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ABSTRACT

With the development of mobile telecommunication technology, mobile phones have become a necessary tool in daily life
and provided us many conveniences. Meanwhile, the huge number of cell phones constitute a potential high performance
data processing system, called mobile cloud computing, to strengthen capacity for individual devices. Many researchers
have studied about the architectures and scheduling algorithms of mobile cloud computing. However, little work has been
performed about how to schedule mobile application tasks in data centers to extend battery life for mobile terminals. To
address this issue, we investigate agent models, mobile energy consumption models and data transmission models under
different connection environments. Based on which, we propose a novel terminal energy efficient scheduling method
(AGILE for short). AGILE compares energy consumption in cloud execution and mobile execution according to the actual
wireless environment, then makes energy-efficient decisions. Extensive experiments are conducted to evaluate the perfor-
mance of the AGILE under different wireless channels, and the performance impact on different parameters are studied.
The experimental results indicate that the proposed method can save mobile devices’ energy effectively. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays, mobile communicating and processing devices
are more and more common in our daily life and provide us
many conveniences. Examples include the Google Android
Phone [1], Apple iPhone [2] and netbooks provided by
several other manufacturers. Tablets like Apple iPad and
Galaxy Note are also used wildly. However, the resource
constraints such as battery capacity limitation seriously
affect the users’ experience. On the other hand, cloud com-
puting has been explosively progressing these years. A
Berkeley report [3] revealed:‘cloud computing, the long-
held dream of computing as a utility, has the potential to
transform a large part of the IT industry, making software
even more attractive as a service’. With cloud comput-
ing, the users need not purchase expensive equipments any
more, and they can use the cloud services based on the
‘pay as you go’ model. The most significant advantage of
cloud computing is that it can help end-users offload the
heavy computation workload and thus break through the
resource limitation of their devices. This advantage makes
cloud computing be an effective solution to mobile devices

performance constraints. In return, the mobile devices can
extend the use of cloud computing owing to its mobil-
ity and convenience. As a result, a new research field is
emerging, that is, mobile cloud computing (MCC).

Mobile cloud computing is the integration of cloud com-
puting with mobile devices. From the study by Hoang T.
Dinh et al. [4], the definition of MCC can be described
as ‘Mobile Cloud Computing at its simplest, refers to an
infrastructure where both the data storage and the data pro-
cessing happen outside of the mobile device. Mobile cloud
applications move the computing power and data storage
away from mobile phones and into the cloud, bringing
applications and mobile computing to not just smartphone
users but a much broader range of mobile subscribers’.

Mobile cloud computing has brought us many con-
veniences. For example, processing heavy computation
works without considering the mobile devices’s resource
constraints, accomplishing jobs through our mobile phones
wherever we are and whenever the time is. However, there
are also many challenges coming with this new technology.
Data privacy and security, the trade-offs between execu-
tion in mobile devices and execution in data centers, the
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selection among the available cloud service providers and
the performance under different wireless environments.
However, for the battery powered mobile devices, the
energy consumption optimization is a negligible aspect
among these challenges. And this paper concerns energy
for mobile devices most.

Up to now, many scholars have concentrated on energy
costs of mobile cloud computing. Many researchers con-
sider cloud computing as a substitute of mobile device
itself for the application execution. And a great deal of
work focuses on the energy consumption problem for the
mobile devices in MCC. In [5–7], computation offload-
ing to cloud to save energy was discussed. However, they
seldom take into account the differences among various
wireless channels. In [8], the real case study about daily
use of mobile devices has been studied, but the continuous
backup in cloud will bring users endless bills. Additionally,
to the best of our knowledge, seldom, work considered the
heterogeneous mobile devices when proposing offloading
strategies.

Our goal in this paper is to propose an effective schedul-
ing algorithm aiming at energy consumption optimization
for mobile devices in real-life scenarios with the con-
sideration of systems errors, network status, device pro-
cessing ability, cloud service availability and so on. To
deal with the problem about differences among heteroge-
neous mobiles, we employ the agent-based technology for
the environment.

Agent-based technology is derived from distributed
artificial intelligence (DAI). According to the work by
Wooldridge and Jannings [9], an agent is ‘a self-contained
program capable of controlling its own decision-making
and acting, based on its perception of its environment,
in pursuit of one or more objectives’. The agent-based
technology shows advantages in heterogeneous environ-
ment as it can run independently on the devices, and
they can provide the necessary data information in a
predefined form.

The major contributions of this work include the
following:

� We applied agent-based technologies into MCC,
hiding the mobile devices’s physical differences, sup-
porting communication and coordination, in a partic-
ular information format, among the devices and cloud
servers.

� We gave a detailed analysis on the factors relating
to the energy consumption for mobile devices, and
constructed energy consumption models for mobile
devices.

� We studied data transmission under different con-
nection environments and constructed transmission
energy models to study energy optimization issues.

� We proposed a terminal energy efficient scheduling
method or AGILE to make decisions about mobile
application tasks executed by mobile devices or
cloud servers.

