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Abstract. Due to its elastic and on-demand nature of resource provisioning,

cloud computing provides a cost effective and powerful technology for the pro-

cessing of big data. Under this paradigm, Data Service Provider (DSP) may
rent geographically distributed datacenters to process their large amount of

data. As the data are dynamically generated and the resource pricing varies

over time, moving the data from differently geographic locations to different
datacenters while provisioning adequate computation resource to process them

is an essential task to achieve cost effectiveness for DSP. In this paper, a joint

online approach is proposed to address this task. We formulate the problem
into a joint stochastic optimization problem, which is then decoupled into two

independent subproblems via the Lyapunov framework. Our method is able

to minimize the long-term time average cost including computing cost, storage
cost, bandwidth cost and latency cost. Theoretical analysis shows that our

online algorithm can produce a solution within an upper bound to the opti-
mal solution achieved through offline computing and guarantee that the data

processing can be completed with preset delays.

1. Introduction. The cloud computing paradigm offers a convenient way for users
to dynamically adjust its computing resources rented from cloud service providers
(CSPs) according to the demand in a Pay-As-You-Go (PAYG) manner. Specifically,
in cloud computing, benefited from the development of virtualization technology[3],
VMs (Virtual Machines) resources can be scaled up and down to match the ap-
plications demands. Compared with traditional approaches, the cloud computing
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paradigm eliminates users’ costs of purchasing and maintaining their own infras-
tructures.

The elastic and on-demand nature of resource provisioning attracts a lot of users
to deploy their applications, especially computation-intensive big data analysis in
the clouds. At the age of big data, data analysis is more and more important for
applications such as financial analysis, social interaction web sites, astronomical
telescope service. For example, Facebook-like social media sites can uncover usage
patterns and hidden correlations by analyzing the web site history records (e.g.,
click records, activity records et al.) to facilitate its marketing decision. We call
this kind of organization as Data Service Provider (DSP) in this paper. Under
this paradigm, the DSPs should solve two problems in the first place: 1) How to
transfer the large-scale data sets from various locations into clouds and 2) How
many resources such as computing resource and storage resource should be rented
in the clouds for processing?

Although much efforts has been made to design computing models for fast big
data analysis, such as Mapreduce[6] and Spark[27], the problems of moving large-
scale data to the clouds and provisioning adequate resources at the same time in
the clouds is rarely considered in the community. Currently, for the data moving
problem, practices such as copying the data into large-scale hard drives for physically
transportation[2, 15] and even moving the entire machine [1] to datacenters are
adopted. These methods not only incur undesirable delays but also insecure case,
given that hard drives may be damaged from transportation accident. For the
resource provision problem, some works have been done to copy with dynamic
workload in clouds[16, 21]. But these methods often considered the data moving
problem and resource provisioning problem in isolation.

In this paper, targeting the analysis of big data from different locations with
the MapReduce-like framework in the clouds, we propose an online approach which
systematically address the data moving problem and resource provisioning problem,
with the goal of over all cost minimization of running big data analytic in the couds.
To achieve this goal, we first formulate the problem into a jointly stochastic opti-
mization problem, and then, apply the Lyapunov Optimization framework. Such a
stochastic system does not require predicting the future system states and makes
decisions only based on current system state[13]. Based on the drift-plus-penalty
function transformation, we propose an online algorithm that is able to move data
from multiple regions to distributed datacenters in an online manner and dynam-
ically rent the near optimal number of computing resource and storage resource
needed to satisfy user requirements for serving data analysis.

The major contributions of this work are summarized as follows:

• We propose a novel framework that systematically handles data moving from
multiple locations to multiple datacenters and resource renting in each data-
center in a nearly optimal manner. In particular, we consider the bandwidth
cost, computing cost, storage cost and delay cost as the overall cost and guar-
antee the data can be processed within a desirable delay. In our framework,
VMs in the cloud have different types and are priced dynamically.

• We propose an algorithm to solve the jointed stochastic problem using the
Lyapunov optimization framework, which is able to make decisions of re-
source renting and data moving online. Moreover, the algorithm can have a
distributed implementation.
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• We conduct performance analyses for the algorithm theoretically, which dem-
onstrate that the algorithm approximates the optimal solution within provable
bounds and is capable of processing the tasks within a preset delay.

