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� A mathematical model is formulated to study weekly vector control effect on dengue epidemic.

� Estimations of reproduction number verified the high effectiveness of the control programs.
� Choice of dates of initiating intervention and killing ratios is essential for cubing epidemic.
� Main results suggest quick and persistent implementation of impulsive vector control strategy.
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a b s t r a c t

We develop a mathematical model to closely mimic the integrated program of impulsive vector control
(every Friday afternoon since the initiation of the program) and continuous patient treatment and iso-
lation implemented in the Guangdong Province of China during its 2014 dengue outbreak. We fitted the
data of accumulated infections and used the parameterized model to carry out a retrospective analysis to
estimate the basic reproduction number 1.7425 (95% CI 1.4443–2.0408), the control reproduction number
0.1709, and the mosquito-killing ratios 0.1978, 0.2987, 0.6158 and 0.5571 on October 3, 10, 17 and 24,
respectively. This suggests that integrated intervention is highly effective in controlling the dengue
outbreak. We also simulated outbreak outcomes under different variations of the implemented inter-
ventions. We showed that skipping one Friday for vector control would not result in raising the control
reproduction number to the threshold value 1 but would lead to significant increase in the accumulated
infections at the end of the outbreak. The findings indicate that quick and persistent impulsive im-
plementation of vector control result in an effective reduction in the control reproduction number and
hence lead to significant decline of new infections.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dengue is a vector-borne disease in tropical and sub-tropical
regions of the world. The disease can be transmitted by the bite of
a mosquito infected with one of the four serotypes (Halstead,
2007; Kautner et al., 1997). Since 1978, dengue cases have been
reported in China almost every year, with a clear outbreak trend
every four to seven years. In June 2014, the dengue cases arose in
the Guangdong Province and the case numbers grew ex-
ponentially in September of that year (Guangdong Bureau of
Health, 2014). By the end of September, the Province had experi-
enced its worst dengue outbreak in over two decades. Near the
outbreak peak since September 28, more than 1000 new cases
were reported daily (Guangdong Bureau of Health, 2014). On Oc-
tober 23, the total number of the dengue cases exceeded 40,000.
According to the National Health and Family Planning Commission
(NHFPC), the mosquito population was five times its normal level
due to hot and wet weather in South China. This unusual weather,
coupled with the increasing mobility, which brought into the
province cases contracted abroad, is believed to have contributed
to the outbreak (Xinhua News, 2014).

An intensive campaign against the disease outbreak was laun-
ched by the end of September, with substantial efforts to reduce
mosquitos by sealing puddles of stagnant water, common breeding
grounds for the insects (Xinlang News, 2014). Also, according to the
Guangdong Province's Public Health Information System which
started to make the data of the epidemic public since September 21,
the vast majority of infected patients had been hospitalized, reducing
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Table 1
Definitions of the parameters and variables.

Definitions Baseline
values

References

Variables
Sh Susceptible hosts –

Ih Infectious hosts –

Hh Infectious hosts in hospital –

Rh Recovered hosts –

Sm Susceptible mosquitos –

Em Exposed mosquitos –

Im Infectious mosquitos –

Parameters
μh Host natural mortality rate

(day�1)
× −3.5 10 5 Burattini et al.

(2008)
μm Mosquito natural mortality

rate (day�1)
0.05–0.25 Andraud et al.

(2012)
γ1 Hospitalization rate Unknown
γ2 Host recovery rate (infectious

individuals) (day�1)
0.071–0.33 Andraud et al.

(2012)
γ3 Host recovery (hospitalized

individuals)
Unknown

c Biting rate (per mosquito per
day) (day�1)

0.3–1 Andraud et al.
(2012)

βmh Mosquito-to-human transmis-
sion probability

Unknown

βhm Human-to-mosquito trans-
mission probability

Unknown

s Mosquito incubation rate
(day�1)

1/7 Burattini et al.
(2008)

Λ Constant birth rate of
mosquitos

Unknown
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the transmission of infected individuals to the vector and accelerat-
ing the recovery of hospitalized infectious individuals (Guangdong
Bureau of Health, 2014). Shortly after the National Holiday of October
1, the Province implemented its mosquito-killing program, syn-
chronized on every Friday afternoon (specifically, October 3, 10, 17
and 24). It is important to evaluate the effectiveness of this in-
tegrated interventions involving impulsive vector culling and human
infection isolation and treatment through mathematical modelling
and data fitting of surveillance data.