� We conducted experimental evaluation of the
proposed algorithm by simulations based on
CloudSim platform.

The rest of this paper is organised as follows. Section 2
summarises related work in literature. Section 3 gives an
elaborate introduction about the energy model and design-
ing of algorithm. The simulation approaches and analysis
about the experiments are described in Section 4. Section 5
concludes the paper with a summary and future directions.

2. RELATED WORK

In recent years, many researchers have concentrate on the
issues to extend the battery duration time.

In [10], the authors summarised four basic approaches
from previous literature works for saving energy and
extending battery lifetime in mobile devices:

� Avoid energy waste. The mobile devices can convert
to a less energy consumption mode when the work
load is not so heavy. Besides, we can turn off some
switches not in need and kill processes not necessary.

� Slow the CPU speed. When the application is not so
time sensitive, we can slow down the CPU speed by
setting the clock speed by half, and in this situation,
the execution time doubles, but only one quarter of
the energy is consumed.

� Apply new generation components. The technologi-
cal advances in CPU, memory, sensors never stops,
which helps us to extend the battery life of our mobile
devices. For example, in [11], the new generation
CPU is much energy saving.

� Schedule computation to cloud. The mobile system
does not process the computation work; and the com-
putation is performed somewhere in the cloud com-
puting environment. Under this condition, the mobile
devices only transmit data needed, thus extending the
mobile systems battery lifetime.

In this work, we mainly concentrate on the last approach,
by scheduling task more properly to save energy. In order
to achieve energy saving, the factors and energy models
should be discussed first. And many researchers have made
contributions to the problem.

Before going to design the scheduling algorithm of
conserving energy for mobile devices, an energy model
for it is needed. In previous works, many models have
been proposed. In [10, 12–15], energy models have been
constructed, and the per cent of energy saving has been
measured. The paper [12] compared the energy consump-
tion of three applications (a face recognition application,
a chess game and a video game) and concluded that
energy savings from 27% up to 80% can be achieved
when using the proposed mobile code offloading system
based on their energy model. Balasubramanian et al. [13]
considered the tail energy overhead, and they achieved
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energy conservation by about 30–50% measured by their
energy models.

In [10], the authors considered application instructions,
CPU speed, cloud server execution speed, data transmis-
sion and so on and constructed energy consumption models
for the mobile devices and cloud servers. They discussed
the energy saving for different situations and gave exam-
ples to illustrate it. In addition, data encryption was taken
into consideration when determining the energy saving.
However, experiments and further discussion about the
energy models are absent.

Xian et al. [14] considered the problem of extending
the battery duration time for mobile devices by offload-
ing computation to servers. They hold the idea that the
estimation of computation were not reliable and proposed
an approach to executing program initially on the mobile
devices with a timeout. When the computation is not fin-
ished after the timeout, it will be offloaded to servers. They
constructed energy models for local execution and server
execution, and energy ratio formula was proposed to indi-
cate timeout method types. But the authors did not consider
the encryption problem, which is significant in guarantee-
ing data privacy and security in data transmission. Besides,
the mobile device status and network availability were not
taken into account.

Zhang et al. [15] investigated the problem on how
to conserve energy for the resource-constrained mobile
device, by optimally executing mobile applications in
either the mobile device or the cloud clone. They proposed
models for the mobile applications, mobile execution
energy consumption, cloud execution energy consumption
and optimal application execution policy decision. They
considered a stochastic wireless channel rather than the
deterministic channel, which is more in line with the actual
situation. Nevertheless, Dynamic Voltage Scaling(DVS)
may not be able to function as most of mobile devices
are not equipped with DVS CPUs. The stochastic wireless
channel is a highlight of the paper, but different wireless
environments were not paid attention to, such as 2G, 3G,
4G and WIFI. If stochastic wireless channel in different
connection environments is considered, that will be more
consistent with the actual cases.

The aforementioned energy consumption models have
their limitations, and the factors leading to energy con-
sumption should be detailedly discussed for a more prac-
tical energy model. Additionally, the user operation habits
should also be considered to be consistent with the practi-
cal situation. Apart from the energy models, many scholars
have devoted to scheduling or partitioning algorithms of
the application tasks, trying to decide whether the tasks
should be executed locally or in a remote server. In work
[16], the authors presented a methodical study that dis-
cusses whether tasks can be offloaded to conserve energy.

Some algorithms are based on the previous statistical
data to make decisions. The work in [17] discussed on the
main factors that affect the energy consumption of mobile
devices. An offloading algorithm was presented to deter-
mine that the application execute locally or in a remote

cloud server. They concluded that trade-offs are highly
sensitive to the exact characteristics of the workload, data
communication patterns and technologies used. Ohtman
et al. [18] proposed dynamic load sharing algorithms that
learn and adapt its decision based on previous CPU time
measurements. Their experiments showed that the benefits
of job migration depend on several factors, that is, avail-
able bandwidth, CPU utilisation and processor cycle of
the mobile relative to the fixed host. And the conclusion
of their work is that the benefit of job migration is influ-
enced by CPU utilisation, and a mobile host with high CPU
utilisation is more likely to benefit from task offloading.

