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Abstract. Motsch and Tadmor considered an extended Cucker-Smale model

to investigate the flocking behavior of self-organized systems of interacting
species. In this extended model, a cone of the vision was introduced so that

outside the cone the influence of one agent on the other is lost and hence the
corresponding influence function takes the value zero. This creates a problem

to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking

property of the system. Here, we examine the variation of the velocity angles
between two arbitrary agents, and obtain a monotonicity property for the max-

imum cone of velocity angles. This monotonicity permits us to utilize existing

arguments to show the flocking property of the system under consideration,
when the initial velocity angles satisfy some minor technical constraints.

1. Introduction. Flocking, where agents in a network adapt by their relative lo-
cations to achieve an uniform velocity, is a universal phenomenon in biological,
social and economical systems. Examples include bird migration, fish schooling
[12, 13, 4, 3, 2, 8] and emergent economic behavior including common belief in a
price system in a complex market environment [5, 3].

Reynolds [10] gave three simple rules for flocking: Separation–avoid crowding
neighbors (short range repulsion); Alignment–steer towards average heading of
neighbors; Cohesion–steer towards average position of neighbors (long range at-
traction). Later, Vicsek[14] characterized flocking in terms of bounded distance–
individuals stay at bounded distance from each other; and alignment–they all move
in the same direction. There were substantial researches including modelling studies
on flocking, but with models seemingly too complex to analyze. In 2007, Cucker
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and Smale [4, 3] developed a model, referred to as CS model [4, 3] here, that pro-
vides a basic framework to describe how agents interact with each other in order
to achieve flocking and this model has inspired very intensive activities to explain
self-organized behavior in various complex systems. See [1, 9, 11, 6] and references
therein.

The CS model describes how agents interact with each other following the simple
rule below[10]:

dxi
dt

= vi,
dvi
dt

= α

N∑
j=1

φij(vj − vi), (1)

where xi ∈ Rd and vi ∈ Rd are the location and velocity of the agent “i”. In the
model, α is a positive constant, and φij quantifies the pairwise influence of agent
“j” on the alignment of agent “i” as a function of their distance. More precisely, in
the CS model, we have

φij =
φ(‖xj − xi‖)

N
, φ(‖xj − xi‖) =

1

(σ2 + ‖xj − xi‖2)β
,

where φ is given above or, in general, is a strictly positive decreasing function, and
β is a parameter. This influence function is symmetric, that is, agent “i” and agent
“j” have the same influence on the alignment of each other (φij = φji). Motsch
and Tadmor [9] later introduced an influence function, which is non-symmetric and
takes into account the relative distance between agents, as follows

φij =
φ(‖xj − xi‖)
N∑
k=1

φ(‖xk − xi‖)
, (2)

with φ as defined in the CS model. In their celebrated work [9], Motsch and Tadmor
also called attention to a more general situation in which signal transmission is via
vision. In this configuration, it is possible that agent “i” can see agent “j”, but
agent “j” may fail to see agent “i” outside a cone of vision.

Here we show that in this revised CS-model and MT-model, flocking is still
achieved. We provide a proof based on the “cone invariance” which implies that
self-organization does keep all agents within the cone of version and hence the
influence remains once initiated. We will formulate the Motsch-Tadmor (MT) model
in Section 2, and then establish the cone invariance and flocking in dimension 2
(section 3) and dimension 3 (Section 4).

2. The model and some preliminaries. We consider a self-organized group
with N agents. For agent “i”, its position is denoted by xi ∈ Rd and its velocity
by vi ∈ Rd, where d > 1 is an integer. Motsch and Tadmor proposed the revised
CS and/or MT model which is incorporating a cone of vision[9]:

dxi
dt

= vi,
dvi
dt

= α

N∑
j=1

κ(ωi,xj − xi)φij(vj − vi). (3)

Here, α(α > 0) measures the interaction strength, κ(ωi,xj−xi) determines whether
the agent “j” can be “seen” by the agent “i” who heads in direction ωi := vi/‖vi‖:

κ(ωi,xj − xi) =

{
1, if ωi · xj−xi

‖xj−xi‖ ≥ γ > −1

0, if otherwise
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with 2γ being the angle of the cone of vision. The φ′ijs determine the pairwise
alignment within the cone of vision [9], and is defined similarly to the CS or MT
model. Namely, either

φij =
1

Ni
φ(‖xj − xi‖), Ni := {j 6= i|κ(ωi,xj − xi) = 1},

or

φij =
φ(‖xj − xi‖)∑

k∈Ni

φ(‖xk − xi‖)
. j ∈ Ni.

