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ABSTRACT. We consider a self-organized system with a hierarchy structure to
allow multiple leaders in the highest rank, and with free-will. In the model, we
use both Cucker-Smale and Motsch-Tadmor functions for the pair influence of
agents, and we derive suffcient conditions for such a system to converge to a
flock, where agents ultimately move in the same velocity. We provide examples
to show our suffcient conditions are sharp, and we numerically observe that such
a self-organized system may have agents moving in different (final) velocities
but maintain finite distance from each other due to the free-will.

1. Introduction. Flocking, a dynamic outcome of a self-organized system with
multiple agents, is achieved via a process of adjusting the individual velocity of
each agent according to the agent’s relative locations with others in order to reach
a certain consensus (to move in the same speed). Key factors leading to flocking is
the hierarchy structure of the system under consideration, the degree to which each
agent can adjust its velocity according to the external environment (free will), and
the pairwise interaction (influence).

Pairwise influence. We start with the well recognized Cucker-Smale model [9, 10]
and its extension, the Motsch-Tadmor model [27]. In these models, a self-organized
system consists of agents ¢ = 1,---, N where agent ¢ is characterized by x; (the
location) and v; € R? (the velocity). The system adjusts its relative locations of all
agents simultaneously, following the rule:

Edfz(t) = ’Ui(t), (1)
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d N
i) =« Y bl — ) (v5(8) — wilt)),
=L

fori=1,2,...,N. In what follows, we let N={1,--- /N}.

In the model above, o measures the strength of self-adaptation from the pairwise
influence, b;; is the pairwise function which is given by b;; = ag-s (for the Cucker-
Smale influence function) and by af\f T (for the Motsch-Tadmor function), where

x(lzj — i)
0¥ (laj — ill) = =5
MT X(lzj = @il])
a; Xi — Tj = 5
(%] (” J 74||) Z X(ka*‘rz”)
1<k<N

and x(r) = W with a given constant 5 > 0.

Flocking phenomena has been observed in a wide range of fields in biology, ecol-
ogy, robotics and control theory, sensor networks, sociology and economics where
interacting agents use their internal relationships to achieve a consensus eventually.
For example, a price system may emerge from a complex market environment, and
a common language may emerge from the evolution and interaction of multiple
languages. See [30, 11, 21] and references for more examples.

Vicsek developed a kinematic model to examine the motor behaviour in systems
of biological particles with interaction, and interesting simulations based on his
model illustrated the dynamic processes how a group reaches consensus[29]. The
model proposed by Cucker and Smale in 2007 [9, 10] represents some significant
simplification of the Vicsek model, and this study has since inspired a lot of mod-
elling research (see [25, 21, 32] and references therein for more details) including
the modification by Motsch and Tadmor that was used to reflect the observation
that influence between agents should perhaps be measured according to their rela-
tive distances. This extension led to the aforementioned pairwise influence function
which is non-symmetric. In what follows, we will refer to CS-model (influence func-
tion) and MT-model (influence function) whenever the influence function is given
by a%s and a%f T respectively.

Hierarchical organization. In both CS-model and MT-model, agents are as-
sumed to be equal in terms of their influence in self-regulating the entire system.
Substantial research activities and evidence, including those in [16, 21, 18, 15],
however show that there exits leader-follower relationship in aggregation. The ex-
periments conducted by the Vicsek’s group using 10 homing pigeons tracked by
high-resolution lightweight GPS devices clearly supported the existence of leader-
follower relationship and its role in flocking, and indicated that the hierarchical or-
ganization among the flight group makes migration more efficient than egalitarian
one [24]. There are some mathematical models developed to reflect this phenomenon
including the work of Shen [21] that considers hierarchical leadership where each
agent is influenced only by its superiors in a specified hierarchy. This model was
later extended in Li and Xue [32] (using a discrete-in-time model) in which rooted
leadership, where there is an overall leader who influences all agents either directly
or indirectly, is incorporated. On the other hand, Ballerini and his collaborators
discovered that each agent only impacts on an average fixed number of neighbours
(about six or seven in the discovery)[23]. Therefore, in many applications, not every
pair of agents in the group can have direct influence. Inspired by these studies, we



CASCADE FLOCKING WITH FREE-WILL 499

propose in this paper to consider flocking for a self-organized (continuous- in-time)
system with rank hierarchy. A precise definition of such a system will be given in
the next section, but vaguely speaking, a system with rank hierarchy is a system
with different ranks, where agents in a given rank can only be influenced by the
agents in the same rank ¢ (within rank influence) and/or by agents from the rank
directly above. In comparison with [15], we use continuous-in-time model since
many consensus dynamics such as bird flocking and fish schooling take place in
continuous-in-time processes. Note also that we will consider the case where the
highest rank may have multiple agents, so the system can have multiple leaders
with coordinated leadership.

Free will. Our model will also incorporate free-will, with an aim to addressing
whether this impact on the system’s flocking. It was noted in that free-will exists
in every life from cellular organisms to humans [8]. It is natural to ask what kind of
free-will will not destroy the flocking of interacting agents. Cucker and Huepe added
this free-will term in the CS model, where the free-will is considered as depending
on the relative velocity [12]. Shen also incorporated the free-will mechanism in his
work, and Shen’s results on flocking were later improved in [20] using discrete-in-
time models. See also the work of Li and Xue [33] for discrete dynamical systems
with free-will. Here, we consider the CS or MT model and a more general model with
rank hierarchy with free-will using continuous-in-time dynamical systems, and we
obtain sharp sufficient conditions for the systems to possess the flocking behaviour.

2. Model description: Hierarchy of social ranks and free-will. We start
with the definition of a hierarchy of social ranks.

Definition 2.1. (HR model) A HR model is defined as a self-organized system
with N agents, where we assume that a). there exists K ranks (where K > 1 is
an integer), and the m-th Rank R,, has N,, agents; b). for agent ¢ is in R,, with
m > 1 we have
dl‘i
dt
d’Ui
o = > bij(|z; — i) (vj — vi);

JERm _1URm,j#i

:Ui

(2)

and ¢). for agent i € Ry we have

d.’ﬂl‘ — v
b (3)
d’Ui
a @ o bi(ley — i) (v — i),
JER1,jFi

with o and b;; as defined earlier.

