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The combined antiretroviral therapy with interleukin (IL)-2 treatment may not be enough to preclude
exceptionally high growth of HIV virus nor rebuilt the HIV-specific CD4 or CD8 T-cell proliferative im-
mune response for management of HIV infected patients. Whether extra inclusion of immune therapy
can induce the HIV-specific immune response and control HIV replication remains challenging. Here a
piecewise virus-immune model with two thresholds is proposed to represent the HIV-1 RNA and effector
cell-guided therapy strategies. We first analyze the dynamics of the virus-immune system with effector
cell-guided immune therapy only and prove that there exists a critical level of the intensity of immune
therapy determining whether the HIV-1 RAN virus loads can be controlled below a relative low level.
Our analysis of the global dynamics of the proposed model shows that the pseudo-equilibrium can be
globally stable or locally bistable with order 1 periodic solution or bistable with the virus-free periodic
solution under various appropriate conditions. This indicates that HIV viral loads can either be eradicated
or stabilize at a previously given level or go to infinity (corresponding to the effector cells oscillating), de-
pending on the threshold levels and the initial HIV virus loads and effector cell counts. Comparing with
the single threshold therapy strategy we obtain that with two thresholds therapy strategies either virus
can be eradicated or the controllable region, where HIV viral loads can be maintained below a certain

value, can be enlarged.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Lifelong highly active antiretroviral therapy (HAART) continues
to be associated with many problems such as adherence difficulties
and evolution of drug resistance [1-4]. Structured therapy inter-
ruptions (STIs) have been suggested as being capable of achieving
sustained specific immunity for early therapy in HIV infection. As
an alternative strategy, STI is a good choice for some chronically
infected individuals who may need to take drugs throughout their
lives, and it is beneficial for the patients’ immune reconstruction
during the period when they are not taking the drugs [5].

Recently, to compare STI strategies with the continuous an-
tiretroviral therapy, several clinical studies have been done with
conflicting results [5-12]. In particular, Ruiz et al. [12] designed an
experiment to evaluate the safety of CD4 cell counts and plasma
HIV-1 RNA-guided structured treatment interruptions (STIs) aiming
to maintain CD4 T cell counts higher than 350 cells/u! and plasma
HIV-1 RNA less than 100,000 copies/ul. Although many mathe-
matical models have been formulated to model continuous ther-
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apy [13-15], few attempts have been made to model structured
treatment interruptions. In 2012, Tang et al. [16] proposed a piece-
wise system to describe the CD4 cell-guided STIs, to quantitatively
explore STI strategies and to investigate the virus dynamics un-
der these strategies. This system has offered explanations for some
controversial conclusions from different clinical studies. In 2015,
by considering combined antiretroviral therapy with interleukin

(IL)-2 treatment, we proposed a piecewise virus-immune dynamic
model with HIV-1 RNA-guided therapy [17]. This model is given as
follows:

X' =rx — pxy,

_ x < Vi,
y’—waquSy,} s 1)
X =1X— pxy — €1X,
x>V,

Y = 155 — Qxy — 8y + €2, s
where x and y represent the HIV virus loads and the density of ef-
fector cells, respectively. Vs is the critical value of HIV virus loads
determining whether the therapy is carried out or not. Here €,
represents the rate of elimination of HIV virus due to antiretro-
viral therapy and €, denotes the growth rate of the effector cells
due to interleukin (IL)-2 treatment. r denotes the growth rate of
HIV virus which incorporates both multiplication and death of HIV
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virus, 8 is the death rate of the effector cells, p denotes the rate of
binding of the effector cells to the HIV viruses. When interacting
with the HIV virus, the effector cells usually have a limited ability
to repeatedly kill the virus because the virus can also inhibit the
activity of immune cells. Here q represents the rate of inactivation
of the effector cells. cx/(1 + wx) denotes the rate at which effector
cells accumulate due to the immune response.

In the paper [17], we concluded that proper combinations of
threshold and initial HIV virus loads and effector cell counts can
successfully preclude exceptionally high growth of HIV virus and,
in particular, maximize the controllable region. However, what-
ever the threshold is, depending on the initial conditions of pa-
tients’ HIV virus can not be eradicated but even increase to
infinity, which means that the combined antiretroviral therapy
with interleukin (IL)-2 treatment may not be enough to rebuild
the HIV-specific CD4 or CD8 T-cell proliferative immune response
for management of HIV infected patients. In [18], the authors de-
veloped a clinic experiment studying combined antiretroviral ther-
apy and interleukin (IL)-2 treatment with immune therapy. The
patients were divided into four groups, in which the group C
simultaneously received antiretroviral therapy, interleukin (IL)-2
treatment and immune therapy with HIV vaccine was injected
once every 3 months. They showed that interleukin (IL)-2 treat-
ment and immune therapy can induce the HIV-specific immune
response. How the impulsive immune therapy affects the dynam-
ics of virus-immune system with HIV-1 RNA-guided therapy and
whether the inclusion of impulsive immune therapy can maintain
the virus below a certain level, remain unclear. Addressing these
issues through a mathematical modeling framework falls within
the scope of this study.

More precisely, the purpose of this study is to propose a math-
ematical model to describe the combined antiretroviral therapy
and interleukin (IL)-2 treatment with immune therapy. We address
such challenging questions as whether the comprehensive therapy
under the HIV-1 RNA and effector cell-guided structured treatment
can successfully inhibit replication of HIV virus and rebuild the
HIV-specific CD4 or CD8 T-cell proliferative immune response, and
whether the therapy can control HIV-1 RNA below a certain level
and maintain the density of effector cells above a certain level. The
rest parts of this paper is organized as follows. In Section 2, we for-
mulate a piecewise virus-immune model with two thresholds and
introduce the relative definitions. The dynamics of the proposed
model with either only the effector cell or the HIV-1 RNA-guided
therapy is discussed in Section 3. Then, in Section 4, we investigate
the global dynamics of the proposed model. Finally, we conclude
the paper with some remarks.

2. Model formulation and preliminaries

In this paper, we formulate the model that incorporate both the
antiretroviral therapy and interleukin (IL)-2 treatment under the
assumption that whenever the virus load exceeds the critical level
(i.e. V), antiretroviral drugs are applied to inhibit the growth of the
virus, and simultaneously interleukin (IL)-2 treatment is used [17].
The immune therapy mainly aims at rebuilding the HIV-special
T cell immune response and guaranteeing the density of effector
cells is enough to control the growth of HIV virus. Thus, there can
be a critical value of the density of effector cells, denoted by Ts,
determining whether the immune therapy is carried out. In partic-
ular, the immune therapy isn’t carried out when the density of the
effector cells is above the level Ts; and one dose of HIV vaccine is
injected immediately once the density of the effector cells declines
to the level Ts. Let p represent the intensity of the immune ther-
apy every time with p > 1. Therefore, based on model (1), we have

proposed the following formulation:

X' =TX — pxy,
T,

R —qu—éy,}y> "1y
X(tH) = x(1), B

+) — y= T,
y(r) = py(t). 2
X =TX— pXy — €1X,

T,

Y = 1o —qu—8y+62y,}y> "oy
x(t+) = x(t), y=T. g
yer) = py@®). |7~

Before going further discussing the dynamics of system (2), we
now introduce some technical definitions.

Let RZ = {X = (x,y)|x = 0,y > 0}. A generic planar Filippov sys-
tem is defined as follows [19-26]:

o _ b, (X), XeDy,
X_{FDZ(X), X e D,. (3)

where Dy = {X e RZ|H(X) < 0} and D, = {X € R2| H(X) > 0} with
H(X) as a smooth scale function.

Definition 1. A point X* is called a regular equilibrium of system
(3) if Fp, (X*) =0, H(X*) < 0 or Fp, (X*) =0, H(X*) > 0 while it is
called a virtual equilibrium of system (3) if Fp, (X*) =0, H(X*) > 0
or Fp, (X*) =0, H(X*) < 0.