Here the influence function φ is defined as above.
We can rewrite the model as follows:

dvi
dt

= α
∑
j∈Ni

aij(vj − vi), aij = κ(ωi,xj − xi)φij . (4)

In the CS model, we let aii = 1−
∑
j∈Ni

aij and Ñi = {i}+Ni. Then

dvi
dt

=α
∑
j∈Ni

aij(vj − vi)

=α
∑
j∈Ni

aij(vj − vi) + αaii(vi − vi)

=α
∑
j∈Ñi

aij(vj − vi).

From the equation
∑
j∈Ñi

aij = 1 and
∑
j∈Ni

aij ≤ 1, we can easily deduce aii ≥ 0 and

∑
j∈Ñi

∑
l∈Ñk

aijakl =
∑
j∈Ñi

aij(
∑
l∈Ñk

akl) = 1.

Then,

dvp
dt

=α
∑
j∈Ñp

apj(vj − vp)

=α
∑
j∈Ñp

apjvj − α
∑
j∈Ñp

aijvp

=α
∑
j∈Ñp

apjvj − αvp(
∑
j∈Ñp

aij)

=α
∑
j∈Ñp

apjvj − αvp.

In the MT model, we can easily deduce
∑
j∈Ñi

aij = 1, so we also have

∑
j∈Ñi

∑
l∈Ñk

aijakl =
∑
j∈Ñi

aij(
∑
l∈Ñk

akl) = 1,
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and

dvp
dt

=α
∑
j∈Ñp

apj(vj − vp)

=α
∑
j∈Ñp

apjvj − α
∑
j∈Ñp

aijvp

=α
∑
j∈Ñp

apjvj − αvp(
∑
j∈Ñp

aij)

=α
∑
j∈Ñp

apjvj − αvp.

Definition 2.1. (See [7] p. 416). Let {(xi,vi)}Ni=1 be a solution of system (3), and
let dX(t) and dV (t) denote its diameters in position and velocity phase space, which
are given by dX(t) = max{‖xi(t) − xj(t)‖} and dV (t) = max{‖vi(t) − vj(t)‖}. If
for every such solution, we have

lim
t→∞

dX(t) <∞ and lim
t→∞

dV (t) = 0 (5)

then we say system (3) converges to a flock. If the above property holds for a
particular solution, then we say the solution flocks.

3. Flocking behavior in 2-D spaces. When agents under consideration are an-
imals moving on the land such as wolf packs and elephant herds, we can consider
the system posed in a 2-dimensional spaces. In this section, we consider the case
where xi ∈ R2, vi ∈ R2 for a solution of the system (3).

Lemma 3.1. (Cone Invariance) Let (xi,vi) be the solution of system (3), where
xi ∈ R2 and vi ∈ R2. For the group of agents, θij(t) =< vi(t),vj(t) > is the angle
of velocity vi and vj. Denote by θ̄(t) = max

i,j
< vi(t),vj(t) >. If θ̄(0) = θij(0) < π

for some i, j and if θij(0) = θik(0) + θkj(0) holds for all such i, j and for all k, then

we have θ(t) ≤ θ̄(0) for t > 0.

Proof. As θij(t) =< vi(t),vj(t) >, we get cos θij(t) =
vi·vj

‖vi‖·‖vj‖ . Then we have

θij(t) = arccos
vi(t) · vj(t)
‖vi(t)‖ · ‖vj(t)‖

, θ(t) = max
i,j∈N

arccos
vi(t) · vj(t)

‖vi(t)‖ · ‖vj(t)‖
.