Note that if there is only one agent in R;, the HR model is just the natural
generalization of the hierarchical fellowship (HL) model from discrete- to continue-
in time dynamical systems. We refer to Figure 1 for an illustration.

Similarly, we can define a HR model with free-will, characterized by functions f;:

Definition 2.2. (HR model with free-will) A HR model is defined as a self-
organized system with N agents, where we assume that a). there exists K ranks
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FIGURE 1. RH models with a single leader (left) and multiple lead-
ers (right).

(where K > 1 is an integer), and the m-th Rank R,, has N,, agents; b). for agent
iis in R, with m > 1 we have
dCL‘Z‘ — v
a
dvi
=a > byl - ml e - )+ i)

dt ) .
JERm—1URy,,j#i

(4)

and c). for agent i € Ry we have

d.ﬁi — v
> ®)
d’Ui
o= > byl - @l ) + £,
JER1,jFi

with o and b;; as defined earlier. f;(t) represents the free-will of the agent “i”.

Let {(z;,v;)}X, be a solution of a HR-model. As usual, we use dx and dy
denote the corresponding diameters in position and velocity phase spaces. Namely,
we define

dx = Inax lz: — 5],

_ (6)
dy = max [|vi — vj].

Here || - || denotes European norm.
We say the model system converges to a flock if

supdx(t) <00 and - fim dy(¢) =0 0

for every solution {(x;,v;)}}¥, of the model.
Before stating our main results, we make a remark about the influence function
b;; for both CS-function and MT-function. For ¢ € Ry, the influence function is
bij = 7)((”37] _ le), ] € R and j #Z
N
or
x(lz; — i)

> x(lzx — i)’

bij =
kER;

jER and j#1.
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From the definition of x and by rescaling « if necessary, we have

Xy <1, > bl —all) < 1.

JER1,iF£]
Therefore, let b;; =1 — ) b;;, we have
i#£j
> by =1
JER1

For ¢ € R,, with m > 1, we have

o _ Xz =zl

ijiNm—l“v‘Nm, jeRm—lLJRm and ]#Z

or
X(llz; — i) , o,
bi; = jE€ERn_1UR, and j#i.
Y > Xk — ) " "
kERm—1URy,

From the definition of x and by rescaling « if necessary, we have
x(r) <1, > bij(llzj — zill) < 1.
JERm—1URW, i#£]

Therefore, let b;; =1 — > b;;, we have

i#]
> b=1

jERnl—lURm
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3. RH flocking. In this section, we first consider the flocking for a system with a
single leader and then use an induction argument to extend the results for the HR

models with a general cascade influence structure.

3.1. Flocking with a leader. We start with a special HR model with an overall
leader who can directly lead all followers, where all followers can influence each

other.

Definition 3.1. (HR with a leader) A HR with a leader is a self-organized system
with N + 1 agents, with the agent “p” being the leader with a constant velocity
denoted by v, € R"™ and position denoted by by x,(t) € R™. All other agents,
agents (7 € N), are called followers and they have mutual influence on each other.

Following the definition,

dvy, .
a
and for the followers, {(x;,v;)}ien satisty
dIi
a "
d’U,’

a > billry — @) (v — ).

JeENU{p},j#i
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In what follows, we use DV to denote the upper-Dini derivative. We also define
dx, = max||z; — z,| and dy;, = max ||v; — vp]|.
1€EN €N

Lemma 3.2.

DTdyx, <dy,,

1
D*dy, < —amX(Xm)dVr

Proof. First, we can easily show that DTdx; < dy; using the same argument for
Theorem 3.5 in [27].
Secondly, we consider dy, (¢). v; with ¢ € N satisfies

<1.)Z‘71'}p,’l}i7"0p >= <« Z bij(HIZ?j7!172'“)(’1)]‘71)7;)71}p+’l}p,’l)i77}p>
JjeNU{p},j#i

= E bij <vj —Vp, v —Vp > —a <V — Vp, U — Vp >
jeNu{p},j#i

IN

2 2
a g bij < vj —vp,v; — vp > Fabydy, — aapdy
JEN
—a <V —Up,Vj —Up >

IN

QY bijdy, + abiydy, — abipdy, — o < v; = vy, v — v, >
jeN

=a E : bijd%/l *O‘bipd%u —a <V —Up, Vi —Vp > .

jeNU{p}

As > b =1, we have
jeNU{p}

. . 2 2
<0y = Vp, v — Vp >Z adyy — abipdyy; — a < v — U,V — Vp > .

For a given time t, we can choose agent “i”, such that dy1(t) = ||v;(t) — vp(¢)|. If
we choose by, (t) = af?(t), then,

1
Dtdyy < —abpdyy < —o x(dx1)dvt,

Therefore, if we choose b;,(t) = a7 (t), then,

X)) =@,
> () — uil®)

DTdy, < ablpdv1 < -«

keNU{p}
For 0 < x(|lvi(t) — vk (t)]]) < 1, we have 0 < > x(JJui(t) —ve(®)|) < N + 1,
keNU{p}
then,
Dtdy, < — dx1)d
vi < OéN X x(dx1)dy1.
Therefore, for both b;,(t) = acs (t) and by, (t) = aP™(t), we have
1
DVdy, < —
dy1 < N 1X(dX1>dV17

completing the proof. O
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Theorem 3.3. If the function x(r) satisfies fooo x(r) = oo, the subsystem of all
followers converges to a flocking, namely if (zp,v,) and (z;,v;) is an arbitrarily

given solution of (8)-(9), then supdx1(t) < co and tlim dy1(t) =0.
t>0 oo

Proof. We used the energy function introduced by Ha and Liu as follows:

1 Xm(t)
Fo(t) = dya(t) + a5 /O \(s)ds.

We apply Lemma 3.2 to DT E;(t) to obtain

DYE(t) < DVdyy(t) + amx(Xm(t))D+dX1 (t)
1 1
< —Oémx(dx1)dv1(t) + amx(d)n)dm(t) =0.