Much progress of modelling dengue infection dynamics includ-
ing the role of cross-reactive antibodies for the four different den-
gue serotypes is discussed in Andraud et al. (2012). Early in 1975,
Bailey (1975) proposed a basic dengue-transmission dynamics
model involving a single serotype, of which the infection dynamics
among hosts is described by the classical SIR model and the vector
is assumed to remain infectious until death (SI model). Subsequent
studies (Esteva and Vargas, 1998; Newton and Reiter, 1992; Tewa
et al., 2009) conducted theoretical analyses of this basic model and
derived important thresholds to predict disease outcome in the
populations. Further and intensive extensions have been considered
to address different factors affecting the infection dynamics and
disease spread. Wei et al. (2008) assumed direct transmission from
infected individuals to susceptible hosts, while Esteva and Vargas
(2000), Coutinho et al. (2006), Adams and Boots (2010), and Bur-
attini et al. (2008) proposed models involving vertical transmission
among mosquitos. Immunization programs are also evaluated in
recent literature including Garba et al. (2008), Supriatna et al.
(2008), and Sierra et al. (2010). The role and risk for travellers to and
in endemic areas was quantified in Pongsumpun et al. (2004),
Messer et al. (2003), Rocco et al. (2001), and Kurane et al. (2000).
Age-structured models were used in Erickson et al. (2010), Yang and
Ferreira (2008), Luz et al. (2011a,b), and Atkinson et al. (2007) to
allow age (or stage)-relevant vector-control measures to be as-
sessed. Johansson et al. (2011) reviewed different approaches that
had been used to validate and parameterize dynamic models, of
which the basic reproduction numbers for different geographic
areas were estimated in Nagao and Koelle (2008), Ferguson et al.
(1999), Cummings et al. (2009), Newton and Reiter (1992), Favier
et al. (2006), Marques et al. (1994), Massad et al. (2001, 2003),
Chowell et al. (2007), Koopman et al. (1991), Coelho et al. (2008),
and Degallier et al. (2009). To our best knowledge, there is a gap to
develop and analyze models that depict the kind of integration of
interventions involving impulsive mosquito killing and human case
treatment, and to use these models to inform the effective vector-
killing rate from human surveillance and to evaluate the effective-
ness of these vector-control efforts to suggest alternative measures
for future outbreaks.

In our current work, we extend the basic dengue-transmission
dynamics model by explicitly incorporating hospitalized individuals
as a separate compartment with recovery and transmission rates
distinct from those infected individuals. Similar to Yang and Ferreira
(2008), Esteva and Vargas (2000), Coutinho et al. (2006), and Bur-
attini et al. (2008), we also extend the basic dengue-transmission
model by taking the exposed compartment of mosquitos into con-
sideration. To further evaluate control measures involving the ap-
plication of insecticides as airborne sprays to kill adult mosquitos
using portable or truck-mounted machines in Guangdong Province,
we expand the dynamics model by considering impulsive control,
in comparison with those (Yang and Ferreira, 2008; Luz et al.,
2011b; Atkinson et al., 2007; Burattini et al., 2008) where control
strategies are assumed to be implemented continuously.

2. The model involving integrated control strategies

In our model framework, the total female mosquito population at
time t, denoted by Nm(t), is split into subpopulations of susceptible
(Sm(t)), exposed (Em(t)) and infected (Im(t)) mosquitos. The suscep-
tible mosquitos move to the latent compartment Em via the infection.
The birth rate of mosquitos is given by constant Λ, and mosquitos are
diminished by a natural death rate μm. The mosquitos surviving their
latent period σ( )1/ become infectious. Similarly, the human popu-
lation at time t, denoted by Nh(t), is split into the subpopulations of
susceptible (Sh(t)), infected (Ih(t)), hospitalized (Hh(t)) and recovered
(Rh(t)). A susceptible individual exposed to the infected mosquito
becomes infectious if infected. We assume that a portion of infected
individuals is hospitalized, although our model also allows infected
individuals become recovered before being hospitalized. The model
thus takes the following format:

μ β μ
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Here c is the average biting rate of the mosquitos, βhm and βmh are
the transmission probabilities from human to mosquitos and from
mosquitos to human, respectively, and γ1 is the hospitalization rate
of infected individuals, γ2 and γ3 are recovery rates of infected and
hospitalized individuals, respectively. Because only six cases were
reported to die due to the infection of dengue during the 2014
dengue outbreak in Guangdong province (Xiao et al., 2016), we do
not consider the disease related death in model (1). Furthermore, the
course of dengue is fairly short compared to human life span, we
thus assume that the population remain a constant size with
equivalent natural birth and death rate, denoted by constant μh