For any given t, there exist two agents i0 = i0(t) and j0 = j0(t)” such that
θ(t) = θi0j0(t) =< vi0(t),vj0(t) >. We have

θ′i0j0(t) = (arccos
vi0(t) · vj0(t)

‖vi0(t)‖ · ‖vj0(t)‖
)′ = − 1√

1− (
vi0 ·vj0

‖vi0
‖·‖vj0

‖ )
2
· g(t),

where

g(t) =
(vi0 · vj0)′ · (‖vi0‖ · ‖vj0‖)− (‖vi0‖ · ‖vj0‖)′ · (vi0 · vj0)

‖vi0‖2 · ‖vj0‖2
.

Here and in what follows, θ′i0j0(t) means to fix i0 and j0 and take the derivative of

the function θi0j0(t) with respect to t. In other words, θ′i0j0(t) = θ′i,j(t)
∣∣
i=i0,j=j0

.
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In the case of the CS-model, we have

dvi0
dt

= α
∑
k∈Ñi0

ai0kvk − αvi0 ,

dvj0
dt

= α
∑
l∈Ñj0

aj0kvl − αvj0 ,

d‖vi0‖2

dt
= 2 < v̇i0 ,vi0 >= 2α(

∑
k∈Ñi0

ai0kvk − vi0) · vi0 .

Hence, we get

d‖vi0‖
dt

= α
1

‖vi0‖
(
∑
k∈Ñi0

ai0kvk − vi0) · vi0 = α(
∑
k∈Ñi0

ai0k
vk · vi0
‖vi0‖

− ‖vi0‖),

d‖vj0‖
dt

= α
1

‖vj0‖
(
∑
l∈Ñj0

aj0lvl − vj0) · vj0 = α(
∑
l∈Ñj0

aj0l
vl · vj0
‖vj0‖

− ‖vj0‖).

Let

f(t) = (vi0 · vj0)′ · (‖vi0‖ · ‖vj0‖)− (‖vi0‖ · ‖vj0‖)′ · (vi0 · vj0).

Then

f(t) = α(
∑
k∈Ñi0

ai0kvkvj0 +
∑
l∈Ñj0

aj0lvlvi0 − 2vi0vj0) · ‖vi0‖ · ‖vj0‖

− α(
∑
k∈Ñi0

ai0k
vk · vi0
‖vi0‖

‖vj0‖+
∑
l∈Ñj0

aj0l
vl · vj0
‖vj0‖

‖vi0‖

− 2‖vi0‖ · ‖vj0‖) · vi0vj0 ,
and

(ai0kvkvj0) · ‖vi0‖ · ‖vj0‖ − ai0k
vk · vi0
‖vi0‖

‖vj0‖ · vi0vj0

= ai0k‖vk‖ · ‖vj0‖ · ‖vi0‖ · ‖vj0‖ · (cos θkj0 − cos θ cos θki0).

In what follows, we try to show that θ(t) ≤ θ(0) for all t by proving that D+θ(t) ≤
0 for all t ≥ 0, where D+ is the Dini-upper derivative.

Recall that for any given t, ∃ i0 = i0(t) ∈ N , j0 = j0(t) ∈ N such that θ(t) =
θi0j0(t). We prove the following

Claim. θ(t) = θi0k(t) + θkj0(t) for every k ∈ N .
We prove this claim by contradiction. Note that for a given k, we have only two

cases: either Case 1: θi0j0(t) = θi0k(t) + θkj0(t); or Case 2: θi0j0(t) + θi0k(t) +

θkj0(t) = 2π. If Case 2 occurs, then ∃ t0 > 0, i∗0 ∈ N , j∗0 ∈ N such that θ(t0) =
θi∗0j∗0 (t0) and θi∗0j∗0 (t0) + θi∗0k(t0) + θkj∗0 (t0) = 2π for some k ∈ N . Assume, without

loss of generosity, that θi∗0j∗0 (0) = max{θi∗0j∗0 (0), θi∗0k(0), θkj∗0 (0)}. Since θ(0) < π,
we must have θi∗0j∗0 (0) = θi∗0k(0) + θkj∗0 (0) < π. Using the continuity of θij(t), we
conclude that there must be the first t∗0 ≤ t0 such that θi∗0j∗0 (t∗0)+θi∗0k(t∗0)+θkj∗0 (t∗0) =
2π. Consequently, there must be the first t1 > 0 and integers i1 ∈ N and j1 ∈ N
such that θi1k(t1) + θkj1(t1) + θi1j1(t1) = 2π.