The remainder of this paper is organized as follows: Section 2 summarizes re-
lated works; Section 3 describes the system modeling and the problem formulation;
Section 4 gives the online algorithm for solving the problem; Section 5 analyzes the
proposed algorithm; Section 6 concludes the paper.

2. Related work. Recent years have witnessed the proliferation of cloud-based
service in both academic and industry. Much efforts has been made to migrate
the applications such as cloud-based live streaming [9, 21], cloud-based online game
[18], cloud-based conference [7] and social media applications[24] etc. into clouds.
Majority of these studies have focused on how to scale up and down the resource
in the clouds to meet user demand or migrate the workflow into clouds.

Few studies have been conducted to move large scale data into clouds. Paper [4]
studied how to transfer data to the cloud provider via the Internet and courier ser-
vices. Study [5] proposed a solution to minimize the transfer latency under a budget
constraint. In [11], the authors studied the data streaming storage for real time big
data processing. Different from our study, these work deal with the data transfer
problem on static scenario in which the data amount is fixed, while our work con-
sider dynamically generated data. In addition, aforementioned studies considered a
single datacenter while our work takes into account multiple datacenters. The most
relevant work is Zhang et al [28] which proposed an online algorithm to migrate
dynamically generated data from various locations to the clouds for processing.
However, our work significantly differs since we consider the resource provisioning
and data moving as simultaneously and applied the Lyapunov framework to address
the problem.

There is also a line of research on resource provisioning in clouds. In the clouds,
the server pool and the capacity of each server become elastic. Studies [16, 12]
considered elastic server capacity supported by virtualization technologies. Work
[16] proposed adaptive request allocation and service capacities scaling mechanism
mainly to cope with the flash crowd. Study [23] took into account of the VM renting
cost and storage cost when making scheduling decisions. Different from these works
which often need certain mechanisms to predict the future workloads, our work
does not rely on any future information on big data tasks since the Lyapunov
optimization framework is adopted. Also, studies on how to scheduling the tasks
with different objectives in clouds have been conducted. Works [29, 31] proposed
efficient scheduling strategies for real-time tasks with energy minimization while
studies [31, 20] developed task scheduling algorithms under the consideration of
fault-tolerant. These works are often within one single datacenter.

In addition, the Lyapunov optimization technique was first proposed in [17] to
address the network stability problem and then was introduced into cloud computing
to deal with job admission and resource allocation problem [19, 10]. Yao et al.
[26] extends it from the single time scale to two-time-scale for achieving electricity
cost reduction in geographically distributed datacenters. Recently, this approach is
used for resource management in cloud-based video service [22, 25]. In our work,
we utilize this approach to simultaneously address the data moving from multiple
locations to multiple datacenters and resource provisioning in each datacenter.
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Figure 1. System architecture

To summarize, our work differs from existing works as follows. 1) Firstly, we
address the problems of data moving and resource provisioning systematically and
design an online algorithm that can be implemented distributedly. 2) Secondly, with
the Lyapunov framework, our method does not rely on the prediction of future big
data processing workload, which significantly differs from the assumptions made in
[21, 23].

3. Modeling and formulation.

3.1. System modeling. We consider such a system scenario as presented in Fig. 1:
A DSP (e.g., a global astronomical telescope department) manage multiple geo-
graphical data locations that continuously produces large volumes of data. The
DSP deploys their data analytics application in cloud and connects the data source
to different datacenters located in multiple places. All the data are moved to the the
datacenters and processed in the corresponding datacenter with distributed com-
puting model such as MapReduce framework. In the system, the DSP observes
the state of the datacenter (e.g., VM price, datacenter load state, network state)
and decides the amount of data to be moved to each datacenter and the amount
of resource rented from each datacenter, with cost minimization consideration. Fi-
nally, the datacenters return the analysis results to DSP after the data have been
processed and analyzed.