(Esteva and Vargas, 1998; Tewa et al., 2009). Definitions of model
parameters and variables are also listed in Table 1. Note that the total
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number of human individuals is a constant Nh, and the total number

of mosquitos approaches Λ μ^ =N /m m.
Using the next-generation matrix introduced in Diekmann and

Heesterbeek (2000) and van den Driessche and Watmough (2002),
the basic reproduction number of model (1) has been calculated
(see Appendix A for details), denoted by R0, which is the spectral
radius of the next generation matrix and given by

β β
γ γ μ

σ
μ σ μ

=
+ + +

^

( )
R c

N
N

1 1
.

2
hm mh

h m m

m

h
0

2

1 2

Note that this threshold can also be calculated following the alter-
nate method developed by Heesterbeek and Roberts (Heesterbeek
and Roberts, 2007; Roberts and Heesterbeek, 2003). Then the type-
reproduction number of infected individuals, which determines the
critical control effort for heterogeneous populations, gives

β σ
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In fact, T0 has an epidemiological interpretation.
β σ μ σ μ(( + ) )c /mh m m is the average number of secondary infectious
individuals generated by an infected mosquito during its mean

infectious time, β γ γ μ^ (( + + ) )c N N/hm m h h1 2 the average numbers of
secondary infectious mosquitos generated by an infectious host
μ β μ

β γ γ μ

γ γ μ

γ γ μ

Λ β μ

β μ σ

σ μ

τ τ τ τ τ

= − −

= − ( + ) −

= − −

= + −

= − −

= − −

= −

≠

(( + − ) ) = ( − ) (( + − ) )

(( + − ) ) = ( − ) (( + − ) )

(( + − ) ) = ( − ) (( + − ) )

= =

( )

+

+

+

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

dS
dt

N c
I
N

S S

dI
dt

c
I
N

S I I

dH
dt

I H H

dR
dt

I H R

dS
dt

c
I
N

S S

dE
dt

c
I
N

S E E

dI
dt

E I

t

S n i T p S n i T

E n i T p E n i T

I n i T p I n i T

t i

,

,

,

,

,

,

,

, , , ,

4 1 1 4 1 ,

4 1 1 4 1 ,

4 1 1 4 1 ,

, 1, 2, 3, 4.

4

h
h h mh

m

h
h h h

h
mh

m

h
h h h h

h
h h h h

h
h h h h

m
hm

h

h
m m m

m
hm

h

h
m m m m

m
m m m

n n n n

m i m

m i m

m i m

n
i

1 2

1 3

2 3
1 2 3 4
during his/her mean infectious time, respectively. So T0 is the ex-
pected number of secondary infectious hosts generated by an in-
fectious host during her mean infectious time.
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As mentioned in the introduction, after the outbreak in the
province, a series of measures were implemented to control
the infection dynamics, of which killing mosquitos was a main
component. In particular, every Friday afternoon was chosen as
the fixed time to carry out the synchronized action of killing
mosquitos. October 1 is a national holiday and there was huge
human population mobility, so the governments enhanced
control strategies and the campaign of killing mosquitos
started on October 3 (Friday), and subsequently in the after-
noon of every Friday until October 24 within a relative short
period. Therefore, there are four times of vector control actions
taken by the Guangdong government to reduce the density of
mosquitos during the 2014 dengue outbreak. For simplifica-
tion, we assume that the control actions have been taken in-
stantaneously and denote the killing rates on October 3, 10, 17
and 24 as pi ( = )i 1, 2, 3, 4 , respectively. In order to investigate
the effectiveness of the vector control actions by comparing
the control reproduction number with the basic reproduction
number, we further extend model (1) to a periodic impulsive
system with a period of 28 days (four weeks), which allows us
to determine the control reproduction number. To do this, we
let October 3 be the initial time of the impulsive system and
denote it as τ = 00

1 , consequently we denote October 10, 17 and
24 as τ τ= =T T, 20

2
0
3 and τ = T30

4 with T¼7 (days), respectively.
Similarly, for the next period of 28 days we have that four ac-
tion times of killing mosquitos are τ = ( + − ) =i T i4 1 , 1, 2, 3, 4,i

