γ(1 − δ)2y∗1
(1 + αγ(1 − δ)x∗

1)3
− r

K
Re(eiω∗

10τ
∗
10) − α(1 − δ)Re(Δ)

(1 + αγ(1 − δ)x∗
1)2

βα(1 − δ)Re(Δeiω
∗
10τ

∗
2 )

∗ 2 − βα2γ(1 − δ)2y∗1
∗ 3 − pE∗

1wΔΔ
∗ 2

⎞
⎟⎟⎟⎠ .
(1 + αγ(1 − δ)x1) (1 + αγ(1 − δ)x1) (py1 − w)
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Substituting (30), (31) and (32), (33) into (27) and noticing that

⎛
⎝iω∗

10τ
∗
10I −

0∫
−1

eiω
∗
10τ

∗
10θdη(θ)

⎞
⎠ q(0) = 0,

and
⎛
⎝−iω∗

10τ
∗
10I −

0∫
−1

e−iω∗
10τ

∗
10θdη(θ)

⎞
⎠ q(0) = 0,

we obtain
⎛
⎝2iω∗

10τ
∗
10I −

0∫
−1

e2iω∗
10τ

∗
10θdη(θ)

⎞
⎠M1 = 2τ∗10N1,

and

0∫
−1

dη(θ)M2 = −2τ∗10N2.

Therefore, we obtain

M1 = 2

⎛
⎜⎜⎝

2iω∗
10 −

α2γ(1 − δ)2x∗
1y

∗
1

(1 + αγ(1 − δ)x∗
1)2

+ rx∗
1

K
e−2iω∗

10τ
∗
10

α(1 − δ)x∗
1

1 + αγ(1 − δ)x∗
1

− βα(1 − δ)y∗1
1 + αγ(1 − δ)x∗

1
e−2iω∗

10τ
∗
2 2iω∗

10 −
pE∗

1y
∗
1

py∗1 − w

⎞
⎟⎟⎠

−1

N1,

and

M2 = 2

⎛
⎜⎜⎝

rx∗
1

K
− α2γ(1 − δ)2x∗

1y
∗
1

(1 + αγ(1 − δ)x∗
1)2

α(1 − δ)x∗
1

1 + αγ(1 − δ)x∗
1

− βα(1 − δ)y∗1
(1 + αγ(1 − δ)x∗

1)2
− pE∗

1y
∗
1

py∗1 − w

⎞
⎟⎟⎠

−1

N2.

Thus, we can determine W20(θ) and W11(θ) from (30) and (31). Furthermore, g21 can be expressed by the 
parameters of system (17). Hence, we can compute the following values:

c1(0) = i

2ω∗
10τ

∗
10

(g20g11 − 2|g11|2 −
|g02|2

3 ) + g21

2 ,

μ2 = − Re{c1(0)}
Re{λ′(τ∗10)}

,

β2 = 2Re{c1(0)},

T2 = − Im{c1(0)} + μ2 Im{λ′(τ∗10)}
ω∗

10τ
∗
10

.

From the conclusion of Hassard et al. [10], we have the following results.
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Theorem 5. μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), the Hopf bifurcation 
is supercritical (subcritical); β2 determines the stability of the bifurcating periodic solution: the bifurcating 
periodic solution is stable (unstable) if β2 < 0 (β2 > 0) and T2 determines the period of the bifurcating 
periodic solution: the period increases (decreases) if T2 > 0 (T2 < 0).

4. Effect of fluctuating environment

In this section we consider the growth of the prey population and natural mortality of the predator 
population in a stochastic environment by incorporating white noise in each of the equations of system (3), 
leading to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= (r + ξ1(t))x− rxx(t− τ1)

K
− α(1 − δ)xy

1 + αγ(1 − δ)x,

dy

dt
= βα(1 − δ)x(t− τ2)y

1 + αγ(1 − δ)x(t− τ2)
+ (−d + ξ2(t))y − Ey,

E(py − w) −m = 0,

(34)

where the environmental parameters r and d have been perturbed by mutually independent white noise 
characterized by

ξ̄1(t) = 0, ξ̄2(t) = 0,

ξi(t1)ξj(t2) = δijδ(t1 − t2), i, j = 1, 2,

where the bar represents the ensemble average of random environment, δij is the Kronecker delta denoting 
the spectral density of the white noise and δ is the Dirac delta function with distinct times t1 and t2.