Formally, considering the geo-distributed datacenters set D with size of D = |D|,
indexed by d(1 ≤ d ≤ D). A set K of distinct types of VMs (with size K = |K| ),
each with specific capacity vk under different configurations of CPU and memory,
are provided in each datacenter. Data are dynamically generated from R = |R|
different data location (indexed by r, 1 ≤ r ≤ R), denoted as set R. Data from any
location can be moved to any datacenter for analytics via virtual private networks
(VPNs). And the data transmission bandwidth between a data generation location
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Table 1. IMPORTANT NOTATIONS

D set of datacenters distributed over multiple regions

R set of data locations

K set of VM types

ar(t) amount of the data generated from region r at t

Ar
max max amount of data generated from region r

λd
r(t) amount of the data allocated to d from region r at t

nk,max
d max number of VMs of type-k in datacenter d

nk
d(t) number of type-k VM provisioned in datacenter d at t

pkd(t) price of type-k VM in datacenter d at t

sd price of storage in datacenter d

bdr price of bandwidth between location r and datacenter d

vk data processing rate of type-k VM

εd preset constant for controlling queueing delay in Hd(t)

l max delay of data process

Hd(t) unprocessed data in datacenter d at t

Zd(t) Virtual queue associate with Hd(t) to guarantee its delay

r ∈ R and a datacenter d ∈ D is large as well. To be realistic, we also assume
that the bandwidth Brd on a VPN link (r, d) from data location r to data center
d is limited, and constitutes the bottleneck in the system. In addition, The data
generation in each location is independent and the prices of the resource (e.g., VM,
storage) in each datacenter are varying in both spatial and temporal domain.

The system operates according to time slots, denoted by t = 0, 1, ..., T . In every
time slot, the DSP need to make the decision of moving how much data from data
location r to datacenter d and renting how many resources to support its data
processing, storage from each datacenter. Our goal is therefore to minimize the
over all cost of big data analytics in clouds as well as guarantee the delay in the
long run. For ease of reference, important notations are summarized in Table 1.

3.2. Problem formulation. In this subsection, we first formulate the cost in-
curred in the system and then define the objective of the problem mathematically.

As aforementioned, the system runs in a time-slotted fashion and the data are
dynamically generated over different regions in each time slot. Let ar(t) be the
amount of data generated from the r-th region at time slot t. Since the data
generated from each location can be moved to any datacenter for analytics, we
denote λdr(t) as amount of the data allocated to d from region r at t and Armax as
the max number of data generated in location r. Hence, we have:

ar(t) ≤ Armax,∀r, t ∈ [1, T ]. (1)

ar(t) =
∑
d∈D

λdr(t),∀r, t ∈ [1, T ]. (2)

The goal of the DSP is to minimize the over all cost incurred in the system
by optimizing the amount of data allocated to each datacenter and the number of
resources needed. Specifically, the following cost components are considered in this
paper: bandwidth cost, latency cost, storage cost and computing cost. Each of the
cost is defined as follows.

(1) Usually, the bandwidth price is varying over different VPN links because
they often belong to different Internet service providers. Let bdr be the price of
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transferring 1 GB data between data location r ∈ R and datacenter d ∈ D, then
the bandwidth cost of the at t is:

Cb(t) =
∑
d∈D

∑
r∈R

λdr(t) · bdr . (3)

(2) Storage cost is an important factor to be considered in choosing the datacenter
for data analytics since it often has large amount of data for big data application.
Let sd represent the price of storing 1 GB data for one time slot period in datacenter
d ∈ D, then the storage cost at t is:

Cs(t) =
∑
d∈D

∑
r∈R

λdr(t) · sd. (4)

(3) Due to the variance of VM price over time slots, the number of VMs rented
from datacenter has important impact on the over all cost of the system as well
as QoS of the big data application. Let nkd(t) be the number of VMs rented from
datacenter d at time slot t. pkd(t) be the type-k VM price in datacenter d at time
slot t, which is diverse in both spatial and time space. Then the computing cost is
defined as follows.