Many researchers concentrate on offloading of applica-
tions in a more complex environment, that is, social related
applications. In [19], the researchers proposed Sociable-
Sense, a sensing platform that implements a novel adap-
tive sampling scheme based on learning methods and a
dynamic computation distribution mechanism based on
decision theory. The system is also able to, in the eye
of saving energy, decide whether to perform computa-
tion of tasks locally or remotely. Conducted experiments
showed that the adaptive sampling and computation distri-
bution schemes balance trade-offs among accuracy, energy,
latency and data traffic. Barbera et al. [20] proposed the use
of opportunistic delegation as a data traffic offload solu-
tion to the recent boost up of mobile data consumption
in metropolitan areas. Their solution relies on the upgrade
of a small, crucial set of VIP nodes that regularly visit
all network users and collect (disseminate) data to them
on behalf of the network infrastructure. Extensive exper-
iments with several real and synthetic data sets show the
proposed methods’ effectiveness in offloading, a very small
part of network nodes can guarantee most portion of the
network offload.

Another solution for the offloading is CloneCloud,
which means each real device is associated to a software
clone in the cloud. In [21], clones of mobile devices are cre-
ated in the cloud, and some part of the application would
be offloaded to the mobile device clones running in the
cloud. The paper by Chun et al. [22] presented the design
and implementation of CloneCloud, a system that auto-
matically transforms mobile applications to benefit from
the cloud. The system overcame design and implementa-
tion challenges to achieve basic augmented execution of
mobile applications on the cloud. They combined offload-
ing, migration with merging and on-demand instantiation
of offloading to address those challenges.

Other kind of solutions has also been studied. The
paper by Chen et al. [23] discussed offloading algorithms
based on java-enabled wireless devices, their work empha-
sises that the choice of compilation/execution strategy for
the machine-neutral Java bytecodes critically impacts the
energy consumed by the device. Similarly, Hung et al.
[24] studied offloading scheme based on android systems,
they extend the programming model of their previous work
on Android smartphones with a flow-based programming
paradigm and created a more flexible way for applica-
tion offloading. In the work of [25], a linear optimization
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problem was formulated to minimise the power consump-
tion of mobile devices by offloading. And an algorithm
based on Lyapunov optimization was proposed in paper
[26] to save energy.

Compared with the previous efforts, this work has sev-
eral differences. First, we employed agent technologies to
shield the difference between mobile devices and between
mobile application tasks to support us research from an
abstract level. Second, we provided the theoretical frame-
work of mobile execution and cloud execution in order to
conserve energy consumption, and we considered the soft
error rate, data transmission error rate and encryption rate
to simulate the real systems. Third, we proposed a mobile
application offloading algorithm from the perspective of
energy saving. Finally, we took different connection envi-
ronments into consideration and studied the energy saving
issue under different wireless channels.

3. MODELLING AND ALGORITHM
DESIGNING

Modelling about the mobile cloud computing offloading
to save energy is proposed in this section. We constructed
models for mobile devices, remote cloud virtual machines

and mobile application tasks at an abstract level. And
the energy consumption models of mobile execution and
remote execution for mobile devices have been presented.
Following that, the offloading algorithm for mobile appli-
cation tasks is introduced. As for the heterogeneous mobile
devices and cloud virtual machines, agent-based technol-
ogy is used to support communication among mobile
terminals and cloud servers in a specified format.

3.1. Agent model

As is known to all, there are so many brands of mobile
terminals. Each device has their own format of informa-
tion. For example, connection status, power status and so
on. The difference between devices makes it hard for us
to apply task allocation algorithms in mobile terminal, as
the algorithms are based on the understanding of local
state information. Thanks to the agent technology, it can
provide information we need in a predefined format. That
is because we can design agent application regardless of
mobile platforms differences ( e.g. android OS [1], iOS [2],
windows phone OS [27] ).

In this work, two kinds of agents are designed, that is,
mobile device agent and cloud server agent. Each of them

Figure 1. Interaction relationships of agents.
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works according to their own rules, more importantly, the
mobile device agents can acquire status information of the
mobile terminals and the cloud virtual machines informa-
tion to accomplish task offloading. They are denoted by the
following symbols:

� MA D
n
mA

j , j D 1, 2, 3, : : :
o

is the mobile agent set,

mA
j represents the jth mobile device agents, each agent

of this category collects the status information of local
device and obtains virtual machine information from
cloud server agent.

� CSA is the cloud server agent, it can gather sta-
tus information about the virtual machines and send
to the specified mobile device agent when there is
a request.

The interaction relationships of two kinds of agents are
depicted in Figure 1.

3.2. Mobile application task model

When a model depicts all aspects of mobile application
task and considers many details, it will be complicated
and can be narrowly used because its high level of details
may not fit other application tasks. Besides, the reusabil-
ity of the model is absent, which is not consistent with the
idea of engineering practice. Consequently, we propose a
model for mobile application task from an abstract level,
capturing the essential characteristics of a typical applica-
tion task.

