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The switched discrete host-parasitoid model concerning integrated pest management (IPM)
has been proposed in the present work, and the economic threshold (E7T) is chosen to guide
the switches. That is, if the density of host (pest) population increases and exceeds the ET,
then the biological and chemical tactics are applied together. Those multiple control measures
are suspended once the density of host falls below the ET. Firstly, the existence and stability
of several types of equilibria of switched system have been discussed briefly, and two- or three-
parameter bifurcation diagrams reveal the regions of different types of equilibria including regular
and virtual equilibria. Secondly, numerical bifurcation analyses show that the switched discrete
system may have very complex dynamics including the co-existence of multiple attractors and
switched-like behavior among attractors. Finally, we address how the key parameters and initial
values of both host and parasitoid populations atfect the host outbreaks, switching frequencies
or mean switching frequency, and consequently the relative biological implications with respect
to pest control are discussed.

Keywords: Switched host-parasitoid model; integrated pest management: host outbreak: multiple
attractors; switching frequency.

1. Introduction outbreak resulted in significant economic damage
Pest control is a very important issue in agricul- %@ the agI'lCl‘IltllI'E‘- in many areas of northern E_md
ture, ecology and fisheries since pest outbreak can ~ Western Africa [Ceccato et al., 2007]. Chemical

lead to huge economic losses [Grainge & Ahmed,  control and biological control have been widely
1988]. For example, the 2003-2004 desert locust  used as two main methods for pest control, and
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these approaches are usually adopted simultane-
ously. More complex Integrated Pest Management
(IPM) strategies are designed to combine biologi-
cal, cultural and chemical tactics to prevent pest
outbreak by maintaining the density of pests under
consideration below an economic injury level (EIL)
[Tang et al., 2008]. TPM was introduced in the late
1970s for agricultural crops [Smith et al., 1976], and
was later extended and promoted for the control of
apple orchards pests in Europe [Blommers, 1994],
the fungal leaf disease in Germany [Wolf & Verreet,
2002], and the tropical rice pests [Settle et al., 1996],
among other successful stories.

Chemical control is the most important compo-
nent of an IPM, because the pesticides can quickly
kill the pest insects and prevent the insect density
from reaching the EIL. However, there are three dis-
advantages of using the pesticides. First of all, the
pesticides damage the land by killing the natural
enemies as well, which in turn would lead to the
outbreak of pest population. For example, in trop-
ical Asia, Nilaparvata lugens has become a major
pest of rice due to the insecticide-induced resur-
gence [Heinrichs & Mochida, 1984]. Potato beetle
(CPB) outbreak is another example [Reed et al.,
2001], where spraying pesticides failed to reduce
the concentration of target organisms, but led to
the increase of the concentration of potato beetle.
Chemical pesticides are not always effective due to
the pesticide resistance, as shown in the study of
long-term residual effects of pesticide using impul-
sive differential equations model [Liang et al., 2013;
Tang et al., 2013]. Finally, long-term use of pesticide
can cause significant environment pollution.

Biological control is another key component
of an IPM strategy [Parker, 1971; Helyer ef al.,
2014]. There are three basic types of biological
pest control strategies: importation, angmentation
and conservation [Van Lenteren & Woets, 1988].
To reduce the pest populations, we should release
natural enemies, such as predators, parasitoids,
pea aphid, and pathogens [Mound & Halsey, 1978;
Mitchell & Power, 2003]. In early pest infestations
or small pest population, the periodic inundative
releases are necessary to achieve an adequate par-
asitism level. For instance, the periodic inunda-
tive releases of the parasitoid Encarsia formosa
were successfully used to control greenhouse white-
fly [Hoffmann & Frodsham, 1993]. Under conditions
of high pest incidence, the inoculative release is suf-
ficient to achieve a comparatively high parasitism

level, as shown in the use of the Trichogramma
Ostriniae for controlling the FEuropean Ostrinia
Nubilalis [Wright et al., 2002]. The two release
methods were used simultaneously for managing the
outbreak of South American tomato pinworm, Tuta
absoluta (Meyrick). Another example is the appli-
cation of the egg-parasitoid Trichogramma achaeae
Nagaraja and Nagarkattt to control the pin worm,
using the inundative release early in the growing
season and then the inoculative release during the
pest outbreak [Cabello et al., 2012].

An important concept in IPM is economic
threshold (ET) [Tang et al., 2008; Higley & Pedigo,
1996] that is determined by the social, economic,
ecological consideration. We should spray pesticide
and release natural enemies only after the economic
threshold is reached or exceeded. Liang and Tang
[2010] considered several pest control models with
ET and taking into account pesticides sprayed at
fixed or variable moments in order to find optimal
time and dosage of pesticides spraying. This opti-
mal timing of pesticides spraying is also important
since no measure needs to be taken for some pests
during particular periods, for example, the change
of caterpillars from an active feeding (larva) to a
nonfeeding stage (pupa) during their development
often produces a natural decline without any con-
trol [Jenser et al., 1999].

The host-parasitoid dynamics with integrated
pest control is naturally modeled by the so-called
switching systems (or Filippov systems). Such sys-
tems based on the ODE model for the host-
parasitoid interaction have been studied in recent
literature, see [Tang et al., 2012] for relevant refer-
ences. The simplest switching system depicted by
a discrete Ricker equation has also been used for
locust control [Holt & Cheke, 1996]. Here, we for-
mulate and analyze a switching discrete model with
IPM based on the Nicholson—Bailey model, and sub-
ject to the guidance for switching by an economic
threshold (ET). In our consideration, biological and
chemical tactics are applied together if the den-
sity of host (pest) population increases and exceeds
the ET, and these measures are suspended once
the host density falls below the ET. We discuss the
existence and stability of several types of equilib-
ria of the switching system, and conduct a bifurca-
tion analysis to generate bifurcation diagrams for
the existence and change of different types of, regu-
lar and virtual, equilibria. We also perform some
numerical bifurcation analyses to show that the
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proposed simple switching discrete system may have
very complex dynamics including the coexistence
of multiple attractors, and the oscillatory behav-
iors switching among attractors. We also address
the issue of how key control parameters and ini-
tial values of both host and parasitoid populations
affect the host outbreaks.

