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a b s t r a c t 

The combined antiretroviral therapy with interleukin (IL)-2 treatment may not be enough to preclude 

exceptionally high growth of HIV virus nor rebuilt the HIV-specific CD4 or CD8 T-cell proliferative im- 

mune response for management of HIV infected patients. Whether extra inclusion of immune therapy 

can induce the HIV-specific immune response and control HIV replication remains challenging. Here a 

piecewise virus-immune model with two thresholds is proposed to represent the HIV-1 RNA and effector 

cell-guided therapy strategies. We first analyze the dynamics of the virus-immune system with effector 

cell-guided immune therapy only and prove that there exists a critical level of the intensity of immune 

therapy determining whether the HIV-1 RAN virus loads can be controlled below a relative low level. 

Our analysis of the global dynamics of the proposed model shows that the pseudo-equilibrium can be 

globally stable or locally bistable with order 1 periodic solution or bistable with the virus-free periodic 

solution under various appropriate conditions. This indicates that HIV viral loads can either be eradicated 

or stabilize at a previously given level or go to infinity (corresponding to the effector cells oscillating), de- 

pending on the threshold levels and the initial HIV virus loads and effector cell counts. Comparing with 

the single threshold therapy strategy we obtain that with two thresholds therapy strategies either virus 

can be eradicated or the controllable region, where HIV viral loads can be maintained below a certain 

value, can be enlarged. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Lifelong highly active antiretroviral therapy (HAART) continues

o be associated with many problems such as adherence difficulties

nd evolution of drug resistance [1–4] . Structured therapy inter-

uptions (STIs) have been suggested as being capable of achieving

ustained specific immunity for early therapy in HIV infection. As

n alternative strategy, STI is a good choice for some chronically

nfected individuals who may need to take drugs throughout their

ives, and it is beneficial for the patients’ immune reconstruction

uring the period when they are not taking the drugs [5] . 

Recently, to compare STI strategies with the continuous an-

iretroviral therapy, several clinical studies have been done with

onflicting results [5–12] . In particular, Ruiz et al. [12] designed an

xperiment to evaluate the safety of CD4 cell counts and plasma

IV-1 RNA-guided structured treatment interruptions (STIs) aiming

o maintain CD4 T cell counts higher than 350 cells/ μl and plasma

IV-1 RNA less than 10 0,0 0 0 copies/ μl . Although many mathe-

atical models have been formulated to model continuous ther-
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py [13–15] , few attempts have been made to model structured

reatment interruptions. In 2012, Tang et al. [16] proposed a piece-

ise system to describe the CD4 cell-guided STIs, to quantitatively

xplore STI strategies and to investigate the virus dynamics un-

er these strategies. This system has offered explanations for some

ontroversial conclusions from different clinical studies. In 2015,

y considering combined antiretroviral therapy with interleukin

IL)-2 treatment, we proposed a piecewise virus-immune dynamic

odel with HIV-1 RNA-guided therapy [17] . This model is given as

ollows: 
 

 

 

 

 

 

 

x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 

}
x < V s , 

x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y, 

}
x > V s , 

(1) 

here x and y represent the HIV virus loads and the density of ef-

ector cells, respectively. V s is the critical value of HIV virus loads

etermining whether the therapy is carried out or not. Here ε1 

epresents the rate of elimination of HIV virus due to antiretro-

iral therapy and ε2 denotes the growth rate of the effector cells

ue to interleukin (IL)-2 treatment. r denotes the growth rate of

IV virus which incorporates both multiplication and death of HIV
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virus, δ is the death rate of the effector cells, p denotes the rate of

binding of the effector cells to the HIV viruses. When interacting

with the HIV virus, the effector cells usually have a limited ability

to repeatedly kill the virus because the virus can also inhibit the

activity of immune cells. Here q represents the rate of inactivation

of the effector cells. cx/ (1 + ωx ) denotes the rate at which effector

cells accumulate due to the immune response. 

In the paper [17] , we concluded that proper combinations of

threshold and initial HIV virus loads and effector cell counts can

successfully preclude exceptionally high growth of HIV virus and,

in particular, maximize the controllable region. However, what-

ever the threshold is, depending on the initial conditions of pa-

tients’ HIV virus can not be eradicated but even increase to

infinity, which means that the combined antiretroviral therapy

with interleukin (IL)-2 treatment may not be enough to rebuild

the HIV-specific CD4 or CD8 T-cell proliferative immune response

for management of HIV infected patients. In [18] , the authors de-

veloped a clinic experiment studying combined antiretroviral ther-

apy and interleukin (IL)-2 treatment with immune therapy. The

patients were divided into four groups, in which the group C

simultaneously received antiretroviral therapy, interleukin (IL)-2

treatment and immune therapy with HIV vaccine was injected

once every 3 months. They showed that interleukin (IL)-2 treat-

ment and immune therapy can induce the HIV-specific immune

response. How the impulsive immune therapy affects the dynam-

ics of virus-immune system with HIV-1 RNA-guided therapy and

whether the inclusion of impulsive immune therapy can maintain

the virus below a certain level, remain unclear. Addressing these

issues through a mathematical modeling framework falls within

the scope of this study. 

More precisely, the purpose of this study is to propose a math-

ematical model to describe the combined antiretroviral therapy

and interleukin (IL)-2 treatment with immune therapy. We address

such challenging questions as whether the comprehensive therapy

under the HIV-1 RNA and effector cell-guided structured treatment

can successfully inhibit replication of HIV virus and rebuild the

HIV-specific CD4 or CD8 T-cell proliferative immune response, and

whether the therapy can control HIV-1 RNA below a certain level

and maintain the density of effector cells above a certain level. The

rest parts of this paper is organized as follows. In Section 2 , we for-

mulate a piecewise virus-immune model with two thresholds and

introduce the relative definitions. The dynamics of the proposed

model with either only the effector cell or the HIV-1 RNA-guided

therapy is discussed in Section 3 . Then, in Section 4 , we investigate

the global dynamics of the proposed model. Finally, we conclude

the paper with some remarks. 

2. Model formulation and preliminaries 

In this paper, we formulate the model that incorporate both the

antiretroviral therapy and interleukin (IL)-2 treatment under the

assumption that whenever the virus load exceeds the critical level

(i.e. V s ), antiretroviral drugs are applied to inhibit the growth of the

virus, and simultaneously interleukin (IL)-2 treatment is used [17] .

The immune therapy mainly aims at rebuilding the HIV-special

T cell immune response and guaranteeing the density of effector

cells is enough to control the growth of HIV virus. Thus, there can

be a critical value of the density of effector cells, denoted by T s ,

determining whether the immune therapy is carried out. In partic-

ular, the immune therapy isn’t carried out when the density of the

effector cells is above the level T s and one dose of HIV vaccine is

injected immediately once the density of the effector cells declines

to the level T s . Let ρ represent the intensity of the immune ther-

apy every time with ρ ≥ 1. Therefore, based on model (1) , we have
roposed the following formulation: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s , 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

x < V s , 

x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s , 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

x > V s . 

(2)

efore going further discussing the dynamics of system (2) , we

ow introduce some technical definitions. 

Let R 2 + = { X = (x, y ) | x ≥ 0 , y ≥ 0 } . A generic planar Filippov sys-

em is defined as follows [19–26] : 

˙ 
 = 

{
F D 1 (X ) , X ∈ D 1 , 

F D 2 (X ) , X ∈ D 2 , 
(3)

here D 1 = { X ∈ R 2 + | H(X ) < 0 } and D 2 = { X ∈ R 2 + | H(X ) > 0 } with

 ( X ) as a smooth scale function. 

efinition 1. A point X 

∗ is called a regular equilibrium of system

3) if F D 1 (X ∗) = 0 , H ( X 

∗) < 0 or F D 2 (X ∗) = 0 , H ( X 

∗) > 0 while it is

alled a virtual equilibrium of system (3) if F D 1 (X ∗) = 0 , H ( X 

∗) > 0

r F D 2 (X ∗) = 0 , H ( X 

∗) < 0. 

efinition 2. A point X 

∗ is called a pseudo-equilibrium if it is an

quilibrium of the sliding mode of system (3) , i.e. λF D 1 (X ∗) + (1 −
) F D 2 (X ∗) = 0 , H(X ∗) = 0 with 0 < λ < 1 and 

= 

〈 H X (X 

∗) , F D 2 (X 

∗) 〉 
〈 H X (X 

∗) , F D 2 (X 

∗) − F D 1 (X 

∗) 〉 . 
A generalized planar impulsive semi-dynamic system can be

efined as follows [27–33] : 

dx 
dt 

= P (x, y ) , dy 
dt 

= Q(x, y ) , i f φ(x, y ) � = 0 , 

	 x = a (x, y ) , 	 y = b(x, y ) , i f φ(x, y ) = 0 , 
(4)

here (x, y ) ∈ R 2 + , 	 x = x + − x and 	 y = y + − y . P, Q, a, b are con-

inuous functions from R 2 + into R + . The impulsive function I : R 2 + →
 

2 + is defined as follows: 

(x, y ) = (I 1 (x, y ) , I 2 (x, y )) = (x + a (x, y ) , y + b(x, y )) , 

nd Z + = (x + , y + ) is called an impulsive point of Z = (x, y ) . 