In this work, the mobile application task is abstracted
with two parameters, including the following:

� Input data size Data_Size: the bytes of input data
for an application task, and it mainly affects the
transmission of the task.

� Task length Task_Length: the number of instruc-
tions to be executed, and its completion depends
on the mobile CPU speed or virtual machine
processing speed.

It should be noted that the two parameters show essen-
tial effects on energy consumption of a task. The input data
size Data_Size mainly influences the transmission energy,
the task length Task_Length has impact on CPU process-
ing energy consumption. Generally, tasks with larger input
data size and shorter task length are more likely to be run
locally, because the transmission energy for them may be
larger than execution energy. Consequently, we modelled
the mobile application task as T(Data_Size,Task_Length).
And more details will be discussed in later sections.

3.3. Mobile execution energy model

In the mobile environment, the CPU energy consumption
is much larger than that in memory and screen. The mobile
execution mainly impacts the CPU workload, which

determines the energy consumption. When a mobile appli-
cation task is executed locally, the energy consumption
caused by the components except CPU is lightly influ-
enced, that is, because users’ operation habits will not
change with the local execution of the task. Consequently,
we mainly consider the extra processing energy of execut-
ing the application tasks on mobile devices.

The CPU workload increment caused by a mobile appli-
cation task is determined by its task length, which is
measured by the number of instructions to be executed,
denoted as Task_Length. In the executing process, the
instructions error usually exists. We use the symbol ˛ to
represent the instruction error rate of a task execution. And
in our simulation, ˛ equals to a random value between 10%
and 30%. As a result, the number of total instructions of a
task execution can be expressed as

Total_Instruction D .1C ˛/ � Task_Length (1)

In this work, we use EpI to represent the energy con-
sumption for a single instruction. Therefore, when the
application task is executed in the mobile device, the
energy consumption can be calculated as

E_Local D EpI � Total_Instruction (2)

3.4. Data communication model

Before the model construction, we make some assumptions
for the data communication environment.

� The 4G is under popularization, and infrastructures
are under construction today, so we only consider the
2G, 3G and WIFI channel.

� The cloud service providers does have applications in
their cloud server initially, thus the cloud execution
of tasks do not incur additional energy cost except
application task data uploading from the perspective
of mobile devices.

� The connection environment keeps the same when
doing a task offloading process, and we use
an average uploading speed to distinct different
wireless channels.

� The power of receiving data on a mobile device is
often smaller than the uploading power, so we sim-
plify the formulation by setting the receiving energy
consumption to be a constant value, as is studied
in [17].

As such, scheduling of the output from the cloud will not
be considered, and we focus on the task data uploading.

In the Internet environment, security issue cannot be
ignored. The task data to uploading should be encrypted
to ensure security, which brings us extra data expense. We
denote the extra encryption data rate by using the symbol
ˇ. Another problem of task uploading is the retransmission
rate, which is caused by the transmission error and signif-
icantly influenced by connection status. Besides, � is used

Trans. Emerging Tel. Tech. (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



C. Chen et al.

Table I. Transmission speed of 2G, 3G and WIFI.

Connections Max speed typical speed interval

2G 300 kbps (40 kbps , 240 kbps)
3G 42 mbps (120 kbps , 2 mbps)
WIFI (800 kbps , 8 mbps)

to represent the retransmission rate. Usually, the value of
� is inversely proportional to the wireless connection con-
ditions. That is to say, the better the connection status is,
the smaller the error rate will be. Consequently, the total
transmission data size for a task is given by

Total_Transmissiondata D
1C ˇ

1 � �
� Data_Size (3)

Another problem of the cloud execution is run time,
which directly influences the energy consumption. The
time expense for the cloud execution of a task consists of
three components: uploading time, cloud execution time
and result download time. The most typical characteris-
tic of cloud computing is that it can provide users endless
computation ability through pooled resources. Besides, the
tasks from mobile applications usually are slight from
the perspective of cloud virtual machines. So, we ignore
the processing time in cloud. As for the result download
time, we set it to be a constant value, represented by
Receiving_Time, for the consideration of a constant energy
consumption assumed before. As assumed, we use average
transmission speed, denoted by Ave_Speed, to measure the
connection environment during the task uploading.

It should be noted that the values of Ave_Speed is
set according to the wireless environment. Referring to
[28, 29], we conclude transmission speed of different
wireless connections in Table I. Under WIFI environ-
ment, there does not exist firm maximum speed limitation
because the max speed is determined by the wired network
supporting it.

3.5. Cloud execution energy model

When a mobile application task is executed in cloud server,
there are three parts of power consumption, that is, upload-
ing energy, cloud server energy consumption and result
receiving energy. In this research, we mainly focus on
the task offloading algorithm to extend the battery life for
mobile devices. So, we only consider the energy consump-
tion of mobile device and ignore the cloud server energy
consumption. As for the consumed power for receiving
result, we have assumed it to be a constant value in mod-
elling of data communication. As a result, our focus lies on
the uploading energy consumption of mobile devices.