Cp(t) =
∑
d∈D

∑
k∈K

nkd(t) · pkd(t). (5)

(4) The latency incurred by upload data to the datacenters is an important
performance measure, which is to be minimized in the data moving process. Ldr
is the latency between the data location r ∈ R and the datacenter d ∈ D. These
delays are determined by the respective geographic distance and can be obtained
by a simple command such as Ping. As suggested in [28], we convert the latency
into monetary cost. Therefore, we can define the latency cost as:

Cl(t) =
∑
d∈D

∑
r∈R

α · λdr(t) · Ldr(t), (6)

where α is a weight converting latency into a monetary cost.
Based on above cost formulation, the overall cost incurred in the system can be

derived as:
C(t) = Cp(t) + Cs(t) + Cb(t) + Cl(t). (7)

Hence, the problem of minimizing the time-average cost of data moving and
processing within a long-term period [0, T ] can be formulated as:

P1. min : C (8)

s.t. : ar(t) ≤ Armax,∀r, t ∈ [1, T ] (9)

ar(t) =
∑
d∈D

λdr(t),∀r, t ∈ [1, T ] (10)

0 ≤ nkd(t) ≤ nk,max
d ,∀d,∀k, t ∈ [1, T ] (11)

where C = lim
T→∞

1
T

T−1∑
t=1

E{C(t)}. The constraint (10) is to ensure that the sum of

data allocated to each datacenter at one time slot is equal to the total amount data
generated at that time slot. The constraint (11) ensures that the number of VMs
required is within the capacity that a datacenter can provide.

From the problem formulation presented above, as the data generation is un-
known, we know that the problem is a constrained stochastic optimization prob-
lem and our objective is to minimize the long-term average cost by optimizing the
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amount of data allocated to each datacenter as well as the number of the VMs
rented inthe datacenter. To deal with this problem, a recent developed optimiza-
tion technique is adopted in this paper. The details of solution by using Lyapnov
optimization framework is presented in the next section.

4. Online algorithm design. In this section, we exploit the Lyapunov optimiza-
tion theory to design our online control algorithm. An outstanding feature of this
method is that it does not require future information about workload. By greedily
minimizing the drift-plus-penalty in each time slot, it also can be proved to approach
a time averaged cost that is arbitrarily close to optimum, while still maintaining
system stability.

According to the standard optimization framework theory in [13], we first trans-
form the problem P1 to an optimization problem of minimizing the Lyapunov
drift-plus-penalty term and then design the corresponding online algorithm.

4.1. Problem transformation. Let Hd(t) be the amount of unprocessed data in
datacenter d at time slot t. Initially, we define Hd(0) = 0, and then the evolution
of the queue Hd(t) can be described as below:

Hd(t+ 1) = max[Hd(t)−
∑
k∈K

nkd(t) · vk, 0] +
∑
r∈R

λdr(t). (12)

The above queue update implies that the amount of departed data and newly-
arrived data are

∑
k∈K

nkd(t) · vk and
∑
r∈R

λdr(t), respectively.

To guarantee that the worst-case queuing delay in queue Hd(t) , ∀d ∈ D, is
bounded by the max workload delay l, we design a related virtual queue Zd(t)
according to the ε-persistent service technique for delay bounding in [14]. Similarly,
the backlog of virtual queue Zd(t) is initialized as Zd(0) = 0, then updated as
follows:

Zd(t+1) = max[Zd(t)+1{Hd(t)>0}(εd−
∑
k∈K

nkd(t) · vk)−1{Hd(t)=0}
∑
k∈K

nk,max
d · vk, 0],

(13)
where the indicator function 1{Hd(t)>0} equals to 1 when Hd(t) > 0, and 0 otherwise.
Similarly, 1{Hd(t)=0} equals to 1 when Hd(t) = 0, and 0 otherwise. εd is preset
constant that can be gauged to control the queuing delay bound. It can be proved
that we are able to guarantee all data can be processed with delays at most l time
slots if the algorithm can guarantee the length of Hd(t) and Zd(t) over time slots.
It is also proved that l can be set as l = [(Hmax

d +Zmax
d )/εd], where Hmax

d and Zmax
d

are the bound of queues Hd(t) and Zd(t) respectively. Details please see in theorem
5.3.