Introducing a transformation of the form x = x∗eη1(t) and y = y∗eη2(t) in system (34) and neglecting the 
second and higher terms, we transform this system into the following normal form:

⎧⎪⎪⎨
⎪⎪⎩

dη1

dt
= ξ1(t) + α2γ(1 − δ)2x∗y∗

(1 + αγ(1 − δ)x∗)2 η1 −
rx∗

K
η1(t− τ1) −

α(1 − δ)y∗

1 + αγ(1 − δ)x∗ η2,

dη2

dt
= ξ2(t) + βα(1 − δ)x∗

(1 + αγ(1 − δ)x∗)2 η1(t− τ2) + pmy∗

(py∗ − w)2 η2.

(35)

Consider a continuous function X(t) in the interval −T/2 ≤ t ≤ T/2 and its Fourier transform X̃(ω)

X̃(ω) =

T
2∫

−T
2

X(t)e−iωtdt,

X(t) = 1
2π

+∞∫
−∞

X̃(ω)eiωtdω.

Hence, the Fourier transform of the system (35) can be expressed as

⎧⎪⎪⎨
⎪⎪⎩
ξ̃1(ω) = (iω − α2γ(1 − δ)2x∗y∗

(1 + αγ(1 − δ)x∗)2 + rx∗

K
e−iωτ1)η̃1(ω) + α(1 − δ)y∗

1 + αγ(1 − δ)x∗ η̃2(ω),

ξ̃2(ω) = − βα(1 − δ)x∗

∗ 2 e
−iωτ2 η̃1(ω) + (iω − pmy∗

∗ 2 )η̃2(ω),
(36)
(1 + αγ(1 − δ)x ) (py − w)
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where ξ̃i and η̃i, i = 1, 2 denote the Fourier transform of ξi and ηi, i = 1, 2 respectively. For the sake of 
simplicity, we rewrite system (36) into the following matrix form:

(
ξ̃1(ω)
ξ̃2(ω)

)
=

(
iω − p111 − p112e

−iωτ1 −p12
−p21e

−iωτ2 iω − p22

)(
η̃1(ω)
η̃2(ω)

)
, (37)

where

p111 = α2γ(1 − δ)2x∗y∗

1 + αγ(1 − δ)x∗ ,

p112 = −rx∗

K
,

p12 = − α(1 − c)y∗

1 + αγ(1 − δ)x∗ ,

p21 = βα(1 − δ)x∗

(1 + αγ(1 − δ)x∗)2 ,

p22 = pmy∗

(py∗ − w)2 .

Then

η̃i(ω) =
2∑

j=1
bij ξ̃j(ω), i = 1, 2,

where 
(
b11 b12
b21 b22

)
=

(
iω − p111 − p112e

−iωτ1 −p12
−p21e

−iωτ2 iω − p22

)−1

.

If the function X(t) has zero mean value, the fluctuation intensity of the components in the frequency 
band ω and ω + dω is SX(ω)dω formally defined as

SX(ω)dω = lim
T→∞

|X̃(ω)|2
T

.

Thus

Sξ(ω)dω = lim
T→∞

|ξ̃(ω)|2
T

= lim
T→∞

1
T

T
2∫

−T
2

T
2∫

−T
2

ξ(s)ξ(s′)eiω(s′−s)dsds′.

And the following equations can be obtained:

Sηi
(ω) =

2∑
j=1

|bij |2Sξj (ω).

Therefore, the fluctuation intensity in ηi is given by
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σ2
ηi

= 1
2π

∞∫
−∞

Sηi
(ω)dω

= 1
2π

2∑
j=1

∞∫
−∞

|bij |2Sξj (ω)dω

= 1
2π

∞∫
−∞

Ti(ω)
B(ω) dω, i = 1, 2,

(38)

where

T1(ω) = p2
22 + ω2 + p2

12,

T2(ω) = p2
21 + p2

111 + p2
112 + ω2 + 2p111p112 cos(ωτ1) + 2ωp112 sin(ωτ1),

B(ω) = [(p111 + p112 cos(ωτ1))p22 − ω(ω + p112 sin(ωτ1)) − p12p21 cos(ωτ2)]2

+ [p22(ω + p112 sin(ωτ1)) + ω(p111 + p112 cos(ωτ1)) − p12p21 sin(ωτ2)]2.