Definition 2. A point X* is called a pseudo-equilibrium if it is an
equilibrium of the sliding mode of system (3), i.e. AFp, (X*) + (1 -
MFp, (X*) =0,H(X*) =0 with 0 < A < 1 and

(Hx (X*), Fp, (X*))
(Hx (X*), By, (X*) — Fp, (X*)) "

A generalized planar impulsive semi-dynamic system can be
defined as follows [27-33]:

K =Pxy). ¥ =Qxy).if p(x.y) #0, @
AX=a(x,y), Ay =bx.y).if ¢(x.y) =0,

where (x,y) e R2, Ax=x"—xand Ay=y* —y. P, Q a, b are con-
tinuous functions from R into R.. The impulsive function I : RZ —
R? is defined as follows:

I(X,y) = (Il(X,y),Iz(X,y)) = (X+a(xay)7y+b(x9y))’

and Zt = (x*,y") is called an impulsive point of Z = (x, y).

Let (Rﬁ,ﬂ) be a planar semi-dynamic system. For any Z ¢ R2+,
the positive orbit of Z is given by C*(z) = {7 (Z. t)|t € R;} which is
denoted by 7+ (Z). And we define F(Z, t) = {Z'|n (Z',t) = Z} for t >
0and ZeR2.

A=

Definition 3. A planar impulsive semi-dynamic system
(R%r,r[;M, I) consists of a continuous semi-dynamic system
(R%, ) together with a nonempty closed subset M of RZ and a
continuous function [ : M — R%r such that for every Z € M, there
exists a €; > 0 such that

F(Z, (0,ez))NnM=¢ and m(Z (0,€7)) "M =4.

Definition 4. A trajectory 7+ (Z) of (R2+, ; M, I) is said to be order
k periodic if there exist nonnegative integers m and k such that k
is the smallest integer for which I™(Z) = I™**(Z) with Z ¢ M.

Definition 5. The Lambert W function [34] is defined to be a mul-
tivalued inverse of the function z~>ze? satisfying

LambertW(z) exp(LambertW(z)) = z.

And we denote it as W for simplicity. Note that the function
zexp(z) has the positive derivative (z+ 1)exp(z) when z > —1.
Define the inverse function of zexp(z) restricted on the interval
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[-1, +c0) to be W(O, z). Similarly, we define the inverse func-
tion of zexp (z) restricted on the interval (—oo, —1] to be W (-1, z).
The branch W(0, z) is defined on the interval [—e~!, +oc) and
it is monotonically increasing with respect to z. And the branch
W (~1,z) is defined on the interval [-e~1,0) and it is a monoton-
ically decreasing function with respect to z.

3. Dynamics of system (2) with only one of the threshold
strategies is considered

3.1. Properties of system (2) with only the effector cell-guided
therapy considered

When only the effector cell-guided therapy is considered, there
are two different choices for therapy: one is that we do not carry
out the antiretroviral therapy and interleukin (IL)-2 treatment; the
other is that the antiretroviral therapy and interleukin (IL)-2 treat-
ment are always carried out. From the mathematical point of view,
these strategies correspond to the cases of a critical value V; satis-
fying Vs = 0 or Vs = +o0. Then system (2) becomes two generalized
planar impulsive semi-dynamic systems as follows

X' =rx— pxy,
Ts,
Y =122 —qxy - 8y. }y - -
x(t*) = x(t), y=T.
yt) = py@®). 7 %
and
X =1X— pxy — €1X,
Is,
Y= 1k —qu—8y+62y,}y> s ©)
xt)=x). | g
yr) =py@), 7

We first consider the dynamical behaviors of these systems
without any impulse. In the absence of impulse systems (5) and
(6) give

X' =rx— pxy,
S 7
( 1) {y/ — 1?({))( _qu_sy’ ( )

and

X =TX— pXy — €1X,
(S2) { oy DY €1 (8)

V' = 150% — Xy — 8y + €2y.

For convenience, we denote model (7) as system S; and model
(8) as system S,. Through simple calculations, we have that if
c—q—90w>2,/qw, § > €; and r > €1 hold true, then system
S1(S,) exists two positive equilibria, denoted by E;l = (x}1 , yél) and
Egl = (ng y;) (E}2 = (x%z, y}z) and E522 = (xfz,yéz)), respectively.
Here we have

o = c—q—8a)$\/(c—q—5w)2—4q8a) )

ro.

3 2 Y5, =E,z=1,2 9)
and
i _—a-0B-eoF/-q-(-a)o)’ -46-a)o
ST 2qw '

(10)
i r— €
Vs, = D

with x}z < X;1 < x§1 < xgz. It is easy to prove that the equilibrium
Esl1 is a center and ESZ1 is a saddle point for the linear system of

system S; by checking the corresponding eigenvalues. Further, we
find that the system S; has a first integral, which is shown in the

5.5

0 5 10 15 20 25 30 35

Fig. 1. The dynamical behaviors of systems S; and S, while there are two positive
equilibria.

proof of Lemma 1 in details. Therefore, we have that the equilib-
rium E;1 is a center of system S; and E521 is a saddle point of sys-

tem S;. The similar properties hold for system S,. Thus, the ex-
istence and stability of the equilibria of the two systems when
c—q—-96w > 2\/q<37a>, 8 > €5 and r > €7 are stated as follows.
Proposition 1. For system S; (S,) there exists a trivial equilibrium
Eg1 =(0,0) (Eg2 = (0,0)) which is a saddle point; If c—q—w >
2\/q§7a), 8 > €5 and r > €4 hold true, system S; (S,) has two positive
equilibria E;l (E;z) which is a center, and ESZ1 (Egz) which is a saddle
point. Also, there exists a homoclinic orbit with respect to Egl (ESZZ),
denoted as F;l ( ng). The other one dimension stable and unstable
manifold of the saddle point Efi is denoted by ng and F?{_, respec-
tively. The topological structure of the orbits of both systems is shown
in Fig. 1.

In the rest of this paper, we assume that ¢ — g —dw > 2,/qdw,
§ > € and r > €; always hold true. According to the topo-
logical structure of system S; (S,), there must be an orbit, de-
noted by I'4, which is tangent to the line y =T; at the point
Pl (x! . Ty) (P, (xi.Ty)) as shown in Fig. 1. Let the other inter-

51 1 ‘JSZ Sy
section point between the orbit I'* and the line x =x}1 (x:x}z)
be P&‘Sl (xél,ygsl) (Pg‘s2 (X-%z’ygsz))' From Proposition 1, we can see
that when p —q— 48w > 2,/qdw, § > €, and r > €; hold true,
systems S; and S, are topologically equivalent. Therefore, without
loss of generality, we mainly discuss the dynamics of system S;
with impulse, that is system (5). Denote the region bounded by
the orbits l“;, as Dp; and the intersection points of the low branch
i S;
and the upper branch of the orbit Il (i=1,2) to the line x = x! as
1 1
Psli = (xéi, y’si) and PSL: = (x}i, yg‘i), respectively. As we can see from
Fig. 1, ES1_ is stable in the region D, , which means that within the
i S.
region Dp.; both the virus loads arlld the effector cell counts can
Si

maintain in a certain range without any immune therapy. There-
fore, it is reasonable to assume that Ty < min{y’Sl ,y’sz}.

Theorem 1. In system (5), there exists a virus-free periodic solution.
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Proof. Let x = 0, then system (5) becomes the following

y==8y.y>T, (1
yt) =pyt).y=T.

Integrating the first equation of (11) with the initial condition
y(0F) = pTs, yields

y(t) = pTe™.

Let pTse=T =T, and solving it with respect to T we get the period
To with Ty = %ln(p). Therefore, the model (11) has an order-1 pe-
riodic solution, denoted as £(t) and & (t) = pT;e~9 with period T,
which means that system (5) possesses a virus-free periodic solu-
tion &g, (¢) = (0,&(t)). The proof is completed. [

Lemma 1. Set I'; and I'y be two orbits of system S; which inter-
sect with the line y =Ts at Li(x;,,Ts) and Ny(xy,.Ts) respectively.
Let Ly (x,,¥1,) (N2(Xn,.Yn,)) be the other intersection point between
the orbit 'y (T'y) with the line x =x;, (x=xy,). Then we have

YL, = JN,-

Proof. If we consider system S; in the phase space, then y
can be seen as a function of x with the following differential
equation

dl_x1fZX—QX—8
r—py

dx ~ x
and integrating above equation from (x4, y1) to (x, y), one yields

X c ) Yorr
/X1 <l+a)x_q_x)dx:/y.1 <§—p>dy.