Let (R 2 + , π) be a planar semi-dynamic system. For any Z ∈ R 2 + ,
he positive orbit of Z is given by C + (z) = { π(Z, t) | t ∈ R + } which is

enoted by π+ (Z) . And we define F (Z, t) = { Z ′ | π(Z ′ , t) = Z} for t ≥
 and Z ∈ R 2 + . 

efinition 3. A planar impulsive semi-dynamic system

(R 2 + , π ; M, I) consists of a continuous semi-dynamic system

(R 2 + , π) together with a nonempty closed subset M of R 2 + and a

ontinuous function I : M → R 2 + such that for every Z ∈ M , there

xists a εZ > 0 such that 

 (Z, (0 , εZ )) ∩ M = ∅ and π(Z, (0 , εZ )) ∩ M = ∅ . 
efinition 4. A trajectory π+ (Z) of (R 2 + , π ; M, I) is said to be order

 periodic if there exist nonnegative integers m and k such that k

s the smallest integer for which I m (Z) = I m + k (Z) with Z ∈ M . 

efinition 5. The Lambert W function [34] is defined to be a mul-

ivalued inverse of the function z 
→ ze z satisfying 

ambertW (z) exp ( LambertW (z)) = z. 

nd we denote it as W for simplicity. Note that the function

 exp ( z ) has the positive derivative (z + 1) exp (z) when z > −1 .

efine the inverse function of z exp ( z ) restricted on the interval
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Fig. 1. The dynamical behaviors of systems S 1 and S 2 while there are two positive 

equilibria. 
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 −1 , + ∞ ) to be W (0, z ). Similarly, we define the inverse func-

ion of z exp ( z ) restricted on the interval (−∞ , −1] to be W (−1 , z) .

he branch W (0, z ) is defined on the interval [ −e −1 , + ∞ ) and

t is monotonically increasing with respect to z . And the branch

 (−1 , z) is defined on the interval [ −e −1 , 0) and it is a monoton-

cally decreasing function with respect to z . 

. Dynamics of system (2) with only one of the threshold 

trategies is considered 

.1. Properties of system (2) with only the effector cell-guided 

herapy considered 

When only the effector cell-guided therapy is considered, there

re two different choices for therapy: one is that we do not carry

ut the antiretroviral therapy and interleukin (IL)-2 treatment; the

ther is that the antiretroviral therapy and interleukin (IL)-2 treat-

ent are always carried out. From the mathematical point of view,

hese strategies correspond to the cases of a critical value V s satis-

ying V s = 0 or V s = + ∞ . Then system (2) becomes two generalized

lanar impulsive semi-dynamic systems as follows 
 

 

 

 

 

 

 

x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s , 

(5) 

nd 

 

 

 

 

 

 

 

x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s . 

(6) 

We first consider the dynamical behaviors of these systems

ithout any impulse. In the absence of impulse systems (5) and

6) give 

(S 1 ) 

{
x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 
(7) 

nd 

(S 2 ) 

{
x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y. 
(8) 

For convenience, we denote model (7) as system S 1 and model

8) as system S 2 . Through simple calculations, we have that if

 − q − δω > 2 
√ 

qδω , δ > ε2 and r > ε1 hold true, then system

 1 ( S 2 ) exists two positive equilibria, denoted by E 1 
S 1 

= (x 1 
S 1 

, y 1 
S 1 

) and

 

2 
S 1 

= (x 2 
S 1 

, y 2 
S 1 

) ( E 1 
S 2 

= (x 1 
S 2 

, y 1 
S 2 

) and E 2 
S 2 

= (x 2 
S 2 

, y 2 
S 2 

) ), respectively.

ere we have 

 

i 
S 1 

= 

c − q − δω ∓
√ 

( c − q − δω ) 
2 − 4 qδω 

2 qω 

, y i S 1 = 

r 

p 
, i = 1 , 2 

(9) 

nd 

x i S 2 = 

c − q − ( δ − ε2 ) ω ∓
√ 

( c − q − ( δ − ε2 ) ω ) 
2 − 4 q ( δ − ε2 ) ω 

2 qω 

,

(10)

 

i 
S 2 

= 

r − ε1 

p 

ith x 1 
S 2 

< x 1 
S 1 

< x 2 
S 1 

< x 2 
S 2 

. It is easy to prove that the equilibrium

 

1 
S 1 

is a center and E 2 
S 1 

is a saddle point for the linear system of

ystem S 1 by checking the corresponding eigenvalues. Further, we

nd that the system S has a first integral, which is shown in the
1 
roof of Lemma 1 in details. Therefore, we have that the equilib-

ium E 1 
S 1 

is a center of system S 1 and E 2 
S 1 

is a saddle point of sys-

em S 1 . The similar properties hold for system S 2 . Thus, the ex-

stence and stability of the equilibria of the two systems when

 − q − δω > 2 
√ 

qδω , δ > ε2 and r > ε1 are stated as follows. 

roposition 1. For system S 1 (S 2 ) there exists a trivial equilibrium

 

0 
S 1 

= (0 , 0) ( E 0 
S 2 

= (0 , 0) ) which is a saddle point; If c − q − δω >

 

√ 

qδω , δ > ε2 and r > ε1 hold true, system S 1 (S 2 ) has two positive

quilibria E 1 S 1 
( E 1 S 2 

) which is a center, and E 2 S 1 
( E 2 S 2 

) which is a saddle

oint. Also, there exists a homoclinic orbit with respect to E 2 
S 1 

( E 2 
S 2 

),

enoted as 	1 
S 1 

( 	1 
S 2 

). The other one dimension stable and unstable

anifold of the saddle point E 2 S i 
is denoted by 	2 

S i 
and 	3 

S i 
, respec-

ively. The topological structure of the orbits of both systems is shown

n Fig. 1 . 

In the rest of this paper, we assume that c − q − δω > 2 
√ 

qδω ,

> ε2 and r > ε1 always hold true. According to the topo-

ogical structure of system S 1 ( S 2 ), there must be an orbit, de-

oted by 	4 , which is tangent to the line y = T s at the point

 

l 
q S 1 

(x 1 
S 1 

, T s ) ( P l q S 2 
(x 1 

S 2 
, T s ) ) as shown in Fig. 1 . Let the other inter-

ection point between the orbit 	4 and the line x = x 1 S 1 
( x = x 1 S 2 

)

e P u q S 1 
(x 1 S 1 

, y u q S 1 
) ( P u q S 2 

(x 1 S 2 
, y u q S 2 

) ). From Proposition 1 , we can see

hat when ρ − q − δω > 2 
√ 

qδω , δ > ε2 and r > ε1 hold true,

ystems S 1 and S 2 are topologically equivalent. Therefore, without

oss of generality, we mainly discuss the dynamics of system S 1 
ith impulse, that is system (5) . Denote the region bounded by

he orbits 	1 
S i 

as D 	1 
S i 

and the intersection points of the low branch

nd the upper branch of the orbit 	1 
S i 

(i = 1,2) to the line x = x 1 S i 
as

 

l 
S i 

= (x 1 S i 
, y l 

S i 
) and P u 

S i 
= (x 1 S i 

, y u 
S i 
) , respectively. As we can see from

ig. 1 , E 1 
S i 

is stable in the region D 	1 
S i 

, which means that within the

egion D 	1 
S i 

both the virus loads and the effector cell counts can

aintain in a certain range without any immune therapy. There-

ore, it is reasonable to assume that T s < min { y l 
S 1 

, y l 
S 2 

} . 
heorem 1. In system (5) , there exists a virus-free periodic solution. 
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Fig. 2. (a) Dynamical behaviors of system (5) when ρT s > y u q S 1 
and (b) gives a few 

trajectories converging to the virus-free periodic solution ζS 1 (t) under the above 

condition. (c) shows the dynamics of system (5) when y u S 1 
< ρT s < y u q S 1 

and (d) 

presents a few trajectories of which the horizontal components tend to infinity. 
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Proof. Let x = 0 , then system (5) becomes the following {
y ′ = −δy, y > T s , 
y (t + ) = ρy (t) , y = T s . 

(11)

Integrating the first equation of (11) with the initial condition

y (0 + ) = ρT s , yields 

y (t) = ρT s e 
−δt . 

Let ρT s e 
−δT = T s and solving it with respect to T we get the period

T 0 with T 0 = 

1 
δ

ln (ρ) . Therefore, the model (11) has an order-1 pe-

riodic solution, denoted as ξ ( t ) and ξ (t) = ρT s e 
−δt with period T 0 ,

which means that system (5) possesses a virus-free periodic solu-

tion ζS 1 
(t) = (0 , ξ (t)) . The proof is completed. �

Lemma 1. Set 	L and 	N be two orbits of system S 1 which inter-

sect with the line y = T s at L 1 (x L 1 , T s ) and N 1 (x N 1 , T s ) respectively.

Let L 2 (x L 1 , y L 2 ) ( N 2 (x N 1 , y N 2 ) ) be the other intersection point between

the orbit 	L ( 	N ) with the line x = x L 1 ( x = x N 1 ). Then we have

y L 2 = y N 2 . 

Proof. If we consider system S 1 in the phase space, then y

can be seen as a function of x with the following differential

equation 

dy 

dx 
= 

y 

x 

cx 
1+ ωx 

− qx − δ

r − py 
, 

and integrating above equation from ( x 1 , y 1 ) to ( x, y ), one yields ∫ x 

x 1 

(
c 

1 + ωx 
− q − δ

x 

)
dx = 

∫ y 

y 1 

(
r 

y 
− p 

)
dy. 

Thus, the first integral H 1 ( x, y ) of system S 1 reads 

H 1 (x, y ) = − c 

ω 

ln (1 + ωx ) + δ ln (x ) + qx + r ln (y ) − py = h 1 , 

(12)

where h 1 = H 1 (x 1 , y 1 ) is a constant. 

Then, according to the definition of the Lambert W func-

tion and solving H 1 (x, y ) = h 1 with respect to y , one yields two

roots 

y S 1 
l 

= − r 

p 
W 

[
0 , − p 

r 
exp 

(
c ln (1 + ωx ) − δω ln (x ) − qωx + h 1 ω 

rω 

)]
(13)

and 

y S 1 u = − r 

p 
W 

[
−1 , −p 

r 
exp 

(
c ln (1 + ωx ) − δω ln (x ) − qωx + h 1 ω 

rω 

)]
. 