1
with killing ratios pi, respectively. Generally, for any one
period we can define four times of the vector control
actions as τ = ( + − ) =n i T i4 1 , 1, 2, 3, 4,n

i with killing rates
pi for ∈ n with = { …} 0, 1, 2, , which means that
τ τ= + =+ i28, 1, 2, 3, 4n

i
n
i

1 . Based on the above discussions we
have the following impulsive model:
To discuss the existence of the infection-free periodic solution
for system (4), we let = = = = =I H R E I 0h h h m m . And then system
(4) becomes the following subsystem:
It follows from model (5) that Sh and Sm are independent while
¯ =S Nh h is a trivial periodic solution for the above equations. Thus,
we only need to consider the following system:

Λ μ τ τ τ τ

τ

= − ≠ (( + − ) )

= ( − ) (( + − ) ) = = ( )

+dS
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Solving the first equation of model (6) in the interval
( ( + ) ]nT n T4 , 4 1 gives
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Repeating the process yields
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Combining Eqs. (9)–(12) yields
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Then we can conclude that there is a periodic solution of system
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Thus, system (4) admits an infection-free periodic solution
ξ̄( ) = ( ¯ ¯ ( ) )t S S t, 0, 0, 0, , 0, 0h m with period T4 .

To investigate the stability of the infection-free periodic solu-
tion ξ̄( )t we applied the Floquet theory (Bainov and Simeonov,
1989, 1993). Let ( ) = ( ) + ¯x t S t Sh h1 , ( ) = ( )x t I th2 , ( ) = ( )x t H th3 ,
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and let

Φ= ( )M P P P P T4 .1 1 2 3 4 1

Then the stability of the infection-free periodic solution ξ̄( )t is
decided by the eigenvalues of the monodromy matrix M1. Let
μ = …i, 1, 2, , 7,i be the eigenvalues of the monodromy matrix M1.

If μ| | ≠ = …i1, 1, , 7i , then we define ρ= ( )R MC
0 1

1 , where ρ( )M1 is the
spectral radius of the matrix M1, and we can conclude when

<R 1C
0

1 , the infection-free periodic solution ξ̄( )t is locally asymp-

totically stable; when >R 1C
0

1 , the infection-free periodic solution

ξ̄( )t is unstable. Otherwise, let μ μ= {| | | | ≠ }R max : 1C
j j0

1 . Then if the
duplicate number of characteristic root is equal to one for all the
eigenvalues of which the absolute values are equal to 1, we have
that the infection-free periodic solution ξ̄( )t is locally stable when

<R 1C
0

1 and the infection-free periodic solution ξ̄( )t is unstable

when >R 1C
0

1 .
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Fig. 1. The reported cases of dengue for the province of Guangdong.
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Fig. 2. Daily number of hospital notifications for the province of Guangdong.
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Fig. 3. Data fitting for four time intervals: (A) from 21 September to 3 October; (B) from 21 September to 5 October; (C) from 21 September to 7 October; (D) from 21
September to 9 October. The blue circles represent the accumulated infections in the province of Guangdong and the black curves are the fitting curves. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Parameter estimates based on the data of the accumulated infections after 21 September.

Parameter September 21–October 3 September 21–October 5 September 21–October 7 September 21–October 9

Mean Std Mean Std Mean Std Mean Std

( )I 0h 14,646 3501 16,628 2696 34,857 3881 37,812 6173

( )H 0h 2004 579 1995 575 2029 578 1734 432

( )S 0m ×8 107 ×2.89 106 ×7.81 107 ×4.26 106 ×7.93 107 ×6.95 106 ×8.01 107 ×2.86 106

( )E 0m 21,230 3708 21,478 3792 280,64 4250 27,419 4283

( )I 0m 17,998 4101 17,956 4095 44,318 7114 48,899 9416
γ1 0.5549 0.13392 0.6695 0.1601 0.43126 0.0849 0.3666 0.0758
γ3 0.0812 0.0406 0.2251 0.1005 0.12357 0.0430 0.2252 0.1007
Λ ×9.76 106 ×4.35 105 ×9.7 106 ×4.3 105 ×9.73 106 ×4.29 105 ×9.75 106 ×4.3 105

βmh 0.0385 0.0065 0.0393 0.0064 0.0167 0.0020 0.0155 0.0024
βhm 0.6759 0.1217 0.6465 0.1460 0.6970 0.1013 0.6512 0.1201

Table 3
Estimations of R0 for four intervals.