Thus, the first integral Hq(x, y) of system S; reads

’

Hi(x,y) = —é In(1 4+ wx) + 6 In(x) +gx +rin(y) — py = hy,
(12)

where hy = Hy (x1,y7) is a constant.

Then, according to the definition of the Lambert W func-
tion and solving H;(x,y) = h; with respect to y, one yields two
roots

. rW|:O, P exp <cln(1 +wx) — Swln(x) — qowx + hm))}
p r rw
(13)
and
oo rw|:_ Pexp (cln(l +wx) —dwln(x) — qa)x—i—h]a))}
p rw
(14)
According to the Eq. (14) we can calculate that
r p
yi, = _EW[_l’ — €Xp
. (pln(] + wxy, ) — Swrlcr;(xll) — qwxi, + hna))i| (15)

and

r p
YN, = _EW[_L T exp

pIn(1+ wxy,) — dwln(xy,) — qoxy, + hppw
X o ., (16)

x(t)
y@

c d ss
5
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>
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Fig. 2. (a) Dynamical behaviors of system (5) when pT; > ygsl and (b) gives a few
trajectories converging to the virus-free periodic solution s, (t) under the above
condition. (c) shows the dynamics of system (5) when y§ < pl < J’55| and (d)
presents a few trajectories of which the horizontal components tend to infinity.

with hyy = Hy(x;,, Ts) and hyp = Hy(xy,, T5). Through easy calcula-
tions we have

P exp pIn(1+ wxy,) — dwlin(x,) — qwxi, + o
r rw

__p exp pIn(1+ wxy,) — dwln(xy,) — qoxn, + hpp
r rw '
(17)
Then according to the properties of the Lambert W function, there
is y1, = yn,- This completes the proof. O

To investigate the global dynamics of system (5) we just need
to consider all the orbits starting from the region D; = {(x.y)|y >
T;,x > 0} because any given initial values of x and y can be
changed to the region D; after one time of impulsive immune
therapy. For convenience, we denote the limit set [T;, pTs]>® =
{(x,y)|x = +00, T; <y < pTs}, which represents that the x compo-
nent tends to infinity and the y component oscillates periodically
with lower and upper bounded by T; and pTs, respectively.
Theorem 2. When pT; > y};s , the virus-free periodic solution s, (t)
1

is stable in the region Dy \ Dr..  while E;1 is stable in D, (as shown
51 51

in Fig. 2(a and b)); Ifyg1 < pTs <ygs , then s, (t) becomes unstable

1
and E;l is also stable in the region D; while all the other orbits
Sq -
starting from the region D; \ D will tend to [T;, pTs]> (see Fig. 2(c
51
and d)).

Proof. The assumption T; < min{y’s] , y’sz} guarantees that any orbit
starting from the region D, will not approach the impulsive line
S1

y = T;. Therefore, E; is always stable in the region D.; accord-
51

ing to the dynamics of system Sy. Let (x%, pT;) be a point on the
line y = pT;. When pT; > ygl, the orbit initiating from the point
(x0, pTs), denoted by I',o, will approach the line y =T; at finite
time and we denote the intersection point of the line y = T; to the
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orbit I'yp as (x%, Ty) (shown in Fig. 2(a)). Then we can define the
Poincaré map of system (5) as:
D (x0) =x{.

We claim that ®(x°) —x? <0 when pT; >y} and ®(x°) -

1
x% >~ 0 when y;‘l < pTs < ygs . Without loss of generality, we just
1
prove the case pTs > yg’s . Denote the intersection point of the orbit
1
I'* to the line y = pT; as Pra(xpa. pTs). We consider the two cases
(@) {2 y)ly=pTs,0 <x% <x§ . orx® > xpa} and (b) {(xy)ly =
,oTs,xg1 <x0 < Xpa). For case (a), denote the intersection point of
the orbit o to the line x =x? as (x9,y’) (as shown in Fig. 2(a)).
Then by Lemma 1, we have that y' = ygs < pTs. Furthermore,
1

when 0 < x < x} Of X > Xpa, J > y} we have dx/dt < 0 and dy/dt

< 0. Thus we have that xO <x9 (ie. ®(x0) —x0 < 0). For case (b),
all the orbits starting from it will approach the segment {(x Yy =
T,0<x < xs1 }. Therefore, there must be ®(x°) < x° for xs1 <x0 <

X4 according to the definition of ®.

Using the above properties of ®, we can conclude that the triv-
ial periodic solution s, (t) is locally stable when pTs >ygs and

1
unstable when ygl < pTs < y'gs . More specially, when yg’l < pTs <
1
Vi all the orbits initiating from the line y = pT; will tend to
ot
[T;, pTs]> while all the orbits initiating from the line y = pT; tend
to the virus-free periodic solution s, (¢) if pT; >y}1’S . This com-
1

pletes the proof. O

Remark 1. In Theorem 2, there always exists a special case due
to the stable one manifold of the equilibria Ezl, that is, any orbit

of system (5) approaching the intersection point of the orbit Fgl
to the line y = pT; will finally tend to Eszl- Therefore, when discuss
the domain of attraction, we should get rid of the countable orbits.

Theorem 3. Ifyls < pTs <y§’ , then s, (t) is unstable and E;l is lo-
cally stable Wlthln the region Dr1 The orbits starting from the re-

gion Dy \ Drl either reach a perlodlc solution in the region Dr1 or

approach [T, st]OO, depending on initial values as shown in Fig. 3(a—

c).

Proof. When yél < pTs < yg'l, there are two intersection points be-
tween the line y = pT; and the orbit Fgl,
PO(x9, pTy) and PO (X9, pTs) with x9, < x0. The intersection point of
the line y = pT; to the orbit I'* is denoted by P?(x?, pT;) shown
in Fig. 3(b and c). In this situation, the Poincaré map & can be
well defined just when 0 <x% < x% and x° > X0 because all the
orbits starting from the segment {(x,y)|y = pTs,x% < x < x9} are
closed orbits within the domain D; which can not approach
S

which are denoted by

the line y =T and hence free from impulsive immune therapy.
Similar to the case ygl < pTs < ygsl, ®(x%) —x9 > 0 holds true for
X% € (0,xD,) or (X}, +o00). Thus, we have that s, (t) is unstable and
all the orbits of system (5) initiating from {(x,y)|y = pTs, x > X3}
will tend to [Ts, pTs]°°.

Let P'0 = (x%.T;) and P = (. T) with X) <X, < x5 shown
in Fig. 3(d). According to the dynamics of system S;, the or-
bits passing through the points P’% and P’? will intersect with
the line y = pTy at P} (x}. pTs) and P! (x]. pT;) respectively. Then
let P/:n(x}n,Ts) and P’,1 (xll,TS), and the intersection points of the
line y = pT; with the orbits passing through the points P’}n and
P/} are denoted by P2(x2. pT;) and P2(x2, pT;) respectively. Re-
peating the above process, we can define the two sequences of
points {P}} and {PF'} (see Fig. 3(d)). From the definition of the