So the energy function Ey(t) is decreasing. For [ x(r)dr = oo, we can choose a
C
constant C7 > dx1(0) such that dy1(0) = aﬁ fdxll(o) x(s)ds, and hence

1 dx1(t) 1 dx1(0)
<
Nl /0 x(8)ds < dy1(0) + aN 1 /0 x(s)ds,

from which it follows that

dy1 (t) +«

1 Cq 1 ClX](O)
) <ag [ x@dstag [ s,
N+1 dx1(0) N+1 dx1(t)

and hence

IR
dyi(t) <a / x(s)ds.
NA+1 Jax,@

As dy1(t) and x(s) are both positive, we deduce that dx1(t) < Cy for ¢ € (0, 00).
Using the decreasing property of x(t), we obtain x(dx1(t)) > x(C1) and

D+d\/1 S —

1
Ch)dy1(t).
N Cdva(t)
By Gronwall’s inequality, we have dy, (t) < dy1(0)e=C1*, where C} = aﬁx(C’l).

Obviously, tlim dy, (t) = 0. O
—00

Remark 1. The model considered in the above theorem is a natural extension
of the analogous RL model from discrete-time systems to continuous-time systems.
We used the idea of Motsch and Tadmor [27] to allow the influence between a pair
of leader and follower or a pair of followers rely on relative positions and velocities,
however we cannot apply Lemma 3.1 in paper [27] due to the lack of symmetry
between the leader and followers.

3.2. Flocking with multiple leaders. We now extend the results to HR systems
with multiple leaders. We consider

Definition 3.4. (HR with multiple leaders) A HR system with multiple leaders is
a self-organized system which contains N agents, with V7 leaders forming the rank
Ry and N followers forming the rank Ry as follows: for an agent “i” (one of the
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leaders), its position z; and velocity v; satisfy

da:i — v
a 10)
d’Ui
7 = > bijllek — @il (v — vi);
kERy ki

for an agent “j” (one of the followers), its position x; and velocity v; satisfy

dx;
@ Y .
dv;
d7tj =a Y ballle—a)) (o = vy).
I€R,URs,I#j

In what follows, the diameters of position and velocity are given by

dx.. = — dxy. = _
Xy = Iax ke — 21|, dx, peimax |z — |
and
dv,, = max |z, — x|, dv,, = pemax l[vs — v;l.

Theorem 3.5. If the influence function b;; = ag-s and x(r) satisfies fooo x(r) = oo,
then the system (10)-(11)converges to a flock. If the influence function b;; = ai\]/-[T
and x(r) satisfies fooo X2(r) = oo, then the system (10)-(11)converges to a flock.
Proof. Using the same proof of Theorem 3.3, we have D dx,, < dy,,.

For the system (10) of leaders, if the influence function b;; = a%s and x(r)
satisfies [~ x(r) = oo, we use the argument of theorem 3.2 in [25], or if the influence
function b;; = af‘fT and x(r) satisfies fooo x%(r) = oo, then we use the argument
of theorem 3.4 in [27], we can find positive constants 517 > 0 and dy; > 0 so that
dy,, (1) < dvu(O)eiﬁ“t and dx,, (t) < dy; for all £ > 0.

We now consider dy,,(t), when agent “i”
one of the followers. Then

(1393}

is one of the leaders and agent “j” is

dv;
To—a 3 bl - ail) (e - ),
kER1,k#i
dv;
g = > balle— i - ).
I€ER1URg,lI#j
From the remark at the end of Section 2, we have ) b =1and > by =1
kERq lER1UR>
Then,
d . .
a”v, — ’Uj||2 =2<v; — Vj, Vi — V5 >

=2<a Z bik (v —v;) — Z bji(vg —vj),v; —v; >

kER; ,k#i lER1UR,I#]

=2<a Z bik (v — v;) — « Z bji(v — vj),v; —vj >

keERy lER1UR>
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=2« E E birbji < vp — v, v —v; > 20 < v; — V4,V — v >
k€ER1 lER1UR>

= 2«a Z Z bikbji < vp — v, v —v; >

kE€R1,k#lIERIURy
— 20 < v; —vj,v; —v; >

For a given time ¢, we choose agents “i” and “j” such that dy,, = ||v; — v;|. We

distinguish the following two cases:
Case 1. dy,, < dy,,. In this case, we have
+
D dv122
< DF i —v;]?

= 2« Z Z bibji < vp — v, v —v; >

k€R1 IER1URs,I#k

+2a Z Z bixbjidy12dy11

k€ERy IER1URy,l=k

— 2 Z Z bixbjidy12dy11

k€R1 lER1UR2,l=k
— 20 < v; —vj,v; — v >

< 2adyiadyin —200 Y > bubjdyviadyn
k€R1 lER1URs,I=k

— 20 < v; —vj,v; —v; >

If bir, (t)bju(t) = S (t)a§;® (t), then

51
bkt (0) = 2 X0 — Oy (0 = 0]
If b (t)bji(t) = a%T(t)a%T(t), then
oy oy xUlz(t) — e (@)]) Xl (8) — = ()]])
B S Y(F0 O] R DX X RN O]
meR, n€R1+Ro
> e X(®) = s @ Dl () — (o))
Therefore, for both b (t)bji(t) = agcs(t)ajcls(t) and by (t)b;i(t) = a%T(t)a%T(t),
we have
D+dV12 < aan - a(l + ﬁX(dll)X(Xmz))de
< Ozdvll(O)e_But — Ck(l + 4N1 —T‘N2 X(dll)X(de))de'

Case 2. dy,, > dy,,. Using a similar analysis in Case 1, we conclude for both

bir(t)bju(t) = aG (£)a§® (t) and b ()b (t) = aff ™ (t)a)/™ (t), that

D*d}, < 2ad},, —2a Z Z birbjdy,, — 2ad?,
k€ER1 IER1,I=k
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= —2a ) > bubudy,

k€ER, lER,,l=k

1 2
< —QOémX(dll)X(qu)de'
Then D*dy,, < —agw; x(din)x(dx,,)dviz since —a(l+ gz x(din)x(dx,,)) <

_a]\/%X(dll)X(qu)'
From the analysis above, regardless which case occurs, we have

D+dV12 < aan(O)eiﬁut -« X(dll)X(erz)qu'

N1+ Ny
We now introduce an energy function

(07

an(O)e_ﬁut +
P11

dxu(t)
E(dx,asduia) (1) = d(®) + ) [ s
0

N1+ Ny
Then,
D+E(dX127 de)(t)

Sl)%kdvu (t) - aan (O)eiﬁllt + o (dll)X(qu (t))dvu (t) <0.