(14)

According to the Eq. (14) we can calculate that 

y L 2 = − r 

p 
W 

[ 
−1 , − p 

r 
exp 

×
(

ρ ln (1 + ωx L 1 ) − δω ln (x L 1 ) − qωx L 1 + h 11 ω 

rω 

)]
(15)

and 

y N 2 = − r 

p 
W 

[ 
−1 , − p 

r 
exp 

×
(

ρ ln (1 + ωx N 1 ) − δω ln (x N 1 ) − qωx N 1 + h 12 ω 

rω 

)]
, (16)
t  
ith h 11 = H 1 (x L 1 , T s ) and h 12 = H 1 (x N 1 , T s ) . Through easy calcula-

ions we have 

− p 

r 
exp 

(
ρ ln (1 + ωx L 1 ) − δω ln (x L 1 ) − qωx L 1 + h 11 ω 

rω 

)

= − p 

r 
exp 

(
ρ ln (1 + ωx N 1 ) − δω ln (x N 1 ) − qωx N 1 + h 12 ω 

rω 

)
. 

(17)

hen according to the properties of the Lambert W function, there

s y L 2 = y N 2 . This completes the proof. �

To investigate the global dynamics of system (5) we just need

o consider all the orbits starting from the region D I = { (x, y ) | y >
 s , x > 0 } because any given initial values of x and y can be

hanged to the region D I after one time of impulsive immune

herapy. For convenience, we denote the limit set [ T s , ρT s ] ∞ =
 (x, y ) | x = + ∞ , T s ≤ y ≤ ρT s } , which represents that the x compo-

ent tends to infinity and the y component oscillates periodically

ith lower and upper bounded by T s and ρT s , respectively. 

heorem 2. When ρT s > y u q S 1 
, the virus-free periodic solution ζS 1 

(t)

s stable in the region D I \ D 	1 
S 1 

while E 1 S 1 
is stable in D 	1 

S 1 

(as shown

n Fig. 2 (a and b)); If y u 
S 1 

< ρT s < y u q S 1 
, then ζS 1 

(t) becomes unstable

nd E 1 
S 1 

is also stable in the region D 	1 
S 1 

while all the other orbits

tarting from the region D I \ D 	1 
S 1 

will tend to [ T s , ρT s ] ∞ (see Fig. 2 (c

nd d)). 

roof. The assumption T s < min { y l 
S 1 

, y l 
S 2 

} guarantees that any orbit

tarting from the region D 	1 
S 1 

will not approach the impulsive line

 = T s . Therefore, E 1 S 1 
is always stable in the region D 	1 

S 1 

accord-

ng to the dynamics of system S 1 . Let ( x 0 , ρT s ) be a point on the

ine y = ρT s . When ρT s > y u 
S 1 

, the orbit initiating from the point

 x 0 , ρT s ), denoted by 	x 0 , will approach the line y = T s at finite

ime and we denote the intersection point of the line y = T s to the
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t 1 2 
rbit 	x 0 as (x 0 
T s 

, T s ) (shown in Fig. 2 (a)). Then we can define the

oincaré map of system (5) as: 

(x 0 ) = x 0 T s 
. 

We claim that �(x 0 ) − x 0 < 0 when ρT s > y u q S 1 
and �(x 0 ) −

 

0 > 0 when y u 
S 1 

< ρT s < y u q S 1 
. Without loss of generality, we just

rove the case ρT s > y u q S 1 
. Denote the intersection point of the orbit

4 to the line y = ρT s as P 	4 (x 	4 , ρT s ) . We consider the two cases

a) { (x 0 , y ) | y = ρT s , 0 < x 0 < x 1 
S 1 

, or x 0 > x 	4 } and (b) { (x 0 , y ) | y =
T s , x 

1 
S 1 

< x 0 < x 	4 } . For case (a), denote the intersection point of

he orbit 	x 0 to the line x = x 0 
T s 

as (x 0 
T s 

, y ′ ) (as shown in Fig. 2 (a)).

hen by Lemma 1 , we have that y ′ = y u q S 1 
< ρT s . Furthermore,

hen 0 < x < x 1 
S 1 

or x > x 	4 , y > y 1 
S 1 

we have dx / dt < 0 and dy / dt

 0. Thus we have that x 0 
T s 

< x 0 (i.e. �(x 0 ) − x 0 < 0 ). For case (b),

ll the orbits starting from it will approach the segment { (x, y ) | y =
 s , 0 < x < x 1 

S 1 
} . Therefore, there must be �( x 0 ) < x 0 for x 1 

S 1 
< x 0 <

 	4 according to the definition of �. 

Using the above properties of �, we can conclude that the triv-

al periodic solution ζS 1 
(t) is locally stable when ρT s > y u q S 1 

and

nstable when y u 
S 1 

< ρT s < y u q S 1 
. More specially, when y u 

S 1 
< ρT s <

 

u 
q S 1 

all the orbits initiating from the line y = ρT s will tend to

 T s , ρT s ] ∞ while all the orbits initiating from the line y = ρT s tend

o the virus-free periodic solution ζS 1 
(t) if ρT s > y u q S 1 

. This com-

letes the proof. �

emark 1. In Theorem 2 , there always exists a special case due

o the stable one manifold of the equilibria E 2 
S 1 

, that is, any orbit

f system (5) approaching the intersection point of the orbit 	2 
S 1 

o the line y = ρT s will finally tend to E 2 
S 1 

. Therefore, when discuss

he domain of attraction, we should get rid of the countable orbits.

heorem 3. If y l 
S 1 

< ρT s < y u 
S 1 

, then ζS 1 
(t) is unstable and E 1 S 1 

is lo-

ally stable within the region D 	1 
S 1 

. The orbits starting from the re-

ion D I \ D 	1 
S 1 

either reach a periodic solution in the region D 	1 
S 1 

or

pproach [ T s , ρT s ] ∞ , depending on initial values as shown in Fig. 3 (a–

). 

roof. When y l 
S 1 

< ρT s < y u 
S 1 

, there are two intersection points be-

ween the line y = ρT s and the orbit 	1 
S 1 

, which are denoted by

 

0 
m 

(x 0 m 

, ρT s ) and P 0 n (x 0 n , ρT s ) with x 0 m 

< x 0 n . The intersection point of

he line y = ρT s to the orbit 	4 is denoted by P 0 
l 
(x 0 

l 
, ρT s ) shown

n Fig. 3 (b and c). In this situation, the Poincaré map � can be

ell defined just when 0 < x 0 < x 0 m 

and x 0 > x 0 n because all the

rbits starting from the segment { (x, y ) | y = ρT s , x 
0 
m 

< x < x 0 n } are

losed orbits within the domain D 	1 
S 1 

which can not approach

he line y = T s and hence free from impulsive immune therapy.

imilar to the case y u 
S 1 

< ρT s < y u q S 1 
, �(x 0 ) − x 0 > 0 holds true for

 

0 ∈ (0 , x 0 m 

) or (x 0 n , + ∞ ) . Thus, we have that ζS 1 
(t) is unstable and

ll the orbits of system (5) initiating from { (x, y ) | y = ρT s , x > x 0 n }
ill tend to [ T s , ρT s ] ∞ . 

Let P ′ 0 m 

= (x 0 m 

, T s ) and P ′ 0 l = (x 0 
l 
, T s ) with x 0 

l 
< x 0 m 

< x 1 
S 1 

shown

n Fig. 3 (d). According to the dynamics of system S 1 , the or-

its passing through the points P ′ 0 m 

and P ′ 0 l will intersect with

he line y = ρT s at P 1 m 

(x 1 m 

, ρT s ) and P 1 
l 
(x 1 

l 
, ρT s ) respectively. Then

et P ′ 1 m 

(x 1 m 

, T s ) and P ′ 1 l (x 1 
l 
, T s ) , and the intersection points of the

ine y = ρT s with the orbits passing through the points P ′ 1 m 

and

 

′ 1 
l are denoted by P 2 m 

(x 2 m 

, ρT s ) and P 2 
l 
(x 2 

l 
, ρT s ) respectively. Re-

eating the above process, we can define the two sequences of

oints { P n m 

} and { P n 
l 
} (see Fig. 3 (d)). From the definition of the
oincaré map �, we have �(x n +1 
m 

) = x n m 

and �(x n +1 
l 

) = x n 
l 
. Fur-

her, there is �(x 0 ) − x 0 > 0 , 0 < x 0 < x 0 m 

, which means that x n +1 
m 

<

(x n +1 
m 

) = x n m 

and x n +1 
l 

< �(x n +1 
l 

) = x n 
l 
. Then it follows from the

xistence and uniqueness of solutions of system S 1 that all the or-

its initiating from the segment P n +1 
l 

P n +1 
m 

( P n +2 
m 

P n +1 
l 

) will approach

he segment P n 
l 

P n m 

( P n +1 
m 

P n 
l 

) ( n = 0 , 1 , 2 , . . . ) after one time of im-

ulsive therapy. Further, it follows from the dynamics of system

7) that all the orbits starting from P 0 
l 

P 0 m 

will approach P 	
4 

T s 
P 	

3 

T s 
,

here P 	
4 

T s 
= (x 	

4 

T s 
, T s ) and P 	

3 

T s 
= (x 	

3 

T s 
, T s ) with x 	

3 

T s 
> x 	

4 

T s 
> x 2 S 1 

> x 0 n 

re the intersection points of the line y = T s with the orbits 	4 and
3 
S 1 

as shown in Fig. 1 , and then tend to [ T s , ρT s ] ∞ following the

ase { (x, y ) | y = ρT S , x > x 0 n } . As a conclusion, all the orbits initiat-

ng from the segment P n 
l 

P n m 

will first approach P 0 
l 

P 0 m 

, and then tend

o [ T s , ρT s ] ∞ . Whereas all the orbits initiating from P n +1 
m 

P n 
l 

initially

each P 1 m 

P 0 
l 
, and then approach the segment { (x, y ) | y = ρT s , x 

0 
m 

<

 < x 1 
S 1 

} while any orbit of system S 1 initiating from the segment

 (x, y ) | y = ρT s , x 
0 
m 

< x < x 1 
S 1 

} is a closed orbit. Denote the backward

rbit of system S 1 initiating from the points P ′ n m 

and P ′ n l as 	
P n +1 

m 

nd 	
P n +1 

l 

( n = 0 , 1 , 2 , . . . ), and the domain bounded by the or-

its 	P n m 
, 	P n 

l 
( 	P n m 

, 	
P n −1 

l 

) and the line y = T s is denoted by D P n 
l 

P n m 

 D 

P n m P 
n −1 
l 

). Denote the region bounded by the orbits 	
P 1 m 

, 	4 and

he line y = T s as D 

P 1 m P 
0 
l 

and the region bounded by the orbit 	4 ,

he curve 	1 
S 1 

∪ 	2 
S 1 

∪ 	3 
S 1 

and the line y = T s as D 

P 0 
l 

P 0 m 
. The domain

ounded by the orbits 	2 
S 1 

and 	3 
S 1 

is denoted by D 	2 
S 1 

	3 
S 1 

. There-

ore, any orbit starting from the domain D 

P n +1 
m P n 

l 

, n = 0 , 1 , 2 , . . . will

pproach a periodic solution and all the orbits initiating from the

omain D 	2 
S 1 

	3 
S 1 

∪ D P n 
l 

P n m 
(n = 0 , 1 , 2 , . . . ) will tend to [ T s , ρT s ] ∞ . This

ompletes the proof. �

orollary 1. System (5) (or (6) ) does not have positive order-k ( k =
 , 2 , . . . ) periodic solutions if ρT s � = y u q S 1 