2. Switching Host-Parasitoid Model
The well-known diserete single-population Moran
Ricker model [Ricker, 1954; Moran, 1950] is given by

H(t+1):H(t)exp[r( -¥)] (1)

where H(t) denotes the density of the host pop-
ulation in generation f, r represents the intrinsic
growth rate, and K is the carrying capacity of the
environment. Denoting the parasitoid population
size in generation ¢ as P(t) and the probability of a
host being encountered by any parasitoid as [, the
typical Nicholson—Bailey host-parasitoid model can
be expressed in the form

H(t+41) = H(t)exp [r (1 — %(f)) - fiP(t)},

P(t+1) = H(t)[1 — exp(—BP(t))],
(2)

where the term exp[—/3P(t)] is the probability that
a host individual escapes from parasitism.

Based on model (2), the following discrete-
generation host-parasitoid model was developed
[Rohani & Ruxton, 1999; Hassell & May, 1973]

H(t+1) = H(t)exp [»,» ( = %) - ,BP(t)},

P(t+1) = H(t)[1 — exp(—BP(t))] + o P(t),
(3)

where o denotes the survival rate of parasitoid pop-
ulations from ¢ generation to next generation.

If the host population represents the pests and
parasitoid population the natural enemy, then the
model describes the pest-natural enemy interaction.
To take into account the IPM strategies for control-
ling the pest population, Tang et al. [2008] assumed
that at every gth generation the system (3) is sub-
ject to a perturbation resulting in a proportional
decrease of the insect pest and an introduction of
the parasitoid with a population sizes-independent

constant 7. This led to the following discrete host-
parasitoid model with fixed moments

'8

H{(t)

) = o (1- 20,

P(t+1) = H(t)[1 — exp(—=BP(t))] + o P(t),
t=0,1,2..0;
H .+ =(1—q)Hg,
ok = (1= 1) Hy k=1,2,....
qu"’ = (1+QQ)PQA: + T,

\

(4)

It was shown in [Tang et al., 2008] that this model
can exhibit rich dynamic behaviors including host-
eradication, host-parasitoid persistence and host-
outbreak solutions.

However, in the above model, the impulsive
perturbations were implemented for pest and par-
asitoid populations at fixed generations no matter
whether the density of pest population exceeds the
ET or not. This is cost ineffective, and in practice,
IPM strategies are only implemented when the den-
sity of pest population exceeds the ET, and these
strategies are suspended once the pest population
density falls below the ET.

Therefore, based on the typical Nicholson—
Bailey host-parasitoid model (2), only when the
density of host population exceeds the threshold
level ET, a chemical control tactic is applied with
a proportional killing rate p in conjunction with a
biological control measure with a constant releas-
ing number 7. This yields naturally the following
control model with IPM tactics

H(t+1) = (1—p)H(t)
<o (1- 20 - ara],

P(t+1) = H(t)[l —exp(—=BP(t))] + 7,

when H(t) > ET,
(5)

where 0 < p < 1 and 7 > 0. In particular, if p =0
and 7 > 0, then only the biological control mea-
sures are applied; and if p > 0 and 7 = 0. then
only the chemical control tactics are applied. In the
following, we assume p7 # 0 so at least one control
measure is applied once the density of pest popula-
tion exceeds the ET.
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Consequently, combining the model with IPM when the density of pest population exceeds the ET and
the model without control tactics when the density falls below the ET, we have the following switching

system

'

H(t)
P(t+1) = H(t)[1 — exp(—BP(t))],

H(t+1) =(1—p)H(£)exp[:r“ (l—

\

We should mention that switching systems (or
Filippov systems) described by an ODE system
have now been widely used in ecosystem manage-
ment with a threshold control policy [Bischi et al.,
2013; Bischi et al., 2014; Tang et al., 2012]. Switch-
ing systems based on difference equations have also
been used for locust control [Holt & Cheke, 1996],
where the discrete switching Moran—Ricker model
was used and the intrinsic growth rate and carrying
capacity of locust population are assumed differ-
ent during different growth phases. In our present
study, we focus on the switching model (6) and
explore its complex dynamical behaviors using some
bifurcation analysis. We aim to use the switching
frequencies between two subsystems as key bifur-
cation parameters, and linking the bifurcation val-
ues to key control parameters such as the killing
rate p, the releasing constant 7 and the threshold
value ET.

3. Equilibrium of Two Subsystems
and Their Stability

For convenience, we denote F(H(t)) = H(t) — ET
and Z(t) = [H(t),P(t)]T, so system (6) can be
rewritten as

Se,(t+1) = [H(t)e-r(l—”;—i")—ﬁp(a),
H(t)(1 — e PO

£

Seu(t + 1) = [(1 — p)H(t)e I~ F=#PO),

H{G — e # 8 + ],
where the two regions (G; and (G5 are defined as
follows

G, ={(H,P)|F(H) <0,H >0,P >0},
Gy ={(H,P)|F(H)>0,H >0,P >0}

H(t+1) = H(t)exp [r (1 — T) = _;'3P(!.)],

when H(t) < ET;

H(t)
— — .3 :
K ) ' Pu)}’ when H(t) > ET.

P(t+1) = H(t)[1 — exp(—BP(t))] + T,

f
In the rest of this paper, we call the system (7)
defined in region G, as subsystem Sgp, and in
region (75 as subsystem S¢go. Although the existence
and stability of equilibria of subsystem Sg, have
been investigated by [Hassell & May, 1973], we first
address this for both subsystems briefly, which are
useful for discussing the types of the equilibria of
whole switching system (7).

3.1. Equilibria of the subsystems
S(;l and Sc;g

For subsystem S¢p, let Hy = Hyyy = Hp. and
P = P11 = Pi.. Then the equilibrium (Hj., Py.)
satisfies the following equations

H, = H,exp (-r (1 - %) - ,HP*),

P, = H.(1 — exp(—3P.)).