Let Z(t) = (Zd(t)), and H(t) = (Hd(t)),∀d ∈ D denote the matrix of virtual
queue and actual queue respectively. Then, we use Θ(t) = [Z(t),H(t)] to denote
the combined matrix of actual queues and virtual queues. According to Lyapunov
framework [13], we define the Lyapunov functions as follows:

L(Θ(t)) =
1

2

∑
d∈D

{Zd(t)2
+Hd(t)

2}, (14)

where L(Θ(t)) measures the queue backlogs in the system. The one-slot Lyapunov
drift is:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (15)
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In the sense of Lyapunov optimization framework, the drift-plus-penalty can be
obtained by adding the the cost incurred by the system to the above Lyapunov
drift, namely,

∆(Θ(t)) + V · E{C(t)|Θ(t)}, (16)

where V is a non-negative parameter, that can control the tradeoff between the
system stability and cost. The larger the V is, the smaller the cost is, and vice versa.
Hence, the original problem P1 can be transformed into the following problem P2:

P2. min : (16) (17)

s.t. : (9)(10)(11). (18)

To solve problem P2, rather than directly minimize the drift-plus-penalty ex-
pression (16), we seek to minimize the upper bound for it, without undermining
the optimality and performance of the algorithm according to [13]. Therefore, the
key is to find an upper bound on problem P2. It can be proved that the expression
(16) is bounded as:

∆(Θ(t)) + V · E{C(t)|Θ(t)}
= B + E{

∑
d∈D

∑
k∈K

nkd(t) · (V pkd(t)−Hd(t)vk − Zd(t)vk)|Θ(t)}

+E{
∑
d∈D

∑
r∈R

λdr(t) · (V sd + V bdr + V αLdr +Hd(t))|Θ(t)}
, (19)

where B = 1
2

∑
d∈D
{2(

∑
k∈K

nk,max
d vk)

2
+ (εd)

2
+ (

∑
r∈R

Armax)}. Detailed proofs please

see the Appendix A.

4.2. Online control algorithm design. Fortunately, a careful investigation of the
R.H.S of inequality (19) reveals that the optimization problem can be equivalently
decoupled into two subproblems: 1) data allocation and 2) resource provisioning.
The details of solving the two subproblems are presented as follows.

1) Data Allocation: To minimize the R.H.S of (19), by observing the relation-
ship among variables, the part related to Data Allocation can be extracted from
the R.H.S of (19) as:

E{
∑
d∈D

∑
r∈R

λdr(t) · (V sd + V bdr + V αLdr +Hd(t))|Θ(t)}. (20)

Furthermore, since the data generated from each location are independent, the
centralized minimization can be implemented independently and distributedly. Con-
sidering the data allocation in location r at time t, we should solve the following
problem.

min
∑
d∈D

λdr(t)[V sd + V bdr + V αLdr +Hd(t)]

s.t(9)(10)
. (21)

In fact, the above problem is a generalized min-weight problem where the amount
of data from location r moved to datacenter d λdr(t) is weighted by the queue backlog
Hd(t) , bandwidth price bd, storage price sd and the latency cost L(r, d). By using
linear program theory (e.g., Simplex Method), we can get the following solution:

λdr(t) =

{
ar(t) d =d∗

0 else
, (22)

where d∗ = mind[V sd+V bdr +V αLdr +Hd(t)]. Obviously, the solution exhibits that
the data generated from location r will incline to be moved to the datacenter with
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the shortest weighted workload queue and the minimal operation price (e.g., VM
price, Storage price etc.) at current time slot.

2) Resource Provisioning: The left part of R.H.S (19) related to variable
nkd(t) can be considered as resource provisioning problem if we remove the constant
term. Therefore, we can get the optimal VM provisioning strategy by solving the
following problem:

min E{
∑
d∈D

∑
k∈K

nkd(t) · (V pkd(t)−Hd(t)vk − Zd(t)vk)|Θ(t)}

s.t(11)
. (23)

Since the resource provisioning problems in each datacenter are independent, similar
to data allocation problem, (23) can be solved distributedly within each datacenter.
For a single datacenter d, the resource provisioning problem can be further rewritten
as (24).

minE{
∑
k∈K

nkd(t) · (V pkd(t)−Hd(t)vk − Zd(t)vk)|Θ(t)}

s.t(11)
. (24)

The optimal solution to the above linear problem is:

nkd(t) =

 nk,max
d , if Hd(t) + Zd(t) >

V pkd(t)
vk

0, if Hd(t) + Zd(t) ≤
V pkd(t)
vk

. (25)

The above solution indicates that a type-k is preferred to be rented in t when its
price , pkd(t), is small, and VMs whose capacity, vk, is large are more likely to be
rented too.