Ny + No ¢

So E(dx,,,dv,,)(t) is decreasing on [0, +00), and we obtain

«a dx12 (t)
B (dll)/ x(s)ds
B 0

o 1 dx,,(0)
<d —d ——x(d ds.
< i 0)+ 5,0 + o) [ (s

dV12 (t) + an (O)e_ﬁllt +a

1
Ny + N, X

Then,

dy, dy, + dy, 4+« ! d o d
£) < dvy, (0) + —dys (0) + .
12( ) = 12( ) ﬂll 11( ) Nl NQ X( 11)~/dX12(t) X(s) S

For [ x(s)ds = oo, we can find a constant diz > dx,,(0) such that dy,,(0) +
o d
EdVH (O) = O‘m)((dll) fd;:g (0) X(S)dS Then7

1 dxq, (1)
dy,(t) < —a—x(d d
vt <~ [ s

1 di2 1 dx,4(0)
+a—x(d / s)ds + a—— x(d / s)ds
- (d11) dxu(o)X( ) N1+N2X( 11) ; x(s)

1 di2
<a———x(d ds.
Cogtn) [ s

X12(¢)
For ¢ > 0, we can easily deduce that dx,,(t) < d12. Furthermore,

1

mX(dll)X(d12)dv12(t). (12)

d _
adv12 < ady,, (0)e Put _ o

Let Cia = a g x(din)x(dia).
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(i). If Cy2 # P11, then (12) implies the following:

d
eclztadv12 < advu(O)e*B“teC”t — 0126012th12 (t);
d
%ecmthH S aan(O)eiButecmt;
[0 o
dy,, (1) < (dy,, (0)— ————dy;,, (0)e~ 2t + ——qy. (0)e P,
V12( ) = ( V12( ) Cla _611 V11( ))6 + Cio —,811 V11( )6

We can easily deduce that

0 < (dyy, (0)— =——

- C’12 - 611

(07

—d 0)e Pt
Ci2 — f11 vis (0)

an (O>)€_Cl2t +

for all £ > 0.

We can choose constants 12 = min{Ci2, 811} and

a Q
0 <A12 - 2maX{|dV12 (O) 012 — ﬁlldVH(O)L |012 — BlldV11(0)|}

such that dy,,(t) < Ajge=Fi2t,

(ii). If Ch2 = P11, similar argument as above, we can find a constant 0 < Aj;
and 0 < 3% < P12, such that dy,, (t) < Ate Pizt,

For dx,, < dx,, +dx,, and dy,, < dy,, + dy,,, we have dx,,(t) < oo for t > 0,
and tlgglo dv,, (t) = 0. From the above argument, we have dx(t) < oo for ¢ > 0 and

lim dy(t) = 0 m

3.3. Cascade flocking. We now extend our results to general hierarchy with ranks.
We first make the following observation:

Lemma 3.6. Let (x;,v;) be an arbitrarily given solution of (2) and (3). Define

dx,, = kegﬁ)e(Rj lzx — 2| and dy, ; = keRmﬁ)éRj ok — vl If dx, ., (t) < oo and

tlim dy, ,.,(t) =0 for all i, then the system converges to a flock.
—00 o

Theorem 3.7. If the influence function b;; = a%s and x(r) satisfies fooo x(r) = oo,
then the system (2)-(3) converges to a flock. If the influence function b;; = a%T
and x(r) satisfies fooo x2(r) = oo, then the system (2)-(3) converges to a flock.

Proof. We prove the theorem by induction.

When K = 2, from Theorem 3.5, we conclude that the system converges to a
flock and dy 12 < Aqjge P12t

Assume 1 < k < m, and that there exist positive constants Ax_1 k, Br—1,k and
dgi such that dy, _,, < Ak,l’ke_ﬁkflvkt and dx,_,, < dg—1,,. We want to show
that there exists a constant A,, ,,4+1 such that dVRmHRm < Am’m+16_5m,m+1t.

Choose i € R, and j € R,,+1. We note that

%Hvl _Uj||2 =2< —f]lj,vi —v; >

=2<a Z bir([|er — @il]) (v — v5)

KERpm_1URp k#i

—a Y ballle =zl (0 —vy) v — vy >
IERmURm 1,177

=2<a Z bir (|or — @i|) (ve — v3)

k€Rm—1URy,
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—a > byl — ) (o = vy),vi — vy >
lER,URm 41

=2«a E E bikbjl < Vg — U,V —Vj >
k€ER;, 1UR, IERWUR 11
— 20 < v — 5,0 —v; >
= 2« E g birbj < vp — v, v —v; >
k€ERm _1URpy kA IER,UR 1
— 20 < vy — 5,0 — V5 >

W3

For a given time t, we choose an agent in rank “m” and an agent “j” in rank
“m+1” such that dvy,, :=dy,, .., = [|vi — vj||. We estimate dy,, in different cases.

@
1

Case 1. max{dv,, ..., dv,_, .. dV,,_\ yis1> AV, } = dv,,_, .. In this case, we have

Dtd?

an,n1+1

s = v

< 2 E Z birbji < v — v, v — v >
kERm—1URm kA IERmURm 11
+ 2« E E bikbjldvmfl,mdvm,mu
k€ERmURy 1,k=lIER,URm 11
2
— 2« E E bl‘k)bjldvm—lymdvm,m+l - 2ade,m+1
k€ERy—1URpm k=l1ER,UR 11
2
< 2« E E bikbjlde,m+1de,m+1 - 2ade,m+1
k€ERpy —1URp k=ll€ER,URm 41
+ 2ade71,dem,m+1'

If b (t)bji(t) = agcs(t)aﬁs(t), then

bar0bit) = 5 s Xl = 2O, 0) = )

If big (£)bju(t) = aly " (t)aj{ ™ (t), then

o ) — s wlllz, () — 2@
b0l (t) == ) — o@D % x50 —an @)
MER—1+Rm nNERm+Rmt1

1 1

2N IN.N. +Nm+1x(llzi(t) — (O Dx (5 (t) = zu(®)]])