Obviously, there exists an extinction steady state
Eg = (0,0), and a boundary steady state E g =
(K,0). For the existence of an interior steady
state Fy. = (Hy., P1:), we consider the following
equations

Hl* -
T‘(l— 7 ) —ﬁPl*—U,

(8)
PI* = -'HH(]- - exp(—;?P]*)).

Solving Hy, from the first equation of (8) and sub-
mitting it into the second equation, one yields

% _ (1 B ,Bf’x) (1= 0P, (9)
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Define two auxiliary functions:

@) =%

g(z) = (1 - ﬁ) (1— e Py,

r

(10)

It is clear that f(0) = g(0) = g(r/B) = 0, which
indicates that both functions f and g intersect at
the unique point z, > 0 provided that f'(0) < ¢’(0).
Therefore, when ?1; < /3, there exists a unique
Py, > 0 such that f(P1.) = g(Pr.).

Similarly, we can discuss the existence of equi-
libria of subsystem S¢go. Note that Sgo has a bound-
ary steady state E'; = (0,7) if 7 > 0, and the
interior steady state Fa, = (Hay, Pa.) satisfies the
following equation

Py, BPay — lll(l = pJ — 3Pz,
—(1- 1—e fP) =7,
K ( r ( ‘ ) =T
(11)
Define the following three auxiliary functions
hiz) = % T,
T
{ Mlz) = 2, (12)
= (1 _ Pz - 11::‘(1 —p)) (1 — P2,

It is easy to show that h(0) + 7 = hy(0) = ¢(0) =
q((r +In(1 — p))/B) = 0. Based on the above dis-
cussions, we know that the two functions h (x) and
q(x) intersect at a unique point x, > 0 provided

0.5

that 0 < A}(0) < ¢'(0). This implies that when
;]5 < M there exists P, > 0 such that h;(P,) =
q(Py). Since h(xz) = hi(x) — 7 and K'(0) = R} (0) <
¢'(0), both functions h(x) and q(z) intersect pro-
vided that 0 < K7 < (r + In(1 — p))/8. Therefore,
there exists a Py, > 0 such that h(Py,) = q(Pa,) if

A < (r+In(1 —p)).
In(1 —p)3 Bt
In order to show the existence of an interior equilib-

rium of subsystem Sg,, we plot all three functions
with different values of 7, as indicated in Fig. 1.

(13)

3.2. Stability of equilibria of
subsystems Sg1 and Sga
The local stability of E. = (Hj., Pis) of subsystem

S, is determined by the eigenvalues of following
Jacobian matrix

1—r+ 8P —OH,
J, = P . (14)
. B(Hy. — Pry)

It follows from the equation (9) that we have

K —rHi.

K '_.-"3H1*
Jj=
r(K — Hy) BKHy —rK +rHy)
BKH,, K

Its characteristic equation is

P()\) = A? — Trace(J)\ + Det(.J), (16)

045+
041 \
0351 qix)
03
025+
02
015+
011

0.05

T
.

':' hix)=h(x)-t 7

=0.5

T=(r+n{ 1-p))/Bk

I."
% 6.5

< 1 15

Existence of the equilibrinm Es, = (Ha,, Po,) of subsystem Sgo. The parameters are fixed as 3 =3; k=1, r = 3.5,

1450114-5



Int. J. Bifurcation Chaos 2014.24. Downloaded from www.worldscientific.com
by XI'AN JIAOTONG UNIVERSITY on 10/07/14. For personal use only.

C. Xiang el al.

where Trace(J) = 1 — r + GHi., Det(J) =
o ; Oi o T

_(’1}{'%+' }Hf* gl "3;7 ) H,,. According to the Jury

criteria [Murray, 2002; Elaydi, 2005] the local sta-

bility conditions of equilibrium E, are |Trace(.J)| <

14 Det(J) < 2. That is, if the following inequalities

(rKB+r?)H3, < Kr?Hy. + rK?,
(rKB+r%)H3, > (2—-r)K?

+ K(2K 3 + r?)Hy,,
(rKB+r?)H3, > —K?+ K(Kp3+r?)H,,

(17)

hold true, then F,, is locally asymptotically stable.
Similarly conditions can be obtained for the
interior equilibrium Fs, of subsystem Sg,.

3.3. Equilibria for the switching
system (7)

Filippov systems or switching systems have differ-
ent types of equilibria, and these play a key role
in the dynamical behaviors. The classification and
stability of these equilibria have been discussed in
disease and pest control, for example, Xiao et al.
[2012] analyzed the emerging infectious disease out-
break control, Xiao et al. [2013] discussed the drug
response treatment for HIV infected patients, and
Tang et al. [2012] demonstrated pest control with

economic threshold. We now define regular equi-
libria and virtual equilibria for discrete switching
systems.

Definition 3.1. A point Z, = (H,, P,) is called a
regular equilibrium of system (7) if Z, is an equi-
librium of subsystem Sg, and F(H.) < 0; or if Z,
is an equilibrium of subsystem Sg, and F(H.) > 0.
These equilibria will be denoted by E'g.cl and E'Y -
respectively. A point Z, is called a virtual equilib-
rium of system (7) if Z, is an equilibrium of subsys-
tem Sg, and F(H,) > 0; or if Z, is an equilibrinm
of subsystem S¢;, and F(H.) < 0. These equilibria
will be denoted by E‘égl and E%Gz, respectively.

It is difficult to find closed forms for the inte-
rior equilibria of two subsystems, we will employ
numerical methods to examine the existence of dif-
ferent types of equilibria and show their coexistence.
Therefore, in the following, we first choose r and ET'
as bifurcation parameters and fix all others as given
in Fig. 2(a).