From To R0 95% CI of R0

September 21 October 3 1.7425 (1.4443,2.0408)
September 21 October 5 1.5830 (1.3788,1.7873)
September 21 October 7 1.2869 (1.1510,1.4227)
September 21 October 9 1.2656 (1.1118,1.4193)
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3. Estimation of the control reproduction number R C
0

1

3.1. Data

We obtained data on laboratory-confirmed cases of dengue
fever in the province of Guangdong, China, from the province's
Public Health Information System. The information system con-
tains data about the cumulative number of reported cases and the



Table 4

Estimates for the control parameters and R C
0

1.

Paramters Estimation values Sensitive analysis of R C
0

1 with different control parameter values

p1 0.1978 0 0.1978 0.1978 0.1978 0.1978 0 0 0 0
p2 0.2987 0.2987 0 0.2987 0.2987 0 0.2987 0 0 0
p3 0.6158 0.6158 0.6158 0 0.6158 0 0 0.6158 0 0
p4 0.5571 0.5571 0.5571 0.5571 0 0 0 0 0.5571 0

R C
0

1 0.1709 0.2245 0.2467 0.4796 0.4181 2.9847 2.3257 0.9275 1.1133 4.7879
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number of new cases, as shown in Fig. 1. On September 21, 2014,
local cases were found and reported in the city Foshan. Guangdong
Bureau of Health (GBH) started to report cases daily. Since October
15, GBH started also to report hospital notifications, the cumula-
tive number of treated and cured cases, as shown in Fig. 2. Some of
the confirmed cases in the province were hospitalized with
treatments, and we assume that these cases were unable to
transmit to mosquitos.

3.2. Estimation of reproduction number

To estimate the parameters, the mean survival time of a mos-
quito has been fixed at 21 days, which means that μ = 1/21m
(Andraud et al., 2012). An individual can recover for about 7 days
γ( = )0.1432 on average after infected (Burattini et al., 2008). The
biting rate and the incubation rate of mosquitos are fixed at 0.76
(Scott et al., 2000) and 1/7 (Burattini et al., 2008), respectively. As
mentioned before, the total number of humans is a constant. The
infection of dengue in Guangdong Province mainly happened in
the cities Guangzhou, Foshan and Zhongshan, and the total
number of humans of those three cities is 23,396,400. Therefore,
we fixed the total population of humans at 23,396,400; that is

≈N 23, 396, 400h .
It is worth noting that, at the beginning of the outbreak in

Guangdong Province, the ratio S N/h h is approximately equal to 1.
Therefore, with proper assumptions, model (1) has been simplified
as model (B.2); see details in Appendix B. To carry out the Markov
chain Monte Carlo (MCMC) procedure, an adaptive Metropolis–
Hastings (M–H) algorithm has been used (Haario et al., 2006). We
first estimated the unknown parameters and initial values and
their standard deviations on the basis of model (B.2), and then
estimated the basic reproduction number R0. The algorithm was
run for 500,000 iterations with a burn-in of 500,000 iterations,
and the Geweke convergence diagnostic method was employed to
assess convergence of chains (Geweke et al., 1992).

By fitting model (1) to the data of accumulated infections after
September 21, as shown in Fig. 3, we estimated key epidemic
parameters and initial conditions in each of subpopulations of
hosts and vectors, as listed in Table 2. We also used the data of
accumulated infections between September 21 and October 3 to
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estimate the mean basic reproduction number as 1.7425 (95% CI
1.4443–2.0408). Replacing October 3 by October 5, 7 and 9 for the
endpoint when massive interventions might have altered the
transmission dynamics, we examined the sensitivity of the basic
reproduction number with respect to the time interval considered
and observed that this number varied between 1.2656 and 1.7425,
as listed in Table 3. Note that, when different periods are con-
sidered, the estimated mean initial numbers of infected humans
and mosquitos have a large range, from 14,646 to 37,812 and from
17,998 to 48,899, respectively. However, the initial values for other
compartments of humans and mosquitos are not very sensitive to
the period.

