
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/265415589

Towards	Energy-Efficient	Scheduling	for	Real-
Time	Tasks	under	Uncertain	Cloud	Computing
Environment

ARTICLE		in		JOURNAL	OF	SYSTEMS	AND	SOFTWARE	·	SEPTEMBER	2014

Impact	Factor:	1.35	·	DOI:	10.1016/j.jss.2014.08.065

CITATION

1

READS

240

6	AUTHORS,	INCLUDING:

Huangke	Chen

National	University	of	Defense	Technology

4	PUBLICATIONS			2	CITATIONS			

SEE	PROFILE

Xiaomin	Zhu

National	University	of	Defense	Technology

46	PUBLICATIONS			153	CITATIONS			

SEE	PROFILE

Xiao	Qin

Auburn	University

201	PUBLICATIONS			1,645	CITATIONS			

SEE	PROFILE

Jianhong	Wu

York	University

380	PUBLICATIONS			7,176	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Huangke	Chen

Retrieved	on:	05	November	2015

http://www.researchgate.net/publication/265415589_Towards_Energy-Efficient_Scheduling_for_Real-Time_Tasks_under_Uncertain_Cloud_Computing_Environment?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/265415589_Towards_Energy-Efficient_Scheduling_for_Real-Time_Tasks_under_Uncertain_Cloud_Computing_Environment?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Huangke_Chen?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Huangke_Chen?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Huangke_Chen?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Xiaomin_Zhu3?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Xiaomin_Zhu3?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Xiaomin_Zhu3?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Xiao_Qin5?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Xiao_Qin5?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Auburn_University?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Xiao_Qin5?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Jianhong_Wu?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Jianhong_Wu?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/York_University?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Jianhong_Wu?enrichId=rgreq-417df3cb-a2d7-4405-b7a4-c474236db685&enrichSource=Y292ZXJQYWdlOzI2NTQxNTU4OTtBUzoxNDQyMDI0NDkwMzUyNjRAMTQxMTM5MTk1MTM5MQ%3D%3D&el=1_x_7


Accepted Manuscript

Title: Towards Energy-Efficient Scheduling for Real-Time
Tasks under Uncertain Cloud Computing Environment

Author: Huangke Chen Xiaomin Zhu Hui Guo Jianghan Zhu
Xiao Qin Jianhong Wu

PII: S0164-1212(14)00190-3
DOI: http://dx.doi.org/doi:10.1016/j.jss.2014.08.065
Reference: JSS 9374

To appear in:

Received date: 13-1-2014
Revised date: 4-7-2014
Accepted date: 28-8-2014

Please cite this article as: Huangke Chen, Xiaomin Zhu, Hui Guo, Jianghan Zhu, Xiao
Qin, Jianhong Wu, Towards Energy-Efficient Scheduling for Real-Time Tasks under
Uncertain Cloud Computing Environment, The Journal of Systems & Software (2014),
http://dx.doi.org/10.1016/j.jss.2014.08.065

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.jss.2014.08.065
http://dx.doi.org/10.1016/j.jss.2014.08.065


Page 1 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

We develop an uncertainty-aware architecture for scheduling real-time tasks in cloud computing 

environment. 

 

A novel algorithm named PRS that combines proactive with reactive scheduling methods is 

proposed to schedule real-time tasks. 

 

Three system scaling strategies according to dynamic workloads are developed to improve the 

resource utilization and reduce energy consumption. 
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Abstract

Green cloud computing has become a major concern in both industry and
academia, and efficient scheduling approaches show promising ways to reduce
the energy consumption of cloud computing platforms while guaranteeing QoS
requirements of tasks. Existing scheduling approaches are inadequate for real-
time tasks running in uncertain cloud environments, because those approaches
assume that cloud computing environments are deterministic and pre-computed
schedule decisions will be statically followed during schedule execution. In this
paper, we address this issue. We introduce an interval number theory to describe
the uncertainty of the computing environment and a scheduling architecture to
mitigate the impact of uncertainty on the task scheduling quality for a cloud
data center. Based on this architecture, we present a novel scheduling algorithm
(PRS1) that dynamically exploits proactive and reactive scheduling methods,
for scheduling real-time, aperiodic, independent tasks. To improve energy effi-
ciency, we propose three strategies to scale up and down the system’s computing
resources according to workload to improve resource utilization and to reduce
energy consumption for the cloud data center. We conduct extensive experi-
ments to compare PRS with four typical baseline scheduling algorithms. The
experimental results show that PRS performs better than those algorithms, and
can effectively improve the performance of a cloud data center.

Keywords:

1Proactive and Reactive Scheduling
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interval number

1. Introduction

Cloud computing has become a paradigm for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction (Mell and Grance, 2009). To satisfy such a soaring demand
of computing services, IT companies (e.g., Google and Facebook) are rapidly
deploying distributed data centers in different administrative domains around
the world.

Consequently, tens of thousands of hosts in these data centers consume enor-
mous energy for computing and equipment cooling operations (Luo et al., 2012).
It is reported that the energy consumed in data centers is about 1.5% of the
global electricity in 2010, and the percentage will be doubled by 2020 if the
current trends continue (Koomey, 2011). Apart from the operating cost, high
energy consumption will result in low reliability of the system since the fail-
ure rate of hosts doubles for every 10-degree increase in temperature (Cameron
et al., 2005). In addition, high energy consumption has a negative impact on
environment because generating electrical energy from fossil fuels produces a
large amount of CO2 emissions, which are estimated to be 2% of the global e-
missions (Pettey, 2007). Therefore, reducing energy consumption or conducting
green computing has become a grand challenge when deploying and operating
cloud data centers.

With the development of virtualization technology (Barham et al., 2003), a
single physical host can run multiple virtual machines (VMs) simultaneously.
In addition, the VMs can be relocated by live operations, such as VM creation,
VM live migration and VM deletion, to achieve fine-grained optimization of
computing resources for cloud data centers. This technology offers significan-
t opportunities for green computing (Beloglazov et al., 2012). Leveraging the
capabilities of virtualization technology, one can scale up or down VMs rapidly
according to the current workloads in the system. When the system is over-
loaded, more VMs are added; when the system is underloaded, the VMs can be
consolidated to a minimal number of physical hosts and the idle hosts can be
turned off. Hosts in a completely idle state can dissipate over 70% as much pow-
er as when they fully utilized (Ma et al., 2012). Turning-off idle hosts, therefore,
means significant power savings.

Nevertheless, the virtualization also brings about new challenges to the re-
source management in clouds due to the fact that multiple VMs can share the
hardware resources (e.g., CPU, memory, I/O, network, etc.) of a physical host
(Kong et al., 2011). The resource sharing may cause the performance of VMs
subjecting to considerable uncertainties in cloud computing environments main-
ly due to I/O interference between VMs (Bruneo, 2014; Armbrust et al., 2010)

2
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and hosts are overloaded (Beloglazov and Buyya, 2013). For example, the ready
time and the computing capacity of a VM arbitrarily varies over time, which
makes it difficult to accurately measure the execution timing parameters and
resource usage of VMs. Such dynamic and non-deterministic characteristics of
the VM computing cause great difficulties for efficient resource management in
clouds.

In addition, a primary fraction of computing applications in cloud data cen-
ters are real-time tasks. The arrival times of these tasks are dynamic and the
predictions of their execution duration can also be difficult and sometimes im-
possible (Van den Bossche et al., 2010), since most real-time tasks are fresh and
no much information is available to help the accuracy of the predictions. The
imprecise execution prediction and dynamic task arrival time leave the associ-
ated scheduling timing constraints (i.e., start time, execution time and finish
time) under considerable uncertainty. Furthermore, real-time tasks often need
deadlines to guarantee their timing requirements, which further exacerbates the
problem of efficient task scheduling and resource management.

Motivation. Due to the dynamic and uncertain nature of cloud comput-
ing environments, numerous schedule disruptions (e.g., shorter or longer than
expected task execution time, variation of VM performance, arrival of urgen-
t tasks, etc.) may occur and the pre-computed baseline schedule may not be
executed and may not be effective in real execution. Unfortunately, the vast
majority of researches did not consider the uncertainties of clouds, which may
leave a large gap between the real execution behavior and the behavior initially
expected. To address this issue, we study how to describe these uncertain pa-
rameters, how to control uncertainties’ impact on scheduling results, and how
to reduce the energy consumption in cloud data centers, while guaranteeing the
timing requirements of real-time tasks.

Contributions. The major contributions of this work are:

• an uncertainty-aware architecture for scheduling real-time tasks in the
cloud computing environment.

• a novel algorithm named PRS that combines proactive with reactive schedul-
ing methods for scheduling real-time tasks and computing resources when
considering the uncertainties of the system.

• three system scaling strategies according to dynamic workloads to reduce
energy consumption.

• the experimental verification of the proposed PRS algorithm based on
randomly generated test instances and real world traces from Google.

The remainder of this paper is organized as follows. The related work in the
literature is summarized in Section 2. Section 3 presents the scheduling model
and the problem formulation. The energy-aware scheduling algorithm for real-
time tasks considering the uncertainties of the system is introduced in Section
4. Section 5 conducts extensive experiments to evaluate the performance of our

3
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algorithm by comparing it with four baseline scheduling algorithms. Section 6
concludes the paper with a summary and future directions.