Suppose θj1k(t1) is the largest angle among θi1k(t1), θkj1(t1) and θi1j1(t1). As

θki1(0) ≤ θ(0) < π, θkj1(0) ≤ θ(0) < π and θi1j1(0) ≤ θ(0) < π, we have θ(t1) =
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θkj1(t1) = π. Therefore, we can find time 0 < t2 < t1 such that θkj1(t) = θ(t) < π
and θkj1(t) = θkl(t) + θlj1(t) for all l ∈ N and t ∈ (t2, t1).

We now prove that θ′kj1(t) ≤ 0 for t ∈ (t2, t1) by showing that f(t) ≥ 0 on

the interval. When 0 ≤ θkj1(t) ≤ π
2 , cos θlj1(t) − cos θkj1(t) cos θkl(t) ≥ 0 holds

obviously. We only need to consider the case where π
2 < θkj1(t) < π and π

2 ≤
θlj1(t) < θkj1(t). Denote by

h(θlj1) = cos θlj1 − cos θkj1 cos θkl.

We have (d/dθkj1)h(θlj1) < 0. So we have h(θlj1(t)) > h(θkj1(t)) = 0. Therefore,
when π

2 < θkj1(t) < π and θkj1(t)− π
2 ≤ θlj1(t) < π

2 , we have cos θlj1(t), cos θkl(t) >
0, and h(θlj1(t)) > 0. When π

2 < θkj1(t) < π and 0 < θlj1(t) < θkj1(t) − π
2 , we get

cos θlj1(t) > | cos θkl(t)| and hence, h(θlj1(t)) > 0. Based on the analysis above, we
have θ′kj1(t) ≤ 0 for t ∈ (t2, t1), from which we conclude that θkj1(t) ≤ θkj1(t2) < π.

Thus, θkj1(t1) 6= π, a contradiction. This proves the claim.

Then, for any given t, there exists i∗ ∈ N and j∗ ∈ N such that θ(t) = θi∗j∗(t)
and that θi∗j∗(t) = θi∗k(t) + θkj∗(t) for every k ∈ N . Using the same argument as
above, we conclude that θ′i∗j∗(t) ≤ 0.

Now we consider D+θ(t). For any given time t, there exist finitely many i× j ∈
I × J = {i× j|θij(t) = θ(t), i ∈ N, j ∈ N} , infinitely hn with hn ≥ 0, lim

n→∞
hn = 0

and θ(t + hn) = θij(t + hn). Then we can find a subsequence {hmn
} of {hn}∞n=1

and a fixed i∗ × j∗ ∈ I × J such that θ(t+ hmn) = θi∗j∗(t+ hmn
) holds. Therefore,

D+θ(t) = lim
hmn→0

sup
θ(t+ hmn

)− θ(t)
hmn

= lim
hmn→0

sup
θi∗j∗(t+ hmn

)− θi∗j∗(t)
hmn

= θ′i∗j∗(t) ≤ 0.

This concludes that θ(t) ≤ θ(0) for all t > 0, completing the proof.