Obviously, the two complex problems of data allocation and resource provision-
ing have been solved efficiently by using Lyapunov framework so far. The simple
strategy facilitates the online deployment of the algorithm in the real world systems.
The detail of its online algorithm is presented in Algorithm 1.

Algorithm 1: Procedures of the Proposed online Algorithm in Time Slot t

1 Input:

2 Hd(t), Zd(t), ar(t),vk, sd, b
d
r , L

d
r , n

k,max
d , Ar

max, p
k
d(t), V, α (∀d ∈ D, ∀r ∈ R,∀k ∈ K)

3 Output:

4 nk
d(t), λ

d
r(t) (∀d ∈ D,∀r ∈ R, ∀k ∈ K)

5 Resource provisioning :

6 foreach datacenter d ∈ D do

7 Getting the VM provisioning strategy (nk
d(t)) by solving the problem (23) using

(25);

8 Data Allocation:

9 foreach r ∈ R do

10 Getting the data allocation strategy λd
r(t) by solving the problem (20) using (22);

11 Update the queues Hd(t), Zd(t) according to queue dynamic equation (12)(13)
respectively.

5. Performance analysis. Next, to show its priority, we analyze theoretically the
performance of the algorithm 1 in terms of cost optimality , queueing delay bound,
and the worst delay of data processing.
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Theorem 5.1. (Cost Optimality) Suppose the data generation rate ar(t),∀r ∈
R is identical independent distribution over time slots, for any control parameter
V > 0, the algorithm can achieve a time average cost related with the optimal one
as follows.

lim sup
T→∞

1

T
·
T−1∑
t=0

E{C(t)} ≤ C∗ +
B

V
, (26)

where C∗ is the infimum of the time average cost when choosing the optimal control
action, representing the theoretically optimal solution to the optimization, B is the
same as defined in (19).

Proof. Please see the Appendix B.
This theorem exhibits that the gap between the time average cost obtained by

the algorithm proposed in this paper and the optimal cost obtained offline is with
O(1/V ). In particular, by choosing the control variable V , the time-average cost O
is arbitrarily close to the optimal cost C∗.

Theorem 5.2. (Queues Delay Bound) Assume εd satisfies εd <
∑
k∈K

nk,max
d · vk.

Let Hmax
d and Zmax

d be the upper bound of queue Hd(t) and virtual queue Zd(t)
respectively. We have:

Zmax
d =

V pmax
d

vmin
+ εd, (27)

and

Hmax
d =

V pmax
d

vmin
+
∑
r∈R

Armax (28)

where pmax
d is the max price for each type of VM over time slots, and vmin is the

minimal capacity among all kinds of VMs.

Proof. Please see the Appendix C.
This theorem shows that the queue backlog is with O(V ). It means that, to

keep the queue backlog stable, we should choose a small V . Notice that decreasing
V will cause a larger cost as shown in (26), the cost and system stability has an
[O(1/V ),O(V )] tradeoff. In reality, given the acceptable cost we can choose the V
to maximize the system stability, and vice versa.

Theorem 5.3. (Worst Case Delay)Assume that the system running in First-in-
First-Out manner, then the worst delay of the data processing in queue d is bounded
by the l defined below:

l = [Hmax
d + Zmax

d /εd], (29)

where [x] denotes the minimal integer among those greater or equal to x and Hmax
d ,

Zmax
d are defined in (28) and (27).

Proof. Please see the Appendix D.
This implies that the data arriving at any time slot t in Qd can be completed

within l time slots, demonstrating that our algorithm is able to guarantee the QoS
(Quality of Service) for DSP. In addition, as can be seen, given the system param-
eters, by choosing a suitable εd, the QoS for the DSP can be changed. Also, with
different setting of εd for d ∈ D, we can achieve heterogeneous QoS for different
datacenters.
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6. Conclusion. Targeting the processing of big data from different locations in
geo-distributed datacenters, we propose a systematical way for data moving and
resource provisioning with the goal of cost minimization. The model takes into
consideration the case that data analysis application is running in dynamic en-
vironment (e.g., unpredictable data generation, dynamic VM pricing). By using
the Lyapunov technique, we transformed the original problem into two independent
subproblems that can be solved efficiently online. Theoretical analysis demonstrates
that the algorithm is able to maintain the stability of the dynamic system and com-
plete the data processing within some time slots. It remains to further validate the
effectiveness of the proposed algorithm via extensive experiments. Other consider-
ations that may be further incorporated into our proposed framework include data
processing relevance between two consecutive time slots, data processing migration
among datacenters etc.