2. Related Work

In recent years, the issue of high energy consumption in cloud data centers
has attracted a great deal of attention. In response to that, a large number of
energy-aware scheduling algorithms have been developed. Among them, there
are two typical approaches. One is DVFS (dynamic voltage and frequency
scaling) based and another is machine virtualization based.

The DVFS technique makes trade-offs between processor power and per-
formance and has been commonly used to reduce the power consumption of
data centers. For example, Garg et al. proposed near-optimal energy-efficient
scheduling policies that leverages DVFS to scale down the CPU frequency as far
as possible to minimize the carbon emission and maximize the profit of the cloud
providers (Garg et al., 2011). Li et al. proposed a Relaxation-based Iterative
Rounding Algorithm (RIRA) for DVFS-enabled heterogeneous multiprocessor
platforms to minimize overall energy consumption while meeting tasks dead-
lines (Li and Wu, 2012). Nikzad et al. focused on the issue of high energy
consumption in cluster, and presented the MVFS-DVFS algorithm to fully uti-
lize slack times and reduce energy consumption on processors (Rizvandi et al.,
2011). Zhu et al. proposed an energy-efficient elastic (3E) scheduling strategy
to make trade-offs between users’ expected finish time and energy consumption
by adaptively adjusting CPU’s supply voltages according to the system work-
load (Zhu et al., 2013). However, the DVFS is mainly implemented on host
processor machines and their energy consumption contributes about one-third
of the total system power (Ahmad and Vijaykumar, 2010). In addition, only the
dynamic power (about 30% of the processor power (Beloglazov et al., 2012)) can
be moderated by DFVS. Due to those limitations of DVFS, the virtualization
technique, used to consolidate VMs for low energy consumption of data centers,
is becoming popular and is the focus in this paper.

The vast majority of the energy-aware scheduling research efforts over the
past several years have concentrated on dynamical consolidation of VMs accord-
ing to the system workload, to reduce the number of physical hosts so that the
idle hosts can be switched off for low energy consumption. Hermenier et al. ex-
amined the overhead of migrating a VM to its chosen destination, and proposed
a resource manager named Entropy for homogeneous clusters. The Entropy can
dynamically consolidate VMs based on constraint programming and explicit-
ly takes into account the cost of the migration plan (Hermenier et al., 2009).
Younge et al. developed a novel green framework where green computing was re-
alized by energy efficient scheduling and VM management components (Younge
et al., 2010). Srikantaiah et al. explored the inter-relationships among energy
consumption, resource utilization, and performance of consolidated workload-
s, and designed a heuristic scheme for minimizing system energy consumption
while meeting the performance constraint (Srikantaiah et al., 2008). Hsu et al.
studied how to dynamically consolidate tasks to increase resource utilization

4
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and reduce energy consumption, and presented an energy-aware task consoli-
dation (ETC) method to optimize energy usage in cloud systems (Hsu et al.,
2014). Our work also leverages the VM consolidation technique to reduce the
systems’ energy consumption. However, unlike the above existing approach-
es, where uncertainties of tasks’ execution times and VMs’ performance were
not considered, our design takes the uncertainties into account, and we employ
proactive and reactive methods to mitigate the impact of uncertainties on the
scheduling quality for cloud data centers.

There also exist some work investigating the task scheduling strategies under
uncertain computing environments. Qiu et al. studied the problem of assigning
computing units to each task in a system to achieve energy savings at a minimum
cost. The system is modelled by a Probabilistic Data Flow Graph (PDFG) and
the timing constraint of the system was satisfied with a guaranteed confidence
probability (Qiu and Sha, 2009). Li et al. studied the impacts of inaccurate
execution time information on the performance of resource allocation, and pre-
sented an evaluation method to compare the performance of three widely used
greedy heuristics (Li et al., 2011). Xian et al. presented an approach to combine
intra- and intertask voltage scheduling for energy reduction in hard real-time
systems assuming that the probabilistic distributions of tasks’ execution time
are available (Xian et al., 2008). Kong et al. focused on uncertain availabilities
of virtualized server nodes and workloads, and utilized the type-I and type-II
fuzzy logic systems to predict the availability of resources and workloads to
improve performance of virtualized data centers (Kong et al., 2011). The algo-
rithms in these work need the probability distributions or membership functions
of tasks’ execution times for deterministic proactive schedule decisions. Unlike
the aforementioned approaches, the algorithm in this paper firstly builds proac-
tive baseline schedules; the proactive baseline schedules are then dynamically
repaired when disruptions (e.g., the urgent tasks arrive, systems’ load become
too heavy, and the like) occur during the course of executions.

3. Modeling and Formulation

In this section, we firstly introduce the theory of interval number for descrip-
tion of uncertain parameters encountered in the task scheduling, then propose
a scheduling architecture for cloud data centers. Based on this architecture, we
form our scheduling problem.

3.1. Interval Number and Arithmetic Operations

Interval number can be used to specify imprecise, uncertain and incomplete
data and/or decision variables (Sengupta and Pal, 2009). The related definitions
and operations that will be used in our task scheduling are given below.

Definition 1. (Sengupta and Pal, 2009) Let R be the set of all real numbers,
and a−, a+ ∈ R. An interval number is defined as follows: ã = [a−, a+] =
{t|a− ≤ t ≤ a+, t ∈ R}, where a− and a+ are the lower and upper bounds
of the interval number ã, respectively. If a− = a+ = t, then ã = [t, t] = t

5
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is a real number. We denote the set of all interval numbers by I(R). The
interval between the lower and upper bounds of an uncertain number reflects
its uncertainty degree.

Definition 2. (Sengupta and Pal, 2009) If ã = [a−, a+], b̃ = [b−, b+] ∈ I(R),
then the addition operation ⊕ and the subtraction operation ⊖ between the two
interval numbers are defined as follows.

ã⊕ b̃ = [a− + b−, a+ + b+];

ã⊖ b̃ = [a− − b+, a+ − b−].
(1)

Inference 1. Given a set of interval numbers ã1 = [a−1 , a
+
1 ], ã2 = [a−2 , a

+
2 ], · · · , ãn =

[a−n , a
+
n ], then the sum of these interval numbers is:

n∑
i=1

ãi =
n∑

i=1

[a−i , a
+
i ] = [

n∑
i=1

a−i ,
n∑

i=1

a+i ]. (2)

By Inference 1, we know that the interval of
∑n

i=1 ãi is the sum of the interval
of each interval number. The uncertainty increases with the count of interval
numbers.

Definition 3. (Sengupta and Pal, 2009) If ã = [a−, a+], b̃ = [b−, b+] ∈ I(R),
then the multiplication operation ⊗ and the division operation ⊘ between the
two interval numbers are defined as follows.

ã⊗ b̃ = [min{a−b−, a−b+, a+b−, a+b+},max{a−b−, a−b+, a+b−, a+b+}];

ã⊘ b̃ = [a−, a+]⊗ [1/b−, 1/b+].
(3)

We use interval numbers to model the uncertain execution timing parame-
ters in the cloud computing. Our optimization problem of task scheduling can
therefore be formed based on those parameters, which will be detailed in the
next section.

3.2. System Architecture and Scheduling Model

In this paper, the targeted system is a large-scale data center consisting of
n heterogeneous physical hosts H = {h1, h2, ..., hn}. Each host is characterized
by hj = {cj ,mj , sj , pj , V Mj}, where cj is the host CPU performance measured
in Millions Instructions Per Second (MIPS), mj the memory size, sj the storage
capacity, and pj the energy consumption when the host is fully utilized; a set of
VMs on the host are denoted by VMj , VMj = {vmjk, k = 0, 1, ..., |VMj |}, and
vmjk is the k-th virtual machine (VM) on host hj . A VM is, in turn, modeled
as vmjk = {c̃jk,mjk, sjk, wtkjk, etkjk}, where c̃jk,mjk and sjk are respectively
the CPU performance (in MIPS), memory and storage capacity required for
VM vmjk; the wtkjk and etkjk represent the waiting and executing task on VM
vmjk, respectively. Note that the CPU performance of VMs arbitrarily varies
over time, and their lower and upper bounds can be gained before scheduling,
e.g., by utilizing the Markov Chain prediction method (Beloglazov and Buyya,
2013), so we utilize interval number to present them.

6
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In this paper, we focus on real-time, aperiodic, independent tasks, denoted
as T = {t1, t2, , ..., tm}. For a certain task ti ∈ T , it can be modeled by ti =

{ai, di, l̃i, dzi}, where ai, di, l̃i and dzi represent the arrival time, deadline, length
(in MI) and data size (in MB) of task ti, respectively. Note that the length of
a task is uncertain before scheduling, and its lower and upper bounds can be
gained, e.g., via machine learning method proposed in (Berral et al., 2011). So
we employ interval number to describe the computing length of a task.

Each real-time task has a level of urgency, which can be determined in many
ways, for example, deadline (Mills and Anderson, 2010), and laxity (Oh and
Yang, 1998). Here we use the laxity for the task urgency, which is given below.