In order to estimate the ratios of killing mosquitos on these
Fridays (p1, p2, p3 and p4), we further simplify model (4) as model
(B.3), see Appendix B for details. In particular, before October 3,
interventions as outlined above were ignored, and the impulsive
model (B.3) actually becomes model (B.2). Therefore, all the
parameter values in model (B.2) are fixed as the same as those
estimated on the basis of data of accumulated infections from
September 21 to October 3 (see details in Table 2). Then, based on
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the data of accumulated infections from October 3 to October 30,
we estimated all the control parameters as follows:

= = = =p p p p0.1978, 0.2987, 0.6158, 0.55711 2 3 4

(see Table 4). The data fitting, using the least-squares method, is
shown in Fig. 4. Finally, we can calculate the control reproduction
number R C

0
1 as 0.1709. Note that this number is far below the unity,

and hence the integrated control in the province contributed to
significant reduction of the infection reproduction.

3.3. Sensitivity analysis and effectiveness of vector control

We explored the parameter space by performing an un-
certainty analysis using a Latin hypercube sampling method. We
used a partial rank correlation coefficients (PRCCs) (Mckay et al.,
1979; Blower and Dowlatabadi, 1994; Marino et al., 2008; Tang
et al., 2012) to examine the sensitivity analysis for R0 and R C

0
1 with

respect to involved parameters and all control parameters, re-
spectively. In the absence of data to inform distribution functions,
we chose a normal distribution for all input control parameters
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with mean value and standard deviation. The PRCC values for R0
and R C

0
1 are shown in Fig. 5. Fig. 5(A) indicates that the first four

parameters with most impact on the R0 are mosquito-to-human/
human-to-mosquito transmission probability, mosquito natural
mortality rate μm and the hospitalization rate γ1. It follows from
Fig. 5(B) that these control parameters are all negatively correlated
with very large PRCCs. This confirms that the mosquito killing on
each Friday during the specified period did play an important role
in controlling the dengue outbreak.

We performed the sensitive analysis of infected humans, hos-
pitalized individuals and accumulated infections through evalu-
ating the PRCCs with respect to all the parameters of model (B.2)
over time by choosing a normal distribution with mean value and
standard deviation shown in Fig. 6. Fig. 6(A)–(C) shows the 1000
outputs of model (B.2) for infected humans, hospitalized in-
dividuals and accumulated infections corresponding to the LHS
matrix and scheme defined by varying all input parameters. In
Fig. 6(D)–(F), we plotted the PRCCs over time with respect to the
infected humans, hospitalized individuals and accumulated in-
fections, respectively. Fig. 6(D) indicates that there are four PRCC
values that are significantly different from zero and the PRCC va-
lues of these four examined parameters stabilize at fixed values
around 20 days. The first four parameters with most impact on the
outcome (the number of infected humans) are the mosquito-to-
human/human-to-mosquito transmission probability, mosquito
natural mortality rate μm and the hospitalization rate γ1, which is
in agreement with the PRCC values for R0, as shown in Fig. 5(A).

To further assess the impact and necessity of the mosquito-
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culling campaign, we simulated the outbreak outcome under dif-
ferent scenarios. We calculated the control reproduction number
R C

0
1 when mosquito culling was not implemented on one of the

four Fridays. The simulations are reported in Table 4. We observe
that R C

0
1 can still be reduced to a level under the unity so the

epidemic can be controlled, even if the mosquito killing was
skipped for one of the Fridays. However, Fig. 7(A) shows that the
mosquito killing on October 17 is most critical in terms of reduc-
tion of the control reproduction number R C

0
1 and the size of ac-

cumulated infections till October 30 (shown in pink curve). On the
other hand, the role of mosquito killing on the first Friday (October
3) is twofold: the reduction in control reproduction number R C

0
1 is

the smallest one, but reduction in the size of accumulated infec-
tions is not. We also considered the situation when the mosquito
killing is implemented only on one of the four Fridays. Simulations
are reported in Fig. 7(B), where the corresponding solutions of
model (B.3) are plotted, and the corresponding control reproduc-
tion numbers are calculated and listed in Table 4. The calculation
shows that mosquito killing alone on October 17 is sufficient to
reduce the control reproduction number below 1. Note that the
mosquito killing ratio on October 17 is the biggest.