As stated in [13], the authors did a measurement study
to acquire energy models for power consumption over 2G,
3G and WIFI networks. The model considers both the
data size and the uploading time to determine the energy

Table II. Energy model for uploading x bytes of data over
2G, 3G and WIFI networks.

2G 3G WIFI

RT.x/ 0.036.x/+1.7 0.025.x/+3.5 0.007.x/+5.9
TE 0.25 J/s 0.62 J/s NA
EFM 0.03 J/s 0.02 J/s 0.05 J/s
T_T 6 s 12 s NA

consumption. In this work, we predict the energy con-
sumption of uploading application tasks based on their
models.

The energy consumption model of 2G, 3G and WIFI
networks is illustrated in Table II [13]. The consum-
ing power for an application task uploading over 2G or
3G networks consists of three components: ramp energy
(energy required to switch to the high-power state), trans-
mission energy and tail energy (energy spent in high-
power state after the completion of the transfer). We use
RT(Data_Size) to represent the sum of ramp energy and
transmission energy of a task T(Data_Size,Task_Length),
and TE denotes the tail energy. For WIFI environment,
tail energy does not exist, and RT(Data_Size) is used
to denote the sum of transmission energy and the scan-
ning and association energy. Additionally, the maintenance
energy should not be ignored. We use EFM to represent
the power consumption caused by interface per second.
Finally, T_T denotes the tail time, which is the time spent
in the high-power state after the transfer.

Based on the energy models, we formulate the energy
consumption models for cloud execution of mobile tasks
as follows:

E_Cloud D RT.Total_Transmissiondata/C TE � T_T

C EFM �
Total_Transmissiondata

Ave_Speed

C Energy_Receiving
(4)

It should be noted that the values of TE and T_T equal to
zero under WIFI environment. The value of Ave_Speed in
different connection environments is determined based on
the models in Table II. Besides, Energy_Receving denotes
the energy consumption in receiving task results, and
we set it to be constant values in different connection
environment.

3.6. Task offloading algorithm

In this section, we design the energy efficient scheduling
method (AGILE) for mobile application tasks based on the
previously mentioned models.

The framework of AGILE is depicted in Figure 2(a).
And a random selection scheduling method (RSSM),
whose framework is presented in Figure 2(b), is proposed
to be a baseline for AGILE.

The main idea of AGILE is to save energy for mobile
devices, thus extending the battery life. The detailed
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Figure 2. The framework of task scheduling methods. (a) The
AGILE framework and (b) The random selection scheduling

framework.

AGILE is described in Algorithm 1. In AGILE, when a task
T arrives, the mobile agent will obtain the arguments of T
and require the interfaces of devices to get status informa-
tion (connection environment, battery information) of the
mobile devices (Lines 1-3). Then, the energy consumption
of mobile execution and cloud execution are determined

by mA based on the information acquired before (Lines
4-8). When the cloud execution consumes more energy
than mobile execution, T will be run in local device (Lines
9-10). When the local run consumes more energy, mA sends
task T to CSA for cloud execution (Lines 11-13).

In Algorithm 2, the elaborate steps of RSSM are given.
The first several steps are the same with AGILE (Lines
1-5). However, the decision about whether offloading task
T into cloud or not is made by mA randomly rather than by
comparing the energy consumption. If task T can be run in
a cloud server, then the mA randomly determines the sched-
ule decision (Line 6). When mA chooses local execution,
T will be run in local device (Line 7). When the mA deter-
mines to offload task into cloud server, T will be send to
CSA by mA for cloud execution (Lines 8-10).

It should be noted that the random selection of local exe-
cution or cloud execution is based on the average speed
produced in Line 5. This is because a mobile with higher
transmission speed has higher probability to offload tasks
to cloud for processing. In our work, we use the follow-
ing formula to determine the probability .P/ of a cloud
execution for a task:

P D
lg Ave_Speed

lg maximal speed
(5)
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4. EVALUATION

In Section 3, we proposed an algorithm AGILE for task
offloading in mobile cloud computing environment. In
order to certify the effectiveness of AGILE, RSSM is put
forward to be a baseline. Another baseline, named Local
Only (LO), is that the tasks run on mobile device only. The
main idea of AGILE is to save energy for mobile devices.
Thus, a metric, energy consumption (EC for short), should
be taken into account. Another metric considered in this
article is the proportion of tasks run in cloud server, we
called it cloud execution proportion (CEP for short). The
definition of the two metrics are given as follows.

� Energy consumption: the energy consumed by all
tasks. We only consider the mobile energy consump-
tion, but energy consumption in cloud is not included.

� Cloud execution proportion: the proportion of
tasks executed in cloud. It can be calculated by
Equation (6).