In the presence of environmental fluctuation, integral computation of equation (38) makes it difficult to 
obtain an explicit form of the spectral densities of prey and predator populations. Hence, we will compute 
the population fluctuation intensity with numerical simulations.

5. Optimal harvesting

To maximize economic profit and ensure the population persistence, we discuss optimal harvesting strat-
egy for system (3) without time delays. Due to instantaneous annual discount rate ε, this optimal problem 
can be described as

m(E) =
tf∫

t0

E(py − w)e−εtdt,

subjected to system (3) and harvesting constraint

0 ≤ E(t) ≤ Emax .

Let xopt, yopt and Eopt be the optimal population densities and the corresponding optimal harvesting 
rate, respectively. Our objective is to determine optimal harvesting Eopt such that

m(Eopt) = max{m(E) : E(t) ∈ [0, Emax ]}.

In order to find optimal values, we construct the Hamiltonian function as follows:

H = E(py − w)e−εt + σ1[rx(1 − x

K
) − α(1 − δ)xy

1 + αγ(1 − δ)x ]

+ σ2[
βα(1 − δ)xy

1 + αγ(1 − δ)x − dy −Ey],

where σ1(t) and σ2(t) are adjoint variables.
The partial derivative of the Hamiltonian function H with respect to the harvesting effort can be com-

puted as
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∂H

∂E
= (py − w)e−εt − σ2y = DEH(t),

where the term DEH(t) is called the switching function. The sign of the switching function DEH(t) deter-
mines optimal harvesting E(t) as a bang–bang control problem, i.e., changing from one level 0 to the other 
Emax . When DEH(t) = 0, the Hamiltonian function H becomes independent of harvesting E(t). In this 
case, it is a singular control problem. Hence, the optimal harvesting solution is

E(t) =

⎧⎪⎪⎨
⎪⎪⎩
Emax if DEH(t) > 0,
0 if DEH(t) < 0,
Eopt if DEH(t) = 0.

For the case of a singular control, we now present the expression of Eopt. When DEH(t) = 0, we have

σ2(t) = e−εt(p− w

y
). (39)

Using the Pontryagin’s Maximum Principle, the adjoint variables σ1(t) and σ2(t) satisfy the following 
equations:

dσ1

dt
= −∂H

∂x
= (rx

K
− γα2(1 − δ)2xy

(1 + αγ(1 − δ)x)2 )σ1 −
βα(1 − δ)y

(1 + αγ(1 − δ)x)2σ2,

dσ2

dt
= −∂H

∂y
= −pEe−εt + α(1 − δ)x

1 + αγ(1 − δ)xσ1.

(40)

To solve equation (40), we transfer it into the following second-order ordinary differential equation:

d2σ1

dt2
+ L1

dσ1

dt
+ L2σ1 = G1e

−εt, (41)

where

L1 = −rx

K
+ γα2(1 − δ)2xy

(1 + αγ(1 − δ)x)2 ,

L2 = βα2(1 − δ)2xy
(1 + αγ(1 − δ)x)3 ,

G1 = pβα(1 − δ)yE
(1 + αγ(1 − δ)x)2 .

In order to remain the shadow price σ1e
εt bounded, we neglect the integration constant of equation (41)

and obtain σ1(t) = C1 exp(−εt), where C1 = G1/(ε2 − L1ε + L2).
By a similar computation, we can also obtain σ2(t) = C2 exp(−εt), where C2 = G2/(ε2 − L1ε + L2), 

G2 = pE(ε +rx/K−γα2(1 −δ)2xy/(1 +αγ(1 −δ)x)2). Combined with equation (39), the optimal harvesting 
rate takes the following form:

E = (ε2 − L1ε + L2)(py − w)
py(ε− L1)

. (42)

Hence, we can find the optimal equilibrium populations (xopt, yopt) and optimal harvesting rate Eopt by 
the solving biological equilibrium together with equation (42).
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Fig. 1. Numerical simulations of the positive equilibrium (x, y, E) when varying δ ∈ (0, 0.54).

Fig. 2. Numerical simulations of the positive equilibrium (x, y, E) when varying m ∈ (0, 2.3).