Lemma 3.1 ensures that monotonicity of the maximal cone of vision. As will
be shown below, this ensures that agents will eventually move towards the same
direction. To describe our arguments, for the ith-agent’s position xi ∈ R2 and its
velocity vi ∈ R2, we introduce the rectangular coordinates:

vi = v1i + v2i ,

dX = max
i,j∈N

‖xi − xj‖,

dV n = max
i,j∈N

‖vni
− vnj

‖,

dvni

dt
= α

∑
j∈Ni

aij(vnj
− vni

),

for n = 1, 2. Here aij = κ(ωi,xj − xi)φij .
For vi = v1i + v2i , we can get

dxi
dt

= vi,

dvi
dt

=
dv1i

dt
+
dv2i

dt

= α
∑
j∈Ni

aij(v1j − v1i) + α
∑
j∈Ni

aij(v2j − v2i)

(6)
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= α
∑
j∈Ni

aij(v1j + v2j − v1i − v2i)

= α
∑
j∈Ni

aij(vj − vi).

Lemma 3.2. Let xi,vi ∈ R2 and (xi,vi) be a solution of (6). Let θ̄(0) = θij(0),
and assume θij(0) = θik(0) + θkj(0) for every other agent k ∈ N . If θ̄(0) < 2γ − π
with π

2 ≤ γ < π, then we have

d

dt
dV n ≤ −α

φ2(dX)

N2
dV n, n = 1, 2.

Proof. By Lemma 3.1, for any t ≥ 0, we have

θ̄(t) ≤ θ̄(0) < 2γ − π.

This implies that any agent “i” and agent “j” satisfy one of the following three
situations

1). κ(ωi,xj − xi) = κ(ωj ,xi − xj) = 1,

2). κ(ωi,xj − xi) = 0 and κ(ωj ,xi − xj) = 1,

3). κ(ωi,xj − xi) = 1 and κ(ωj ,xi − xj) = 0.

When n = 1, we can choose the agents p and q which satisfy dV 1 = ‖v1p − v1q‖
for any given t. We now consider φij defined in the MT model[9].

If case 1) occurs, we have apq 6= 0 and aqp 6= 0. Then

d

dt
d2V 1 = 2 < v1p − v1q , v̇1p − v̇1q >

= 2 < v1p − v1q , α
∑

i∈Ñp,j∈Ñq

apiaqj(v1i − v1j ) > −2αd2V 1

= 2 < v1p − v1q , α
∑

i∈Ñp−{q},j∈Ñq−{p}

apiaqj(v1i − v1j ) >

+ 2 < v1p − v1q , αapqaqp(v1q − v1p) > −2αd2V 1

≤ 2 < v1p − v1q , α
∑

i∈Ñp−{q},j∈Ñq−{p}

apiaqj(v1i − v1j ) > −2αd2V 1

≤ 2α
∑

i∈Ñp,j∈Ñq

apiaqj < v1p − v1q ,v1p

− v1q > −2αapqaqp < v1p − v1q , (v1p − v1q ) > −2αd2V 1

= − 2αapqaqp < v1p − v1q ,v1p − v1q >

= − 2αapqaqpd
2
V 1.

If case 2) occurs, then we have apq = 0 and aqp 6= 0, and

d

dt
d2V 1 = 2 < v1p − v1q , v̇1p − v̇1q >
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= 2 < v1p − v1q , α
∑

i∈Np,j∈Nq

apiaqj(v1i − v1j ) > −2αd2V 1

= 2 < vxp
− v1q , α

∑
i∈Np−{k},j∈Nq−{p}

apiaqj(v1i − v1j ) >

+ 2 < v1p − v1q , αapkaqp(v1k − v1p) > −2αd2V 1

≤ 2 < vxp
− v1q , α

∑
i∈Np−{k},j∈Nq−{p}

apiaqj(v1i − v1j ) > −2αd2V 1

= 2 < v1p − v1q , α
∑

i∈Np−{k},j∈Nq−{p}

apiaqj(v1i − v1j ) >

+ 2 < v1p − v1q , αapkaqp(v1p − v1q ) >

− 2 < v1p − v1q , αapkaqp(v1p − v1q ) > −2αd2V 1

≤ 2α < v1p − v1q ,v1p − v1q >

− 2 < v1p − v1q , αapkaqp(v1p − v1q ) > −2αd2V 1

≤ − 2αapkaqp < v1p − v1q ,v1p − v1q >

≤ − 2αapkaqpd
2
V 1.