Letting ET vary from 0.1 to 1, r vary from
0.1 to 4 and 8 = 3 in Fig. 2(a), we observe that
the parameter space is divided into six regions.
Note that these parameter regions, and hence the
existences of equilibria, depend on the value of r
and ET. For example, when the intrinsic growth
rate r is relatively small (here r € [0.1,0.5]), there

0TF I-]

0.2} 1-2

05 1 15 2 25 3 K- ] 4
T

2
r

(a)

(b)

Fig. 2. Parameter bifurcation diagram for the existence of equilibria of system (7). Here the others are fixed as follows:
p =01,k = 1,7 = 0.5. (a) Two-parameter bifurcation diagram of which r and ET are selected as bifurcation parameters,
where r € [0.1,4], ET € [0.01,1] and 8 = 3 and (b) three-parameter bifurcation diagram in r—ET plane, where r € [0.1, 4],

ET € [0.1,1] and 3 € [1,4], simultaneously.
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does not exist any interior equilibria, as indicated
in region III. If the intrinsic growth rate r lies in
[0.5,1], then there are two regions indicated in I-1
and I-2: in region I-1 only EY - exists, while in
if we let

region I-2 only EY_  exists. Moreover,

r = 0.6, it followq f10111 region 1-2 of Fig. 2(a)
with ET = 0.3. In this case, the unique interior
equilibrium of system Sg, is virtual (here E};Gz),
there is no interior equilibrium of system Sg,. As
ET increases and exceeds a certain threshold value
(here ET = 0.38, as shown in region I-1), the vir-
tual equilibrium E’}GQ disappears, and only the vir-
tual equilibrium Efg-cl appears in the region I-1. If
the intrinsic growth rate r is relatively large (here
r € [1,4]), then there are three regions as indicated
as [I-1, TI-2 and II-3. We observe that in region I1-1,
""g*c:] and EE’Q coexist; in region I1-2, Eggl and
EEGQ coexist; in region 11-3, EE’G. and EI:S.‘GQ coex-
ist. For example, we let » = 2 and ET = 0.15 from
region I1-3, the unique interior equilibrium of sys-
tem Sg, is virtual (here EEG,)'- while the unique
interior equilibrium of system Sg, is regular (here

1 2) When ET increases and exceeds a certain

threshold value (here ET = 0.2), the regular equi-
librium E_ becomes a virtual equilibrium Eg..

2
the vlrtual othbrmm Eg,. »

shown in region 11-2. As ET further increases a.nd
exceeds another threshold value (here ET = 0.46),
the virtual equilibrium E“ becomes a regular

remains virtual. a

and the v1rtual equilibrium Eg

equilibrium EY
Say Gy

remains virtual.

To show the effects of other parameters on the
parameter regions, we carry out three-parameter
bifurcation analyses, i.e. we also let parameter 3
vary from 1 to 4 and plot the r ET plane, as shown
in Fig. 2(b). From this plot, we can see that the
shapes of all regions are changed. Moreover, a new
region [-3 is generated in which equilibrium Equ
occurs, and region I-2 is split into two subregions.

It is clear that if one or more parameters
changes, a number of bifurcations occur in Figs. 2(a)
and 2(b). One of the main purposes here is to design
optimal control strategies to prevent pest outbreaks
or keep the density of pest population below ET.
From the mathematical point of view, this can be
realized if the system can stabilize at the desired
level through the integration of different control
strategies. To realize this purpose, we can choose
the desirable threshold level (here ET) such that

all equilibria of each system such as system Sg,
and system Sg, become virtual. This control strat-
egy is important for pest control [Tang et al., 2012;
Zhao & Xiao, 2013], has been used for fisheries
resources management [da Silveira Costa & Meza,
2006; Dercole et al., 2007]. For example, we could
choose the corresponding threshold level (ET) such
that the interior equilibrium of S¢, becomes vir-
tual, and the interior equilibrium of S¢, becomes
virtual. In Fig. 2, the parameter space which lies
in the region I1-2 meets this kind of objective. For
regions 11-1 and I1-3, we should select the suitable
parameters r and ET, change the regular equilib-
rium of Sg, or S¢g, system to be virtual (see Fig. 2).
Thus, from the perspective of pest management,
the appropriate control strategies and ET should
be designed such that the interior equilibrium of
Sq, and Sg, are virtual simultaneously.

4. Numerical Analysis of System (7)
with ET

In this section, we provide the numerical investiga-
tions of system (7). In particular, we carry out the
bifurcation analysis which can reveal the existence
of multiple attractors, coexistence, initial sensitivity
and switching behaviors.

4.1. Bifurcation analysis and chaos

In order to gain preliminary insights into the prop-
erties of the dynamical system, we first give the one-
dimensional bifurcation diagrams on the parameter
of intrinsic growth rate r and killing rate p. The
analyses are expected to reveal the types of attrac-
tors, and their changes with parameter variations.

We first choose r as the bifurcation parame-
ter and fix all other parameters as follows: p =
0.2, ET = 0.51,8 = 3.98, 7 = 0.1 and initial values
(Ho, Py) = (0.2,0.5). It follows from Fig. 3 that
the switching host-parasitoid system can exhibit
very complex dynamics as the intrinsic growth
rate increases. Especially, the host and parasitoid
can coexist for a large range of r. When r is
increased from 2.5 to 3.2, we can find periodic,
quasi-periodic, chaotic solutions, Hopf or period-
doubling bifurcations. As the parameter r further
increases from 2.6 to 2.84, the system’s behav-
iors suddenly change to chaotic. Moreover, the
quasi-periodic attractor abruptly appears at r =
2.93. at which the quasi-periodic attractor in the
phase plane gives four closed curve [see Fig. 4(b)].
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2 " T
ET=0351
15 =R
dl.“""‘"“‘-'--mxmne.--:..,-:--.z-;--_1\-~.~'f- >
ﬁ;" uh:-Td""::- i b b] - ﬁg||
==
SRR i
1 ARSI E—— T
29 3 31 32
1 1 T T T
Y | . A
.3 06— =5
B
|
& 04—
02~ e — —
4 I 2
; I 1 - =) | |
3 5 29 3 i 32

Fig. 3. Bifurcation diagrams of model (4). For each r, the first 1101 simulated values are omitted to remove the initial
transients and only the next 100 values are plotted. The host and parasitoid populations are plotted for 500 values of r over
[2.5, 3.2]. The other parameters are fixed as p = 0.2, ET = 0.51, 3 = 3.98, 7 = 0.1, and the initial value (Hy, Py) = (0.2,0.5).