Therefore, for both b;x(¢)b;i(t) = agcs(t)aﬁs(t) and b (t)bji(t) = a%T(t)a%T(t),

+ . h. _
D de,m+1 < advm—l,m —« E E bikb]lde,m+1 ade,m+1
kERpm—1URy k=l lIERmURm 41

Nm X(dmm)X(de,mH ) ) (t)
Nm—l +Nm Nm+Nm+1 Vim,met1 '

< aAm—l,meiﬂ’"Lil’"Lt _ a(l +

Case 2. max{dv,, ,.,.,dv,,_, ., dV,_1 ni1+AV,, .} = dv,, .. In this case, we can
easily deduce that dy, < 2dy, . So using a similar argument to that for Case

m,m m—1,m
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1, for both b;;(t) = aicjs(t) and b;;(t) = afj‘/fT(t), we have
D+dvm’m+1 §2aAm71’me_B7nfl,rnt
Nm ZX(dm7m)X(de,m+l)
Nm—l +Nm Nm+Nm+1

—a(l+ Ay m,m1(t).

Case 3. max{dy, AVt Wiy i AV o b = v, .y - In this case, we have

m,m+17

DYd?

Vm,m+1

aHUi—UjHQ

= 2 Z Z birbji < v — v, v — v >

KkER;—1UR, k#l lERmURpm 41

+2a > > babady,

k€ERm—1URm k=l lERmURm 11

2
— 2« E E bikbjldemerl —2a < v; — Vj, Vi — Vj >
k€ERm _1URp k=l IERLURm 1
2 2 2
< 20zdvrm+1 — 2« E E bikbjldvm’m+1 — 2advm)m+1.

k€ERm _1URp k=l IERmUR 11

Using a similar argument to that for Case 1, for both b;x(t)bj;(t) = agcs(t)aﬁs(t)
and b;x(t)bji(t) = a%T(t)a%T(t), we have
Nm X(dmfl m)X(de m+1)
D*d; < -2 2 : d? :
Vimomt1 = aNm—l + Np, Npp + Nm-‘rl Vim,m1

Therefore,

Np X () X(AX 0 nir)
Nm—l +Nm Nm+Nm+1 Vin,m+1-+

D+dvm,'m+1 S -

Case 4. max{dv,, ... dV,,_1 i1>AVp_10s v, .} = dv,,_, .., - Using the triangle

inequality, we first obtain dy,, _, .., <dv,, .., +dv,,_,,, and then

= 2« E E bikbjl <V — U,V —V; >
kERm71URm7k7ﬁl leRnLURnL+1
— 20 < v — 5,0, —U; >

<2a Z Z bikbjl(dVR1,L+1 Rm, + dVR‘mR'mfl )dVRm+1 Rm
k€ERm 1URp kA IER,URpm 11
+ 2« E E birbji (dVR77L+]Rm + dVRm Ry s )dVRm+1Rm
k€ERp —1URm k=l lERmURm 11
—2a Z Z bikbﬂ (dVRm+13m + dVRmRmfl )dVRm,+1 Rm

k€ERm _1URp k=l IERmURm 11
—2a < v; — 5,0, —U; >
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2
S 2a(dVRm+1Rm + dVRmRm—l )dVRerl Ry QOLdVRm+1 Rm
2
“2a D 2, bubudl k-

k€ERm —1URm k=l lER®URm 11

Therefore, using a similar argument to that for Case 1, for both b;x(¢)b;i(t) =
aicks(t)aﬁs(t) and b ()b (t) = a%T(t)a%T(t), we have

Dtdy,.

VA1
— o birbjidi
—1,m ik U5l Vm,m+1
kERpm _1URpm k=l lER®URm 1

Ny, X(dm,m)X(de,nHrJ
Np14+ Ny Ny + Npga

< ady,,

< ozAm_Lmefﬁm‘lv"‘t —a(l+

AV, ir (B)-

A _ _ Ny, X(dm,m) _
Let Ay mt1 = 20Am—1,m and By, i1 = O e e From the argu

ment above, regardless which one of the above 4 cases occurs, we have

D+de,m+1 < Zm,erle_ﬁnhlﬁmyt - Bm,m+1X(dX7,L,7,L+1)de,m+1 (t)

We now consider the energy function

Zm m+41 t demerl ®)

E. =dy,, m+1 (t) + S e Pmotmt Bim+1 / x(s)ds.
' ﬁmfl,m 0

There exist positive constants d, m41 and Cy, 1 such that dx,, .., (t) < dpms1

for all t > 0. Let Crym+1 = Bmm+1X(dm,m+1), then

D+dem+1 < ZmJnJrle_BmilJnt - Cm7m+1dvm,m+l (t)

This implies that
(i) If Coyomt1 # Bm—1,m, We have

Am,m«l»l )e_C7n,7n+1t

dVM,M+1 (t) S (dvm,m+1 (0)_0

mm-+1 — Bm—l,m

Am,m-{-l

+ e_ﬁm,—lmnt.
C(171,m—"-1 - ﬁm—l,m
We choose 0 < A 1 = 2max{dy, (0)— Am.m i1 Am.m 1 } and
m,m+ m,m+1 C7n,7n+1_ﬂ7n—1,m’ Cm,m+1_57n71,rn

Bm,m—i—l = min{cm,m+1a ﬂm—l,m}a then de,erl < Am,m-{—leiﬁm’m*'lt-
(ii) If Cmmt1 = Bm—1,m, we can find a constant 0 < Ay>  jand 0 < B3F, 4 <
Bm.m+1, such that dy, . <Az e Pmminl,
Thus we have concluded that dx < oo for all t, and that tlim Av,, s (t) =
— 00 ’

m,m+1

0. This completes the proof. O

4. Flocking with free-will. We start with a general model with free-will

d

%xz(t) = ’Ui(t),

d N (13)
i) = > by(lleg — i) (v (1) = vilt) + fi(t),

J=1,57#i

fori=1,2,...,N.
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Theorem 4.1. Assume the function x(t) satisfies fo (s)ds = oo, and the free-
will fi(t) satisfies [ (1) — f,(t)dt = 6,y < o0 and tlggo 1) = 7501 = 0,
where 4,5 = 1,2,--- | N, §;; is a positive constant. Then system (13) converges to
a flock.