Poincaré map ®, we have ®(x!) =x and Q(X;Hl) = x]'. Fur-
ther, there is ®(x%) —x° > 0,0 < x? < x9,, which means that X% <
D () =x and X[ < @(x*1) = xI. Then it follows from the
existence and uniqueness of solutions of system S; that all the or-
bits initiating from the segment P"*'Pji™! (PRt2P1) will approach
the segment PP}, (P,';“Pl”) (n=0,1,2,...) after one time of im-
pulsive therapy. Further, it follows from the dynamics of system
(7) that all the orbits starting from PPP will approach P£4PTE3,
where PTE4 = (x£4, Ts) and P£3 = (x£3, Ts) with xT > x¥4 > x§l > x9
are the intersection points of the line y = T; with the orbits I'* and
1";1 as shown in Fig. 1, and then tend to [T, pTs]>* following the
case {(x,y)|y = pTs,x > x%}. As a conclusion, all the orbits initiat-
ing from the segment P'Py will first approach PIOP,%, and then tend

to [Ts, pTs]>. Whereas all the orbits initiating from Pjy"'P!" initially
reach P,}1Pl°, and then approach the segment {(x,y)|y = pTs, X% <
X < Xsl} while any orbit of system S; initiating from the segment
{x )y =pT, x% <x < x; } is a closed orbit. Denote the backward
orbit of system S; initiating from the points P'), and P’} as I‘P,H]
and F”:"“ (n=0,1,2,...), and the domain bounded by the or-
bits I'pn, Fpln (Tpn, FPI'H) and the line y = T is denoted by Dpln,,;;l
(D,,Mn_l ). Denote the region bounded by the orbits FPﬂn , T'* and
the line y =T; as DP;P,O and the region bounded by the orbit "%,
the curve I‘1 U I‘2 U F3 and the line y =Ty as DPOPO The domain
bounded by the orblts F2 and F3 is denoted by Dr2 3 There-
P])}]+1I;,In,n =0, 1 2 . will

approach a periodic solution and all the orbits initiating from the
domain Dpy 3 U Dplnp#] (n=0,1,2,...) will tend to [T, pTs]°°. This
5151

fore, any orbit starting from the domam D

completes the proof. O

Corollary 1. System (5) (or (6)) does not have positive order-k (k =
1,2, ...) periodic solutions if pT ;éygsl (pT ;éygsz ), while for pTs =
ygsl (or pTs =ygsz) any solution of system (5) (or (6)) initiating from
the line y = pTs (y = pTs) except for the intersection point of the orbit
F; (F%z) to the line y = pT; is a positive order-1 periodic solution.

Remark 2. System (6) also has a virus-free periodic solution, de-
noted by (s, (t), which is stable when pTs > ygsz and unstable

when y’s2 < pTs <yq, - And the results in Theorems 2 and 3 also
2
hold true for system (6).

Remark 3. Comparing systems (5) and (6), we have that the con-
tinuous antiretroviral therapy and interleukin (IL)-2 treatment do
not affect the dynamics of the virus-immune system with the im-
pulsive immune therapy. However, there exist two lower critical
values yg  for system (5) and yy_ for system (6) with yg. < yg

1 2 2 1
such that the corresponding virus-free periodic solutions is lo-
cally stable. That implies, with an additional continuous antiretro-
viral therapy and interleukin (IL)-2 treatment, the efficiency of im-
mune therapy (p) can be relatively low to eradicate the virus (i.e.
Yo, < PTs <yg, -

3.2. The dynamics of system (2) with only HIV-1 RNA-guided therapy
considered

During therapy process for a HIV infected patient, if we don’t
consider the effector cell-guided impulsive immune therapy, then
system (2) becomes the Filippov system (1). It is worth mentioning
that when we consider the Filippov system (1), systems S; and S,
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Fig. 3. (a) Dynamical behaviors of system (5) when y’s| <pTs <y§; (b) is the partially enlarged drawing of (a) corresponding to the horizontal component of the orbits
converging to infinity; (c) The partially enlarged drawing of (a) corresponding to the orbit reaching a closed orbit; (d) The schematic diagram of the definition of the point

sequences of {Py} and {P'}.

are defined as system S; in the regions {(x, ¥)|0 < x < V;, y > 0}
and system S, in {(x, y)|x > Vi, y > 0} respectively.

The global dynamics of system (1) has been intensively dis-
cussed in the paper [17]. The main results showed that there are
six scenarios for dynamical behaviors with different threshold val-
ues. These include that (a) equilibrium E;] or Esl2 is locally sta-
ble; (b) the pseudo-equilibrium E. is locally stable; (c) a touch-
ing cycle and the equilibrium E;Z or E;1 are locally bistable; (d)
equilibrium E;1 and the pseudo-equilibrium E. are locally bistable.
However, among all the cases (0, +oo) is also an attractor, depend-
ing on the initial conditions. This means that there always exists
the situation that the virus will finally go to infinity whatever the
threshold we choose. Interestingly, when we set x}z <Vs < x}l, the
pseudo-equilibrium E is locally stable, and the controllable region,
in which the virus can be controlled below a certain level and the
effector cells can be maintain a certain level, can be maximized
compared with other cases. Therefore, in this paper, we assume
that x}z <Vs < x}l always holds true.

To investigate the dynamics of system (1), there exists an im-
portant curve Y. When x}z <V <x§1, the line x = Vs will inter-
sect with the orbit ng at two points while the lower one is de-
noted by P5(Vs, ¥3) as shown in Fig. 4. It follows from the dynam-
ics of system S; that there exists an orbit I'® initiating from P
intersecting the line x = Vs at another point P4(Vs, y4). Similarly,
there must exist an orbit of system S, passing through the point
P4 and we denoted it as I'S. Then the curve Y can be defined as

6upP U 1?5?2 U Ffz and the region inside the curve Y is denoted

by Dy. Then the dynamic of system (1) when xgz

described as follows for a detail proof, see [17].

<Vi < xgl can be

Theorem 4. When xgz <Vs < xgl, there exists a pseudo-equilibrium
Ec of system (1) which is locally asymptotically stable in D~ ; Any or-
bit initiating from R2 \ Dy tends to (oo, 0) (see Fig. 4).

Fig. 4. The topological structure of the Filippov system (1) when x}z <Vs < x;].
All the parameter values are fixed as r=2.6,p=1,c=0.5,4=023,6 =05 w=
05,6, =026, =08Vs=3.

To discuss the global dynamics of system (2), we define sev-
eral critical points as follows (see Fig. 4). The intersection point
between the two lines x = Vi and y = pT; is denoted by P{(Vs, pTs).
When pT; >y§2, then the line y = pTy will intersect with the
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Fig. 5. (a) Dynamical behaviors of system (2) when ygz < pTy <y with p =2.2. (b)
Dynamical behaviors of system (2) when yg < pTs < yg with p = 2.8. The other pa-
rameter values are: r=2.6,p=1,c=05,4=023,6=050w0=05,¢6,=02,¢; =
08, Vi=3T=1.

orbit F?Z at Py(xp, pTs). Let Ps = (Vs, T;) and we denote the orbit

of the Filippov system (1) passing through Ps as I'7 and the other
intersection point of the line y = Ty with the orbit I'7 as Pg. The
intersection point of the orbit ng with the line y = T; is denoted
by P;(x7, y7). Also we denote the intersection point between the
two lines x =xg (x=x7) and y = pTs by P.(xs. pTs) (P} (x7. pTs)).
Denote the intersection points of the line x = x; (x = xg) with the
orbit 1"522 as Pg(xs, Vg) (Po(Xg, Yg)), with the orbit I'® as Pjg(x10,

¥10) (Pri(x11, yn1)) and with the orbit I'7 as Pyy(x12, y12) (P13(Xy3,
¥13)). Let Pi4(X14, ¥14) be the other intersection point of the orbit

I'7 with the line x = V;. we can easily get the following relation-

ship y5s =ys =y7 <3 <,V§2 <Yg9 <Ys Y11 < Yo and yi3 < yqp. It

follows from Lemma 2 in Appendix that yi4 = y13 and y4 = y11. Ac-

cording to Lemmas 1 and 2 in Appendix, we have that y}l’s =Y14
1

and y},‘sz =yg with y”:-;sl > ygsz. It follows from Lemma 2 that if we

fix all the other parameter values, then xz; keeps constant as Ts
decreases, which also means that yq and y;; will not change as
Ts changes. Further, it follows from Lemma 3 that yq < y4 always
holds true. The definitions of the points Pg, Pig and P, show us
that yg, y10 and y; are strictly increasing to +oco with yg < yqo
< Y12 as Ts decreases to 0, thus the relationship between yg and
y11 cannot be determinated. Due to the complexity of the Filip-
pov system (1), it is difficult to theoretically analyze the relation-
ship of yjp and y;3. Numerical results show that it can happen
that y;op < yq3 and Pg is below the minimum point of the or-
bit I'® (i.e. the intersection point of the line x :x§2 to the orbit
I'6, denoted by Pj5 (xgz,yu;)). In the following, we assume yig <
y13. Therefore, if we let the value of threshold Ts change and fix
all the other parameter values, we have case C1:y3 < y§2 <yg <

Y15 <Va=Y1u <Y <V13=Yu4 ZYZ'SI <Y1z orcase C2:y;3 < y§2 <
Y15 <Y9 <Ya=yn <Y1 <Y13=Y1a =J’b’51 < Y12- In case C1 three
subcases are possible:

Cll:yg <ys =Yg, <V15; Cl2:1y1s <yg =Yg <Yu;
C13:yn <¥s =Yg, <Y

while in case C2 two subcases are possible:
C21:y9 <¥s =Yg <Yu: C22:yn <Ys="Yq <o

In the next section we mainly consider the global dynamics of
system (2) for case C11 while for the other cases the discussion for
the dynamics are similar.