A similar argument applies when case 3) occurs. So, we have

d

dt
d2V 1 ≤ −2αapqaqld

2
V 1.

For the CS model, using a similar argument as that for MT model above, we
have

d

dt
d2V 1 ≤ −2αapkaqpd

2
V 1.

When φij is defined in the CS model, we have aij =
φ(‖xj−xi‖)

Ni
≥ φ(dX)

N for any

pair (i, j). When φij is defined in the MT model, we have aij =
φ(‖xj−xi‖)∑

k∈Ni

φ(‖xk−xi‖) ≥

φ(dX)
N for any any pair (i, j). Thus, we have

−2αapqaqpd
2
V 1 ≤ −2α

φ2(dX)

N2
d2V 1,

−2αapkaqpd
2
V 1 ≤ −2α

φ2(dX)

N2
d2V 1,

−2αapqaqld
2
V 1 ≤ −2α

φ2(dX)

N2
d2V 1.

Therefore, for both CS model and MT model, we have

d

dt
dV 1 ≤ −α

φ2(dX)

N2
dV 1, t > 0.

Similarly, we can get

d

dt
dV 2 ≤ −α

φ2(dX)

N2
dV 2.

This completes the proof.

Theorem 3.3. Let (xi,vi) be a solution of (3), with xi,vi ∈ R2. Assume that
the influence function φ(r) satisfies

∫∞
0
φ2(r) = ∞ and the angle of the cone of

vision γ satisfies π
2 ≤ γ < π. Furthermore, assume the initial angle of velocities
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satisfies θ̄(0) < 2γ − π, and assume when θ̄(0) = θij(0) for some (i, j), we have
θij(0) = θik(0) + θkj(0) for every k ∈ N . Then system (3) converges to a flock.

Proof. From Lemma 3.1 and Lemma 3.2 we have

d

dt
dV n ≤ −α

φ2(dX)

N2
dV n, n = 1, 2.

Let dX = max
i,j∈N

‖xi − xj‖ = ‖xk − xl‖ for some k and l. Then,

D+d2X = 2 < xk − xl, ẋk − ẋl >

= 2 < xk − xl,vk − vl >

≤ 2‖xk − xl‖‖vk − vl‖
≤ 2dXdV .

Hence, D+dX ≤ dV .
The argument below is similar to that in [9]. Namely, we introduce an energy

function E(dX , dV 1, dV 2)(t) = dV 1(t)+dV 2(t)+α
∫ dX(t)

0
Ψ(r)dr, where Ψ(r) = φ2(r)

N2 .
Then

D+E(dX , dV 1, dV 2)(t)

≤ ḋV 1(t) + ḋV 2(t) + αϕ(dX)D+dX(t)

≤ −αϕ(dX)dV 1(t)− αϕ(dX)dV 2(t) + αϕ(dX)dV (t)

≤ −αϕ(dX)dV 1(t)− αϕ(dX)dV 2(t) + αϕ(dX)(dV 1(t) + dV 2(t))

= 0.

So the function E(dX , dV 1, dV 2)(t) = dV 1(t) + dV 2(t) + α
∫ dX(t)

0
Ψ(r)dr is non-

increasing along the pathway (dX(t), dV 1(t), dV 2(t)), and we deduce

dV 1(t) + dV 2(t) + α

∫ dX(t)

0

Ψ(r)dr ≤ dV 1(0) + dV 2(0) + α

∫ dX(0)

0

Ψ(r)dr. (7)

As
∫∞
0

Ψ2(r) = ∞, there must be a constant d∗ < ∞, satisfying dX(0) ≤ d∗, such

that dV 1(0) + dV 2(0) = α
∫ d∗
dX(0)

Ψ(r)dr. Inequality (7) can be rewritten as

dV 1(t) + dV 2(t) ≤ α
∫ d∗

dX(t)

Ψ(r)dr.

Obviously, we have dX(t) ≤ d∗ for all t ≥ 0. As φ(r) is decreasing on (0,+∞), we
obtain

D+dV n ≤ −α
φ2(d∗)

N2
dV n, n = 1, 2.