Definition 4. The laxity (Oh and Yang, 1998) Li of task ti is

Li = di −
l+i

min{c−jk}
− ct. (4)

where l+i and di are the computation length upper bound and deadline of task
ti, respectively; min{c−jk} is the computing capacity lower bound of the VM

with minimal CPU performance; l+i /min{c−jk} represents the upper bound of
task ti’s maximal execution time and ct is the current time.

Comparing with the deadline-only-based urgency used in the traditional Ear-
liest Deadline First (EDF) (Mills and Anderson, 2010) policy the laxity proposed
here can better reflect tasks’ urgency by considering both their computation
lengths and deadlines since the processing requirements of these tasks are het-
erogeneous. The task with the smallest laxity should be first considered for
execution when scheduling. If Li is negative, task ti cannot be successfully
completed before its deadline di.

Definition 5. Urgent task: a task becomes urgent when its laxity Li is
equal to or less than a preestablished threshold Ld. In this paper, let Ld be the
time for turning on a host and creating a VM on it (e.g., Ld = 120s).
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Figure 1: The uncertainty-aware scheduling architecture

The scheduling architecture of a cloud data center introduced in this paper is
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shown in Fig. 1. Similar to traditional multiprocessor systems (Ma et al., 2012),
the scheduling model in cloud data centers consists of three layers: user layer,
scheduling layer and resource layer. However, the most difference between these
two systems are that the resource layer in cloud data centers can be further
divided into two layers: host layer and virtual machine (VM) layer, and that
the VM layer can be scaled up and down according to the workload in the cloud
data centers.

The scheduler consists of a waiting queue (WQ), an urgent task queue
(UTQ), a resource monitor, and a schedulability analyzer. The WQ accom-
modates both new tasks and waiting tasks to be scheduled, while the UTQ
holds all the urgent tasks that should be scheduled immediately. The resource
monitor detects the system’s status, and the schedulability analyzer is respon-
sible for scheduling task and dynamically allocating computing resources. In
addition, any VM vmjk has a local queue (LQ), which holds the executing task
etkjk and the waiting task wtkjk that have been scheduled on this VM.

The overview of the scheduling process for this architecture is as follows.
When non-urgent task arrives, it will be added into the waiting queue (WQ),
and the tasks in WQ are arranged in an ascending order by their laxity. When
urgent task arrives or some tasks in WQ become urgent over time, they will be
delivered to UTQ directly, and these tasks will be scheduled to VMs as executing
or waiting tasks immediately. In addition, when any one of the two following
cases occurs, some tasks in WQ will be scheduled to VMs.

• The first case is that when the arrival rate of tasks increases and the re-
sources required for tasks in WQ exceed the initiated computing resources
in the system, which can be approximated as Formula (5), computing
resources will be scaled up for the new arrival tasks.

∃ti in WQ,
n∑

j=1

|VMj |∑
k=1

c−jk(di −max(rt+jk, ct)) <
∑
ts∈Ti

l+s . (5)

where rt+jk is the ready time’s upper bound of VM vmjk, i.e., the time
that VM vmjk will finish all the tasks that have been mapped to it, Ti =
{ts|ds ≤ di} represents the subset of tasks in WQ whose deadlines are
smaller or equal to the deadline of task ti, and ls is the computing length

of task ti. Besides,
∑n

j=1

∑|VMj |
k=1 c−jk(di − max(rt+jk, ct)) represents the

available computing resources before task ti’s deadline di, and
∑

ts∈Ti
l+s

represents the computing resources required by the subset of tasks Ti =
{ts|ds ≤ di}.

• The second case is when a VM finishes a task. On a task completion by
a VM, the waiting task on the VM starts to execute immediately, and
searching a new waiting task for the VM from WQ will be performed.

The unique features in this scheduling architecture are that most of waiting
tasks are waiting in the WQ instead of waiting on the LQs of VMs and at most
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one task is allowed to wait on the LQ of each VM. The benefits of this scheduling
architecture are summarized as follows.

• It can prohibit propagation of uncertainties throughout the schedule. Ac-
cording to Inference 1, we know that as the count of waiting tasks in-
creases, the uncertainty degrees of waiting tasks become larger, which will
significantly affect the stability of schedule. Therefore, we need to control
the count of tasks waiting on LQs (i.e., waiting on VM directly) to prevent
the propagation of uncertainties.

• This design allows each task waiting on LQ to start as soon as its preceding
task has finished, so the possible execution delay for a new task is removed.

• This design enables overlapping of communications and computations.
When VM is executing a task and the LQ is empty, VM can simultaneously
receive another task as a waiting task. By doing so, communications and
computations are efficiently overlapped to save time, and overlapping of
communications with computations has been proved to be an efficient
method to improve scheduling performance (Hu and Veeravalli, 2013).

• It also can reduce the overheads of task transfer among hosts when cor-
responding VMs need to migrate. The reason is that when consolidate
VMs by live migrations, the waiting tasks on VMs will also be migrated
with VMs, which may cause overheads. But this scheduling architecture
maintains most waiting tasks in WQ instead of LQs of VMs, and thus
reduces the moving tasks’ data among hosts during VM migrations.

3.3. Problem Formulations

As host resources are limited, the amount of resources required for VMs on a
host must not be greater than the capacity of the host. The requirement forms
the first scheduling constraint, as can be formally expressed below.

cj ⊖
|VMj |∑
k=1

c̃jk ≥ 0, ∀hj ∈ H;

mj −
|VMj |∑
k=1

mjk ≥ 0, ∀hj ∈ H;

sj −
|VMj |∑
k=1

sjk ≥ 0, ∀hj ∈ H.

(6)

We utilize assignment variable xijk to reflect the mapping of task ti to VM
vmjk on host hj in a cloud data center. The assignment variable xijk is 1 when
task ti is assigned to VM vmjk, otherwise, xijk equals 0, i.e.,

xijk =

{
1, if ti is assigned to vmjk,
0, otherwise.

(7)

9
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We let s̃tijk, ẽtijk and f̃ tijk be the start time, execution time and finish
time of task ti on VM vmjk, respectively. Since the CPU performance c̃jk of

VM vmjk vary over the time and the total amount of computation length l̃i
of task ti cannot be exactly determined before scheduling, the parameters (i.e.,

s̃tijk, ẽtijk, f̃ tijk, c̃jk, and l̃i) are uncertain and we utilize the interval number

to describe these uncertain parameters (e.g., l̃i = [l−i , l
+
i ] and c̃jk = [c−jk, c

+
jk]

etc). For l−i , l
+
i , c

−
jk, c

+
jk > 0, the execution time of task ti on VM vmjk can be

calculated via Definition 3 as follows.

ẽtijk = l̃i ⊘ c̃jk = [l−i , l
+
i ]⊘ [c−jk, c

+
jk] = [l−i , l

+
i ]⊗ [1/c−jk, 1/c

+
jk]

=[min{l−i /c
−
jk, l

−
i /c

+
jk, l

+
i /c

−
jk, l

+
i /c

+
jk},max{l−i /c

−
jk, l

−
i /c

+
jk, l

+
i /c

−
jk, l

+
i /c

+
jk}]

=[l−i /c
+
jk, l

+
i /c

−
jk].

(8)

The finish time f̃ tijk of task ti on VM vmjk can be easily determined as
follows.

f̃ tijk = s̃tijk ⊕ ẽtijk. (9)

In turn, the finish time f̃ tetjk of the executing task etjk on the VM vmjk

determines the start time stwtjk of the waiting task wtjk on the VM vmjk, which
can be described as follows.

s̃twtjk = f̃ tetjk . (10)

In addition, let ftrijk be the actual finish time of task ti on VM vmjk, which

can be any value in the interval, f̃ tijk. For example, assume the estimated finish

time of task t1 on VM vm11 is f̃ t111 = [100, 150]s before scheduling; the actual
finish time ftr111 should be between 100s and 150s (e.g., 120s) after the task t1
has been finished on VM vm11. Under the uncertain cloud computing scheduling
environments, it is the actual finish time ftrijk that determines whether the
task’s timing requirement has been guaranteed or not. So, we introduce the
status variable oijk to record whether the timing requirement of task ti on VM
vmjk has been guaranteed or not. If a task ti is assigned to VM vmjk and its
actual execution time is smaller or equal to its deadline, the time requirement
of this task is guaranteed, as specified in Formula (11).

oijk =

{
1, if ((ftrijk ≤ di) and (xijk = 1)),

0, otherwise.
(11)

Since only one result of each task is needed, the second constraint:

n∑
j=1

|VMj |∑
k=1

oijk ≤ 1 ∀ti ∈ T. (12)

10
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Subjecting to aforementioned constraints, the primary optimization objec-
tive is to maximize the ratio of tasks finished before their deadlines, which can
be represented as follows.

Maximize

m∑
i=1

n∑
j=1

|VMj |∑
k=1

oijk
m

. (13)

where m and n are the count of tasks submitted and hosts in the system,
respectively.

Another objective needed to be optimized under uncertain environments is
to minimize the stability cost function

∑
wi(|st+ijk − strijk|) (Van de Vonder

et al., 2008), defined as the weighted sum of the absolute deviations between
the predicted starting time’s upper bound st+ijk of task ti in the baseline and
their true starting times strijk during actual execution, which can be described
as follows.