4. The global dynamics of system (2)

In this section, we will investigate the global dynamics of sys-
tem (2). Denote the region bounded by P/s\Pa and y = Ts as Dp,p; and
let Dy = Dy \ Dp,p,. Then we only need to consider all the orbits
initiating from the region D, when pTs > y3 since orbits initiating
from the region R2 \ Dy can jump into Dy after an impulsive im-
mune therapy. Note that the assumption Ty < min{y’s1 , ygz} guaran-
tees that all the orbits of system (2) initiating from the domain Dy
cannot approach the line y = T, that is, impulsive immune therapy
will not happen. Therefore, it follows from the dynamics of the Fil-
ippov system (1) that the pseudo-equilibrium E. is always stable
within the domain Dy whatever the value of pT; is. At the same
time, any orbit in the domain Dy \ Dy can pass through the line
y = pTs, which means that we just need to consider all the orbits
initiating from the line y = pT;. When y3 < pTs < y4, there is an
intersection point between the line y = pTs and the orbit ', de-
noted by Ag(x4,, pTs) and the intersection point of the line y = pT;
with the orbit '’ is denoted as By(xg,. pTs) When ys < pTs < y14
as shown in Fig. 4.

As mentioned in the previous section, we assume that xgz <
Vs <x}1 and T; < min{ylsl, y’sz} always hold true with case C11
in the rest of this paper. Therefore, the key factor determin-
ing the dynamics of system (2) is the level of the intensity of
immune therapy p under these assumptions. In the following
we consider several scenarios in terms of relation of pTs and
)’3,Y§2,J’9aJ’s,J’11,J’10,Y13aY12-

Firstly, let y3 < pTs < yg9 hold true. Here we initially consider
the case of y§2 < pTs < yg as an illustration. In a such case, the line
y = pTs is divided by orbit Y into three parts: {(x,y)|x > x5,y =
PTsh {x )X, <X <2,y = pTs} and {(x,1)[0 <X <xa,.y = pTs}.
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Fig. 6. (a) Schematic diagram of the definitions of the point sequences of {A,} and {B,}, (b) The basin of attraction domain of system (2) when y§2 < pTs < Yo; () Schematic
diagram of the definitions of {A,}, {Bn} and {C,}, (d) The basin of attraction domain of system (2) when yg < pTs < ys.

It is easy to see that any orbit initiating from segment {(x,y)|xa, <
X < X,y = pT} will finally tend to the pseudo-equilibrium E since
it belongs to the domain Dy.

Within the domain bounded by the orbits 1“522 and Fg’z, all the
orbits initiating from the segment {(x,y)|x > x5,y = pTs} can not
approach the switching line x = Vs, which means that the dynam-
ics will just follow the system S, with impulsive immune therapy
(i.e. system (6)). Furthermore, when pTs < yg, according to the
proof of Theorem 2, we have that ®(x%) —x > 0 holds true, where
@ is the Poincaré map of system (6). Therefore, we can conclude
that all the orbits starting from {(x.y)|x, < x,y = pT;} will tend to
[Ts, pTs] (see Fig. 5(a)).

Before discussing the asymptomatic behaviors of solution start-
ing from the segment {(x,y)|0 <X <x,,,y = pTs}, we initially de-
fine two sequences of points. Let Aj = (xa,,Ts) and By = (xg,, Ts)
shown in Fig. 6(a). It follows from the dynamics of system S; that
the orbit initiating from the point Aj will intersect with the line
y=pT at Ay (x4,, pTs) and let Al = (%4, Ts). Similarly we denote
the intersection point of the line y = pT; with the orbit of sys-
tem S; passing through the point A] as Az(xa,. pTs). Repeating
the above process, we can define two sequences of points {A;} on
the line y = pT; and {A} on the line y = T; as shown in Fig. 6(a).
Through the same process, we can also define the two sequences
of points {B,} and {B;,}. From the definitions of {A,} and {B,}, there
are <I>(xAn+1) = Xp, and dJ(xAn“) =Xy, (n=0,1,2,...), where ® is
the Poincaré map of system (5). When pT; < yq <yg'5], d(x0) —

x9 > 0 holds true, which means that Xa,, < dD(XAM) =Xy, and

Xp,., < P(xp,,,) = xp,. Further, note that x,, > xp,, we then con-
clude
Xp, > XBy, > Xp, > Xp, > -+ >Xp, > Xp, > -

According to the existence and uniqueness of solutions of sys-
tem Sy, any orbit initiating from the segment ByAn (Apy1Bn) will
approach B A’ | (A;B;_,), and then jump to B, 1A;_1 (AnBn_1)
with one time of impulsive immune therapy. Further, it follows
from the dynamics of the Filippov system (1) that all the orbits

of system (2) starting from the segment ByA, will reach P;P;, fol-
lowed with impulsive immune therapy and jump to F[P;, and fi-
nally tend to [T;, pTs|* following the case {(x,y)|y = pTs, X > X3}
because xg > X, in this situation. Meanwhile, it follows from the
definition of A; and B, that any orbit initiating from the segment
A1By will reach A’yPs, jumps to the segment AgP; € Dy and then
tend to E.. Therefore, we can conclude that

oo — Apy1Bn — ApBy1 — - — A1By — APy — Eq,

-+ — ByAy — By 1Ay 1 — - — Bog > PP} — (00, pTy),

where A, 1By — AnB,_1 represents that all the orbits starting from
the segment A, 1B, will reach the segment A;B,_; after one time
of impulsive immune therapy, and other notations should be inter-
preted similarly.

We dencﬁe\the domain, bounded by the orbit I'7, the curve
'S U PP UPEZ UTS and the line y =Ty by Dga,. The negative
orbits of Filippov system (1) initiating {A, ;} and {B, ,} (n=
1,2,...) are denoted as I'y, and I'g respectively, and the domains
bounded by I'g,. I's, (I'p,, I's,,,) and line y =Ty are denoted by
Dg, 4, (DAn+l B, )- Especially, the domain bounded by the orbits Iy,
I'7 and the line y = T; is denoted by Da,p,- We also denote the
region bounded by FZZ, ng and the line y =Ty by Dp2s. When

y3<y< yfz, the dynamics is same as the case y§2 <y <Yygq. There-

fore, the global dynamics of system (2) when y3 < pTs < yg can
be concluded as follows.
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Theorem 5. When y; < pTs < ygq, then the pseudo-equilibrium E. is
stable in the basin of attraction region Dy, p,(n=0,1,2,...) UDy
while all orbits starting from the region Dg s, (n=0,1,2,...) UDp3
will tend to [Ts, pTs] (see Figs. 5(a) and 6(b)).

If yg < pTs < yg, the dynamics of system (2) on the segments
{(x,¥)|x > X3,y = pTs} and {(x,y)|xa, < X < X2,y = pTs} are similar
to those for the case y3 < pTs < y9, hence here we omit it. For the
rest part {(x,y)|0 <X < Xs,.y = pTs}, another sequence of points
should be defined.