By using the Gronwall’s inequality, we easily get lim
t→∞

dV n(t) = 0, n = 1, 2.

Combining with dV ≤ dV 1 + dV 2, we conclude lim
t→∞

dV (t) = 0.

4. Flocking behavior in 3-D spaces and remarks. Some of the arguments can
be adopted to the case of phase spaces, as we outlined below. So, we now consider
agent i, with its position xi ∈ R3 and its velocity vi ∈ R3.
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Lemma 4.1. Let (xi,vi) be a solution of (3), where xi ∈ R3, vi ∈ R3. For the
group of agents, define θij(t) =< vi(t),vj(t) > as the angle of velocity vi and vj
and define θ̄(t) = max

i,j
< vi(t),vj(t) >. Suppose θ̄(0) = θij(0) < π

2 . Then we have

θ(t) ≤ θ̄(0), for any t > 0.

Proof. Like in the 2D-space, we have

cos θij(t) =
vi · vj

‖vi‖ · ‖vj‖
, θij(t) = arccos

vi · vj
‖vi‖ · ‖vj‖

, θ(t) = max
i,j∈N

arccos
vi · vj

‖vi‖ · ‖vj‖
.

For any given t, there exist two agents i0 and j0, satisfying θ(t) =< vi0(t),vj0(t)

>. Let h1(t) =
(vi0 ·vj0 )

′·(‖vi0‖·‖vj0‖)−(‖vi0‖·‖vj0‖)
′·(vi0·vj0 )

‖vi0
‖2·‖vj0

‖2 . Then we get

θ′i0j0(t) = (arccos
vi0(t) · vj0(t)

‖vi0(t)‖ · ‖vj0(t)‖
)′ = − 1√

1− (
vi0
·vj0

‖vi0‖·‖vj0‖
)2
· h1(t).

By Lemma 3.1, we have

f1(t) := (vi0 · vj0)′ · (‖vi0‖ · ‖vj0‖)− (‖vi0‖ · ‖vj0‖)′ · (vi0 · vj0)

= α(
∑
k∈Ñi0

ai0kvkvj0 +
∑
l∈Ñj0

aj0lvlvi0 − 2vi0vj0) · ‖vi0‖ · ‖vj0‖

− α(
∑
k∈Ñi0

ai0k
vk · vi0
‖vi0‖

‖vj0‖+
∑
l∈Ñj0

aj0l
vl · vj0
‖vj0‖

‖vi0‖

− 2‖vi0‖ · ‖vj0‖) · vi0vj0 .

Note that

(ai0kvkvj0) · ‖vi0‖ · ‖vj0‖ − ai0k
vk · vi0
‖vi0‖

‖vj0‖ · vi0vj0

=ai0k‖vk‖ · ‖vj0‖ · ‖vi0‖ · ‖vj0‖ · (cos θkj0 − cos θ cos θki0).

If θi1k1 , θk1j1 ≤ θi1j1 and θk1j1 , θi1k1 , θi1j1 ∈ [0, π2 ) for i1, j1, k1 ∈ N , we get

cos θk1j1 − cos θi1j1 cos θi1k1 ≥ 0.

Using a similar argument in Lemma 3.1, we claim that for any given t, ∃ i∗ ∈
N, j∗ ∈ N such that θ(t) = θi∗j∗(t) <

π
2 and D+θ(t) ≤ 0. We then conclude that

θ(t) ≤ θ̄(0) for all t ≥ 0.