The quasi-periodic attractor disappears and goes to
a period solution with period-16 at r = 3.05. Once
the bifurcation parameter r exceeds the threshold
value around 3.09, then a period-halving bifurcation
occurs. Furthermore, a chaotic attractor emerges
abruptly at r = 3.19 [see Fig. 4(a)]. Meanwhile, we
can also find from the bifurcation diagram that the
model (7) exists with multiple attractors for a range

08

0.6

0.5

Parasitoid

04r

0.3

02r

a 02 04 06 0.8 1 1.2 1.4
Host

(a)

of parameter values, for example r € [2.5,2.55] and
[2.85,2.89]. We will address this in more detail in
the coming subsections.

It follows from the bifurcation diagram of
parameter p that the host population can outbreak
for small and large killing rates of pesticides, as
shown in Fig. 5. Most importantly, Fig. 5 clearly
shows how to choose suitable killing rate such that

06 L

0.5F k|

Parasitoid

D4r .|

0.3 |

o2} ﬂ

>

a 05 1 1.5
Host

(b)

Fig. 4. Phase diagram of model (4), the parameters are fixed as p = 0.2, ET = 0.51, § = 3.98, 7 = 0.1, and the initial value
(Hg, Py) = (0.2,0.5). (a) Strange attractor with r = 3.2 and (b) quasi-periodic solution with r = 2.95.
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Host

Parasitoid

Fig. 5. Bifurcation diagrams of model (4). For each p, the first 1101 simulated values are omitted to remove the initial
transients and only the next 100 values are plotted. The host and parasitoid populations are plotted for 500 values of p over
[0.01, 1]. The other parameters are fixed as r =1, ET = 0.7, 3 = 3.2, 7 = 0.1, and the initial value (Hy, Py) = (0.9, 3.5).

the whole system can stabilize at the subsystem S,
and provide a possible explanation on the Volterra
principle. In particular, if p € [0.01,0.12], i.e. small
killing rate is chosen, then the host population can
outbreak (here and in what follows, outbreak means
that the density of host population is larger than
ET); If p € [0.77,0.95], ie. large killing rate is
chosen, then we can see that the host population
can still outbreak. This is because the natural ene-
mies may be drastically affected due to less of food.
However, if we carefully choose the killing rate (for
example, p € [0.13,0.76]), then the host popula-
tion can stabilize in the subsystem S¢g,. All of these
confirm that the interaction between host and par-
asitoid plays a very important role in pest control,
and the control tactics should be designed by con-
sidering this interaction.

4.2. Initial sensitivities, multiple
attractors and coexistence

It is well known that different initial densities of
both host and parasitoid populations can result in
different dynamics, in particular, different outbreak
patterns. Moreover, coexistence of multiple attrac-
tors also depends on the initial densities of the host
and parasitoid populations. Therefore, we will focus

on how the initial densities affect the final states
or host outbreaks, and consequently successful pest
control.

4.2.1.  Initial sensitivities

It follows from the bifurcation diagrams (i.e. Fig. 5)
that the host population can stabilize in the sub-
system Sg,. One interesting question is that, for a
given ET, how do the initial densities of host and
parasitoid populations affect the control strategies.
In particular, what we want to know is how the
ET and various pest-natural enemy initial regions
affect the controls strategies. To show this, we fix
all parameter values as those in Fig. 6. The results
shown in Fig. 6 provide some examples of differ-
ent possible cases. In Fig. 6(a) the initial densi-
ties of pest-natural enemy populations are (0.5, 0.3)
and the simulation result indicates that the density
of the pest population never reaches the given ET
(here ET = 0.7), which shows that the solution ini-
tiating from (0.5,0.3) is free from IPM tactics. If
we set the initial densities as (0.5,0.3), Fig. 6(b)
indicates that the system is free from [PM mea-
sures eventually after chemical and biological con-
trol tactics are applied several times. If we set the
initial densities as (0.5, 0.45) or (0.4, 0.4), the results
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Hlustrating the switch effects of initial densities of the host and parasitoid populations of model (4) on IPM.

The parameters are fixed as v = 1, ET = 0.7, 3 = 3.2, 7 = 0.1, k = 1. The initial densities (Hp, Py) in (a)—(d) are

(0.5,0.3), (0.5,0.35), (0.5,0.45) and (0.4,0.4), respectively.

indicate that the system is free from IPM con-
trol after one or two IPM strategies [see Fig. 6(c)
or 6(d)]. Moreover, if we further discuss the above
cases on the host densities and the parasitoid

densities plane [see Fig. 7(a)], and Fig. 7(b) is an
enlargement of Fig. 6(a), which shows that there
exist five different regions which are denoted by 1,
11, 111, TV, V with different colors. In region 1. the

ET=0.7

E‘?=o.r
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o2
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=
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(b)

[Mlastrating how the pest outbreak frequencies depend on initial densities of the host and parasitoid populations of

model (4) on IPM. The parameters are fixed as p = 0.6, r = 1, ET = 0.7, 3 = 3.2, 7 = 0.1, k = 1. The regions I-V denote
without pest outhbreak, with one, two, three and many times pest outbreak, respectively. (a) The initial densities of the host
and parasitoid population both vary from 0 to 1 and (b) the enlargement of (a).
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pest population never outbreaks and is always sta-
bilized in the subsystem S¢, . as shown in Fig. 6(a).
In region II or 111, the system is free from IPM con-
trol after one or two IPM applications [for exam-
ple, Fig. 6(c) or 6(d)]. In region IV, we should
apply IPMs three times to let the system be free.
In region V, there exist pest outbreaks several times
before the system stabilizes in the S¢, subsystem.
However, when the initial density of host population
is above ET, if we increase the initial densities of
the parasitoid population above 0.2, we only spray
IPMs two times to let the system be free from con-
trol tactics. Therefore, these results confirm that
different host-parasitoid initial densities as well as
host-parasitoid ratios may result in different final
states of the host population.