( ρT s � = y u q S 2 
), while for ρT s =

 

u 
q S 1 

(or ρT s = y u q S 2 
) any solution of system (5) (or (6) ) initiating from

he line y = ρT s ( y = ρT s ) except for the intersection point of the orbit
2 
S 1 

( 	2 
S 2 

) to the line y = ρT s is a positive order-1 periodic solution. 

emark 2. System (6) also has a virus-free periodic solution, de-

oted by ζS 2 
(t) , which is stable when ρT s > y u q S 2 

and unstable

hen y l 
S 2 

< ρT s < y u q S 2 
. And the results in Theorems 2 and 3 also

old true for system (6) . 

emark 3. Comparing systems (5) and (6) , we have that the con-

inuous antiretroviral therapy and interleukin (IL)-2 treatment do

ot affect the dynamics of the virus-immune system with the im-

ulsive immune therapy. However, there exist two lower critical

alues y u q S 1 
for system (5) and y u q S 2 

for system (6) with y u q S 2 
< y u q S 1 

uch that the corresponding virus-free periodic solutions is lo-

ally stable. That implies, with an additional continuous antiretro-

iral therapy and interleukin (IL)-2 treatment, the efficiency of im-

une therapy ( ρ) can be relatively low to eradicate the virus (i.e.

 

u 
q S 2 

< ρT s < y u q S 1 
). 

.2. The dynamics of system (2) with only HIV-1 RNA-guided therapy 

onsidered 

During therapy process for a HIV infected patient, if we don’t

onsider the effector cell-guided impulsive immune therapy, then

ystem (2) becomes the Filippov system (1) . It is worth mentioning

hat when we consider the Filippov system (1) , systems S and S 
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a b

c d

Fig. 3. (a) Dynamical behaviors of system (5) when y l S 1 < ρT s < y u S 1 
; (b) is the partially enlarged drawing of (a) corresponding to the horizontal component of the orbits 

converging to infinity; (c) The partially enlarged drawing of (a) corresponding to the orbit reaching a closed orbit; (d) The schematic diagram of the definition of the point 

sequences of { P n m } and { P n 
l 
} . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The topological structure of the Filippov system (1) when x 1 S 2 
< V s < x 1 S 1 

. 

All the parameter values are fixed as r = 2 . 6 , p = 1 , c = 0 . 5 , q = 0 . 23 , δ = 0 . 5 , ω = 

0 . 5 , ε1 = 0 . 2 , ε2 = 0 . 8 , V s = 3 . 

 

e  

b  

W  
are defined as system S 1 in the regions {( x, y )|0 ≤ x < V s , y ≥ 0}

and system S 2 in {( x, y )| x > V s , y ≥ 0} respectively. 

The global dynamics of system (1) has been intensively dis-

cussed in the paper [17] . The main results showed that there are

six scenarios for dynamical behaviors with different threshold val-

ues. These include that (a) equilibrium E 1 S 1 
or E 1 S 2 

is locally sta-

ble; (b) the pseudo-equilibrium E c is locally stable; (c) a touch-

ing cycle and the equilibrium E 1 
S 2 

or E 1 
S 1 

are locally bistable; (d)

equilibrium E 1 S 1 
and the pseudo-equilibrium E c are locally bistable.

However, among all the cases (0 , + ∞ ) is also an attractor, depend-

ing on the initial conditions. This means that there always exists

the situation that the virus will finally go to infinity whatever the

threshold we choose. Interestingly, when we set x 1 
S 2 

< V s < x 1 
S 1 

, the

pseudo-equilibrium E c is locally stable, and the controllable region,

in which the virus can be controlled below a certain level and the

effector cells can be maintain a certain level, can be maximized

compared with other cases. Therefore, in this paper, we assume

that x 1 
S 2 

< V s < x 1 
S 1 

always holds true. 

To investigate the dynamics of system (1) , there exists an im-

portant curve Y. When x 1 
S 2 

< V s < x 1 
S 1 

, the line x = V s will inter-

sect with the orbit 	1 
S 2 

at two points while the lower one is de-

noted by P 3 ( V s , y 3 ) as shown in Fig. 4 . It follows from the dynam-

ics of system S 1 that there exists an orbit 	5 initiating from P 3 
intersecting the line x = V s at another point P 4 ( V s , y 4 ). Similarly,

there must exist an orbit of system S 2 passing through the point

P 4 and we denoted it as 	6 . Then the curve Y can be defined as

	6 ∪ 

̂ P 4 P 3 ∪ 

̂ P 3 E 
2 
S 2 

∪ 	2 
S 2 

and the region inside the curve Y is denoted

by D Y . Then the dynamic of system (1) when x 1 
S 2 

< V s < x 1 
S 1 

can be

described as follows for a detail proof, see [17] . 

Theorem 4. When x 1 S 2 
< V s < x 1 S 1 

, there exists a pseudo-equilibrium

E c of system (1) which is locally asymptotically stable in D ϒ ; Any or-

bit initiating from R 2 + \ D ϒ tends to ( ∞ , 0) (see Fig. 4 ). 
To discuss the global dynamics of system (2) , we define sev-

ral critical points as follows (see Fig. 4 ). The intersection point

etween the two lines x = V s and y = ρT s is denoted by P 1 ( V s , ρT s ).

hen ρT s > y 2 
S 

, then the line y = ρT s will intersect with the

2 
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a

b 

Fig. 5. (a) Dynamical behaviors of system (2) when y 2 S 2 
< ρT s < y 9 with ρ = 2 . 2 . (b) 

Dynamical behaviors of system (2) when y 9 < ρT s < y 8 with ρ = 2 . 8 . The other pa- 

rameter values are: r = 2 . 6 , p = 1 , c = 0 . 5 , q = 0 . 23 , δ = 0 . 5 , ω = 0 . 5 , ε1 = 0 . 2 , ε2 = 

0 . 8 , V s = 3 , T s = 1 . 
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rbit 	2 
S 2 

at P 2 ( x 2 , ρT s ). Let P 5 = (V s , T s ) and we denote the orbit

f the Filippov system (1) passing through P 5 as 	7 and the other

ntersection point of the line y = T s with the orbit 	7 as P 6 . The

ntersection point of the orbit 	3 
S 2 

with the line y = T s is denoted

y P 7 ( x 7 , y 7 ). Also we denote the intersection point between the

wo lines x = x 6 ( x = x 7 ) and y = ρT s by P ′ 6 (x 6 , ρT s ) ( P ′ 7 (x 7 , ρT S ) ).

enote the intersection points of the line x = x 7 ( x = x 6 ) with the

rbit 	2 
S 2 

as P 8 ( x 8 , y 8 ) ( P 9 ( x 9 , y 9 )), with the orbit 	6 as P 10 ( x 10 ,

 10 ) ( P 11 ( x 11 , y 11 )) and with the orbit 	7 as P 12 ( x 12 , y 12 ) ( P 13 ( x 13 ,

 )). Let P ( x , y ) be the other intersection point of the orbit
13 14 14 14 
7 with the line x = V s . we can easily get the following relation-

hip y 5 = y 6 = y 7 < y 3 < y 2 S 2 
< y 9 < y 8 , y 11 < y 10 and y 13 < y 12 . It

ollows from Lemma 2 in Appendix that y 14 = y 13 and y 4 = y 11 . Ac-

ording to Lemmas 1 and 2 in Appendix , we have that y u q S 1 
= y 14 

nd y u q S 2 
= y 8 with y u q S 1 

> y u q S 2 
. It follows from Lemma 2 that if we

x all the other parameter values, then x 6 keeps constant as T s 
ecreases, which also means that y 9 and y 11 will not change as

 s changes. Further, it follows from Lemma 3 that y 9 < y 4 always

olds true. The definitions of the points P 8 , P 10 and P 12 show us

hat y 8 , y 10 and y 11 are strictly increasing to + ∞ with y 8 < y 10 

 y 12 as T s decreases to 0, thus the relationship between y 8 and

 11 cannot be determinated. Due to the complexity of the Filip-

ov system (1) , it is difficult to theoretically analyze the relation-

hip of y 10 and y 13 . Numerical results show that it can happen

hat y 10 < y 13 and P 8 is below the minimum point of the or-

it 	6 (i.e. the intersection point of the line x = x 2 
S 2 

to the orbit

6 , denoted by P 15 (x 2 
S 2 

, y 15 ) ). In the following, we assume y 10 <

 13 . Therefore, if we let the value of threshold T s change and fix

ll the other parameter values, we have case C1 : y 3 < y 2 
S 2 

< y 9 <

 15 < y 4 = y 11 < y 10 < y 13 = y 14 = y u q S 1 
< y 12 or case C2 : y 3 < y 2 

S 2 
<

 15 < y 9 < y 4 = y 11 < y 10 < y 13 = y 14 = y u q S 1 
< y 12 . In case C1 three

ubcases are possible: 

11 : y 9 < y 8 = y u q S 2 
< y 15 ; C12 : y 15 < y 8 = y u q S 2 

< y 11 ;
13 : y 11 < y 8 = y u q S 2 

< y 10 . 

hile in case C2 two subcases are possible: 

21 : y 9 < y 8 = y u q S 2 
< y 11 ; C22 : y 11 < y 8 = y u q S 2 

< y 10 . 