Minimize
m∑
i=1

wi(|st+ijk − strijk|). (14)

where wi represents the marginal cost of time deviation between the predicted
starting time’s upper bound and the realized starting time, and we let wi the
reciprocal of real execution time etrijk of task ti on VM vmjk, i.e., wi = 1/etrijk.

Apart from the guarantee ratio and stability, the total energy consumption
for executing a set of tasks T is also an important metric to evaluate the per-
formance of a cloud data center. So, in this paper, we also focus on minimizing
the total energy consumption, which can be represented as follows (Beloglazov
et al., 2012).

Minimize
n∑

j=1

∫ et

st

(k · pj · ytj + (1− k) · pj · u(t))dt. (15)

where n is the number of hosts in the system; st and et are the start time and the
end time of executing the task set T , respectively; ytj ∈ {1, 0} denotes whether
host hj is active at time instant t; k is the fraction of energy consumption rate
consumed by the idle host (e.g., 70%); pj is the host overall power consumption;
u(t) is the CPU utilization of host hj at time instant t.

4. Algorithm design

In this section, we present our algorithm for real-time task and computing
resource scheduling under uncertain cloud computing environments. The algo-
rithm incorporates both the proactive and the reactive scheduling methods. The
proactive scheduling is used to build baseline schedules based on redundancy,
where a protective time cushion between tasks’ finish time lower bounds and
their deadlines is added to guarantee task deadlines. The reactive scheduling is
dynamically triggered to generate proactive baseline schedules in order to ac-
count for various disruptions during the course of executions (e.g., urgent tasks

11
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arrive, tasks just have been finished, system’s workload become too heavy, and
the like). In addition, we propose three strategies to scale up and down the
computing resources according to system workload.
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Figure 2: The reactive disruptions in a time axis

We treat the following five events as disruptions: (1)a new task arrives; (2)
the system becomes overloaded; (3) a new urgent task arrives or tasks waiting in
WQ become urgent; (4) a VM finishes a task; and (5) some VMs’ idle time ex-
ceeds the preestablished threshold Iu, as demonstrated with a system execution
timing diagram shown in Fig. 2. These five disruptions take place discretionar-
ily, and arbitrarily; if any of the disruptions occurs, the corresponding reactive
scheduling will be triggered.

To facilitate the presentation of our scheduling strategies. Our scheduling
rules are given below.

Rule 1. Each virtual machine can only execute one task at any time instant.
Rule 2. When a task ti cannot be finished in worst-case on any VMs before

its deadline (i.e., ft+ijk > di, ∀vmjk), we still schedule it to a certain VM if
its finish time’s lower bound is not larger than its deadline on some VM (i.e.,
ft−ijk ≤ di, ∃vmjk).

Rule 3. An urgent task is allowed to replace the non-urgent waiting task as
a new waiting task on a certain VM, and the replaced non-urgent waiting task
will be returned to WQ. Fig. 3(a) illustrates an example of property 3.
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Figure 3: The illustration of property 3, 4 and 5

In Fig. 3(a), the task t2 is waiting in the VM vm11, thus, wtk11 equals
to t2. As the waiting task t2’s laxity L2 is 200 that is larger than Ld = 120,
and the task t3’s laxity L3 is 80 that is less than Ld = 120, t2 is urgent and
t3 is non-urgent. According to Rule 3, the urgent task t3 is allowed to replace
the non-urgent task t2 to be a new waiting task on VM vm11, and task t2 is
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returned from the local queue (LQ) of VM vm11 to the waiting queue (WQ).
Rule 3 makes urgent tasks start earlier, increasing possibility of meeting the
urgent tasks’ timing requirements.

Rule 4. Task transfer is overlapped with the task execution on the same
VM. Therefore, a task transfer time is hidden and has no impact on the starting
time of the task.

Rule 5. The waiting task on a VM is allowed to start as soon as the
executing task on the same VM has finished.

Fig. 3(b) shows an example of property 4 and property 5. In Fig. 2(b), ttijk
represents the transmission time of task ti to VM vmjk, e.g., t211 represents
the transmission time of task t2 to VM vm11. As this figure shows that the
transmission time t211 of task t2 to VM vm11 is overlapped with the execution
of task t1, and task t2 can be executed as soon as task t1 is just finished.
Therefore, the time cushion (time= ft+111 − ftr111) is removed and the resource
utilization of VM vm11 is improved.

The PRS performs the following operations when a new task arrives, as
shown in Algorithm 1.

Algorithm 1 PRS - On the arrival of new tasks
1: WQ← NULL, UTQ← NULL;
2: for each new task ti do
3: if Li < Ld then
4: UTQ← ti;
5: else
6: WQ← ti;
7: Sort all the tasks in the WQ by their laxity Li in a non-descending order;
8: if inequality (5) comes into existence then
9: vmjk ← ScaleUpComputingResource();

10: if vmjk ! = NULL then
11: Move task ti from WQ to VM vmjk as executing task;
12: vmjk ← SearchWaitingTask();
13: end if
14: end if
15: end if
16: end for

When a new task ti arrives, algorithm PRS will check whether this task
is urgent. If this task is urgent, it will be delivered to the urgent task queue
(UTQ) (Lines 3-4). Otherwise, task ti will be added to the waiting queue (WQ)
(Line 6) and then all the waiting tasks in WQ are sorted by their laxity in an
ascending order (Line 7). After that, algorithm PRS will estimate whether the
requirements of waiting tasks in WQ exceed the computing resources in the sys-
tem, i.e., whether inequality (5) comes into existence (Line 8). If inequality (5)
is true, the function ScaleUpComputingResource() is called to add a new
VM vmjk for the new arrival task ti (Line 9). After task ti has been scheduled to
VM vmjk as an executing task (Line 11), the function SearchWaitingTask()
is called to search a task from WQ to this new VM as a waiting task (Line 12).
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Algorithm 2 Function ScaleUpComputingResource()

1: hostList← all the active hosts;
2: Select a VM vmjk with minimal MIPS that can finish task ti within its deadline

considering the delay of creating vmjk;
3: if vmjk ! = NULL then
4: for each host hj in hostList do
5: if VM vmjk can be created on host hj then
6: Create VM vmjk on host hj ; return vmjk;
7: end if
8: end for
9: end if

10: Select a VM vmjk with minimal MIPS that can finish task ti within its deadline
considering the delays of turning on a host and creating VM vmjk;

11: if vmjk ! = NULL then
12: Turn on a host hj and then create VM vmjk on it;
13: hostList← hj ; return vmjk;
14: end if

In the function ScaleUpComputingResource(), as shown in Algorith-
m 2, we propose two strategies to add a new VM on a certain physical host.
The strategy one is creating a new VM on original host that meets the timing
requirement of the corresponding tasks (Lines 2-9). If the strategy one is in-
feasible, the strategy two turns on a new host and creates a VM on this host
(Lines 10-14).

Let sthj and atvmjk
be the startup time of host hj and the creation time of

VM vmjk, respectively.
When task ti is scheduled to a new VM vmjk, the start time s̃tijk of task ti

on VM vmjk is determined by how vmjk was created, which can be described
as follows.

s̃tijk =

{
ct+ atvmjk

, if strategy one,
ct+ sthj + atvmjk

, if strategy two.
(16)

Algorithm 3 Function SearchWaitingTask() - On the reaction to completion
of a task or creation of a VM
1: ti ← get the task at the head in WQ;
2: while ti ! = NULL do
3: Calculate the start time s̃tijk execution time ẽtijk and finish time f̃ tijk of task

ti waiting on VM vmjk;
4: if ft+ijk ≤ di then
5: Move task ti from WQ to VM vmjk as a waiting task;
6: break;
7: else
8: ti ← get the next task in WQ;
9: end if

10: end while
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In function SearchWaitingTask(), as given inAlgorithm 3, the task with
low laxity will be considered first (Line 1 and Line 8) together with the proactive
method (Lines 4) to guarantee the timing constraints. In addition, as the finish
time of a task on a VM is uncertain, we regard the completion of a task by a VM
as an event. When this event occurs, if there exists a waiting task on the VM,
the waiting task starts to execute immediately, as shown in Property 5; this
event also triggers the operation of finding a new waiting task for the VM from
the waiting queue, which is performed by the function SearchWaitingTask().

When a new urgent task arrives or some tasks waiting in WQ become urgent
as shown in Fig. 2 at times 25, 38 and 46, these tasks are delivered to the urgent
task queue (UTQ), and the function ScheduleUrgentTasks() is triggered to
schedule the urgent tasks in UTQ.