6. Numerical simulations

We illustrate the insights of our theoretical analysis through intensive simulations on the following system:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= x(1 − x(t− τ1)) −

6.25(1 − δ)xy
1 + 1.5625(1 − δ)x,

dy

dt
= 9.375(1 − δ)x(t− τ2)y

1 + 1.5625(1 − δ)x(t− τ2)
− 2y − Ey,

0 = E(35y − 1) −m.

(43)

In this model, corresponding to model (3), we take r = 1; K = 1; α = 6.25; γ = 0.25; β = 1.5; d = 2; p = 35; 
w = 1. When the parameter m = 0.5 is fixed, model (43) admits a positive equilibrium for δ ∈ (0, 0.54)
(see Fig. 1). When the parameter δ = 0.2 is fixed, model (43) admits a positive equilibrium for m ∈ (0, 2.3)
(see Fig. 2). From these two figures, we know that the prey density x and harvesting rate E are strictly 
increasing functions of δ and m, whereas the predator density y is decreasing, i.e., the habitat complexity 
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Fig. 3. In absence of delay, the positive equilibrium P of model (43) is asymptotically stable.

Fig. 4. Without any time delay, positive equilibrium point P is asymptotically stable.

and economic profit of harvesting have positive impact on the prey but negative impact on the predator 
species.

Next, we consider the case for the fixed δ = 0.2 and m = 0.5. In the absence of delay, P (0.4299, 0.1753,
0.0974) is a positive equilibrium point of model (43). The dynamic behaviors of species x and y are de-
scribed in Fig. 3, which demonstrates the asymptotic stability of the equilibrium. In Fig. 4, we display the 
density of (x, y, E) as functions of time, and the phase portrait of model (43) with the initial condition 
(0.6, 0.25, 0.1).

Obviously, A2 + A4 − A5 = −0.8046 < 0. Matlab calculations can be used to find the unique positive 
solution ω20 = 0.8629 of equation (10). Thus, in the absence of delay τ1, the critical value of delay τ2 defined 
by (12) is 0.1470, i.e., the positive equilibrium P is asymptotically stable when 0 ≤ τ2 < τ20 = 0.1470 and 
unstable when τ2 > τ20, and model (43) undergoes a Hopf bifurcation at the equilibrium P when τ2 crosses 
through the critical values τ20, see Fig. 5. In the absence of delay τ2, the critical delay for τ1 can be obtained 
as 0.8001 by a similar computation.
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Fig. 5. When τ2 = 0.15 > τ20, a periodic solution bifurcating from the equilibrium point P occurs.

Fig. 6. The stability region in the plane τ1–τ2.

For model (43), our analysis for Cases 3 and 4 provides a guide to draw a critical curve τ2 = f(τ1) w.r.t. 
two parameters τ1 and τ2 (see Fig. 6), i.e., when τ2 ∈ (0, τ20) (τ1 ∈ (0, τ10)) is fixed, one can find the critical 
values τ∗10 (τ∗20). Fig. 6 draws the stability region, i.e., the shadow enclosed by curve f(τ1) and two axes.

For the fixed delay τ2 = 0.1, based on our analysis in Section 3, we have ω∗
10 = 0.9879, τ∗10 = 0.3198, 

λ′(τ∗10) = 0.1226 + 0.2460i, c1(0) = −1.5550 − 0.4417i, μ2 = 12.6823, β2 = −3.11, T2 = −4.8846. According 
to Theorem 5, model (43) undergoes a supercritical Hopf bifurcation at the positive equilibrium P and the 
bifurcating periodic solution exists for τ1 slightly larger than τ∗10 and the bifurcated periodic solution is 
stable, as depicted in Fig. 7. Note that for the fixed two time delays τ1, τ2 and other parameters referred 
above, with the increasing of habitat complexity δ, model (43) undergoes dynamics change from an unstable 
situation to a Hopf bifurcation, and then stabilization finally. This process is illustrated in Fig. 7 and Fig. 8.

We now consider the stochastic delay differential equation model with the same parametric values as in 
equation (43). In the absence of a gestation delay, Fig. 9 shows stochastically stable population distribu-
tion for prey and predator species. In the presence of gestation delays, stochastic effects can be illustrated 
by increasing the magnitude of the delay. Fig. 10 plots the solutions of the stochastic delay differential 
model with different delays τ1 = 0.1, τ2 = 0.1 and τ1 = 0.3198, τ2 = 0.15. This demonstrates that the 
amplitude of fluctuation increases and the model becomes unstable as time delay increases gradually. Vari-
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Fig. 7. When τ1 = τ∗
10 = 0.3198 and τ∗

2 = 0.1, a periodic solution of model (43) bifurcates from the equilibrium point P occurs.