4.2.2.  Multiple attractors and coexistence

As mentioned before, the switching host-parasitoid
system reveals lots of new dynamic behavior

]
b=
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including the coexistence of multiattractors. To
confirm this and discuss their biological implica-
tions, we fix all parameters as those in Fig. 8 and
choose different initial densities. For example, three
host-outbreak attractors coexist at r = 2.54, as
shown in Fig. 8, from which we can see that these
host-outbreak attractors display different ampli-
tudes and frequencies. If we let the initial values be
(Hg, Py) = (0.1, 1.5), then the solution of system (4)
approaches the first attractor [Figs. 8(a) and 8(b)]
which oscillates with period 3. Note that this attrac-
tor shows that it will take three host generations
for host population outbreak with a middle size.
If we choose the initial value (Hy, Fy) = (2.1,0.3),
then the outbreak patterns for host population are
quite complex, as shown in Figs. 8(c) and 8(d),
from which we can see that the maximal ampli-
tude is relatively large. The third attractor is shown
in Figs. 8(e) and 8(f) with a outbreak frequency
one, where the initial value is (Hg, Py) = (0.1, 1.6).
By comparing these three attractors, we conclude
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Iig. 8. Three coexisting attractors of system (7) with different initial values. The initial conditions from top to bottom are
(Hp, Py) = (0.1,1.5), (2.1,0.3) and (0.1, 1.6) respectively. (a) and (b) Periodic attractor with period 3; (c¢) and (d) periodic
attractor with period 15; (e) and (f) periodic attractor with period 2. The parameters are fixed as follows: r = 2.54, p = 0.6,

ET=04,8=4,7=01 k=1
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Fig. 9. Three coexisting attractors of system (7) with different initial values. The initial values from top to bottom are
(Hgy, Py) = (0.5,1.6), (1.8, 1.6), and (0.8, 0.3) respectively. (a) and (b) Periodic attractor with period 16; (c¢) and (d) periodic
attractor with period 9; (e) and (f) periodic attractor with period 5. The other parameters are fixed as r = 2.35, p = 0.5,

ET=03,8=571=01k=1.

that different host-parasitoid initial densities may
result in different host-outbreak solutions. Another
three host-outbreak attractors coexist as shown in
Fig. 9. From pest control point of view, the inte-
grated control strategies may strictly depend on the
initial densities of both populations. Because differ-
ent attractors have different outbreak amplitudes
and different outbreak frequencies.

Figures 8 and 9 indicate that in order to con-
trol the host population successfully such that its
density decreases and falls below ET, the initial
densities of both host and parasitoid populations
should be monitored and tracked carefully. The
basins of attraction with respect to three different
host-outbreak solutions of coexistence are shown in
Fig. 10. The horizontal axis and vertical axis are the
host and parasitoid initial values, respectively. In
Fig. 10(a), the initial value ranges are 0 < Hj < 3,
0 < Py €2 and Fig. 10(b) is an enlargement of the
Fig. 10(a) with range 0 < Hp < 1,0 < B < L.
Figure 10 illustrates the basins of attraction for
three host attractors — the purple, vellow and

green areas are the attraction regions for the peri-
odic solutions shown in Figs. 8(a) 8(c), respectively.
According to the amplitudes of periodic attractors
shown in Fig. 8, we conclude that the purple area
may be an ideal initial area for host control. Other
basins of attraction of two coexisting attractors are
shown in Fig. 11. Note that the fractal properties
of the basins of attraction self-similarity and fractal
basin boundaries can be clearly seen from the two
basins of attraction. Moreover, we can also see that
the line Hy = ET separates the attraction regions
into two parts, which reveal different patterns.

4.3. Switch-like behavior

To understand how the different number of natural
enemies releases (here parasitoid) affect the final
state of the host population, we rewrite the subsys-
tem Sg, as follows

Sey(t+1) = [(1 — p)H(t)e \~FH-BPO,

H(t)(1—e POy 17T (18)
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ET=0.2

E-O.J

Fig. 10. Basins of attraction of three coexisting attractors of system (7), the horizontal axis and vertical axis are the host
and parasitoid initial value Hy, Fy respectively. (a) Basin of attraction of three periodic solutions shown in Fig. 8, where the
intervals of initial values are 0 < Hy <3, 0 < Fy < 2 and (b) an enlargement of (a) with range 0 < Hy < 1,0 < Fy < 1. The

other parameters are fixed as r = 2.35, p=0.5, ET =0.3, 3

where 7; = 7 (without random perturbation at gen-
eration t) or v = 7 + cu (with random pertur-
bation at generation t), w is a variable uniformly
distributed on [—1,1] and ¢ > 0 represents the
intensity of noise. What we want to address is
how the intensity of noise affects the host-outbreak

5 7=01,k=1.

amplitudes and whether the stable attractors switch
from one attractor to another or not.

To show this, we fix the initial values (Hp, Py) =
(0.1,0.5) and the other parameters as those in
Fig. 12. If we randomly perturb the releasing con-
stant 7 every 100 generations with an intensity

Parasitoid

Fig. 11. Basins of attraction of two attractors of system (7), the horizontal axis and vertical axis are the host and parasitoid
initial value Hy, Py respectively. (a) Two periodic solutions coexist with 0 < Hy < 3, 0 < Fy < 3 and (b) an enlargement of
(a) with range 0 < Hy < 1, 0 < Py < 1. The other parameters are fixed as r = 2.52, p=0.3, ET =03, §=5,7=0.1, k= 1.
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Fig. 12. Three attractors’ switch-like behavior of system (4). Here the random perturbation has been applied at each, 100
generations. The other parameters are fixed as r = 2.35, p = 0.5, ET =03, 3=5, 7 = 0.1, k = 1, o = 0.1, the initial value

(Ho, Po) = (0.1,0.5).

o = 0.1, then the attractors’ switch-like behavior
occurs. For example, within the first 100 genera-
tions the first stable attractor is the host-outbreak
solution with medium amplitude. Once the ran-
dom perturbation occurs at the 100th generation,
the system quickly switches to the stable attrac-
tor with large amplitude. At the 200th generation
the switching transient does not occur although the
system experiences a random perturbation. Further,
at the 300th generation, the second host-outbreak
attractor can switch to the first attractor. At the
400th generation, the attractor can switch to third
host-outbreak attractor with small amplitude again.
Note that if we run the model continuously, then
different switchings could occur among those three
stable attractors, as those shown in Fig. 12.