Proof. Let (x;,v;) be an arbitrarily given solution of system (13). For any pair of
agents “i” and “j”, their velocities v; and v; satisfy

2<1}i—1}j,1}i—1)j>

N
=2<a Z bir(|zge — x4|) (vg — v;) — @ Z bji(Jxr — z;]) (v — vj),v; —v; >

k=1,k#i 1=1,1#]
+2<fi*fj,1}i7’0‘>
N
:2<a2bik(|xk—xi|) V — 5 —aZbﬂ lz; — xj]) (v — vj), v, —v; >
k=1
+2<fi*fj,1}ifvj>
N N
:2aZZbikbﬂ<vk—vl7vi—vj>—2a<vi—vj,vi—vj>
k=1 1=1
+2<fi*fj,1}i7vj>
N N
= 2a Z Zbikbjl<vk—vl,vi—vj>—2a<vi—vj,vi—vj>
k=1,ksl I=1

+2<fi—fjvi—v;>

N N N N
= 2« Z Zbikbjl < Vg — U,V — vy > 4+2a Z Zbikbjld%/

k=1,k#l =1 k=1,k=1 I=1
N N
— 2 Z Zbikbjld%/ —2a < v; —Vj,V; —Vj > +2 < fz — fj,'Ui —v; >
k=1,k=l I=1
N N
< 2ad%/ — 2« Z Zbikbﬂd%/ — 20 <v; — v, —v; > 2 < fi — fiv—v5 >
k=1,k=l I=1
For a given time t, we can choose two agents i and j, such that dy = |v; — vj].
Then,
N N
DYy < 2ady — 20 > Y babudy —2ady +2 > | fi = filldy
k=1,k=1 I=1 i.jEN
N N
= — 2« Z Zbikbjld%/ +2 Z ||f1 - f]”dV
k=1,k=l =1 i,jEN

Using a similar argument to that for Lemma 3.2, for both b;x(¢)b,,(t) = af’;cs(t)aﬁs(t)
and b ()b (t) = a%T(t)a]‘f[T(t) we have

D+ < 2ozﬁ XP(dx)dy +2 > |fi = filldy
1,JEN
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Therefore,
L s
v < —amx(dx)dy + > fi= £l
i,jEN

Using the function

Ex(t) -y / 1£i(s) = £3(5)llds + o /dx

1,JEN

we can find a positive constant df; such that dx < df;. For x(r) is non-increasing
and positive, we have x%(dx) > x*(dj;). Let Cj; = an-x?(d};). Then we have

d .
@dv < —Chdv + Z 1fi = £ills
ijEN
., d L o .
Oty < = Clieitdy + et 37 |1fi = £l
ijEN
d * *
ZeTtdy < ! Z 1fi = fills
i,jeN
"d e cr
| e 2 / B fi(s) — i (s) s
i,JEN
ay(1) < = CHtay (0) + 3 e O / i)~ 15
i,JEN
For tlggo e~Ciitdy (0) = 0 and tlgxolo e Cnt fo eC113| fi(s) — fi(s)||ds = 0, we have
lim dy () = 0. O
t—o0

We finally consider the HR model with free-will (4)-(5). For agent “i” in rank

Wi

i and agent “” in rank j, let (z;,v;) be a solution of system (4)-(5), we define

the diameters of positions and velocities as dv. = = lim ||z — 2| and dy =
W kER;IER, ij
lim  |log — vi]].
kGRi,lGRJ‘

Theorem 4.2. Assume that [;° x*(s)ds = oo, and the free-will f;(t) satisfies
fOOO ||f1(t)_fj(t)||dt = (Sij <0 G/I’ldtlig.lo Hfl(t)_fj(t)H =0 (where Za] = 1a27 T 7N7

0i; 1s a positive constant). Then system (4)-(5) converges to a flock.

Proof. We want to prove this theorem by induction. Let (x;,v;) be a given solution
of system (4)-(5).
The case where k = 1 is covered by Theorem 4.1, we have dy,, (t) < e~ C1itdy (0)+

_ EG:N e~ Cit fg eC11%|| f;(s) — f;(s)||ds, where C}; is a positive constant.
i
For k = 2, and for any fixed agent “i” (¢ € Ry) and agent “j” (j € Rs), we have

2<7)i—’0j,’l)i—’l)j>
=2<a Y bu(lze — i) (v — v3)
kER1 ki

-« Z bjl(\xl—xj\)(vl—vj),vi—vj>—|—2<fl-—fj,vi—vj>
1€R,URa, %]
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=2<a ) bu(lrs—z) ok —vi) —a Y bulla —z;]) (o — v5), 0 — v; >
keER, lER1UR>
+2<fi—fjvi—v;>
= 2 Z Z birbji < v — v, v —v; > 20 < v; — v, v — v >
kER1 IER1UR>
+2< fi— fj,vi—v; >
= 2a Z Z birbji < v — v, v —v; > =20 < vy — V4,V — V>
k€ER;,k#llER1UR>
+2 < fiffj,vifvj > .
For a given time t, we can choose a pair of agent i (i € R;) and agent j (j € R2)
such that di7 = = [|v; — v;||. There are two cases.

Case 1. dV < dy . In this case, we have
2 11

+ 72
D7 dg; |

=2 <0 — 05,0 —vj >

=2« Z Z bikbjl <V — U,V —V; >

k€R1,k#l1ER1UR>

Z Z blkb]ldvlz Vi~ Z Z bmbﬂlqu Vi

k€R1,k=l1l€ER1UR> k€ERy,k=lI€ER1UR;
—2a<vi—vj,vi—vj >+2< fi — fjvi—v; >
Z 2
< QOédVH Vie = E bzkbﬂd 2advl2

k€ER,k=lIER1UR>

+2 > i filldg,,

i€R1,jER2
Therefore, Using a similar argument to that for theorem 3.5, for both b (t)bj;(t) =

agf(t)aj(fgs(t) and bix(t)bji(t) = a%T(t)a%T(t), we have

x(diy)x(dx,,)
DTds < ads —o(m——220 2120 L )do 4 E — f
Vi —= « Vi1 a( Nl +N2 + ) Via ef TR, ||f f]”

x(di)x(dx,,)
< adv —a—>F—=120 4 = 14l
@ Vi @ ]V’1 + ]\]’2 Vie + ieR;€R2 ||f fJH

Let g11(¢) = e_ofltdv 0)+ X e_cfltfg €113 fi(s) — fi(s)||ds. Then, we have

i,jEN
lim 911( ) =0 and fO 911 dt < 00. Define h12( ) = Oégll(t) + Z ||fz(t) -
tmroo i€R1,JERS
d
fi(t)|| and Ajy = a]>\§1(+1]1\,)2 As
dy,, () S e” iy, 0+ D e / 7 fi(s) = fi(s)lds,
1,JEN
we have
d