In the next section we mainly consider the global dynamics of

ystem (2) for case C11 while for the other cases the discussion for

he dynamics are similar. 

. The global dynamics of system (2) 

In this section, we will investigate the global dynamics of sys-

em (2) . Denote the region bounded by ̂ P 5 P 6 and y = T s as D P 5 P 6 
and

et D I ′ = D I \ D P 5 P 6 
. Then we only need to consider all the orbits

nitiating from the region D I ′ when ρT s > y 3 since orbits initiating

rom the region R 2 + \ D I ′ can jump into D I ′ after an impulsive im-

une therapy. Note that the assumption T s < min { y l 
S 1 

, y l 
S 2 

} guaran-

ees that all the orbits of system (2) initiating from the domain D Y 

annot approach the line y = T s , that is, impulsive immune therapy

ill not happen. Therefore, it follows from the dynamics of the Fil-

ppov system (1) that the pseudo-equilibrium E c is always stable

ithin the domain D Y whatever the value of ρT s is. At the same

ime, any orbit in the domain D I ′ \ D ϒ can pass through the line

 = ρT s , which means that we just need to consider all the orbits

nitiating from the line y = ρT s . When y 3 < ρT s < y 4 , there is an

ntersection point between the line y = ρT s and the orbit 	5 , de-

oted by A 0 (x A 0 , ρT s ) and the intersection point of the line y = ρT s 

ith the orbit 	7 is denoted as B 0 (x B 0 , ρT s ) when y 5 < ρT s < y 14 

s shown in Fig. 4 . 

As mentioned in the previous section, we assume that x 1 S 2 
<

 s < x 1 S 1 
and T s < min { y l 

S 1 
, y l 

S 2 
} always hold true with case C11

n the rest of this paper. Therefore, the key factor determin-

ng the dynamics of system (2) is the level of the intensity of

mmune therapy ρ under these assumptions. In the following

e consider several scenarios in terms of relation of ρT s and

 3 , y 
2 
S 2 

, y 9 , y 8 , y 11 , y 10 , y 13 , y 12 . 

Firstly, let y 3 < ρT s ≤ y 9 hold true. Here we initially consider

he case of y 2 
S 2 

< ρT s < y 9 as an illustration. In a such case, the line

 = ρT s is divided by orbit Y into three parts: { (x, y ) | x > x 2 , y =
T s } , { (x, y ) | x A 0 < x < x 2 , y = ρT s } and { (x, y ) | 0 < x < x A 0 , y = ρT s } .
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a

c d

b

Fig. 6. (a) Schematic diagram of the definitions of the point sequences of { A n } and { B n }, (b) The basin of attraction domain of system (2) when y 2 S 2 
< ρT s < y 9 ; (c) Schematic 

diagram of the definitions of { A n }, { B n } and { C n }, (d) The basin of attraction domain of system (2) when y 9 < ρT s < y 8 . 
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It is easy to see that any orbit initiating from segment { (x, y ) | x A 0 <
x < x 2 , y = ρT s } will finally tend to the pseudo-equilibrium E c since

it belongs to the domain D Y . 

Within the domain bounded by the orbits 	2 
S 2 

and 	3 
S 2 

, all the

orbits initiating from the segment { (x, y ) | x > x 2 , y = ρT s } can not

approach the switching line x = V s , which means that the dynam-

ics will just follow the system S 2 with impulsive immune therapy

(i.e. system (6) ). Furthermore, when ρT s < y 9 , according to the

proof of Theorem 2 , we have that �(x 0 ) − x 0 > 0 holds true, where

� is the Poincaré map of system (6) . Therefore, we can conclude

that all the orbits starting from { (x, y ) | x 2 < x, y = ρT s } will tend to

[ T s , ρT s ] ∞ (see Fig. 5 (a)). 

Before discussing the asymptomatic behaviors of solution start-

ing from the segment { (x, y ) | 0 < x < x A 0 , y = ρT s } , we initially de-

fine two sequences of points. Let A 

′ 
0 = (x A 0 , T s ) and B ′ 0 = (x B 0 , T s )

shown in Fig. 6 (a). It follows from the dynamics of system S 1 that

the orbit initiating from the point A 

′ 
0 

will intersect with the line

y = ρT s at A 1 (x A 1 , ρT s ) and let A 

′ 
1 = (x A 1 , T s ) . Similarly we denote

the intersection point of the line y = ρT s with the orbit of sys-

tem S 1 passing through the point A 

′ 
1 

as A 2 (x A 2 , ρT s ) . Repeating

the above process, we can define two sequences of points { A n } on

the line y = ρT s and { A 

′ 
n } on the line y = T s as shown in Fig. 6 (a).

Through the same process, we can also define the two sequences

of points { B n } and { B ′ n } . From the definitions of { A n } and { B n }, there

are �(x A n +1 
) = x A n and �(x A n +1 

) = x A n ( n = 0 , 1 , 2 , . . . ), where � is

the Poincaré map of system (5) . When ρT s < y 9 < y u q S 1 
, �(x 0 ) −

x 0 > 0 holds true, which means that x A n +1 
< �(x A n +1 

) = x A n and

x B n +1 
< �(x B n +1 

) = x B n . Further, note that x A 0 > x B 0 , we then con-

clude 

x A > x B 0 > x A > x B 1 > · · · > x A n > x B n > · · · . 

0 1 b
According to the existence and uniqueness of solutions of sys-

em S 1 , any orbit initiating from the segment B n A n ( A n +1 B n ) will

pproach B ′ 
n −1 

A 

′ 
n −1 

( A 

′ 
n B 

′ 
n −1 

), and then jump to B n −1 A n −1 ( A n B n −1 )

ith one time of impulsive immune therapy. Further, it follows

rom the dynamics of the Filippov system (1) that all the orbits

f system (2) starting from the segment B 0 A 0 will reach P 6 P 7 , fol-

owed with impulsive immune therapy and jump to P ′ 
6 
P ′ 

7 
, and fi-

ally tend to [ T s , ρT s ] ∞ following the case { (x, y ) | y = ρT s , x > x 2 }
ecause x 6 > x 2 in this situation. Meanwhile, it follows from the

efinition of A 1 and B 0 that any orbit initiating from the segment

 1 B 0 will reach A 

′ 
0 P 5 , jumps to the segment A 0 P 1 ∈ D ϒ and then

end to E c . Therefore, we can conclude that 

· · → A n +1 B n → A n B n −1 → · · · → A 1 B 0 → A 0 P 1 → E c , 

· · → B n A n → B n −1 A n −1 → · · · → B 0 A 0 → P ′ 
6 
P ′ 

7 
→ (+ ∞ , ρT s ) , 

here A n +1 B n → A n B n −1 represents that all the orbits starting from

he segment A n +1 B n will reach the segment A n B n −1 after one time

f impulsive immune therapy, and other notations should be inter-

reted similarly. 

We denote the domain, bounded by the orbit 	7 , the curve
6 ∪ 

̂ P 4 P 3 ∪ 

̂ P 3 E 
2 
S 2 

∪ 	3 
S 2 

and the line y = T s by D B 0 A 0 
. The negative

rbits of Filippov system (1) initiating { A 

′ 
n −1 

} and { B ′ 
n −1 

} ( n =
 , 2 , . . . ) are denoted as 	A n and 	B n respectively, and the domains

ounded by 	B n , 	A n ( 	B n , 	A n +1 
) and line y = T s are denoted by

 B n A n ( D A n +1 B n 
). Especially, the domain bounded by the orbits 	A 1 

,

7 and the line y = T s is denoted by D A 1 B 0 
. We also denote the

egion bounded by 	2 
S 2 

, 	3 
S 2 

and the line y = T s by D 	23 . When

 3 < y ≤ y 2 
S 2 

, the dynamics is same as the case y 2 
S 2 

< y < y 9 . There-

ore, the global dynamics of system (2) when y 3 < ρT s < y 9 can

e concluded as follows. 
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Fig. 7. The case that the pseudo-equilibrium E c is globally stable when y 8 < ρT s < 

y 11 with ρ = 4 . The other parameters are fixed as these in Fig. 5 (a). 
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heorem 5. When y 3 < ρT s < y 9 , then the pseudo-equilibrium E c is

table in the basin of attraction region D A n +1 B n 
(n = 0 , 1 , 2 , . . . ) ∪ D ϒ

hile all orbits starting from the region D B n A n (n = 0 , 1 , 2 , . . . ) ∪ D 	23 

ill tend to [ T s , ρT s ] ∞ (see Figs. 5 (a) and 6 (b)). 

If y 9 < ρT s < y 8 , the dynamics of system (2) on the segments

 (x, y ) | x > x 2 , y = ρT s } and { (x, y ) | x A 0 < x < x 2 , y = ρT s } are similar

o those for the case y 3 < ρT s < y 9 , hence here we omit it. For the

est part { (x, y ) | 0 < x < x A 0 , y = ρT s } , another sequence of points

hould be defined. 