Appendix A. Derivation of bound for the Drift-plus-penalty. For the vec-
tors of Θ(t) = [Z(t);H(t)], note that (max[x− y, 0] + z)2 ≤ x2 + y2 + z2 +x(z− y),
then we have:

Zd(t+ 1)2 − Zd(t)2

≤ {1(H(t)>0)(εd −
∑
k∈K

nkd(t)vk)− 1(H(t)=0)

∑
k∈K

nk,max
d vk}

+2Zd(t){1(H(t)>0)(εd −
∑
k∈K

nkd(t)vk)− 1(H(t)=0)

∑
k∈K

nk,max
d vk}

≤ (εd)
2 + (

∑
k∈K

nk,max
d vk)2 + 2Zd(t)(εd −

∑
k∈K

nkd(t)vk)

(30)

Hd(t+ 1)2 −Hd(t)
2

≤ (
∑
k∈K

nkd(t)vk)2 + (
∑
r∈R

λdr(t))
2 + 2Hd(t)(

∑
r∈R

λdr(t)−
∑
k∈K

nkd(t)vk) (31)

Since λdr(t), n
k
d(τ) are bound by Armax, nk,max

d respectively. By defining B =
1
2

∑
d∈D
{2(

∑
k∈K

nk,max
d vk)

2
+ (εd)

2
+ (

∑
r∈R

Armax)}, we can get the 1-slot Lyapunov drift

as follows:

∆(Θ(t))

= 1
2

∑
d∈D

E{Hd(t+ 1)
2 −Hd(t)

2|Θ(t)}

+ 1
2

∑
d∈D

E{Zd(t+ 1)
2 − Zd(t)

2|Θ(t)}

≤ B +
∑
d∈D

E{Hd(t)(
∑
r∈R

λdr(t)−
∑
k∈K

nkd(t)vk)|Θ(t)}

+
∑
d∈D

E{Zd(t)(εd −
∑
k∈K

nkd(t)vk)|Θ(t)}

(32)

So far, by adding the term V · E{C(t)} to the above expression, we can get the
drift-plus-penalty bound in (19).

Appendix B. Proof of Theorem 5.1. To prove this theorem, we first give the
following lemma.

Lemma B.1. (Existence of Optimal Randomized Stationary Policy): There exists

at least one policy π that chooses feasible solution (nk,πd (t), λd,πr (t) for ∀d ∈ D,∀r ∈
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R,∀k ∈ K,∀t ∈ [1, T ]) and satisfies that:

E{C(t)} = C∗,

E{
∑
r∈R

λd,πr (t)} ≤ E{
∑
k∈K

nk,πd (t)vk},

εd ≤ E{
∑
k∈K

nk,πd (t)vk}
(33)

where C∗ is the theoretical lower bound of the cost. This lemma can be proved by
using Caratheodory’s theorem in [8].

Based on lemma B.1, next we prove the time averaged cost bound of our algo-
rithm in (26) as follows.

Proof. From lemma B.1, it can be derived that there exist a constant δ > 0 that
satisfies:

E{
∑
r∈R

λd,πr (t)} ≤ E{
∑
k∈K

nk,πd (t)vk} − δ (34)

εd ≤ E{
∑
k∈K

nk,πd (t)vk} − δ (35)

Therefore, recall that our algorithm seek to minimize the right-hand-side of the
inequality in (19) by choosing the decision variables among all feasible decisions at
each time slot and apply lemma B.1, (34) and (35) into (19), we can obtain:

∆(Θ(t)) + V · E{C(t)|Θ(t)}
≤ B + V C∗ − δ

∑
d∈D

E{Hd(t)} − δ
∑
d∈D

E{Zd(t)} (36)

Taking the expectation for (36) and using the fact that ∆(Θ(t)) = E{L(Θ(t +
1))− L(Θ(t))|Θ(t)}, it can be given that:

E{L(Θ(t+ 1))− L(Θ(t))}+ V · E{C(t)}
≤ B + V C∗ − δ

∑
d∈D

E{Hd(t)} − δ
∑
d∈D

E{Zd(t)} (37)

With the law of telescoping sums over t = 0, ..., T−1 and then dividing the result
by T gives:

E{L(Θ(T ))−L(Θ(0))}
T + V

T ·
T−1∑
t=0

E{C(t)}

≤ B + V C∗ − δ
T

T−1∑
t=0

∑
d∈D

E{Hd(t)} − δ
T

T−1∑
t=0

∑
d∈D

E{Zd(t)}
(38)

Rearranging the terms and considering the fact that L(Θ(0))} = 0, Hd(t) ≥
0, Zd(t) ≥ 0 , we obtain:

1

T
·
T−1∑
t=0

E{C(t)} ≤ C∗ +
B

V
(39)

Now (26) follows by taking a limit as T →∞.
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Appendix C. Proof of Theorem 5.2.

Proof. For Zd(t), as known to us,Zd(0) = 0 < Zmax
d . For any time slot t ∈ [0, T ], if

Zd(t) ≤ V pmax
d

vmin
, then Zd(t+1) ≤ V pmax

d

vmin
+εd (because Zd(t+1) will increase at most

εd as shown in (13) ). If Zd(t) >
V pmax

d

vmin
, then Hd(t)+Zd(t) >

V pmax
d

vmin
>

V pkd
vk

, and the

queue will decrease by
∑
k∈K

nk,max
d · vk (refer to (25)). Note that εd <

∑
k∈K

nk,max
d · vk,

hence, Zd(t+ 1) < Zd(t) ≤ Zmax
d . The bound of queue Zd(t) is proved.

Similarly, for Hd(t), Hd(0) = 0 < Hmax
d . For any time slot t, if Hd(t) ≤ V pmax

d

vmin
,

then Hd(t+1) ≤ V pmax
d

vmin
+
∑
r∈R

Armax (because Hd(t+1) will increase at most
∑
r∈R

Armax

as shown in (12)). If Hd(t) >
V pmax

d

vmin
, then Hd(t) + Zd(t) >

V pmax
d

vmin
≥ V pkd

vk
and the

queue will decrease by
∑
k∈K

nk,max
d · vk (refer to (25)). Noting that

∑
r∈R

Armax ≤∑
k∈K

nk,max
d · vk, so that the queue cannot increase on the next slot, i.e., Hd(t+ 1) <

Hd(t) ≤ Hmax
d . Hence, the bound of queue Hd(t) is proved.

Appendix D. Proof of Theorem 5.3.

Proof. If there is a time slot τ ∈ [t+ 1, t+ l] satisfies that Hd(τ) = 0, then the data
arriving at time slot t are processed within l time slots. For the case that Hd(τ) > 0
for any τ ∈ [t+ 1, t+ l], the virtual queue has the departure rate nkd(τ) as show in
(13). Therefore, we have:

Zd(τ + 1) = max[Zd(τ) + εd −
∑
k∈K

nkd(t) · vk, 0]

≥ Zd(τ) + εd −
∑
k∈K

nkd(t) · vk
(40)

Summing the above inequality over time slots τ ∈ [t+ 1, t+ l], we have:

Zd(t+ l + 1) ≥ Zd(t+ 1) + ld · εd −
t+l+1∑
τ=t+1

∑
k∈K

nkd(τ) · vk. (41)

Hence, it can be derived that
t+l+1∑
τ=t+1

∑
k∈K

nkd(τ) · vk ≥ l·εd−Zmax
d . Note l·εd−Zmax

d ≥

Hmax
d when l = [Hmax

d + Zmax
d /εd], we have:

t+l+1∑
τ=t+1

∑
k∈K

nkd(τ) · vk ≥ Hmax
d ≥ Hd(t). (42)

Since the system running in First-in-First-out model, the data arriving at time slot
t will be processed before that arrives after time slot t. As the total amount of data
processed within l time slots surpass the Hd(t), then all the data arriving at time
slot t will be served within l time slots, thus the worst delay is l time slots.
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