Let Pj = (x,.T;). and the orbit of Filippov system (1) passing
through the point P; intersects the line y = pTs at Gy = (xg,, pTs).
Denote (= (xc,»Ts) and the orbit of system S; passing through
the point Cj intersects the line y = pT; at C; = (x¢,, oTs). Similarly,
let C} = (xc,, Ts). Repeating the above process we can define the
sequences {C,} on the line y = pT; and {C;} on the line y =T as
shown in Fig. 6(c). Therefore, we have that all the orbits initiat-
ing from the segment ApB,_1 (BnCn, GiAn) will reach the segment
An_1Bn_> (Bn_1Ca_1, Cyi_1A,_1) after one impulsive effect. Further-
more, the orbits starting from ByCy (or A;Bg) will first approach the
segment P;P, (or AoP;), and then tend to the pseudo-equilibrium E,
along the Filippov system (1). Similarly, the orbits initiating from
the segment CyA, will first approach the segment PP, and then
tend to infinity along the system S, with impulsive. As a conclu-
sion, we have

-oo— ByCy — By_1Gioqg — ~~~—>BOC0—>@—> E,
e > An+]Bn - Aan,1 — = A]Bo — AOP1 - EC,

coo = GoAn = CorAn 1 — -+ = CoAg — BP) — (+00, pTy).

Denote the backward orbits of the Filippov system (1) initiat-
ing from C;, as I'¢,, and the region bounded by I'¢,, I'g, (I'c,, T'a,)
and y =Ty as D¢, (Dc,a,)- The domain Dg 4, is divided by the or-
bit of Filippov system (1) passing through the point Cy into two
subregions with the left part denoted by Dp , and the right part
denoted by Dc 4, The dynamics of system (2) when yg < pTs < yg
is concluded as the follows.

Theorem 6. When yg < pTs < yg, then the pseudo-equilibrium
Ec is locally stable in the basin of attraction domain Dy UDg,c, U
Dp,.,p,(n=0,1,2,...). The orbits initiating from the region Dpa3 U
Dc,a,(n=0,1,2,...) will tend to [T;, pTs]>°, as shown in Figs. 5(b)
and 6(d).

For yg < pTs < y11, the whole segment PP, is contained in the
domain Dy. For the case {(x,y)|x; <x.y = pTs}, when pTs > yg,
it follows from the system S, with pulse that the Poincaré map
& of system (6) is strictly decreasing, which means that all the
orbits starting from it will finally arrive at the segment P;P,, and
then tend to the pseudo-equilibrium E. following the dynamics of
Filippov system (1).

For the orbits initiating from the segment {(x,y)|0 <x <
Xpp, ¥ = pTs}, it is similar to the case y§2 < pTs < yg. That is, the or-

bits initiating from the segment A,B,,_; will first reach the segment
AoP; after n times impulsive effects, and then tend to E. along the
dynamics of Filippov system (1). Any orbit initiating from the seg-
ment B,A, firstly reaches ByAy, tends to PsP; following the Filippov
system (1), then jumps to the segment PiP;, and finally tends to
the pseudo-equilibrium E. along the Filippov system (1) as shown
in Fig. 7.

Considering the case {(x,y)|xa, <X < X3,y =T}, if line y = pT;
doesn’t intersect with the orbit I'6, we have the whole segment
AoP, belongs to the region Dy, then it follows from the Filippov
system that any orbit starting from it will directly tend to the
pseudo-equilibrium E. If line y = pTs does intersect with the orbit

7

Fig. 7. The case that the pseudo-equilibrium E. is globally stable when yg < pTs <
y11 with p = 4. The other parameters are fixed as these in Fig. 5(a).

I'6, the segment AyP, is delivered into two parts. Then orbits start-
ing from the part inside the domain Dy will directly tend to E. as
well, while orbits initiating from the part outside the domain Dy
will first arrive at the segment PéP;, and then tend to E. according
to the case {(x.y)]0 < x < x4,y = pTs}. Therefore, when yg < pTs
< Y11, the dynamics of system (2) is as follows.

Theorem 7. When yg < pTs < yq1, then the pseudo-equilibrium E. is
globally stable as shown in Fig. 7.

If yi0 < pTs < y13, then pTs > yq; holds true. Therefore, there
exists one and only one intersection point of the line y = pT; with
the orbit I'6, denoted by Pjg(xi6, ©Ts) shown in Fig. 8(b). We
mainly consider the orbits initiating from the segments {(x,y)|0 <
X < xp,,y = pTs}, BoPs and {(x,y)|x > x,,y = pTs} because the or-
bits starting from the segment PjgP, will directly tend to the
pseudo-equilibrium E. following the dynamics of the Filippov sys-
tem (1).

First of all, we consider the orbits initiating from the segment
PiP; which is now out of the region Dy. The definition of the

Poincaré map of system (2) on segment @ is similar to the def-
inition of the Poincaré map of system (5), hence for convenience
we also denote the Poincaré map of system (2) as &. That is, for
(x0, pT;), x € (xg, X7), the orbit of the Filippov system (1) initi-
ating from it will intersect with the line y =T at (x?,Ts), then
we have ®(x%) =x9. When yyo < pTs < yi3, it follows from the
existence and uniqueness of solutions and the continuous depen-
dence of the solution on the initial value of the systems S; and
S, that @ is continuous with ®(xg) —xg > 0 and ®(x7) —x7 <O.
Therefore, the Poincaré map @ has a fixed point in the interval
(xg, X7), correspondingly the system (2) exists a positive order-
1 periodic solution as shown in Fig. 8(c). However, it is difficult
to prove the monotonicity of the function ®(x0) —x%, x0 e (x5, x7)
due to the complexity of the Poincaré map ®. The numerical re-
sult (see Fig. 8(a)) shows that the map ®(x0) —x0, x0 e (x5, %7)
is strictly monotonically decreasing in the interval (xg, x7) when
Y10 < pTs < yi3. Thus, when ®(x%) —x0,x0 ¢ (xg,x7) is strictly
monotonically decreasing, then there exists one and only one fixed
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Fig. 8. (a) The curves of the map ®(x°) —x° x° € (x5.x7) when y;o < pTs < yi3. (b) Dynamical behaviors of system (2) when y;o < pTs < yi3. (c) shows the existence of
the positive order-1 periodic solution ©(t). (d) The schematic diagram of the definition of sequences of {G,} and {Fy}.

point of ®, correspondingly, system (2) has one and only one
positive periodic solution, denoted by ®(t) (see Fig. 8(c)). Simul-
taneously, the monotonicity of the function ®(x%) —x0 also im-
plies that the positive periodic solution ©(t) is locally stable. Then
we can conclude that any orbit starting from the segment ByPg
will finally tend to ®(t) since it will approach PsP; and jump into
PP, P’

T It follows from the system S; with pulse (i.e. system (5))
that all the orbits initiating from the segment {(x,y)|0 <x <
Xg,.y = pTs} will first reach the segment ByP;, and then tend to
the positive order-1 periodic solution ®(t) following the former
case.

Let Pj; = (x46.Ts) and P) = (x,.T). Denote the intersection
points of the line y pTs with the orbit of system S, passing
through the points P, 6 and Pj as Gy (xc,, pTs) and F (g, pTs), re-
spectively. Then let G} (XG T;) and F/ = (x,, Ts). Similarly, the
intersection point between the line y = ,oTs and the orbit of sys-
tem S, passing through the point G| (F/) is denoted by G, (xg,, pTs)
(B (xg,, pTs)). Repeating the above process we can define the se-
quences {F,} and {G,} with n=1,2,..., as shown in Fig. 8(d).
From the definition of {F,} and {G,}, we have that

X6, <Xp <XG, <Xp <+ <Xg, <Xp, <---. (18)

1

Then according to the existence and uniqueness of solutions
and the dynamics of system (8), we have that any orbit start-
ing from the segment GpF, will reach the segment G,_1F,_; after
one impulsive effect while other orbits starting from the segment
F,_1Gn will reach the segment F,_,G,_1. Note that the orbits initi-
ating from the segment GiF, (P,G;) will arrive at PigP, (P,Pig). As
a conclusion, we have

s> Fn,]Gn — Fn,an,l — e > PzG1 g P7/P16 — @(t),

and

e GnFn — Gn—an—l —> s > G]F] — P]5P2 — EC.