To address the effects of different killing rates
on the switched-like behavior, we rewrite the sub-
system Sg, as follows

Se,(t+1) = [(1 — p) H(t)e I—"%=BP®),

Ht)(1 —ePPOy 4 7T (19)
where p; is a random perturbation of p, which
is defined as follows: p; = p (without random
perturbation at generation t) or p; = p + nu

(with random perturbation at generation t) and
7 > 0 represents the intensity of noise. By extensive

numerical studies, we can see that the similar
switched-like behavior can occur once the killing
rate is randomly perturbed at every 100 genera-
tions with relatively large intensity (i.e. n > 0.1),
as shown in Fig. 13.

4.4. The key factors for switching
frequencies

In this section, we will discuss the effects of key
parameters on the switching frequencies of sys-
tem (7). For convenience, we provide the definition
of switching frequencies as follows.

Definition 4.1. In system (7), if H({) > ET and
H(t+ 1) < ET (or H(t) < ET and H(t + 1) >
ET), then we say the system experiences one time
switch and ¢ is called as switch-point. The interval
between two switch-points is defined as switching
frequency.

For successful pest control, the switching fre-
quencies play an important role. For example, if the
switchings occur frequently, then the control tac-
tics must be applied more frequently, i.e. the pesti-
cide applications and releasing strategies should be
implemented frequently, and this is not cost effec-
tive and may result in adverse effects; if the patterns
of switching frequencies are complex, then it is dif-
ficult to design suitable control measures for pest
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other parameters are fixed as r = 2.35, p = 0.5,

control since we do not know when and how control
strategies should be adopted.

To address the effects of parameters on switch-
ing frequencies and number of switches, we let the
initial values and intrinsic growth rates vary, as
shown in Fig. 14, from which we can see that the
switching frequencies have different patterns with

Generation

Multiattractors’ switch-like behavior of system (4). For each p plus a random disturbance for every 100 times. The
ET =03,8=>5,7=0.1, k=1, n=0.1, the initial value (Hy, Py) =

(0.1,0.5).

different initial values and different intrinsic growth
rates. For example, the switching frequencies with
different initial values (here (Hy, Fy) = (6,3), (0.8,
0.5), (1.6, 0.8), respectively) are always unstable
when r = 3.3, as shown in Figs. 14(a)-14(c),
which can be confirmed by plotting the switching
frequencies and number of switches, as shown in

50 100 150

200 250 300 350 400

Generation

Iig. 14. Switching frequencies of system (4) about different r values and initial values with 400 generations. The green color
regions denote the density of host population above ET (i.e. H(t) = ET) and the blue color regions denote the host density
below ET (i.e. H(t) < ET). (a)-(c) r = 3.3 and initial values are (Hy, Py) = (6,3), (0.8, 0.5), (1.6, 0.8) respectively and
(d)—(f) » = 2.7 and initial values are (Hy. Py) = (6,3). (0.8, 0.5). (1.6, 0.8), respectively. The other parameters are fixed as
ET =05, 6=4717=01 k=1, p=05.
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Figs. 15(a)-15(c). However, if we fix the same ini-
tial values and r = 2.7, then the switching fre-
quencies are eventually stable [see Figs. 14(d)-14(f),
and Figs. 15(d)-15(f)] since the switching frequen-
cies are stable at 3. Moreover, we find that the
switching frequencies converge more quickly if the
host-natural enemies ratio is relatively small. For
example, the switching frequencies are stable when
the system experiences period fluctuation switching
for initial values (Hg, Py) = (6,3) [see Fig. 15(d)].
Especially, the system just experiences two times
or five times switching at (Hp, Fy) = (0.8,0.5) or
(Ho, Py) = (1.6,0.8) (see Fig. 15(e) or 15(f), respec-
tively), and the switching frequencies quickly con-
verge to three.

Similarly, we can investigate the effects of dif-
ferent killing rates on the switching frequencies. For
example, the switching frequencies with different
killing rates (i.e. p = 0.1,0.5,0.8) are eventually
stable when 7 = 2.7, as shown in Figs. 16(a)-16(c).
The results show that the smaller killing rates will
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Number of switches (166 time switches with 400 generations) and switching frequencies corresponding to Fig. 14.

lead to longer switching frequencies. Moreover, we
find that there exists a long time vibration for large
killing rate (i.e. p = 0.9) before the switching fre-
quencies are stable, which is shown in Fig. 16(c).
Furthermore, letting the released number 7 vary,
we observe that the switching frequencies display
big variances, as shown in Figs. 17(a)-17(c). To
compare Figs. 16 and 17, we can find that the
chemical control is more effective than biological
control to keep the switching frequencies remain
stable.

In order to show more details of the effects of
key parameters on switching frequencies, we first
introduce the following definition

Definition 4.2. Mean switching frequency is the
mean of all switching frequencies between 301 to
600 generation.