For the agent’s position xi ∈ R3 and its velocity vi ∈ R3, denote by dX =
max
i,j∈N

‖xi − xj‖, dV n = max
i,j∈N

‖vni
− vnj

‖, n = x, y, z. We introduce the spatial

rectangular coordinate system vi = vxi
+ vyi + vzi . Then, we have

dvxi

dt
= α

∑
j∈Ni

aij(vxj
− vxi

), aij = κ(ωi,xj − xi)φij ,

dvyi
dt

= α
∑
j∈Ni

aij(vyj − vyi), aij = κ(ωi,xj − xi)φij ,

dvzi
dt

= α
∑
j∈Ni

aij(vzj − vzi), aij = κ(ωi,xj − xi)φij .
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From vi = vxi + vyi + vzi , we can get dxi

dt = vi, and

dvi
dt

=
dvxi

dt
+
dvyi
dt

+
dvzi
dt

=α
∑
j∈Ni

aij(vxj
− vxi

) + α
∑
j∈Ni

aij(vyj − vyi)

+ α
∑
j∈Ni

aij(vzj − vzi)

=α
∑
j∈Ni

aij(vxj + vyj + vzj − vxi − vyi − vzi)

=α
∑
j∈Ni

aij(vj − vi).

(8)

Lemma 4.2. Let xi,vi ∈ R3, and (xi,vi) be a solution of (8). If

i). π
2 ≤ γ ≤

3π
4 and the initial condition θ̄(0) satisfies θ̄(0) ≤ 2γ − π, or

ii). 3π
4 < γ < π and the initial condition θ̄(0) satisfies θ̄(0) < π

2 ,

then
d

dt
dV n ≤ −α

φ2(dX)

N2
dV n (n = x, y, z).

Proof. In both i) and ii), we have θ̄(0) ≤ π
2 . By Lemma 4.1, we obtain θ̄(t) ≤ θ̄(0) ≤

2γ − π for any t ≥ 0. Then, for any agent i and agent j, one of the following three
situations can occur

1). κ(ωi,xj − xi) = κ(ωj ,xi − xj) = 1;
2). κ(ωi,xj − xi) = 0 and κ(ωj ,xi − xj) = 1;
3). κ(ωi,xj − xi) = 1 and κ(ωj ,xi − xj) = 0.

We can then use a similar argument to that of Lemma 3.2 to prove

d

dt
dV n ≤ −α

φ2(dX)

N2
dV n, n = x, y, z.

Theorem 4.3. Let (xi,vi) be a solution of (3) and xi,vi ∈ R3. Assume the
influence function φ(r) satisfies

∫∞
0
φ2(r) = ∞ and the angle of the cone of vision

γ satisfies π
2 ≤ γ < π. If the initial conditions satisfy one of i) and ii) in lemma

4.2, then the solution flocks.

Proof. We consider the case where the initial condition satisfies i), and a similar
argument applies to case ii). From Lemma 4.1 and Lemma 4.2, we have

d

dt
dV n ≤ −α

φ2(dX)

N2
dV n, n = x, y, z.

Introduce a function E(dX , dV x, dV y, dV z)(t) = dV x(t) + dV y(t) + dV z(t) +α
∫ dX(t)

0

Ψ(r)dr, where Ψ(r) = φ2(r)
N2 . We have

D+E(dX , dV x, dV y, dV z)(t) =D+dV x(t) + ḋV y(t) +D+dV z(t) + αϕ(dX)D+dX(t)

≤− αϕ(dX)dV x(t)− αϕ(dX)dV y(t)− αϕ(dX)dV z(t)

+ αϕ(dX)dV (t)

≤− αϕ(dX)dV x(t)− αϕ(dX)dV y(t)− αϕ(dX)dV z(t)
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+ αϕ(dX)(dV x + dV y + dV z)(t)

=0.

Using a similar argument as in the proof of Theorem 3.3, we can get a constant

d∗∗ <∞, (dX(0) ≤ d∗∗) such that dV x(t) + dV y(t) + dV z(t) = α
∫ d∗∗
dX(0)

ϕ(r)dr.

Then, we have dX(t) ≤ d∗∗ for any t ≥ 0. Hence, we have

d

dt
dV n ≤ −α

φ2(d∗∗)

N2
dV n, n = x, y, z.

By the Gronwall’s inequality, we obtain lim
t→∞

dV n(t) = 0, n = x, y, z. As dV ≤
dV x + dV y + dV z, we conclude that lim

t→∞
dV (t) = 0.
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