The orbits of system S, passing through the points {F,} and
{Gn} are denoted by I', and I'g,, respectively. Denote the do-
main bounded by the curve 'S U T u@ U Fg'z,
and x=0 as D
Dg,r, (n=1,2,...), the region bounded by ', I'¢,,, and y=Ts
as I'pq,,, (n=2,3,...). The region bounded by I'c,, F 2 F;z and

y =Ts is denoted by Dp,¢,. Thus, the dynamics of system (2) for y1o
< pTs < yq3 can be concluded as follows.

the lines y = Ts

i - the region bounded by I'g,, I'g, and y =T; as
16

Theorem 8. When yio < pTs < y13, then system (2) has a positive
order-1 periodic solution ©(t). Further, if ®(x9) — x° is strictly mono-
tonically decreasing, ©(t) and E. are bistable in the basin of attrac-
tion region D”fe UDp,c, UDfg,,, and Dy UDg,p (n=1,2,...) re-

spectively.

If pTs > y1p, we have pTs > y13 > Y13 = Y14 :yg’sl, and then
there is one and only one intersection point of the line y = pTs
to the orbit I'7 denoted by Py7(x;7, pTs). It follows from the sys-
tem S; with pulse that all the orbits initiating from the segment
{(x,)]0 < x < x17,y = pTs} will finally tend to the virus-free pe-
riodic solution &g, (). Any orbit starting from the segment P7Pyg

will first reach the segment PzP;, jump to the segment PLP; with
one impulsive effect, and finally tend to the the virus-free periodic
solution because of 0 < X < X7 < x17. Note that the orbits start-
ing from the segment P;gP, can not approach the line y =T, and
therefore finally must tend to E. along the Filippov system (1).
For the segment {(x,y)|x > x5,y = pTs}, the definitions of {F,}
and {G} are same as those for the case yig < pTs < ¥q3 (shown in
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Fig. 9. (a)Dynamical behaviors of system (2) when pTs > y;, with p = 6.5. (b) and (c) show that the solution trajectories tent to E. and s, (t) with different initial conditions.
(d) Basin of attraction region of system (2) when y;, < pTs while the all the orbits starting from the blue domains will tend to the pseudo-equilibrium E. and any orbit
initiating from the green domains will tend to virus-free periodic solution s, (t). The other parameter values are fix as those in Fig. 5(a). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8(d)), and then we can conclude that

- —> Fn,]Gn g Fn,an,1 — s > PzG] d P7/P]6 — é'sl (t),

and

- —> GnFn — Gn_‘an_] —> > G]F] — P]5P2 - EC.

Therefore, the dynamics of system (2) when pTs > y1, can be con-
cluded as the follows.

Theorem 9. When pTs > yip, then the virus-free periodic solution
g, (¢) and the pseudo-equilibrium E. are bistable (see Fig. 9(a-c)).
And both of them have a basin of attraction Dpz UDp,g, UDk,g,,, and

1
Dy UDg,f, (n=1,2,...) respectively (as shown in Fig. 9(d)).

Remark 4. In the above discussions on the domains of attraction
of system (2), there exist two special cases that the orbits initiat-
ing from the two intersection points of the line y = pTs with the
curve Y will tend to the equilibrium Eg. Therefore, all the do-
mains of attraction should get rid of countable orbits which can
approach the two intersection points. In details, for Theorem 5, we
should get rid of the orbits I'4, and the curve Y, while the orbits
Ia,. T'c, and the curve Y should be deleted in Theorem 6. And for
Theorems 7-9, we should get rid of the orbits I'g,, I', and the
curve Y in the domains of attraction.

Remark 5. It should be noted that we have not obtained theoreti-
cal results for y;; < pTs < Y19 OF ¥13 < pTs < y1. However, numer-
ical studies show that the dynamics of system (2) for y;; < pTs <
Y10 are similar to the case yg < pTs < y11, as shown in Fig. 10(a),
that is, the pseudo-equilibrium E. is globally stable. It is difficult to

theoretically prove this conclusion because we can not determine
the sign of the function ®(x%) —x%,x0 ¢ (xg,Xx7). For y13 < pTs <
Y12, numerical studies suggest the dynamics of system (2) are sim-
ilar to those for the case pTs > yq3, that is, the pseudo-equilibrium
Ec and the virus-free periodic solution &g, (t) are bistable in their
basin of attraction regions as shown in Fig. 10(b-d).

5. Conclusion and discussion

In this paper, considering combined antiretroviral therapy and
interleukin (IL)-2 treatment with impulsive immune therapy for
HIV infected patients, we proposed a piecewise virus-immune
model with two thresholds to describe the HIV-1 RNA virus and
effector cell guided STI therapy. The model allows us to determine
under what threshold values of the density of the effector cells and
HIV-1 RNA virus loads we can successfully inhibit the growth of
the virus and rebuild the immune response function of the HIV
infected patients. We extended our previously formulated model
[17] by including impulsive immune therapy.

The immune therapy has been shown to be effective in help-
ing to rebuild the HIV-special immune response. We initially dis-
cussed the dynamics of system (2) when only the effector cell-
guided therapy is considered (i.e. systems (5) and (6)). Our theo-
retical analysis shows the existence and local stability of the virus-
free periodic solution when pTs exceeds the critical value ygsl for

for system (6). It means that the HIV-1 RNA

virus can be eradicated by infinite times of impulsive immune
therapy if efficacy of immune therapy is relatively high. If the
virus-free periodic solution becomes unstable (i.e. y’s1 < pTs <yg,

1

system (5) or ygs
2
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Fig. 10. (a) The dynamic behaviors of system (2) when yy; < pTs < y10 With p = 4.75; (b) The dynamic behaviors of system (2) when y13 < pTs < y12 with p = 5.6; (c) The
solution trajectory of system (2) when y;3 < pTs < y12, which tend to the virus-free periodic solution s, (t); (d) The solution trajectory of system (2) when yj3 < pTs < y12,
which tend to the pseudo-equilibrium E.. The other parameter values are fixed as those in Fig. 5(a).

or y’s2 < pTs < ygsz holds true), then the viral loads may increase

to infinity, depending on the initial conditions. This indicates that
if the efficacy of impulsive immune therapy is relatively low, HIV
virus may be controlled by the impulsive immune therapy only for
some patients whose initial data for viral loads and effector cells
satisfy certain conditions.

We also considered the piecewise model of virus-immune sys-
tem with only HIV-1 RNA-guided therapy in p aper [17] and ob-
served that virus may be maintained to be a relatively low level
(e.g. the pseudo-equilibrium E. can be locally stable in region
D,) for xgz <V <x§1. This means that virus can not be erad-
icated by HIV-1 RNA-guided therapy only. Here we also exam-
ined the global dynamics of system (2) when the strategies of
both the effector cell and HIV-1 RNA-guided therapy are consid-
ered, and when we further fix the threshold Vs between x}1 and
x}z and the threshold Ts below min{y’sl, ylsz}. Complex and multi-
ple attractors appear in the system (2) if we vary value of p and
fixed other parameter values. The complex dynamics includes: (a)
the pseudo-equilibrium E. is locally stable in a basin of attrac-
tion while the orbits starting from the other region will tend to
|Ts, pTs]; (b) the pseudo-equilibrium E. is globally stable; (c) the
pseudo-equilibrium E. coexists with a positive order-1 periodic so-
lution, and both of them are locally stable in their basins of at-
traction; (d) the pseudo-equilibrium E. and the virus-free periodic
solution {s, (t) are bistable in their corresponding domains of at-
traction, respectively.

In 1994, Kuznetsov et al. investigated similar basic ODE model
with the carrying capacity of the virus loads being considered [14].
In that paper they considered the continuous therapy for immuno-
genic tumors. As discussed by the authors, the main theoretical
results can also be applied for HIV therapy while two positive
equilibria can be bistable. Compared with the continuous therapy,
as we can see, the dynamics of the system with the comprehen-
sive therapy strategies becomes very different and more rich. The
pseudo-equilibrium can be bistable with the positive order-1 peri-

odic solution or with the virus free periodic solution, and moreover
their domains of attraction can be very complicated. This indicates
that the outcomes for the patients under the therapy is very sen-
sitive to their initial conditions.