We further compared the outbreak outcomes with other
plausible modification of the vector-control strategies; Fig. 8
(A) displays the model solutions with different mosquito-kill-
ing ratios on October 3, while Fig. 8(B) displays the solutions
when vector-control is implemented only on one of the four
Fridays. Unlike simulations in Fig. 7(B), here we used a fixed
mosquito-killing ratio of 0.4. The simulations show that earlier
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implementation of the vector-control measure with more in-
tensity is better in terms of reducing the size of accumulated
infections.
4. Conclusions and discussions

Our main focus is to inform the effectiveness of an integrated
intervention program including treatment and isolation of pa-
tients, and impulsive vector-control strategies implemented on
every Friday afternoon. We developed a mathematical model to
closely mimic the integrated program of impulsive vector-control
and continuous patient treatment and isolation implemented in
the Guangdong Province of China during its 2014 dengue out-
break. We also fitted data to the model and used this model to
carry out a retrospective analysis to estimate the control para-
meters and the control reproduction number, and to simulate
outbreak outcomes under different variations of the implemented
interventions.

From the viewpoint of mathematics, both the basic and type
reproduction numbers act as the threshold that governs whether
the disease dies out or not. In the absence of interventions, the
basic reproduction number can be calculated by using the next-
generation matrix introduced in van den Driessche and Wat-
mough (2002) and Diekmann and Heesterbeek (2000). Although
the basic reproduction number fails to produce the average
number of secondary infections (Li et al., 2011), we keep it for
comparison of the estimated value with those in the literature in
which most estimated basic reproduction numbers were obtained
on the basis of statistical methods and surveillance data. By fitting
our model to the accumulated data in Guangdong province, we
estimated the mean basic reproduction number as 1.7425 (95% CI
1.4443–2.0408). This is in broad agreement with those obtained in
studies from Brazil in 1991 (1.60–2.49) (Marques et al., 1994),
Mexico in 2002 (1.1–3.3) (Chowell et al., 2007) and Mexico in 1991
(1.3) (Koopman et al., 1991), from Thailand in 1980 (4.3–5.8)
(Ferguson et al., 1999), Brazil in 2000 (3.58–12.86) (Massad et al.,
2001) and Brazil in 2000 (2.74–11.57) (Massad et al., 2003). Using
the data of accumulated infections between September 21 and
October 30, we also estimated the ratios of mosquito killing as

= =p p0.1978, 0.29871 2 , p3¼0.6158, p4¼0.5571, and calculated
the control reproduction number as 0.1709. This reduction of the
reproduction number from 1.7425 to 0.1709 suggested that the
integrated interventions were highly effective to control the den-
gue outbreak.

Our sensitivity analysis for the control reproduction number
through the evaluation of PRCCs with respect to the control
parameters suggests that the choice of the dates and killing
ratios are significant to reduce the control reproduction number.
We also performed simulations on the control reproduction
number and the epidemic unfolding in terms of number of hu-
man infections under different variations of the control strate-
gies implemented. We illustrated in Table 4 that skipping one
Friday for mosquito killing would not result in raising the con-
trol reproduction number to the threshold value 1 but would
lead to significant increase in the accumulated infections on
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October 30. We also noted that a one-time vector control is not
sufficient to bring down the control reproduction number to the
threshold 1, and neither is a larger duration between two con-
sequent mosquito killings. Under the assumption of the same
mosquito-killing ratio applied to every Friday, our simulations
(Fig. 8(B)) illustrated that the earlier the vector-control strategy
is implemented, the smaller the accumulated infections at the
end of the outbreak.

For a vector-control program implemented across the pro-
vince, pre-defined dates of mosquito-killing exercise were
chosen as Friday afternoon. Our main results indicate that
quicker persistent impulsive implementation of control inter-
ventions with more intensity resulted in an effective reduction
in the reproduction number and hence led to a decline in new
infections.
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Appendix A. Calculation for R0 and T0

To calculate the reproduction number of model (1), we need to
consider the following equations:
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It is worth to note that there is another threshold calculated by the
alternate method introduced in the papers (Heesterbeek and Ro-
berts, 2007; Roberts and Heesterbeek, 2003), which is the so-
called type-reproduction number, denoted by T0. Let = −K FV 1,
then the type-reproduction number can be easily calculated as the
following:
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Appendix B. Model simplification

Due to = + + +N S I H Rh h h h h being a constant and all the
equations in model (1) except the one of dR dt/h being independent

of Rh, and further considering ≈ 1S
N

h

h
, then we have following

simple model:
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Compared to other parameter values, the natural death rate of
human is small enough that we can assume it is nearly equal to 0,
that is μ ≈ 0h . Then the model can be further simplified as the
following:
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which is the final model we have used when we estimated all the
parameters and the basic reproduction number R0.

Correspondingly, when estimating the control parameters, the
impulsive model (4) can be simplified as the following:
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