Algorithm 4 Function ScheduleUrgentTasks() - On the occurrence of urgent
tasks
1: for each urgent task ti in UTQ do
2: minFinishT imeUpper ← +∞, vmUpper ← +∞;
3: minFinishT imeLower ← +∞, vmLower ← +∞;
4: for each VM vmjk in the system do
5: if etkjk == NULL ∥ wtkjk == NULL ∥ wtkjk is non-urgent then

6: Calculate the start time s̃tijk execution time ẽtijk and finish time f̃ tijk of
task ti on VM vmjk;

7: if ft+ijk ≤ di & ft+ijk ≤ minFinishT imeUpper then

8: minFinishT imeUpper ← ft+ijk; vmUpper ← vmjk;

9: else if vmUpper == NULL & ft−ijk ≤ minFinishT imeLower then

10: minFinishT imeLower ← ft−ijk; vmLower ← vmjk;
11: end if
12: end if
13: end for
14: if vmUpper ! = NULL then
15: Move task ti from UTQ to VM vmUpper as executing or waiting task;
16: else
17: vmjk ← ScaleUpComputingResource();
18: if vmjk ! = NULL then
19: Move task ti from UTQ to VM vmjk as executing task;
20: vmjk ← SearchWaitingTask();
21: else if vmLower ! = NULL then
22: Move task ti from UTQ to VM vmLower as executing or waiting task;
23: else
24: Reject task ti;
25: end if
26: end if
27: end for

In function ScheduleUrgentTasks(), as shown in Algorithm 4, we em-
ploy three policies to schedule an urgent task to a VM. In policy one, three
kinds of initiated VMs (i.e., a VM’s executing task etkjk is null, a VM’s waiting
task wtkjk is null, a VM’s waiting task wtkjk is non-urgent) are considered for
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this urgent task (Line 5), and the initiated VM that can finish the urgent task
with the minimum earliest finish time is selected for this urgent task (Lines 7-8).
If the first policy can select a VM for this urgent task, it will be scheduled to
the selected VM (Lines 14-15). If the first policy is infeasible, function Scale-
UpComputingResource() will be called to scale up VM for this urgent task
(Line 17). Besides, if the second policy is feasible and the urgent task has been
scheduled to the new VM as an executing task (Line 19), then the function
SearchWaitingTask() will be called to search a task from WQ for this new
VM as a waiting task (Line 20). If the above two policies are infeasible, but
the finish time’s lower bound of this urgent task on some initiated VMs is not
greater than its deadline (Lines 9-10), we schedule it to the VM with the min-
imum earliest finish time (Lines 21-22). If all the above three policies cannot
schedule this task, it will be rejected (Line 24).
Theorem 1. The time complexity for scheduling a task set T with algorithm
PRS is O(|T |Nwtlog(Nwt)+ |T |Nvm), where |T | represents the count of tasks in
T , Nwt is the count of waiting tasks in WQ, Nvm is the count of initiated VMs.
Proof. It takes O(Nwtlog(Nwt)) to sort all the waiting tasks in WQ (Line 7,
Algorithm 1). In Algorithm 2, it takes O(Na) to check if a new VM can be cre-
ated on an active host directly (Lines 4-8, Algorithm 2), where Na is the count
of active hosts in the system. It takes O(Na) to add a new VM by turning on
a shut host (Lines 11-14, Algorithm 2). Thus, the time complexity of function
ScaleUpComputingResource() is O(Na). In addition, the time complexity of
function SearchWaitingTask() is O(Nwt) (Algorithm 3). Thus, the time com-
plexity of Algorithm 1 is O(Nwtlog(Nwt)+Na+Nwt) = O(Nwtlog(Nwt)+Na).
In function ScheduleUrgentTask(), it takes O(Nvm) to find a feasible VM for a
urgent task (Lines 4-13, Algorithm 4). In addition, the time complexity of func-
tion ScaleUpComputingResource() and SearchWaitingTask() are O(Na) (Line
17, Algorithm 4) and O(Nwt) (Line 20, Algorithm 4), respectively. The time
complexity of scheduling an urgent task by Algorithm 4 is O(Nvm+Na+Nwt).
Based on the aforementioned analysis, the time complexity for scheduling a task
set T is calculated as O(|T |)max{O(Nwtlog(Nwt)+Na), O(Nvm+Na+Nwt)} =
O(|T |Nwtlog(Nwt) + |T |Nvm), since Na ≤ Nvm. �

If the workload of the system become light and there exist some VMs whose
idle times are larger than the idle upper threshold Iu, as shown in Fig. 2 at
time 28 or 52, then function scaleDownComputingResource(), as shown in
Algorithm 5, will be called to scale down the computing resources by turning
off idle VMs and physical hosts. Firstly, it turns off those VMs whose idle time
exceeds Iu (Lines 1-5). Then it separates all the idle hosts and active hosts
(Line 6), and sorts all the active hosts by their CPU capacity utilized in a
non-descending order (Line 7). After these operations, all the initiated VMs on
active physical hosts will be consolidated to a minimal number of hosts (Lines
8-13), and all the idle hosts can be finally turned off (Lines 14-16) to reduce
energy consumption.
Theorem 2. The time complexity of function ScaleDownComputingResource()
is O(N2

a +Nvm), where Na is the count of active hosts and Nvm is the count of
VMs before scaling down the system’s computing resources.
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Algorithm 5 Function ScaleDownComputingResource()

1: for each idle VM vmjk in the system do
2: if vmjk’s idle time exceeds Iu then
3: Delete VM vmjk;
4: end if
5: end for
6: idleHostList← all the idle hosts; activeHostList← all the active hosts;
7: Sort activeHostList by CPU capacity utilized in a non-descending order;
8: for each host hj in activeHostList do
9: if all the working VMs on host hj can be migrated to other active hosts then

10: Migrate all the working VMs on host hj to corresponding hosts;
11: Move host hj from activeHostList to idleHostList;
12: end if
13: end for
14: for each host hj in idleHostList do
15: Delete all the VMs on host hj , then turn off host hj ;
16: end for

Proof. The time complexity of deleting all the idle VMs whose idle time exceeds
the preestablished upper threshold is O(Nvm) (Lines 1-5, Algorithm 6). It takes
O(Nalog(Na)) to sort all the active hosts by their CPU capacity utilized in a
non-descending order (Line 7, Algorithm 6). The time complexity of reallocating
the initiated VMs in the system is O(Na|VMj |Na) (Lines 8-13, Algorithm 6).
Since the |VMj | is a value that is not greater than 12, O(Na|VMj |Na) = O(N2

a ).
It takes O(Ni), where Ni is the count of idle hosts in the system, to delete all the
idle hosts in the system (Lines 14-16, Algorithm 6). Therefore, the complexity
of function ScaleDownComputingResource() is O(Nvm+Nalog(Na)+N2

a +Ni).
Since Ni is less than Na, O(Nvm +Nalog(Na) +N2

a +Ni) = O(N2
a +Nvm). �

5. Performance Evaluation

To demonstrate the performance improvements gained by PRS, we quanti-
tatively compare it with a baseline algorithm non-Migration-PRS (NMPRS in
short) and three existing algorithms - Earliest Deadline First (EDF) (Mills and
Anderson, 2010), minimum completion time (MCT) (Li et al., 2011) and com-
plete rescheduling (CRS) (Van de Vonder et al., 2007). The brief explanation of
these algorithms and the motivation for selecting them as competing algorithms
are as follows.

NMPRS: NMPRS does not employ the VM migration strategies while s-
caling down the computing resources, (See Lines 7-13, Algorithm 6). Through
comparing with algorithm NMPRS, the effectiveness of the VM migration s-
trategies in PRS can be tested.

EDF: all the tasks are arranged on VMs by their deadlines in a non-descending
order while guaranteeing the timing constraints of these tasks. In order to guar-
antee the deadlines of tasks, this algorithm utilizes the worst-case execution time
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of tasks during scheduling, and all the waiting tasks will be executed exactly as
the baseline schedule.

It’s noting that EDF is an optimal scheduling algorithm for independent
real-time tasks on preemptive uniprocessors, the goal of comparing PRS with
EDF is to demonstrate that PRS can produce better scheduling performance
for real-time tasks with uncertain execution time.

MCT: MCT maps a new task on a VM that can complete this task in the
earliest time while maintaining the finish time upper bound before the task’s
deadline. In addition, all the tasks are allocated to VMs upon their arrivals.

MCT is a widely used greedy algorithm and Li et al. have proved that MCT
has the best performance under uncertain environment comparing with another
two greedy algorithms (i.e., Min-min and Max-min) (Li et al., 2011). Therefore,
we select MCT as the representative of classic greedy scheduling algorithms
to demonstrate the performance improvements gained by PRS comparing with
classic greedy scheduling algorithms.

CRS: when new tasks arrive, CRS will completely reschedule the new tasks
and all the waiting tasks in the system. Notice that accurate task execution
times are assumed to be available before scheduling in this algorithm, and sched-
ule results of CRS can be considered as near-optimal because the schedule is
reoptimized at any decision point by fully using all information available at that
time (Herroelen and Leus, 2005).

However, the high time complexity of this algorithm limits its application
in real-time cloud system (Van de Vonder et al., 2007). Through comparing
PRS with CRS, we can analyse how near the performance between PRS and
near-optimal algorithm.

In order to compare the efficiency of the algorithms, we utilize the following
performance metrics to evaluate their performances.

1) Guarantee Ratio : the ratio of tasks finished before their deadlines;
2) Resource Utilization : the average host utilization, which can be calculated

as: RU = (
m∑
i=1

n∑
j=1

|VMj |∑
k=1

lri · oijk)/(
n∑

j=1

cj ·wtj), where lri is the realized length of

task ti, and wtj is the active time for host hj during an experiment.
3) Total Energy Consumption : the total energy consumed by the hosts in

a cloud data center for executing a task set T .
4) Stability : the weighted sum of the absolute deviations between the pre-

dicted starting time of tasks in the baseline schedule and their realized starting
time during actual schedule execution.