CEP D
number of tasks executed in cloud

total task number
� 100% (6)

4.1. Simulation setup

Based on the aforementioned models, we conduct exten-
sive simulation experiments on CloudSim [30]. We tested
the performance with the changing of task count under dif-
ferent connection environments. Other simulation settings
are as follows:

� Data_Size of task T is set as follows: Data_Size =
Math.round (uniform (0.5,5)), which is measured by
MByte.

� Task_Length is produced by the following function:

Task_Length D Math.round.uniform.6� 1011, 14� 1011//

� Referring to the work in [31], the soft error rate ˛
can be about 10% v 30%. When computing the total
instructions, the value of ˛ is set to be a random value
between the interval.

� We set the value of EpI to be 91 pJ/instruction like
that in [32].

� The value of data encryption rate ˇ is determined by
the function as follows:

ˇ D Math.round.uniform.0.05, 0.2//

� The connection environment is dynamically deter-
mined by mA at task T’ arrival. After the 2G, 3G or
WIFI environment is obtained, the Ave_Speed is ran-
domly produced according to its typical interval by
mobile agents.

� As mentioned earlier, retransmission rate � is
inversely proportional to the connection environment.

Based on the value of Ave_Speed, we set the value of
� by

� D
Math.round.uniform.0.1, 0.3//

lg Ave_Speed

� The receiving energy for a cloud execution task is set
to be 10J.

� Each group of experiment run five times. And the
mean value is calculated to be the experimental
results.

� Performance of the algorithm is evaluated under dif-
ferent task count, which varies from 5000 to 50 000.

4.2. Energy consumption under different
connection environment

In this group of experiment, the energy consumption is to
be measured under 2G, 3G and WIFI environments. The
energy consumption by local execution of all tasks is also
given to provide baseline for AGILE and RSSM. The fold
line marked by AGILE, RSSM and LO represent the exper-
imental results of AGILE algorithm, RSSM algorithm and
local execution, respectively. We compare AGILE, RSSM
and LO in terms of energy consumption, and Figure 3
illustrates the experimental results.

It can be seen from Figure 3(a) that, under 2G environ-
ment, AGILE algorithm achieves energy saving goals com-
pared with LO. This is because the AGILE computes the
energy consumption of cloud execution and local execution
and then choose the least energy consumption method for
the task. However, the RSSM consumes more energy than
that of LO. This is because the RSSM randomly selects
cloud execution or local execution for a certain task, which
results more energy consumption. Although the probability
of choosing cloud execution for tasks is highly related to
the connection environment (reflected by average transmis-
sion speed), it has no idea about offloading the cloud execu-
tion fitted tasks. That is to say, the probability of offloading
tasks to cloud may be reasonable, but the tasks chose to
be offload is not the suitable ones. For example, under ran-
dom selection scheme, a task with a large data size and few
instructions, which is propitious to local execution in terms
of energy saving, may be offload to cloud server and bring
more energy consumption than executing locally. Another
fact that can be observed is that the performance of AGILE
in energy saving is always better than that of LO with the
increase of task count, which indicates the stability of our
proposed algorithm. The experimental results reveal that
we can offload tasks into cloud for execution to save energy
for mobile device. The AGILE outperforms LO 9.95% in
energy saving while LO outperforms RSSM 16.31% under
2G connection environment.

In Figure 3(b), similar analysis is made like that in 2G
environment. However, the performances of AGILE and
RSSM improved compared with that in Figure 3(a). This
is because of the decrease of energy consumed by data
transmission. So, more tasks can be offload to decrease
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Figure 3. Energy consumption under different connection envi-
ronments. (a) 2G environment, (b) 3G environment, and (c)
WIFI environment. AGILE, terminal energy efficient schedul-
ing method; RSSM, random selection scheduling method; LO,

local execution.

mobile energy consumption. It should be noted that the
promotion of RSSM is caused by the the improvement
of the connection environment. Under 3G channels, more
tasks are suitable for cloud execution, so energy consump-
tion under RSSM decreased to the level around LO. AGILE

outperforms LO 14.94% in terms of energy saving, and LO
outperforms RSSM 8.21% under 3G channels.

From Figure 3(c), we can see that AGILE and RSSM
save much more energy than LO. This can be explained in
that energy consumption of transmitting data has rapidly
reduced under WIFI environment. From Table II, we can
easily find that there is no tail energy under WIFI chan-
nels, and the transmission energy for big data size tasks
is much less than that under 2G and 3G channels. As a
result, much more tasks with larger data size, which are
not suitable for cloud execution under 2G and 3G connec-
tions to economise energy, are able to be processed in cloud
for the sake of energy saving. So, either AGILE or RSSM
achieves energy-saving goal under WIFI environment. The
AGILE outperforms LO 59.65%, and RSSM outperforms
LO 53.26% under WIFI channels.