The effects of key parameters p. 7, ET and r on
the mean switching frequency are shown in Fig. 18.
It is shown that the mean switching frequency
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Fig. 16. Switching frequencies with different p values. The parameters are fixed as ET =05, =4, 7 =01, k=1, r = 2.7,
and the initial values are fixed as (Hy, Fy) = (0.8,0.5). (a) p=0.1, (b) p=0.5 and (¢) p = 0.9.

decreases as the intrinsic growth rate r increases,
i.e. high intrinsic growth rates are associated with
frequent switching. In Figs. 18(a) and 18(b), the
mean switching frequency of the host population
decreases for different ET (here ET = 0.2 and
ET = 0.5). Most importantly, the mean switching
frequency can suddenly jump from a small value to
a larger value at some critical points of r, which
implies that the selection of ET may be crucial in

prolonging the pest outbreak period. Figures 18(c)
and 18(d) indicate that the bigger killing rates (here
p = 0.2 and 0.6) will lead to the smaller of mean
switching frequency. Therefore, if we want to pro-
long the pest outbreak period, we should let the
mean switching frequency be smaller. Figures 18(e)
and 18(f) show that when r is bigger (here r =
2.7), the mean switching frequency decreases and
is gradually stabilized. Moreover, when 7 is bigger,

200 250 Joo 380 400
Generation

Fig. 17. Switching frequencies with different 7 values. The parameters are fixed as ET =05, =4, p=01, k=1, r =27,
and the initial values are fixed as (Hp, Fp) = (0.8,0.5). (a) 7= 0.1, (b} 7 = 0.2 and (c¢) 7 = 0.3.
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Fig. 18. Mean switching frequencies with r changing from [1.5, 3]. For each mean switching frequency, the first 300 generations
are omitted to remove the initial transients and only the generations between 301 and 600 are plotted. (a) and (b) 3 = 4;

T=01Lk=1,p=05(c)and (d) =4, 7=01, k=1, ET =05; (¢)and () =4, 7=0.1, k=1, ET = 0.5, p= 0.5.

The initial values are fixed as (Hy, Py) = (0.2,0.5).

the mean switching frequency becomes longer. It
implies that if we aim to prolong the pest outbreak
period, we can release more natural enemies.

5. Discussion

As mentioned in the introduction, the ET is an
important factor in IPM strategy. We need to keep
track of host (pest) populations for an IPM and
keep the pest density below ET. In this paper,
we discussed the switching discrete host-parasitoid
model with IPM which is extended from the classi-
cal Nicholson-Bailey model. In the switching model,
control measures switching strategies are
guided by the ET. This switching system is divided
into two subsystems, the control-free subsystem S¢,
and controlled subsystem S¢,.

We discussed the existence and stability of sev-
eral types of equilibria of the full switching system.
We gave two- or three-parameter bifurcation dia-
grams that reveal the regions of different types of

equilibria including regular and virtual equilibria.
We numerically showed the existence of different
types of equilibria and the coexistence in parame-
ters 7—ET coordinate plane [see Fig. 2(a)]. We noted
that if the parameters  and ET vary simultane-
ously, the equilibrium regions of Sg, and Sg, are
changed from regular to virtual, or from virtual to
regular [see Fig. 2(b)]. Thus, from the perspective
of pest management, appropriate control strategies
and ET can be designed such that the interior equi-
librium of S¢g, is regular, and the interior equilib-
rium of Sg, is virtual.

Our bifurcation diagram of parameter p indi-
cated that the host population can stabilize in sub-
system S, (see Fig. 5). The interaction between
host and parasitoid plays a very important role
in pest control, and the control tactics should be
designed to take into account this interaction. Mor-
ever, the initial densities of host and parasitoid pop-
ulations affect the control strategies (see Fig. 6),
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and our analysis showed five different possible cases
(always be free, be free from one time, two times,
three times, and several times [PM). Examining the
host densities and the parasitoid densities plane (see
Fig. 7),we observed that different host-parasitoid
initial densities as well as host-parasitoid ratios may
result in different final states of the host population.

The bifurcation diagram of parameter r pro-
vided evidence that the switching discrete system
may have very complex dynamics including the
coexistence of multiple attractors and switched-like
behavior among attractors (see Fig, 3). To confirm
the coexistence of multiple attractors and discuss
their biological implications, we fixed all parameters
as those in Fig. 8 and chose different initial densities
to show that there exist three host-outbreak attrac-
tors at r = 2.54 and these host-outbreak attrac-
tors display different amplitudes and frequencies.
Therefore, the IPMS may strictly depend on the
initial densities of both populations. In order to
control the host population successfully such that
its density decreases and falls below ET, the ini-
tial densities of both host and parasitoid popula-
tions should be monitored and tracked carefully.
The basins of attraction with respect to three differ-
ent host-outbreak solution of coexistence are shown
in Fig. 10, with the purple area being an ideal
initial area for host control, the green area being
an undesirable area for control because the pes-
ticide applications and releasing strategies should
be implemented frequently. To address the effects
of the different number of natural enemies releases
and different killing rates, we randomly perturbed
the releasing constant 7 or p every 100 generations,
and we noted that attractors’ switch-like behavior
occurs (see Figs. 12 and 13).

Finally, we considered how the key parameters
and initial values of both host and parasitoid popu-
lations affect the host outbreaks, switching frequen-
cies or mean switching frequency, and consequently
the relative biological implications with respect to
pest control are discussed. For successful pest con-
trol, the switching frequencies play an important
role. If the patterns of switching frequencies are
complex, then it is difficult to design suitable con-
trol measures for pest control due to the unpre-
dictable nature of when and how control strategies
should be adopted [see Figs. 14(a)-14(c) and
15(a)-15(c)]. If the patterns of switching frequen-
cies are stable, the switching frequencies converge
more quickly if the host-natural enemies ratio is

relatively small [see Figs. 14(d)-14(f) and 15(d)-
15(f)]. In order to show the effects of key param-
eters p,7, ET and r on switching frequencies, we
generated Fig. 18 that shows that the mean switch-
ing frequency decreases as the intrinsic growth rate
r increases, i.e. high intrinsic growth rates are asso-
ciated with frequent switching.

In a real world, the host populations have dif-
ferent growth, and the parasitoid populations can
affect host density at different ET. So, we should
consider this switching diserete system with func-
tional response and discuss the switching discrete
system with Beverton—Holt growth. We leave these
to a future investigation.
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