5.1. Experiment on a Real Cluster

In this experiment, we deploy an experimental cloud environment using A-
pache CloudStack 4.2.0. We set up a KVM cluster with five Dell Optiplex
7010MT, each of physical host has a CPU (i3 3.9GHz 4cores), 3.7G memory
and 500G disk storage, and the peak power of a host is 200W. In addition, the
CPU and memory required for each VM are two CPU cores (i.e., 2×3.9GHz)
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Table 1: Execution Times for Applications in Different Conditions

Application π-App CloudSim-App

Condition 0 8334 8334 8334 8332 8334 45555 45806 46230 47448 46921

8334 8333 8333 8334 8330 46246 47921 46136 47061 46240

8334 8333 8334 8334 8334 46621 46530 45723 46666 45729

Condition 1 8383 8381 8380 8380 8376 61157 61211 61426 59013 59102

8357 8330 8344 8387 8386 61137 58514 56830 58660 58673

8384 8382 8379 8373 8370 59071 57939 59211 59254 59366

and 1.5G, respectively. Besides, the five machines run on a 1 Gbps Ethernet
network.

Two applications are selected to perform our evaluation in this subsection.
The first application is to compute an approximation of π, and it is called π-
App (Hagimont et al., 2013). For the second application, we utilize CloudSim
that performs aforementioned algorithms as a real runnable application, which
is named CloudSim-App.

Firstly, we want to verify that the performance of VMs subjects to degra-
dation or uncertainties when multiple VMs share the hardware resources of a
physical host. In the experiment, two VMs with the same parameters are col-
located in a physical host. Two execution conditions are tested. In Condition
0, only one VM executes an application and the other VM is idle, while in
Condition 1 the two VMs execute simultaneously. Table 1 shows the sampled
execution times (in ms) of the applications π-App and CloudSim-App at the
two different conditions. For each case, 15 execution times are sampled.

For each sample data set in Table 1, we can obtain its mean (denoted by x̄)
and variance (denoted by s2) values. For application π-App, the sample means
of the two conditions are x̄0 = 8333.4 and x̄1 = 8372.8; their sample variance
are s20 = 1.2571 and s21 = 273.46.

To show that change of execution condition will result in uncertain execu-
tion time, we investigate two hypotheses: the null hypothesis that the execu-
tion times of the two execution conditions are the same, and the alternative
hypothesis that the two execution times are different. The null and alternative
hypotheses for the two-tailed test for π-App are written as follows (Anderson
et al., 2013).

H0 : µ0 = µ1 vs H1 : µ0 ̸= µ1. (17)

The test statistic t for above hypothesis tests can be calculated as follows.

|t| = |x̄0 − x̄1|√
s20
n0

+
s21
n1

=
39.4

4.3
= 9.2, (18)

where n0 and n1 are the sample size; n0 = n1 =15.
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Table 2: Performance Comparison in Real Cluster

XXXXXXXXXXMetric

Algorithm
PRS NMPRS EDF MCT

Guarantee Ratio 95.23% 95.82% 91.25% 90.93%

Resource Utilization 0.8837 0.4382 0.7742 0.5476

Total Energy(×107J) 0.7328 1.0325 0.8423 0.9504

Stability 0.1154 0.1097 0.8527 0.2031

Using a significance level of α = 0.01 and (n0 + n1 − 2) degrees of freedom,
the t distribution can be calculated as t(1−α/2)(n0+n1−2) = t0.995(28) = 2.763.
Comparing the computed value of |t| = 9.2 with t0.995(28) = 2.763, it can be
concluded that the null hypothesis is clearly rejected, i.e., there exists difference
between the execution times of application π-App from the two different exe-
cution conditions. This difference is more noticeable for CloudSim-App where
|t| = 52.17 and t0.995(28) = 2.763. As a result, there is overwhelming evidence
that the performance of VMs subjects to degradation or uncertainties when
multiple VMs share the hardware resources of a physical host.

According to the execution times of π-App and CloudSim-App in Table 1,
we assume their execution times to be ẽtijk = [8.2, 8.4]s and ẽtijk = [45, 62]s, re-
spectively. To emulate the diverse execution times of real-time tasks, we control
the repeat times (rt in short) of π-App and CloudSim-App, and calculate the
execution times of tasks with rt × ẽtijk. In this experiment, we utilize π-App
to produce a task set, denoted as T1 = {ti, i = 1, 2, · · · , 10}, where ti means a
task that repeats π-App i times, and the execution time of task ti is expressed
as ẽtijk = i× [8.2, 8.4]s. Similarly, CloudSim-App is used to form another task
set, denoted as T2 = {ti, i = 11, 12, · · · , 20}, where ti means a task that repeats
CloudSim-App (i− 10) times, and the execution time of task ti is expressed as
ẽtijk = (i− 10)× [45, 62]s.

To realize the dynamic nature of real-time tasks in cloud computing environ-
ment, the tasks in task set T1 and T2 are selected randomly after a time interval
and submitted to scheduler. The time interval between two consecutive tasks is
a variable, and let it be uniformly distributed among 30s and 120s. In addition,

the deadline of each task is calculated as di = ai + ẽt
+

ijk + U(0, 600)s, where
U(0, 600)s denotes a variable that subjects to uniformly distributed among 0s
and 600s. The task count for evaluating the four algorithms (i.e., PRS, NMPRS,
EDF and MCT) is 500, and the algorithm CRS is not implemented since the
accurate task execution time can not be gained in real environment. Table 2
shows the performance comparison for the four algorithms in this experimental
cloud environment.

As shown in Table 2, the guarantee ratios of algorithm PRS, NMPRS, EDF
and MCT are 95.23%, 95.82%, 91.25% and 90.93%, respectively. The reason for
the higher guarantee ratios for algorithm PRS and NMPRS is that these two
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algorithms employ strategies to control the impact of uncertainties. It is obvious
that PRS and EDF are efficient in the context of the resource utilization, this is
because these two algorithms utilize VM migration policies when scaling down
computing resources. This result indicates that our strategies for scaling up
and down computing resources are effective in practice. The energy consumed
by algorithm NMPRS and MCT is higher than that from other two algorithms,
which can be due to that their resource utilizations are low. Furthermore, PRS
and NMPRS outperform EDF and MCT in terms of stability, this is because
PRS and NMPRS employ strategies to prohibit the propagation of uncertainties.
5.2. Simulation Experiments

In order to ensure the repeatability of the experiments, we choose the way
of simulation to evaluate the performance of aforementioned algorithms. The
CloudSim toolkit (Calheiros et al., 2011) is chosen as a simulation platform,
and we add some new settings to conduct our experiments, which is similar to
(Beloglazov et al., 2012).

Since most data centers provide enough capacity to handle their peak uti-
lization while the average usage is much lower (Burge et al., 2007), we assume
that the number of hosts in a cloud data center is infinite. Each host is modeled
to have one CPU core with the performance equivalent to 1000, 2000, and 3000
MIPS, 8GB of RAM and 1TB of storage, and the peak power of the three differ-
ent hosts are 250W, 300W or 400W, respectively2. Besides, each VM requires
one CPU core with 250, 500, 750, 1000 MIPS, 128 MB of RAM and 1 GB of
storage (Beloglazov and Buyya, 2012). Each VM carries out a task with variable
CPU performance, and only upper and lower bounds of CPU performance are
available before scheduling via the technique in (Beloglazov and Buyya, 2012).
In addition, the start-up time of a host is 90s and the creation time of a VM is
15s, and the migration time of a VM is determined by its RAM capacity and the
bandwidth of the system, which is similar to the model described in (Hermenier
et al., 2009).

In addition, we let U [a, b] be an uniformly distributed random variable be-
tween a and b.

We employ parameter deadlineBase to control a task’s deadline that can be
calculated as.

di = ai + U [deadlineBase, a× deadlineBase]. (19)

where parameter deadlineBase determines whether the deadline of a task is
loose or not. In this paper, we set the value of a is a = 4.

The parameter intervalT ime is used to determine the time interval between
two consecutive tasks, and it is assumed to be uniformly distributed among 0
and 5.

The parameters taskUncertainty and vmUncertainty represent the uncer-
tainty upper bounds of tasks and VMs in the system, respectively, and the

2http://www. google.com.hk/search?q=Energy+Star+computer+server+qualified+product+list
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Table 3: Parameters for Simulation Studies

Parameter Value (Fixed)-(Varied)

Task Count (104) (2.0)-(1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0)

deadlineBase (s) (200)-(100,150,200,250,300,350,400)

intervalT ime (s) ([0,5])

taskLength (105 MI) ([1,2])

taskUncertainty (0.2)-(0.0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40)

vmUncertainty (0.2)-(0.0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40)

lower and upper bonds of task ti’s computing length and a VM’s performance
are modeled as follows.

l−i = U [1× 105, 2× 105];

l+i = l−i × (1 + U [0, taskUncertainty]);

c−jk = c+jk × (1− U [0, vmUncertainty]).