Let P ′ 
2 

= (x 2 , T s ) , and the orbit of Filippov system (1) passing

hrough the point P ′ 2 intersects the line y = ρT s at C 0 = (x C 0 , ρT s ) .

enote C ′ 
0 

= (x C 0 , T s ) and the orbit of system S 1 passing through

he point C ′ 
0 

intersects the line y = ρT s at C 1 = (x C 1 , ρT s ) . Similarly,

et C ′ 1 = (x C 1 , T s ) . Repeating the above process we can define the

equences { C n } on the line y = ρT s and { C ′ n } on the line y = T s as

hown in Fig. 6 (c). Therefore, we have that all the orbits initiat-

ng from the segment A n B n −1 ( B n C n , C n A n ) will reach the segment

 n −1 B n −2 ( B n −1 C n −1 , C n −1 A n −1 ) after one impulsive effect. Further-

ore, the orbits starting from B 0 C 0 (or A 1 B 0 ) will first approach the

egment P ′ 
6 
P 2 (or A 0 P 1 ), and then tend to the pseudo-equilibrium E c 

long the Filippov system (1) . Similarly, the orbits initiating from

he segment C 0 A 0 will first approach the segment P 2 P 
′ 
7 
, and then

end to infinity along the system S 2 with impulsive. As a conclu-

ion, we have 

· · → B n C n → B n −1 C n −1 → · · · → B 0 C 0 → P ′ 
6 
P 2 → E c , 

· · → A n +1 B n → A n B n −1 → · · · → A 1 B 0 → A 0 P 1 → E c , 

· · → C n A n → C n −1 A n −1 → · · · → C 0 A 0 → P 2 P 
′ 
7 

→ (+ ∞ , ρT s ) . 

Denote the backward orbits of the Filippov system (1) initiat-

ng from C ′ n as 	C n , and the region bounded by 	C n , 	B n ( 	C n , 	A n )

nd y = T s as D B n C n ( D C n A n ). The domain D B 0 A 0 
is divided by the or-

it of Filippov system (1) passing through the point C 0 into two

ubregions with the left part denoted by D B 0 C 0 
and the right part

enoted by D C 0 A 0 
. The dynamics of system (2) when y 9 < ρT s < y 8 

s concluded as the follows. 

heorem 6. When y 9 < ρT s < y 8 , then the pseudo-equilibrium

 c is locally stable in the basin of attraction domain D ϒ ∪ D B n C n ∪
 A n +1 B n 

(n = 0 , 1 , 2 , . . . ) . The orbits initiating from the region D 	23 ∪
 C n A n (n = 0 , 1 , 2 , . . . ) will tend to [ T s , ρT s ] ∞ , as shown in Figs. 5 (b)

nd 6 (d). 

For y 8 < ρT s < y 11 , the whole segment P ′ 
6 
P ′ 

7 
is contained in the

omain D Y . For the case { (x, y ) | x 2 < x, y = ρT s } , when ρT S > y 8 ,

t follows from the system S 2 with pulse that the Poincaré map

of system (6) is strictly decreasing, which means that all the

rbits starting from it will finally arrive at the segment P ′ 
7 
P 2 , and

hen tend to the pseudo-equilibrium E c following the dynamics of

ilippov system (1) . 

For the orbits initiating from the segment { (x, y ) | 0 < x <

 A 0 
, y = ρT s } , it is similar to the case y 2 S 2 

< ρT s < y 8 . That is, the or-

its initiating from the segment A n B n −1 will first reach the segment

 0 P 1 after n times impulsive effects, and then tend to E c along the

ynamics of Filippov system (1) . Any orbit initiating from the seg-

ent B n A n firstly reaches B 0 A 0 , tends to P 6 P 7 following the Filippov

ystem (1) , then jumps to the segment P ′ 
6 
P ′ 

7 
, and finally tends to

he pseudo-equilibrium E c along the Filippov system (1) as shown

n Fig. 7 . 

Considering the case { (x, y ) | x A 0 < x < x 2 , y = T s } , if line y = ρT s

oesn’t intersect with the orbit 	6 , we have the whole segment

 0 P 2 belongs to the region D Y , then it follows from the Filippov

ystem that any orbit starting from it will directly tend to the

seudo-equilibrium E c . If line y = ρT s does intersect with the orbit
6 , the segment A 0 P 2 is delivered into two parts. Then orbits start-

ng from the part inside the domain D Y will directly tend to E c as

ell, while orbits initiating from the part outside the domain D Y 

ill first arrive at the segment P ′ 6 P 
′ 
7 , and then tend to E c according

o the case { (x, y ) | 0 < x < x A 0 , y = ρT s } . Therefore, when y 8 < ρT s
 y 11 , the dynamics of system (2) is as follows. 

heorem 7. When y 8 < ρT s < y 11 , then the pseudo-equilibrium E c is

lobally stable as shown in Fig. 7 . 

If y 10 < ρT s < y 13 , then ρT s > y 11 holds true. Therefore, there

xists one and only one intersection point of the line y = ρT s with

he orbit 	6 , denoted by P 16 ( x 16 , ρT s ) shown in Fig. 8 (b). We

ainly consider the orbits initiating from the segments { (x, y ) | 0 <
 < x B 0 , y = ρT s } , B 0 P 16 and { (x, y ) | x > x 2 , y = ρT s } because the or-

its starting from the segment P 16 P 2 will directly tend to the

seudo-equilibrium E c following the dynamics of the Filippov sys-

em (1) . 

First of all, we consider the orbits initiating from the segment

 

′ 
6 
P ′ 

7 
which is now out of the region D Y . The definition of the

oincaré map of system (2) on segment P ′ 
6 
P ′ 

7 
is similar to the def-

nition of the Poincaré map of system (5) , hence for convenience

e also denote the Poincaré map of system (2) as �. That is, for

 x 0 , ρT s ), x 0 ∈ ( x 6 , x 7 ), the orbit of the Filippov system (1) initi-

ting from it will intersect with the line y = T s at (x 0 
1 
, T s ) , then

e have �(x 0 ) = x 0 
1 
. When y 10 < ρT s < y 13 , it follows from the

xistence and uniqueness of solutions and the continuous depen-

ence of the solution on the initial value of the systems S 1 and

 2 that � is continuous with �(x 6 ) − x 6 > 0 and �(x 7 ) − x 7 < 0 .

herefore, the Poincaré map � has a fixed point in the interval

 x 6 , x 7 ), correspondingly the system (2) exists a positive order-

 periodic solution as shown in Fig. 8 (c). However, it is difficult

o prove the monotonicity of the function �(x 0 ) − x 0 , x 0 ∈ (x 6 , x 7 )

ue to the complexity of the Poincaré map �. The numerical re-

ult (see Fig. 8 (a)) shows that the map �(x 0 ) − x 0 , x 0 ∈ (x 6 , x 7 )

s strictly monotonically decreasing in the interval ( x 6 , x 7 ) when

 10 < ρT s < y 13 . Thus, when �(x 0 ) − x 0 , x 0 ∈ (x 6 , x 7 ) is strictly

onotonically decreasing, then there exists one and only one fixed
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Fig. 8. (a) The curves of the map �(x 0 ) − x 0 , x 0 ∈ (x 6 , x 7 ) when y 10 < ρT s < y 13 . (b) Dynamical behaviors of system (2) when y 10 < ρT s < y 13 . (c) shows the existence of 

the positive order-1 periodic solution �( t ). (d) The schematic diagram of the definition of sequences of { G n } and { F n }. 
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point of �, correspondingly, system (2) has one and only one

positive periodic solution, denoted by �( t ) (see Fig. 8 (c)). Simul-

taneously, the monotonicity of the function �(x 0 ) − x 0 also im-

plies that the positive periodic solution �( t ) is locally stable. Then

we can conclude that any orbit starting from the segment B 0 P 16 

will finally tend to �( t ) since it will approach P 6 P 7 and jump into

P ′ 
6 
P ′ 

7 
. 

It follows from the system S 1 with pulse (i.e. system (5) )

that all the orbits initiating from the segment { (x, y ) | 0 < x <

x B 0 , y = ρT s } will first reach the segment B 0 P 1 , and then tend to

the positive order-1 periodic solution �( t ) following the former

case. 

Let P ′ 
16 

= (x 16 , T s ) and P ′ 
2 

= (x 2 , T s ) . Denote the intersection

points of the line y = ρT s with the orbit of system S 2 passing

through the points P ′ 
16 

and P ′ 
2 

as G 1 (x G 1 , ρT s ) and F 1 (x F 1 , ρT s ) , re-

spectively. Then let G 

′ 
1 

= (x G 1 , T s ) and F ′ 
1 

= (x F 1 , T s ) . Similarly, the

intersection point between the line y = ρT s and the orbit of sys-

tem S 2 passing through the point G 

′ 
1 

( F ′ 
1 

) is denoted by G 2 (x G 2 , ρT s )

( F 2 (x F 2 , ρT s ) ). Repeating the above process we can define the se-

quences { F n } and { G n } with n = 1 , 2 , . . . , as shown in Fig. 8 (d).

From the definition of { F n } and { G n }, we have that 

x G 1 < x F 1 < x G 2 < x F 2 < · · · < x G n < x F n < · · · . (18)

Then according to the existence and uniqueness of solutions

and the dynamics of system (8) , we have that any orbit start-

ing from the segment G n F n will reach the segment G n −1 F n −1 after

one impulsive effect while other orbits starting from the segment

F n −1 G n will reach the segment F n −2 G n −1 . Note that the orbits initi-

ating from the segment G 1 F 1 ( P 2 G 1 ) will arrive at P 16 P 2 ( P ′ 
7 
P 16 ). As

a conclusion, we have 

· · · → F n −1 G n → F n −2 G n −1 → · · · → P 2 G 1 → P ′ P 16 → �(t) , 

7 
nd 

· · → G n F n → G n −1 F n −1 → · · · → G 1 F 1 → P 16 P 2 → E c . 

The orbits of system S 2 passing through the points { F n } and

 G n } are denoted by 	F n and 	G n , respectively. Denote the do-

ain bounded by the curve 	6 ∪ 	5 ∪ 

̂ P 3 E 
2 
S 2 

∪ 	3 
S 2 

, the lines y = T s 

nd x = 0 as D 

P l 
16 

, the region bounded by 	G n , 	F n and y = T s as

 G n F n ( n = 1 , 2 , . . . ), the region bounded by 	F n , 	G n +1 
and y = T s

s 	F n G n +1 
( n = 2 , 3 , . . . ). The region bounded by 	G 1 

, 	2 
S 2 

, 	3 
S 2 

and

 = T s is denoted by D P 2 G 1 
. Thus, the dynamics of system (2) for y 10 

 ρT s < y 13 can be concluded as follows. 

heorem 8. When y 10 < ρT s < y 13 , then system (2) has a positive

rder-1 periodic solution �( t ) . Further, if �(x 0 ) − x 0 is strictly mono-

onically decreasing, �( t ) and E c are bistable in the basin of attrac-

ion region D 

P l 
16 

∪ D P 2 G 1 
∪ D F n G n +1 

and D ϒ ∪ D G n F n ( n = 1 , 2 , . . . ), re-

pectively. 