Fig. 8. Plots of (x, y) as functions of the time for different harvest complexity parameter values δ = 0.15 and δ = 0.3.

ations of spectral densities of prey and predator populations with respect to time delay τ1 are presented in 
Fig. 11.

For the optimal harvesting consideration, we choose the instantaneous annual discount rate as ε =
0.01. The optimal equilibrium populations (xopt, yopt) and optimal harvesting efforts Eopt are plotted in 
Fig. 12. It is clear that the corresponding optimal prey population gradually increases and optimal predator 
population and the harvesting rate gradually decrease as habitat complexity δ increases. This phenomenon 
is expected since the impact of habitat complexity on prey is stronger. From Fig. 12, the optimal harvesting 
rate is near zero when the habitat complexity δ = 0.665. This means that when habitat complexity is 
beyond the level 0.665, harvesting behavior should not be conducted in order to prevent the predator from 
extinction.
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Fig. 9. Solution of the stochastic model (43) in the absence of time delays.

Fig. 10. Solutions of the stochastic delay differential model (43) with different delays τ1 = 0.1, τ2 = 0.1 (blue solid line) and 
τ1 = 0.3198, τ2 = 0.15 (black solid line). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

7. Conclusions

As pointed in such studies as [13,1], the dynamics of local interacting populations largely depend upon 
attributes of local habitats. Moreover, it has been reported form some laboratory experiments [2,6,9] that 
habitat complexity reduces predation rates by decreasing encounter rates between predator and prey. This 
habitat complexity, largely ignored in existing studies of predator–prey systems, is the main focus of our 
current study where we considered a delayed differential–algebraic predator–prey model incorporating a 
parameter characterizing the habitat complexity. More precisely, in our model, the attack coefficient α
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Fig. 11. For the fixed time delay τ2 = 0.01, spectral density functions vary with increasing time delay τ1 ∈ (0, 0.4).

Fig. 12. Optimal equilibrium populations and optimal harvesting rate with respect to habitat complexity δ ∈ (0, 0.665).

is replaced by α(1 − δ), with δ measuring how much encounter rate is reduced due to habitat complex-
ity.

Our work examined the stability region characterized by two time delays: τ1, the delay relevant to the 
slow food replacement of the prey population; and τ2, the gestation delay of the predator. We also, by fixing 
time delay τ2, and varying τ1 as a bifurcation parameter, obtained the direction of Hopf bifurcation and 
stability of the bifurcated periodic orbit using the normal form and center manifold theories. This analysis 
then guided us in designing the numerical simulations to demonstrate the effects of habitat complexity on 
predator–prey interaction with delayed self-limitation and delayed convection to the growth of the predator. 
We concluded that as the habit complexity increases, it is more difficult for the predator to catch prey and 
hence habitat complexity provides opportunities for the survival of prey species, and hence more food 
becomes available later for the predator.

We also examined the stochastic behavior of the delayed differential–algebraic biological system by intro-
ducing fluctuations in the growth rate of prey and mortality rate of predator. By using Fourier transform 
methods, we computed the spectral densities of prey and predator population and we conducted the nu-
merical simulations to illustrate that the spectral density is an increasing function with respect to time 
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delay, i.e., fluctuation of population density increases as gestation delay increases. We also noted that, in 
comparison with the deterministic system, it is easier for the stochastic system to drive population densities 
from being stable to unstable.

We further considered the modelling issue how to balance between the maximum of economic profit 
and the sustainable development of biological resources. Using the Pontryagin’s Maximum Principle, we 
derived the optimal harvesting strategy. We found that the optimal harvesting will gradually decrease as the 
strength of habitat complexity increases. In combined, through both mathematical analysis and numerical 
simulations, we demonstrated that it is possible to achieve the balance of economic profit and environment 
sustainability by optimizing the harvesting policy.

There are many topics remaining to refine our modelling and furthering the analysis. These include 
incorporating stage-structure, mutual interference and refuge for the biological relevance; and full bifurcation 
scenario and global stability analysis for the mathematical details.
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