(20)

where c+jk is the CPU performance capacity required for VM vmjk.
In this experiment, we calculate the realized finish time for a task as follows.

ftrijk = ft−ijk + (ft+ijk − ft−ijk)× U [0, 1]. (21)

Note that the parameter ftrijk is not available before scheduling, except in
algorithm CRS. The values of these parameters are listed in Table 3.

5.2.1. Number of Tasks

In this group of experiments, we study the impact of the number of tasks
on system performance. Fig. 4 illustrates the experimental results of PRS,
NMPRS, EDF, MCT and CRS when the number of tasks varies from 10000 to
80000 with an increment of 10000.

In Fig. 4(a), we can see that with the task count increases, the guarantee
ratios for algorithm PRS, NMPRS, EDF, MCT and CRS are stable at 94.42%,
94.66%, 91.06%, 88.03% and 97.92%, respectively. This is because there are
enough resources in a cloud, thus when the workload of the system becomes
overloaded, more computing resources will be scaled up to satisfy the surplus
workload. Unfortunately, tasks’ timing constraints never be totally guaranteed
although there are enough resources. This is due to the fact that the time
overheads for scaling up computing resources violate some urgent tasks’ timing
constraints. In addition, we observe that the guarantee ratio of PRS is close to
the highest performance offered by CRS. PRS improves the guarantee ratio of
MCT by an average of 7.26%. This performance improvement is made possible,
because PRS and NMPRS employ policies to control the uncertainty propaga-
tion. In addition, it can be found that the guarantee ratio of PRS is close to that
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Figure 4: Performance impact of task number.

of CRS which is assumed to be the performance upper bound, and on average is
higher than that of EDF and MCT by 3.70% and 7.26%, respectively. This can
be explained that PRS and NMPRS employ policies to control the propagation
of uncertainties and to take a risk of wasting computing resources by allocating
urgent tasks that only lower bounds of their finish time are not greater than
their deadlines, to VMs.

Fig. 4(b) shows that the resource utilization of these five algorithms can be
roughly classified into three categories. CRS and PRS are the best performer,
while NMPRS and MCT the worst. This can be attributed that these algo-
rithms employ different VM relocation policies when scaling down computing
resources. The CRS, PRS and EDF employ the VM migration policies that
can make the host computing resources utilized efficiently. Besides, CRS and
PRS significantly outperform EDF with respect to resource utilization. This is
because EDF does not employ the early start policy to execute waiting tasks,
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which incurs delay (i.e., the time between task’s realized finish time and the
next task’s start time) between two adjacent tasks on the same VM. On aver-
age, PRS outperforms NMPRS, EDF and MCT by 14.98%, 7.22% and 17.25%,
respectively.

Fig. 4(c) reveals that the total energy consumptions of the four tested al-
gorithms are linearly increases with the number of tasks. This is because the
guarantee ratios of these four algorithms vary slightly around different con-
stants; the total tasks’ computation lengths are linear to the number of tasks
and the total energy consumption of the system is almost linear to the total
computation length. We observe that the total energy consumptions of CRS,
PRS and MCT are similar, whereas NMPRS consumes the most energy in each
test case. NMPRS is not energy efficient, because NMPRS does not adopt the
VM migration strategy to consolidate VMs. The low energy consumption of
MCT is attributed to its low guarantee ratio.

Fig. 4(d) shows that the stability of PRS, NMPRS, EDF, MCT and CRS
are 0.1078, 0.1077, 0.8579, 0.3021 and 0.4577, respectively. Increase of these
five algorithms is that the increase of task count seldom affects the baseline
schedule. It is not a surprise that the stability of EDF is high (0.8579) since all
the waiting tasks on VMs are sorted by their deadlines, such that scheduling
a new task to a VM will update the start time of these tasks whose deadlines
are not less than the new task’s deadline on the same VM. The reason for the
high variation of CRS can be contributed to the fact that CRS will completely
rescheduling all the waiting tasks and new tasks when new tasks arrive. The high
variation of MCT is because MCT schedules all the tasks to VMs as soon as they
arrive, thus resulting in the propagation of uncertainties. Finally we see that the
stability of PRS and NMPRS always keep at a better level, which demonstrates
the efficiency of our strategies in term of controlling the uncertainties while
scheduling.

5.2.2. Task Deadlines

Fig. 5 shows the impacts of deadlines on the performance of our proposed
PRS and NMPRS as well as the existing algorithms - EDF, MCT and CRS.

We observe from Fig. 5(a) that the guarantee ratios of the five algorithms
increase correspondingly with the increase of deadlineBase (i.e., task deadline
becomes looser). This can be interpreted that as the deadlines of tasks are
prolonged, the need of scaling up computing resources, hence the related time
overhead, is reduced, therefore the tasks’ timing constraints become weaker. In
addition, Fig. 5(a) shows that PRS and NMPRS have higher guarantee ratios
than EDF and MCT. This is due to the following three reasons. First of all, PRS
and NMPRS employ reactive strategies, which gives urgent tasks high priority
so that more tasks can meet their deadline; therefore, they are better than MCT.
Secondly, PRS and NMPRS use start early policy to eliminate the waste of time
cushion between two adjacent tasks on the same VM, so they perform better
than EDF. Thirdly, PRS and NMPRS can efficiently control the the propagation
of uncertainties by limiting the waiting tasks on VMs, therefore they are better
than EDF and MCT on guarantee ratio. When the deadlineBase is not greater
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Figure 5: Performance impacts of task deadlines.

than 200s, PRS guarantees more tasks’ timing constraints than EDF and MCT
by, on average, 10.59% and 12.87%, respectively.

From Fig. 5(b), we can see that when deadlineBase increases, the resource
utilization of the five algorithms increase. This can be contributed to the fact
that as the deadlines of tasks become looser, more tasks can be finished in the
current active hosts without starting more hosts, thus the utilization of active
hosts is higher. When deadlineBase is larger than 300s, the resource utilization
of PRS outperforms NMPRS, EDF and MCT by 18.55%, 8.94% and 18.43%,
respectively. The explanation for this experimental result is similar to that in
Fig. 4(b).

Fig. 5(c) shows that the total energy consumption of PRS, NMPRS, EDF,
MCT and CRS become larger with the increase of deadlineBase. This is because
that as the deadlineBase increases, more tasks will be executed, thus more hosts
and VMs need to work longer, resulting in more energy being consumed. When
deadlineBase is less than 200s, the total energy consumption of PRS is higher
than that of EDF and MCT. This may be contributed to the following two
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reasons. Firstly, PRS completes more tasks than the other algorithms. Secondly,
in order to complete more tasks, PRS will schedule some tasks that cannot
be completed before their deadlines to VMs which dissipates much computing
resources. Furthermore, when deadlineBase is greater than 250s, the total
energy consumption of PRS is close to CRS.

From Fig. 5(d), we can observe that when the deadlineBase increases, the
stability of EDF and CRS increases significantly, but that of other algorithms
is almost constant. The reason for EDF is that when tasks’ deadlines become
looser, more tasks can tolerate to wait on the same VMs longer and more urgent
tasks will be inserted before them, which results in updating waiting tasks’ start
time. For CRS, when deadline becomes looser, more tasks can tolerate to be
rescheduled more. Besides, the stability of PRS and NMPRS outperform MCT
and CRS on average by 192.33% and 298.77%, respectively. The reasons are
similar to Fig. 4(d).

5.2.3. Task Uncertainty

Fig. 6 illustrates the performance of PRS, NMPRS, EDF, MCT and CRS
when the taskUncertainty value varies from 0.00 to 0.40 with an increment of
0.05.

Fig. 6(a) shows that the guarantee ratios of the five algorithms descend
at different rate as the taskUncertainty increases, and this trend is especially
outstanding with EDF and MCT. This is because EDF and MCT do not em-
ploy any strategies to control the uncertainties while scheduling. Besides, the
guarantee ratio of PRS is close to that of CRS and NMPRS, and on average is
higher than EDF and MCT by 4.02% and 7.03% , respectively.

Fig. 6(b) reveals that the resource utilization of PRS, NMPRS and EDF
descend significantly, but that of CRS and MCT stay at a fixed level. This is
due to a few reasons. Firstly, PRS and NMPRS take a risk of dissipating some
computing resources to execute those urgent tasks whose deadlines are between
their lower and upper finish time. Secondly, for EDF, the interval between tasks’
finish time lower and upper bounds becomes larger as the taskUncertainty in-
creases, thus the time cushions wasted by EDF become larger, resulting in lower
resource utilization. Thirdly, since the accurate completion time is available in
CRS, the resource utilization of CRS can keep stable at a high level. Lastly,
MCT only schedules the tasks whose upper completion time is not greater than
their deadlines to VMs, and employs the start early policy to eliminate dissi-
pating time cushion, but does not employ VM migration policy when scaling
up and down computing resources, thus its resource utilization keeps stable in
low level.