If ρT s > y 12 , we have ρT s > y 12 > y 13 = y 14 = y u q S 1 
, and then

here is one and only one intersection point of the line y = ρT s 
o the orbit 	7 denoted by P 17 ( x 17 , ρT s ). It follows from the sys-

em S 1 with pulse that all the orbits initiating from the segment

 (x, y ) | 0 < x < x 17 , y = ρT s } will finally tend to the virus-free pe-

iodic solution ζS 1 
(t) . Any orbit starting from the segment P 17 P 16 

ill first reach the segment P 6 P 7 , jump to the segment P ′ 
6 
P ′ 

7 
with

ne impulsive effect, and finally tend to the the virus-free periodic

olution because of 0 < x 6 < x 7 < x 17 . Note that the orbits start-

ng from the segment P 16 P 2 can not approach the line y = T s , and

herefore finally must tend to E c along the Filippov system (1) . 

For the segment { (x, y ) | x > x 2 , y = ρT s } , the definitions of { F n }

nd { G n } are same as those for the case y < ρT s < y (shown in
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Fig. 9. (a)Dynamical behaviors of system (2) when ρT s > y 12 with ρ = 6 . 5 . (b) and (c) show that the solution trajectories tent to E c and ζS 1 (t) with different initial conditions. 

(d) Basin of attraction region of system (2) when y 12 < ρT s while the all the orbits starting from the blue domains will tend to the pseudo-equilibrium E c and any orbit 

initiating from the green domains will tend to virus-free periodic solution ζS 1 (t) . The other parameter values are fix as those in Fig. 5 (a). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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ig. 8 (d)), and then we can conclude that 

· · → F n −1 G n → F n −2 G n −1 → · · · → P 2 G 1 → P ′ 
7 
P 16 → ζS 1 (t) , 

nd 

· · → G n F n → G n −1 F n −1 → · · · → G 1 F 1 → P 16 P 2 → E c . 

herefore, the dynamics of system (2) when ρT s > y 12 can be con-

luded as the follows. 

heorem 9. When ρT s > y 12 , then the virus-free periodic solution

S 1 
(t) and the pseudo-equilibrium E c are bistable (see Fig. 9 (a–c)).

nd both of them have a basin of attraction D 

P 2 
16 

∪ D P 2 G 1 
∪ D F n G n +1 

and

 ϒ ∪ D G n F n ( n = 1 , 2 , . . . ) respectively (as shown in Fig. 9 (d)). 

emark 4. In the above discussions on the domains of attraction

f system (2) , there exist two special cases that the orbits initiat-

ng from the two intersection points of the line y = ρT s with the

urve Y will tend to the equilibrium E 2 
S 2 

. Therefore, all the do-

ains of attraction should get rid of countable orbits which can

pproach the two intersection points. In details, for Theorem 5 , we

hould get rid of the orbits 	A n and the curve Y, while the orbits

A n , 	C n and the curve Y should be deleted in Theorem 6 . And for

heorems 7 –9 , we should get rid of the orbits 	G n , 	F n and the

urve Y in the domains of attraction. 

emark 5. It should be noted that we have not obtained theoreti-

al results for y 11 < ρT s < y 10 or y 13 < ρT s < y 12 . However, numer-

cal studies show that the dynamics of system (2) for y 11 < ρT s <

 10 are similar to the case y 8 < ρT s < y 11 , as shown in Fig. 10 (a),

hat is, the pseudo-equilibrium E c is globally stable. It is difficult to
heoretically prove this conclusion because we can not determine

he sign of the function �(x 0 ) − x 0 , x 0 ∈ (x 6 , x 7 ) . For y 13 < ρT s <

 12 , numerical studies suggest the dynamics of system (2) are sim-

lar to those for the case ρT s > y 12 , that is, the pseudo-equilibrium

 c and the virus-free periodic solution ζS 1 
(t) are bistable in their

asin of attraction regions as shown in Fig. 10 (b–d). 

. Conclusion and discussion 

In this paper, considering combined antiretroviral therapy and

nterleukin (IL)-2 treatment with impulsive immune therapy for

IV infected patients, we proposed a piecewise virus-immune

odel with two thresholds to describe the HIV-1 RNA virus and

ffector cell guided STI therapy. The model allows us to determine

nder what threshold values of the density of the effector cells and

IV-1 RNA virus loads we can successfully inhibit the growth of

he virus and rebuild the immune response function of the HIV

nfected patients. We extended our previously formulated model

17] by including impulsive immune therapy. 

The immune therapy has been shown to be effective in help-

ng to rebuild the HIV-special immune response. We initially dis-

ussed the dynamics of system (2) when only the effector cell-

uided therapy is considered (i.e. systems (5) and (6) ). Our theo-

etical analysis shows the existence and local stability of the virus-

ree periodic solution when ρT s exceeds the critical value y u q S 1 
for

ystem (5) or y u q S 2 
for system (6) . It means that the HIV-1 RNA

irus can be eradicated by infinite times of impulsive immune

herapy if efficacy of immune therapy is relatively high. If the

irus-free periodic solution becomes unstable (i.e. y l 
S 1 

< ρT s < y u q S 
1 
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Fig. 10. (a) The dynamic behaviors of system (2) when y 11 < ρT s < y 10 with ρ = 4 . 75 ; (b) The dynamic behaviors of system (2) when y 13 < ρT s < y 12 with ρ = 5 . 6 ; (c) The 

solution trajectory of system (2) when y 13 < ρT s < y 12 , which tend to the virus-free periodic solution ζS 1 (t) ; (d) The solution trajectory of system (2) when y 13 < ρT s < y 12 , 

which tend to the pseudo-equilibrium E c . The other parameter values are fixed as those in Fig. 5 (a). 
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or y l 
S 2 

< ρT s < y u q S 2 
holds true), then the viral loads may increase

to infinity, depending on the initial conditions. This indicates that

if the efficacy of impulsive immune therapy is relatively low, HIV

virus may be controlled by the impulsive immune therapy only for

some patients whose initial data for viral loads and effector cells

satisfy certain conditions. 

We also considered the piecewise model of virus-immune sys-

tem with only HIV-1 RNA-guided therapy in p aper [17] and ob-

served that virus may be maintained to be a relatively low level

(e.g. the pseudo-equilibrium E c can be locally stable in region

D γ ) for x 1 
S 2 

< V s < x 1 
S 1 

. This means that virus can not be erad-

icated by HIV-1 RNA-guided therapy only. Here we also exam-

ined the global dynamics of system (2) when the strategies of

both the effector cell and HIV-1 RNA-guided therapy are consid-

ered, and when we further fix the threshold V s between x 1 
S 1 

and

x 1 S 2 
and the threshold T s below min { y l 

S 1 
, y l 

S 2 
} . Complex and multi-

ple attractors appear in the system (2) if we vary value of ρ and

fixed other parameter values. The complex dynamics includes: (a)

the pseudo-equilibrium E c is locally stable in a basin of attrac-

tion while the orbits starting from the other region will tend to

[ T s , ρT s ] ∞ ; (b) the pseudo-equilibrium E c is globally stable; (c) the

pseudo-equilibrium E c coexists with a positive order-1 periodic so-

lution, and both of them are locally stable in their basins of at-

traction; (d) the pseudo-equilibrium E c and the virus-free periodic

solution ζS 1 
(t) are bistable in their corresponding domains of at-

traction, respectively. 

In 1994, Kuznetsov et al. investigated similar basic ODE model

with the carrying capacity of the virus loads being considered [14] .

In that paper they considered the continuous therapy for immuno-

genic tumors. As discussed by the authors, the main theoretical

results can also be applied for HIV therapy while two positive

equilibria can be bistable. Compared with the continuous therapy,

as we can see, the dynamics of the system with the comprehen-

sive therapy strategies becomes very different and more rich. The

pseudo-equilibrium can be bistable with the positive order-1 peri-
dic solution or with the virus free periodic solution, and moreover

heir domains of attraction can be very complicated. This indicates

hat the outcomes for the patients under the therapy is very sen-

itive to their initial conditions. 

Comparing with the strategies of both the effector cell and HIV-

 RNA-guided therapy with the HIV-1 RNA-guided therapy only

17] , we obtained that the pseudo-equilibrium E c can be glob-

lly stable under appropriate conditions. In contrast, the pseudo-

quilibrium E c can only be locally stable under the corresponding

onditions when HIV-1 RNA-guided therapy alone is implemented

see paper [17] ). This indicates that under such combined therapy

trategies virus loads can be successfully controlled to remain at a

ertain level for all the HIV infected patients no matter what their

nitial conditions are. As we can see, the region D γ can be regarded

s the controllable region when HIV-1 RNA-guided therapy alone is

onsidered, in which the virus can be maintained under a certain

evel. Theorems 5 and 6 imply that the controllable region is en-

arged under the combined two thresholds therapy strategies, com-

ared to the controllable region under the HIV-1 RNA-guided ther-

py only. Moreover, it is interesting to note that both the pseudo-

quilibrium E c and the virus-free periodic solution can be bistable

f the efficacy of immune therapy is relatively high. It suggests that

n such a scenario virus may be either successfully eradicated or

aintained under a certain level with the two thresholds therapy

trategies. 