27 < ha(t) — adipx(dx, )dy,
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Case 2. dy;, > dy; . In this case, we have
12 11

+ 52
bdy,

:2<’Ui—11j,1}i—’l)j>

=2« Z Z bikbjl < Vg — U,V — VU > +2a Z Z bikbjld%m

k€ER;,k#llER1UR> k€R1,k=l1l€ER1UR>
2
— 2 E E bikbjldvm_204<'Ui_vjyvi_vj >+2<fi_fj;vi_vj >
k€R1,k=l1€ER1UR>

<2ady =20 Y Y babuds —2adi +2 > |fi— fjlldy,,

k€ERy,k=lI€ER1UR; i€R1,JER2
Therefore,
+ .7 R N . f.
D dV12 < -a Z Z blkb]lqu + Z ||f" fJH
k€ER1,k=lIER1URy i€R1,jER2

As hia(t) > > ||fi — f5ll, we conclude that regardless of Case 1 or Case 2,
1€R1,jER>
we have

4
dt
From the definition of his(t), we know that there exists a constant 772 > 0 such
that [ hya(t)dt < 712. Now we can find a function Es(t) = dy  (t) — fot his(s)ds+

dvm < —Aizx(dyw)dvlz + hlz(t).

di
A% [o 1, (1) x(s)ds. Using a similar argument to that for Theorem 3.3, we can
show that E3(t) < 0 and there exists a constant dj, such that dx () < di, for
€ [0,00). Let Cfy = Ajyx(dfy) > 0. Then,

d
%dvlz < —CTQde + hlg(t). (14)

From this, we deduce lim dy (t) = 0.
t— 00 12

Assume for all k¥ with 1 < £ < m, we have shown that there exist constants
* Cx Ym—1,m and a function Ay, —1 m(t) > 0 such that fooo Rop—1,m (t)dt <

m—1m> ~“m—1m>

Ym—1,m and tli)rgo hm—1,m(t) =0, de_l,m(t> <d and

m—1,m

DYdy, < —Chiimdy,  +hm1m(t),

and

¢

t
dw (t) < e Cm-1mlds (0) + efcm—lvmt/ eCm—1mSh, 1 0 (s)ds.
0

Vin—1,m m—1,m

Now we consider k = m + 1, we want to prove that there exists a constant dy, .,

such that dg . (t) <d}, .4y forallt >0 and tlggo dy, . (t) =0. For an agent

“i” in rank m and a agent “j” in rank m+1, we have

2<i)i—i)j,vi—vj>

=2<a Z bir(|zr — 4|) (v — i)
k€ERuy —1URy, kF#i
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- > bju(lze — ) (01 — vj),vs —v; > +2 < fi = fj,0i —v; >
LERmURmi1,l#]

—2<a Y bala - m(on — v)

k€ER,, 1UR,,
-« Z bj’i(|xl_mjl)(vl_vj);vi_vj>+2<fi_fjavi_vj>
lERmURm 11
= 2a Z Z birbji < vk — v, v —v; > =20 <v; — v,V — v >

kERpym—1URy, IERMURp 1
+2<fi—fjvi—v;>

= 2 Z Z birbji < v — v, v —v; > =20 < vy — V4,V — v >
k€ERpy—1URp k#IIER,UR 41
+2<fi—fj,’l}i—’(}j > .

For a given time t, we can choose agents “i” and “j”, such that dy = |jv; —
m,m+1

vj|l. We consider max{dy, . .dy - .dy  .dy }, one of the following

situations will occur. Using a similar argument to that for theorem 3.5, for both

bir(t)bji(t) = aﬁf(t)aﬁs(t) and b (t)b;i(t) = a%T(t)a%T(t), we have

Caes 1' max{dV'm,'m«#l’dezfl,m,ﬁ»l ’ dV?nfl,wﬂdV?n.?n} = dVWLfl,?n' In thls CaSe, we
have
Ddz

Vnz,nz+1

:2<’L.}i7’t')j,’()i*vj>

=2 E g birbj < vp — v, v —v; > 20 < v; — v,V — v >
k€ERy —1URm k#IIER UR 41

+2a > Y bubudy, dy

k€Rp—1URy k=l lERmUR 11

- 2& Z Z bikbjldvm,flnndvnlnn{»l + 2 < f{L - f]7 Ui - Uj >
k€ER;, —1URpy k=lIER,UR 1

2
<2dy, , dy, ., ~20d; 2300 fildy,
2¥)

-2« > > bixbji1d% :
ik Y5l Vonmad
k€ERpm—1URy k=l lERmURm 11

Then,
DYdy, ...
<adg, > Nfi—fill—al Y b+ Ddy,
] k€ERm—1URy k=l IER, UR 41
<ady 4D i~ fil —a > > bubudy,
1,7 k€ERym—1URp, k=1 IGRm,URm,+1
N, X1 m)x(dz, )
< ad— = m 5 m,m+1 d— )
=a Vim—1,m + Z ”f f] || aNm—l + Nm Nm + Nm+1 Vi, met1