Fig. 6(c) depicts that with the increase of taskUncertainty, the total en-
ergy consumptions of PRS, NMPRS and EDF increase significantly. For al-
gorithm PRS and NMPRS, it is reasonable that as taskUncertainty becomes
larger, more tasks that cannot be completed before their deadlines are sched-
uled to VMs, thus the system wastes more computing resources. For EDF,
with taskUncertainty increases, the time cushion between tasks’ predicted and
realized finish time becomes larger, thus the idle time of computing resources

26



Page 28 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

0 0.1 0.2 0.3 0.4
75

80

85

90

95

100

taskUncertainty

G
ua

ra
nt

ee
 R

at
e 

(%
)

 

 

PRS
NMPRS
EDF
MCT
CRS

(a)

0 0.1 0.2 0.3 0.4
65

70

75

80

85

90

95

taskUncertainty

R
es

ou
rc

e 
U

til
iz

at
io

n 
(%

)

 

 

PRS
NMPRS
EDF
MCT
CRS

(b)

0 0.1 0.2 0.3 0.4
2.3

2.4

2.5

2.6

2.7

2.8

2.9
x 10

5

taskUncertainty

T
ot

al
 E

ne
rg

y 
C

on
su

m
pt

io
n 

(J
)

 

 

PRS
NMPRS
EDF
MCT
CRS

(c)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

taskUncertainty

S
ta

bi
lit

y

 

 

PRS
NMPRS
EDF
MCT
CRS

(d)

Figure 6: Performance impact of task uncertainty.

becomes longer. Besides, the total energy consumptions of MCT and CRS are
basically stable. For CRS, its guarantee ratio and resource utilization keep sta-
ble. For MCT, its resource utilization is nearly unchanged while its guarantee
ratio descends.

Fig. 6(d) shows that when the taskUncertainty increases, the stability of
PRS, NMPRS and MCT increases. This is because the interval between tasks’
finish time lower and upper bounds increases with the taskUncertainty, thus the
variation between the predicted and realized start time of next tasks becomes
larger. In contrary, the stability of EDF decreases as the taskUncertainty
increases. This is because when taskUncertainty increases, the urgent tasks’
finish time upper bounds become larger, and less urgent tasks will be accepted.
Besides, the stability of PRS is, on average, (184.46%) lower than that of MCT,
since MCT does not control the propagation of uncertainties among waiting
tasks. Furthermore, the stability of CRS stays almost at a fixed level (about
0.4432). This is because when a new task arrives CRS will completely reschedule
all the waiting tasks together with the new task.
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5.2.4. Virtual Machine Uncertainty

We conduct a group of experiments to observe the impact of virtual machine
uncertainty on the performance of the four algorithms (see Fig. 7). We vary
the vmUncertainty value from 0.00 to 0.40 with an increment of 0.05.
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Figure 7: Performance impact of vm Uncertainty.

From Fig. 7(a) we can see that when vmUncertainty increases, the guaran-
tee ratios of the five algorithms descend, especially the trends of EDF and MCT
are outstanding. The explanation for this experimental result is similar to that
for Fig. 6(a). Furthermore, on average the guarantee ratio of PRS outperforms
EDF and MCT by 11.06% and 13.94%, respectively.

Fig. 7(b) reveals that the resource utilization of the five algorihtms de-
scend significantly with the increase of vmUncertainty. This is because as the
vmUncertainty increases the performance degradation of VMs will become sig-
nificant, resulting in consuming more resources of physical hosts. The reason of
PRS outperforming other algorithms is similar to that for Fig. 4(b).

Fig. 7(c) depicts that with the increase of vmUncertainty, the total energy
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consumption of PRS, NMPRS, EDF and CRS increase. The reason for PRS and
NMPRS is that they will allocate more urgent tasks that cannot be completed
before their deadlines to VMs as vmUncertainty becomes larger, thus costing
more resources. For algorithm CRS, its guarantee ratio is basically constant,
but its resource utilization decreases significantly with vmUncertainty. It is not
a surprise that MCT shows an opposite trend as compared to other algorithms,
which can be explained with the significant decrease in the guarantee ratio and
stable resource utilization of MCT.

Fig. 7(d) shows that the stabilities of PRS, NMPRS and MCT increase
when vmUncertainty varies from 0.00 to 0.40. In contrast, the stability of EDF
decreases from 0.8686 to 0.6697 when vmUncertainty varies from 0.00 to 0.40.
The explanation for this experimental result is similar to that in Fig. 6(d).

5.2.5. Real-World Traces

To further evaluate the practicality and efficiency of our algorithms, in this
subsection, we compare these algorithms based on real-world trace which is the
latest version of the Google cloud trace log3. We choose 955,626 continuous
tasks starting from timestamp = 1, 468, 890 to timestamp = 1, 559, 030. Fig. 8
shows the task distribution over the period.

1.48 1.5 1.52 1.54

x 10
6

0

2000

4000

6000

8000

10000

12000

timestamp (s)

T
as

k 
C

ou
nt

Figure 8: The uncertainty-aware scheduling architecture

Since the trace log does not contain definite information about computation
length and deadlines of tasks, we set these two parameters of tasks as follows,
which is similar to (Moreno et al., 2013).

• Task computation length lower bound l−i is calculated based on the exe-
cution duration and the average CPU utilization. Since the tracelog does
not contain the data of task length in MI, we employ the method proposed
in (Moreno et al., 2013) to estimate the task length.

l−i = (tsfinish − tsschedule)× Uavg × CCPU , (22)

3http://code.google.com/p/googleclusterdata/ wiki/ClusterData2011 1
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Table 4: Performance Comparison Using Google Cloud Tasks

XXXXXXXXXXMetric

Algorithm
PRS NMPRS EDF MCT CRS

Guarantee Ratio 89.07% 90.68% 86.31% 85.83% 92.38%

Resource Utilization 0.9059 0.4783 0.7839 0.5669 0.9381

Total Energy(×108J) 2.2148 3.6160 2.7534 3.1369 2.3548

Stability 0.1043 0.1051 0.7223 0.1717 0.1659

where tsfinish and tsschedule represent the timestamp of finish and sched-
ule event; Uavg denotes the average CPU usage of this task. All the three
values can be obtained in the tracelog. CCPU represents the processing
capacity of the CPU in Google cloud, because the data of machines’ ca-
pacity is not included in the trace we assume that it is similar to our
experiment settings for hosts, CCPU =1000 MIPS.

• The deadline of each task is rounded up to 10% more of its maximum
execution time. Other parameters are assigned in the way described in
section 5.1.

Table 4 shows the comparative results of the five algorithms based on the
Google cloud workload traces.

From the above table, algorithm PRS, NMPRS, EDF, MCT and CRS have
high guarantee ratios (89.07%, 9068%, 86.31%, 85.83% and 92.38%, respec-
tively). The high guarantee ratios for all algorithms may be because of the
supercomputing capacity of cloud data centers. However, there still exist some
tasks that cannot be completed before their deadlines. This can be due to the
following two reasons. First, the uncertainties of tasks’ computing length and
VMs’ computing capacity make the execution time of the tasks longer, but their
deadlines are fixed. Secondly, the time overheads of scaling up computing re-
sources may lead to violation of some tasks’ timing constraints. It is worthwhile
noting that regarding to resource utilization, those algorithms (i.e., PRS, EDF
and CRS) that utilize VM migration policies when scale down computing re-
sources are as efficient on the Google data as on synthetic traces, but algorithms
NMPRS and EDF perform worse on the Google data than on the synthetic da-
ta. This can be contributed to the fact that the workload in real traces varies
significantly as shown in Fig. 8, thus the computing resources required for the
workload in the system also varies significantly. This result indicates that our s-
trategies for scaling up and down computing resources can improve the resource
utilization of cloud data centers in practice. In addition, PRS outperforms NM-
PRS, EDF and MCT by 89.40%, 15.56% and 59.80%, respectively, in terms of
the resource utilization. The energy consumed by the system is more than that
in the previous synthetic workload case. It is reasonable because the task count
in Google workload traces is far larger than that in previous synthetic work-
loads, and the average task length of real-world tasks is much larger than that
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of synthetic tasks, which definitely results in more energy consumption. Fur-
thermore, the stability of PRS, NMPRS, EDF, MCT and CRS are becoming
small as compared to the synthetic workload case, which is especially evident
for CRS and EDF. Obviously, the stability of CRS and EDF is less than that
in synthetic workloads. We attribute it to the fact that the tasks’ deadlines in
Google traces are tight.

6. Conclusions and Future Work

In this paper, we investigate how to reduce the system’s energy consump-
tion while guaranteeing the real-time constraints for green cloud computing
where uncertainty of task execution exists. We proposed an uncertainty-aware
scheduling architecture for a cloud data center, and developed a novel schedul-
ing algorithm, namely PRS, to make good trade-offs among tasks’ guaranteeing
ratio, system’s resource utilization, system’s energy consumption and stabili-
ty. To evaluate the effectiveness of PRS, we conducted extensive simulation
experiments with both the synthetic workloads and Google workload traces.
Experimental results showed the effectiveness of the algorithm PRS compared
with other related algorithms (NMPRS, EDF, MCT, CRS).

As a future research direction, we will aim at implementing and validating
our strategies in a real-world cloud computing environment. Further, we plan
to study a way of improving the precision of estimated task execution time.
We expect that accurately estimating execution time leads to good scheduling
decisions.
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