From the comparisons among Figure 3(a), (b) and (c),
we can easily find that when the connection environment
changes, the energy consumption by LO are basically iden-
tical. This can be explained that, under LO strategy, all
tasks are processed locally, so the connection environ-
ment has no impact on its energy consumption. However,
the performances of AGILE and RSSM are significantly
improved. This is because the data transmission energy are
significantly reduced with the advancement of connection
channels, which leads to the decrease of energy consuming
for cloud execution. From the experiment results, we can
see that the performance of AGILE has improved 45.22%
when the connection environment changes from 2G to
WIFI. Another observation is that the better the connection
environment is, the more likely the task can be offloaded
to save mobile device energy, leading to extend the
battery life.

Consequently, compared with RSSM, our proposed
offloading algorithm AGILE has obvious superiorities in
energy consumption. When the connection environment
improves, both AGILE and RSSM can get promotion.
Besides, with the increase of task count, AGILE can save
more energy than LO and RSSM, from which we conclude
that AGILE owes superiority and stability.

4.3. Cloud execution proportion under
different connection environment

In this group of experiment, the percentages of tasks exe-
cuted on cloud server of AGILE and RSSM are to be mea-
sured under different connection environments. The fold
lines marked by AGILE and RSSM represent the experi-
mental results of AGILE algorithm and RSSM algorithm,
respectively.

Figure 4 depicts that the values of cloud execution pro-
portion for RSSM and AGILE under different connection
environments have much differences. For AGILE, that is
because the decision of offloading a mobile application
task to cloud server is made based on the task parameters
and connection environment. The task arguments are pro-
duced by random functions, which makes the arguments
vary around their mean value. Thus, there exists a mean
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Figure 4. Cloud execution proportion under different connection
environments. (a) 2G environment, (b) 3G environment, and (c)
WIFI environment. AGILE, terminal energy efficient scheduling

method; RSSM, random selection scheduling method.

value of cloud execution proportion under a given wireless
channel. As for RSSM, the probability of offloading a task
is proportional to the average speed, and determined by
Equation (5). Consequently, the average speed is changing
around certain value when the transmission environment
keeps the same, and the proportion of offloaded tasks stays
in a certain level. As a result, either the cloud execution
proportion of RSSM or AGILE in a certain connection

environment keeps stable regardless of the changes of
task count.

From Figure 4, we can also see that the cloud execution
proportion only has slight fluctuation when the task count
varies. For AGILE, the offloading of a mobile application
task is mainly determined by the connection environment
and task parameters, which makes the cloud execution only
influenced by the randomness or fluctuation of arguments.
Also, we can see that with the increase of task count,
the fluctuation becomes smaller and smaller. This can be
explained by the law of large numbers, that is to say, the
random perturbation of the experiment decreases with the
growth of sample numbers. Consequently, there is fluctu-
ations in the experiment results of AGILE, and the curve
becomes smoother with the increase of task count. As for
RSSM, the offloading of mobile tasks largely depends on
the average speed of different connection channels. So, the
cloud execution proportion is around a certain level.

By comparing Figures 4(a), (b) and (c), we find that
the cloud execution proportion grows with the promotion
of the connection environment. This can be explained in
that the average transmission speed becomes higher and
the energy consumption becomes lower when the connec-
tion channel varies from 2G to WIFI. Thus, more and more
tasks become appropriate to be executed in cloud from the
perspective of energy saving under AGILE. Besides, the
growth of average speed leads that more tasks are offloaded
to cloud server under RSSM. Consequently, the value of
cloud execution proportion increases when the connection
environment becomes better.

The observations from Figures 3 and 4 show that the
energy saving is not in direct proportion to the number of
cloud execution tasks. Take Figures 3(b) and 4(b) as an
example, the value of cloud execution proportion of RSSM
is higher than that of AGILE, but the energy consumption
of RSSM is not less than AGILE. We can conclude that
not all the task can be offloaded to save energy, and false
offloading rate may bring extra energy consumption. In the
latter subsections, the influence on the performance caused
by parameter variation will be studied.

4.4. Performance impact on data size

In the former parts, we can get that mobile application
task’s offloading to cloud server is able to save energy
for mobile devices. Besides, data size and task length are
concluded to be two main factors, which determine the
offload decision. In this group of experiment, we test the
performance changes by data size variation.

In the aforementioned definition, data size is
produced by the following formula: Data_Size =
Math.round (uniform .0.1 � ds, ds/, and the value of ds is
set to be 5. In this group of experiment, we choose the 3G
environment, task count is set to be 50 000 and the value
of ds varies from 2 to 8.

From Figure 5(a), we observe that energy consump-
tion of LO keeps the same when the value of parameter
ds varies. This can be explained that only the number of

Trans. Emerging Tel. Tech. (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



C. Chen et al.

Figure 5. Performance impact on data size. AGILE, terminal
energy efficient scheduling method; RSSM, random selection

scheduling method; LO, local execution.

instructions makes the difference on energy consuming
when all tasks are executed locally, and the changes in
data size have no influence on energy consumption under
LO. As a result, the energy consumption of LO nearly
keeps the same with the increase of ds’s value. Unlike LO,
the energy consumption of RSSM and AGILE do have
changes with the variation of parameter ds. For AGILE,
it can be explained that the increment of data size brings
more energy depletion for the cloud execution form, which
results that less tasks can be offloaded to save energy
for mobile device. Consequently, energy consumption of
mobile application tasks under AGILE increases with the
growth of parameter ds’s value. As for RSSM, the explana-
tion for the increasing of energy consumption is like that of
AGILE. However, the raising speed of RSSM is larger than
that of AGILE. It can be explained that when the data size
rises to a critical level at which energy depletion of cloud
execution and local execution are equal, AGILE chooses
local execution to avoid the raise of energy consuming
while RSSM does not. Hence, the energy consumption
under RSSM grows faster than that of AGILE.