Similarly, a comparison of the strategies of both the effector cell

nd HIV-1 RNA-guided therapy with the effector cell-guided im-

une therapy only yields some interesting results about how to

arry out the immune therapy. Under the effector cell-guided ther-

py alone, a lifelong time of impulsive immune therapy is needed

o successfully control the virus load to under a relative low level

nd once the immune therapy blacking out the virus loads will

row again to infinity no matter how low the virus loads were

ontrolled. However, if we consider both the effector cell and HIV-

 RNA-guided therapy, the pseudo-equilibrium E c is globally stable

hen y 8 < ρT s < y 11 . In such a situation, all orbits starting out
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f the domain D Y will jump into the region D Y after finite times

f impulsive effects and finally tend to E c . Therefore, the patients

ust need finite times of immune therapy or do not require any im-

une therapy to control the virus loads below a certain level, de-

ending on their initial conditions. But, if we further enhance the

ntensity of immune therapy, a result contrary to intuition occurs.

hat is, when y 10 < ρT s < y 13 , a locally stable positive periodic

olution appears, which means that infinite times of immune ther-

py may also be needed to control the virus load between a range

nder the comprehensive two thresholds therapy strategies. 

It is worth mentioning that the work presented here is an ex-

ension of an approach to the dynamics of HIV management when

lasma HIV-1 RNA-guided therapy is initiated [17] . By further in-

luding effector cell-guided therapy, our analyses indicate that HIV

iral loads can either be eradicated or stabilize at a previously

iven level or go to infinity (corresponding to the effector cells

scillating), depending on the threshold levels and the initial HIV

irus loads and effector cell counts. Therefore, our findings sug-

est that it is essential to carefully choose the thresholds of plasma

IV-1 RNA copies and effector cell and individualize the STIs for

atients based on their initial plasma HIV-1 RNA copies and effec-

or cell counts. 

In previous studies of modeling disease therapy, the Filippov

ystem and impulsive system are usually two independent frame-

orks [16,24,25,29,33] . In this paper, we proposed a mathematical

odel combining the Filippov system and the state dependent im-

ulsive system with two different strategies for HIV therapy con-

idered. Our discussion of the global dynamics of system (2) shows

hat the dynamics becomes very rich and complicated when two

ifferent therapy strategy is considered. Our approach can not only

e applied to the HIV therapy, but also modeling other disease

herapies, such as cancer therapies. 

When discussing the global dynamics of system (2) , we can

ot theoretically determine the sign of the function �(x 0 ) − x 0 .

he complexity of this function leads to difficulties to completely

xamine the dynamics of system (2) for cases y 11 < ρT s < y 10 

nd y 13 < ρT s < y 12 . To investigate the global dynamics of sys-

em (2) , we have fixed the two thresholds as T s < min { y l 
S 1 

, y l 
S 2 

} and

 

1 
S 2 

< V s < x 1 
S 1 

. The dynamics of system (2) could be very complex

f we choose different combinations of the two thresholds T s and

 s . The discussion of those complex dynamics is left for us in the

uture works. In this paper, we have assumed that the HIV virus

ncreases exponentially. When there is a limitation of the virus

rowth, it is reasonable to taking into consideration of the carry-

ng capacity of the HIV virus. This consideration would have great

nfluence on the dynamics of systems S 1 and S 2 and further on

he dynamics of the virus-immune system with complex therapy

trategies. Addressing this complexity would require a further in-

epth research. 

cknowledgments 

The work was supported by the national Megaproject of Sci-

nce Research (No. 2012ZX10 0 01-0 01), by the National Natural Sci-

nce Foundation of China (NSFC, 11571273), by the Fundamental

esearch Funds for the Central Universities (08143042 (YX)), and

y the International Development Research Center, Ottawa, Canada

104519–010). 

ppendix 

emma 2. For i = 1 , 2 , let x 1 
S i 

≤ x k ≤ x 2 
S i 

, 	k 1 
and 	k 2 

being two

rbits of system S i outside the domain bounded by 	1 
S i 

, 	2 
S i 

and

3 
S i 

. Denote the intersection point of the line x = x k with the up-

er branch and the low branch of the orbit 	k 1 
as P u 

k 
(x k , y 

u 
k 

) and

1 1 
 

l 
k 1 

(x k , y 
l 
k 1 

) . Similar denote the two intersection points between the

ine x = x k and the orbit 	k 2 
as P u 

k 2 
(x k , y 

u 
k 2 

) and P l 
k 2 

(x k , y 
l 
k 2 

) . Then

here should be three intersection points of the line y = y u 
k 1 

to the

rbit 	k 1 
and we denote the one with the biggest horizontal ordi-

ate as P ′ u k 1 
= ( x ′ u k 1 

, y u 
k 1 

) . Similarly, we can denote the three other

oints P ′ l k 1 = ( x ′ l k 1 , y 
l 
k 1 

) , P ′ u k 2 
= ( x ′ u k 2 

, y u 
k 2 

) and P ′ l k 2 = ( x ′ l k 2 , y 
l 
k 2 

) . Then

e have x ′ u k 1 
= x ′ u k 2 

= x ′ l k 1 = x ′ l k 2 . 

roof. Without loss of generality, we just verify x ′ u k 1 
= x ′ u k 2 

for sys-

em S 1 . As shown in the proof of Lemma 1 , there is 

c 

1 + ωx 
− q − δ

x 

)
dx = 

(
r 

y 
− p 

)
dy. (19) 

ntegrating Eq. (19) from E u 
k 1 

to E ′ u k 1 
yields: 

 x ′ u k 1 

x k 

(
c 

1 + ωx 
− q − δ

x 

)
dx = 

∫ y u 
k 1 

y u 
k 1 

(
r 

y 
− p 

)
dy = 0 , (20) 

nd from E u 
k 2 

to E ′ u k 2 
we have 

 x ′ u k 2 

x k 

(
c 

1 + ωx 
− q − δ

x 

)
dx = 

∫ y u 
k 2 

y u 
k 2 

(
r 

y 
− p 

)
dy = 0 . (21) 

ombining Eqs. (20) and (21) there is 

 x ′ u k 1 

x k 

(
c 

1 + ωx 
− q − δ

x 

)
dx = 

∫ x ′ u k 2 

x k 

(
c 

1 + ωx 
− q − δ

x 

)
dx, (22) 

hich implies that x ′ u k 1 
= x ′ u k 2 

. The proof is completed. �

emma 3. Let M ( x M 

, y M 

) being a point in {( x, y )| x > 0, y > 0} with

 M 

< y 1 S 2 
, 	M 

S 1 
and 	M 

S 2 
being the orbits of systems S 1 and S 2 pass-

ng through the point M, respectively. Denote the another intersection

oints of the orbits 	M 

S 1 
and 	M 

S 2 
to the line x = x M 

as M S 1 
(x M 

, y M S 1 
)

nd M S 2 
(x M 

, y M S 2 
) respectively. Then we have that y M S 1 

< y M S 2 
. 

roof. Similar to system S 1 , the system S 2 has the first integral

hich is given as 

 2 (x, y ) = − c 

ω 

ln (1 + ωx ) + (δ − ε2 ) ln (x ) 

+ qx + (r − ε1 ) ln (y ) − py = h 2 , (23) 

here h 2 = H 2 (x 2 , y 2 ) is a constant. Also, there are 

 

S 2 
l 

= − r − ε1 

p 
W 

[ 
0 , − p 

r − ε1 

exp 

×
(

c ln (1 + ωx ) − (δ − ε2 ) ω ln (x ) − qωx + h 2 ω) 

(r − ε1 ) ω 

)]
(24) 

nd 

 

S 2 
u = − r − ε1 

p 
W 

[ 
−1 , − p 

r − ε1 

exp 

×
(

c ln (1 + ωx ) − (δ − ε2 ) ω ln (x ) − qωx + h 2 ω) 

(r − ε1 ) ω 

)]
. 

(25) 

According the Eqs. (14) and (25) , we have that 

 M S 1 
= − r 

p 
W 

[ 
−1 , − p 

r 
exp 

×
(

c ln (1 + ωX M 

) − δω ln (X M 

) − qωX M 

+ h M S 1 
ω) 

rω 

)]
(26) 
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and 

y M S 2 
= − r − ε1 

p 
W 

[ 
−1 , − p 

r − ε1 

exp 

×
(

c ln (1 + ωX M 

) −(δ−ε2 ) ω ln (X M 

) − qωX M 

+ h M S 2 
ω) 

(r−ε1 ) ω 

)]
.

(27)

where h M S 1 
= H 1 (x M 

, y M 

) and h M S 2 
= H 2 (x M 

, y M 

) . Simplifying

Eqs. (26) and (27) yields: 

y M S 1 
= − r 

p 
W 

[ 
−1 , − p 

r 
exp 

(
ln (y M 

) − p 

r 
y M 

)] 
(28)

and 

y M S 2 
= − r − ε1 

p 
W 

[ 
−1 , − p 

r − ε1 

exp 

(
ln (y M 

) − p 

r − ε1 

y M 

)] 
. (29)

Let 

f (ε1 ) = 

p 
r 

exp 

(
ln (y M 

) − p 
r 

y M 

)
p 

r−ε1 
exp 

(
ln (y M 

) − p 
r−ε1 

y M 

) = 

r − ε1 

r 
exp 

×
(

y M 

(
p 

r − ε1 

− p 

r 

))
. (30)

It follows from y M 

< y 1 
S 2 

= 

r−ε1 
p that 

f (ε1 ) < 

r − ε1 

r 
exp 

(
r − ε1 

p 

(
p 

r − ε1 

− p 

r 

))
= 

r − ε1 

r 
exp 

(
ε1 

r 

)
= g(ε1 ) . (31)

Definitely, there is g ′ ( ε1 ) < 0, which implies that g(ε1 ) < g(0) = 1 .

That means 

− p 

r 
exp 

(
ln (y M 

) − p 

r 
y M 

)
> − p 

r − ε1 

exp 

(
ln (y M 

) − p 

r − ε1 

y M 

)
. 

(32)

Then according to the properties of the Lambert W function we

have 

 

[ 
−1 , − p 

r 
exp 

(
ln (y M 

) − p 

r 
y M 

)] 
< W 

[ 
−1 , − p 

r − ε1 

exp 

×
(

ln (y M 

) − p 

r − ε1 

y M 

)] 
. (33)

which means that there is y M S 1 
> y M S 2 

. This completes the

proof. �
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