,J



516 LE LI, LIHONG HUANG AND JIANHONG WU

Caes 2. InaX{de m+1 ’ dV?nfl m—+1 ’ dv'mfl m,’ dv'm 'm} = dvm, m . Clearly’ dVﬂ’L m T
2dy . Then from Caes 1, we can obtain
+ .7
D dV7n,7n+1
N, x(dr 1 )X %, L)
< 2adyy + i — fill — 2 = : L Ao
- Vm-1,m ;”‘fl f]H Nmfl +Nm Nm+Nm+1 Vim,me+1
Caes 3. max{dvm m+1 ’ dvmfl m-+1 ’ dv'm—l m’ dvnl 771} = VW'L m-+1 ! We have
D+dvm m—+1
S Z ||f1’ - f]” -a Z Z bikbjldv7n,7n+1
i, k€ERpm —1URm k=l lERmURm 11
N, X(dy—1m)Xx(dx, )
< lfi-fill—a - —dy
i Nmfl'i_Nm Nm+Nm+1 ’
Caes 4. max{deerudefl,mﬁ’defl,m’de,m} = dvmfl‘m“. For defl,erl <
de,m+1 + de,_l,m‘ Using a similar argument from that for Case 1, we can easily
deduce
+ 7
D dvm,m+1
Ny X m)xUdx, )
< ad— + . — .l — ’ m,m+1 d*
— Vim—1,m ; ||fz fj || Nm—l + Nm Nm + Nm+1 Vim,me+1

i~ X(dr—1,m)
+ i fill and A, 4y = B g ese
K3

J
From the analysis above, regardless which one of the above cases above occurs,
dy, .. (t) satisfies

Let hm7m+1(t) = QCMdV

m—1,m

D+dv'rn,7n+1 =< hm’m""l(t) - A:n7m+1X(dYnL,nL+1)dvm,erl'

Then we can use the function

t
E4(t) = de,erl(t) — ‘/O hm’m+1(8)d8 + Am,erl A

Easily we can prove that Ej(t) < 0. Also we can find a constant 4y, m+1 > 0 such
that

o] i
[ ety (@) et [ Gty ()t <
0 ’ 0

dx (t)

m,m-+1

x(s)ds

Then we can deduce that fooo Ron,m+1 (t)dt < co. Using a similar argument to that
for theorem3.3, we can find a constant d, ;1 > 0, such that d  (t) <dy, .41

for all £ > 0. and lim dy; (t) = 0. By Lemma 3.6, we know that the system
t—oo  memil

converges to a flock. O

5. Conclusion and remark. We considered here a general self-organized system
with leadership and free-will, and we show that the system converges to a flock
under very generate conditions on the hierarchy structure of the system, the free-will
responding to the external environment, and mutual influence with the hierarchy.
We emphasize that our sufficient condition in Theorem 3.7 for flocking is very
sharp. Consider an example of system (2)- (3), where we assume 11 agents moving
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in a 2-dimensional space, where individual influence is governed by the influence
function b;;(t) = aicjs (t). The group is divided into 4 ranks: the first and second
rank each has 2 agents, the third rank has 4 agents, and the 4th has 3 agents. Let
8= %, so the condition fooo X(r) = oo is met, and let & = 0.5. Figure 2 illustrates
that the system converges to a flock, however, Figure 3 shows that flocking is no

longer true when g = 0.52,« = 0.5.

5000 rank 1
’g = rank 2
= 0 e rank 3
o ° rank 4
£ e
< S

-5000
5000

1000 1000

; 500 500
X, (position)-5000 0 ¢ (time) v, (velocity) =5 0t (time)
3000 5

= 2000 = ﬁ —
8 55 -
2 1000 . 3 0
2 e
><H O/ >H

-1000 -5

0 500 1000 0 500 1000

t (time) t (time)

F1GURE 2. Flocking in a HR model with 11 agents: the parameter
values are a = 0.5, 3 = 1/3 and the condition [~ x(r) = oo is met.

Similar remarks apply to Theorem 4.1, as illustrated in Figure 4 and Figure 5.
In system (13), we consider the case where the system has 7 agents moving in 2
plane. Again, we use the influence function b;; = ag-s . When 8 = %7 the condition
fooo x%(r)dr = oo in Theorem 4.1 holds. We first consider the case where the free-
will functions {f;(¢)}7_, are given by fi(t) =< e™',0 >, f3(t) =< 0, > and
others being zero. These free-will functions satisfy the the condition in Theorem
4.1, and Figure 4 shows that such a system converges to a flock. However, when
f1(t) =< cost,0 >, fo(t) =< 0,sint >, f7(t) =< %,0 > and other free-will function
zero, we have [~ costdt < oo, while [;* | cost||dt = co. These given free-will
functions do not meet the condition in Theorem 4.1, and agents’ velocities are not
convergent to the same, as shown in Figure 5.

We conclude with a final example to demonstrate Theorem 4.2 | Figures 6 and
7. In system (4)-(5), we consider the case where the system has 11 agents, with
movement in the plane. The group is divided into 4 ranks, the first and second
rank each has 2 agents, the third rank has 4 agents and the fourth rank has 3
agents. Set the influence function as b;; = aJ>. We choose the parameters 3 = %
so the condition fooo X2(r) = oo in Theorem 4.2 is met. In the Figure 6, we set
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Ficure 3. Flocking in a HR model with 11 agents is no longer
true: the param- eter values are o = 0.5, 8 = 0.52 so the condition
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FIGURE 4. An illustrative example of flocking under free-will. The
parameter values are o = 0.5, 8 = 1/3.



CASCADE FLOCKING WITH FREE-WILL

519

2000
5 2
= g
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><N N
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x, (position) 0 0 t (time) v, (velocity) 0 0 t (time)
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S 1000 1 3
= = | %
8 = °
g = s
500 = =
xv—i // >H
//// 2
0 0
0 50 100 150 200 0 50 100 150 200
t (time) t (time)

FIGURE 5. An illustrative example of CS-model with free will,
where [ costdt < oo while [; || cost||dt = oo.

fi(t) =< e71,0 >, f3(t) =< e"tcost, &z >, fo =< O,sintz >, fig =< e 1,0 >
and set other free-will functions as zero. These free-will functions satisfy the the
conditions in Theorem 4.1, so this system converges to a flock. However, when we set
fi(t) =< e™!, —sint >, f3(t) =< cost, 5 >, fo =< e ',sint >, fig =< cost,e”! >
and other free-will functions as zero, we note that fooo(e_t — cost)dt < oo while
Jo~ lcost||dt = co. Thus the free-will functions do not satisfy the conditions in
Theorem 4.1, and Figure 7 shows some interesting behaviours: the velocities can

not converge to a same function but the distance between any two agents remains
bounded.
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