Comparing with the strategies of both the effector cell and HIV-
1 RNA-guided therapy with the HIV-1 RNA-guided therapy only
[17], we obtained that the pseudo-equilibrium E. can be glob-
ally stable under appropriate conditions. In contrast, the pseudo-
equilibrium E; can only be locally stable under the corresponding
conditions when HIV-1 RNA-guided therapy alone is implemented
(see paper [17]). This indicates that under such combined therapy
strategies virus loads can be successfully controlled to remain at a
certain level for all the HIV infected patients no matter what their
initial conditions are. As we can see, the region D), can be regarded
as the controllable region when HIV-1 RNA-guided therapy alone is
considered, in which the virus can be maintained under a certain
level. Theorems 5 and 6 imply that the controllable region is en-
larged under the combined two thresholds therapy strategies, com-
pared to the controllable region under the HIV-1 RNA-guided ther-
apy only. Moreover, it is interesting to note that both the pseudo-
equilibrium E. and the virus-free periodic solution can be bistable
if the efficacy of immune therapy is relatively high. It suggests that
in such a scenario virus may be either successfully eradicated or
maintained under a certain level with the two thresholds therapy
strategies.

Similarly, a comparison of the strategies of both the effector cell
and HIV-1 RNA-guided therapy with the effector cell-guided im-
mune therapy only yields some interesting results about how to
carry out the immune therapy. Under the effector cell-guided ther-
apy alone, a lifelong time of impulsive immune therapy is needed
to successfully control the virus load to under a relative low level
and once the immune therapy blacking out the virus loads will
grow again to infinity no matter how low the virus loads were
controlled. However, if we consider both the effector cell and HIV-
1 RNA-guided therapy, the pseudo-equilibrium E. is globally stable
when yg < pTs < yq1. In such a situation, all orbits starting out
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of the domain Dy will jump into the region Dy after finite times
of impulsive effects and finally tend to E.. Therefore, the patients
just need finite times of immune therapy or do not require any im-
mune therapy to control the virus loads below a certain level, de-
pending on their initial conditions. But, if we further enhance the
intensity of immune therapy, a result contrary to intuition occurs.
That is, when y;9 < pTs < y13, a locally stable positive periodic
solution appears, which means that infinite times of immune ther-
apy may also be needed to control the virus load between a range
under the comprehensive two thresholds therapy strategies.

It is worth mentioning that the work presented here is an ex-
tension of an approach to the dynamics of HIV management when
plasma HIV-1 RNA-guided therapy is initiated [17]. By further in-
cluding effector cell-guided therapy, our analyses indicate that HIV
viral loads can either be eradicated or stabilize at a previously
given level or go to infinity (corresponding to the effector cells
oscillating), depending on the threshold levels and the initial HIV
virus loads and effector cell counts. Therefore, our findings sug-
gest that it is essential to carefully choose the thresholds of plasma
HIV-1 RNA copies and effector cell and individualize the STIs for
patients based on their initial plasma HIV-1 RNA copies and effec-
tor cell counts.

In previous studies of modeling disease therapy, the Filippov
system and impulsive system are usually two independent frame-
works [16,24,25,29,33]. In this paper, we proposed a mathematical
model combining the Filippov system and the state dependent im-
pulsive system with two different strategies for HIV therapy con-
sidered. Our discussion of the global dynamics of system (2) shows
that the dynamics becomes very rich and complicated when two
different therapy strategy is considered. Our approach can not only
be applied to the HIV therapy, but also modeling other disease
therapies, such as cancer therapies.

When discussing the global dynamics of system (2), we can
not theoretically determine the sign of the function ®(x%) —x°.
The complexity of this function leads to difficulties to completely
examine the dynamics of system (2) for cases yq; < pTs < Yqo
and y13 < pTs < y1p. To investigate the global dynamics of sys-
tem (2), we have fixed the two thresholds as T; < min{y’s1 ,y’sz} and

xgz <Vs < x;1. The dynamics of system (2) could be very complex

if we choose different combinations of the two thresholds Ts and
Vs. The discussion of those complex dynamics is left for us in the
future works. In this paper, we have assumed that the HIV virus
increases exponentially. When there is a limitation of the virus
growth, it is reasonable to taking into consideration of the carry-
ing capacity of the HIV virus. This consideration would have great
influence on the dynamics of systems S; and S, and further on
the dynamics of the virus-immune system with complex therapy
strategies. Addressing this complexity would require a further in-
depth research.
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Appendix

Lemma 2. For i=1,2, let x}i <X gxgi, Ty, and Ty, being two
orbits of system S; outside the domain bounded by Fli, ng and
Fs3,-- Denote the intersection point of the line x =Xx, with the up-
per branch and the low branch of the orbit [y, as P,: (xk,yz1) and

P,il (xk,yf(1 ). Similar denote the two intersection points between the
line x =x, and the orbit Ty, as B! (x.y; ) and P,iz (xk,yf(z). Then
there should be three intersection points of the line y =y} to the
orbit T, and we denote the one with the biggest horizontal ordi-

nate as P’}i1 = (x’z],yz1 ). Similarly, we can denote the three other

. Y| [ U Uy YN B
points P’ = (X'}, ’yk1)’ P, = (x ,{2,yk2) and Py, = (x ,(2,yk2). Then

ou_ogu gl
we have X'y, =x'j, =X/}, =X,

Proof. Without loss of generality, we just verify x’ % =X %2 for sys-
tem Sy. As shown in the proof of Lemma 1, there is

c ) r
(s L)oo

Integrating Eq. (19) from E,ﬁ‘l to E/;(‘l yields:

Xk c § Vi, (T
_c 49 dx:/ <,_ )d -0, 20
/Xk <l+a)x a x> wo\Y )& 20

and from E! to E'j, we have
2 2

X,EZ C ) yzz r
- —qg- = dx_—/ <7—p>d =0. 21
/xk (l + wx q x) y y Y 1)

U
ka

Combining Eqs. (20) and (21) there is

X, c 5 X, c 8
/xk <1+wx —a- x)d": / <1+a)x —a- x>d"’ (22)

which implies that x' = X'}, . The proof is completed. O

Lemma 3. Let M(xy;, yy) being a point in {(x, y)|x > 0, y > 0} with
YMm <y§2, FQ/I’ and FQ’Z’ being the orbits of systems S; and S, pass-
ing through the point M, respectively. Denote the another intersection
points of the orbits 1“2’1’ and FQ’Z’ to the line x = xy as Ms, (xM,yMsl)
and Ms, (xy, yMsz) respectively. Then we have that I, <YM, -

Proof. Similar to system S, the system S, has the first integral
which is given as

Hy(x,y) = —% In(1+ wx) + (§ — €) In(x)
+qx+ (r—€1)In(y) — py = hy, (23)

where hy = Hy(x,y,) is a constant. Also, there are

¥ = _r_pelw[o, P exp

r—€
5 (cln(l +wx) — (8 — &)wIn(x) — qox + hza))>:|
(r—-e)o
(24)
and
Y2 = —r_pelW[—l, —TTe exp
5 (cln(l +wx) — (8§ — &)wIn(x) — qox + hza))>:|
(r—e)w '
(25)
According the Egs. (14) and (25), we have that
s, = —%W[—l, —gexp
cIn(1 + wXy) — dwIn(Xy) — qwXy + hy, @)
| z )
(26)
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and
_ -4 4 P
Yumg, = W[ 1, — exp
cIn(1+wXy)— (8—62)0) In(Xp) — qooXy + hMS2 w)
* (r—epw '

(27)

where hMS] =H;(xy.ym) and hMS2 = Hy (X1, ym).  Simplifying
Egs. (26) and (27) yields:

T p p
s, = =W [ 1.~ 2 exp ()~ Eyu) | (28)
and
S k. R7V] B R -
Yy, = W[ L-1¢ exp(ln(ym) r_e]ym)]- (29)
Let

2exp (In -k
fler) = — P (InGw) rﬁ“”) T
= exp (In(ym) — 2=ym) r

()

It follows from yy < ygz = "% that

(5 (2 0)
r p \r—e¢ 1

=1 —re1 exp (671) = g(er). (31)

Definitely, there is g'(¢;) < 0, which implies that g(e;) < g(0) = 1.
That means

~2exp (Inw) ~ Eyw) > -

flen) <~

p
exp (In) = +L—yu).
(32)

Then according to the properties of the Lambert W function we
have

r— €4

W[—l, _I?) exp (ln(yM) - %’M)] < W[—l, _r—p61 exp
x(ln(yM) - —p€1yM)]' (33)

which means that there is I, > Y, - This completes the
proof. O
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