Figure 5(b) shows that cloud execution proportion under
RSSM is not influenced by the variation of parameter ds’
value. This can be explained that the probability to offload
a mobile application task to cloud server is determined by
the average transmission speed of a mobile device when
using RSSM. Moreover, the data size of a tasks is not
taken into account. Therefore, the cloud execution propor-
tion keeps stable with the changes in parameter ds’ value.
Different from RSSM, AGILE is influenced by parameter
ds. From Figure 5(b), we observe that cloud execution pro-
portion of AGILE decreases when the value of ds rises. The
experimental result can be explained that, for certain tasks,
energy consumption for cloud execution becomes larger
than that of local execution when the data size rises to a
bound level, so the number of tasks that can be offloaded
to save energy decreases. As a result, the cloud execu-
tion proportion drops down with the growth of parameter
ds’ value.

From Figure 5(a) and (b), we can make the conclusion
that mobile application tasks with larger data size are less
likely to be able to be offloaded for energy conservation.
Besides, negative correlation exists between cloud execu-
tion proportion and data size of tasks. Consequently, we
ought to offload the tasks with small data size to cloud
server from the perspective of energy saving.

4.5. Performance impact on task length

In this group of experiment, we study the performance
impact on task length.

As mentioned before, task length is generated by the fol-
lowing formula: Task_Length = Math.round.uniform.tl �
1011, .tlC 8/ � 1011//, and the value of tl is set to be 6. In
this group of experiment, the value of tl varies from 3 to 9.
Additionally, 3G environment is selected, and task number
is 50 000.

From Figure 6(a), we can find that energy consump-
tions of all the three offloading strategies grow when the
value of parameter tl increases. For LO, that is because the
energy consumption is calculated based on task length and
energy consumption per instructions, and a larger tl leads
to more energy consumption for certain tasks. Thus, the
energy consumption of LO increases with the growth of tl’s
value. As for AGILE, this can be explained that when task
length becomes longer, local execution for mobile appli-
cation tasks consume more energy, which results in more
tasks with large data size being offloaded to save energy.
Consequently, the power consumption of AGILE rises.
Besides, under RSSM, the locally executed tasks consume
more energy with the variation of tl value. Hence, the per-
formance of the three offloading algorithms have the same
trend, that is, growing with the increase of tl’s value.

Another fact that can be concluded is that the energy
consumption of LO has the highest increasing speed, while
RSSM is the opposite. The reason for this experimental
result is that, when the value of tl grows, the energy con-
sumption for local executing increases, which is totally
reflected in LO as all tasks are processed in mobile devices.
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Figure 6. Performance impact on task length. AGILE, terminal
energy efficient scheduling method; RSSM, random selection

scheduling method; LO, local execution.

However, only part of the increasing is reflected in RSSM
because tl’s variation merely has influence on the locally
executed proportion. As for AGILE, the local executing
proportion is like the performance of RSSM, but the cloud
execution is also influenced by tl’s variation, and some
tasks can be offloaded to save part of the energy. So, the
cloud execution proportion of AGILE grows faster than
RSSM while slower than LO.

Figure 6(b) depicts that the cloud execution proportion
under RSSM is not influenced by parameter tl’s value. This
can be explained like that in Figure 5(b). However, the per-
formance of AGILE suffers the impact of tl’s variation.
We observe from Figure 6(b) that the cloud execution pro-
portion of AGILE increases with the growth of tl’s value.
The reason is that the energy consumption for cloud exe-
cution becomes lager than that of local execution when
the task length exceeds bound level, so the number of
cloud execution tasks increases. As a result, the cloud exe-
cution proportion increases with the growth of parameter
ds’s value.

We can conclude from Figure 6 that mobile applica-
tion tasks with larger task length are more likely to be
offloaded to cloud server for energy saving. Thereby, we

should offload the tasks with larger task length to cloud
server to save mobile devices’ power, thus to achieve the
goal of extending battery life.

5. CONCLUSIONS AND
FUTURE WORK

In this paper, we give the elaborate design of system
models and algorithm, and agent model is proposed to
shield the heterogeneity of different mobile platforms and
to support the communication among mobile devices and
cloud servers. Besides, the mobile execution energy model
and data transmission energy consumption model are pre-
sented. Different connection environments like 2G, 3G
and WIFI are considered to simulate the real world. Fur-
ther more, we suggested the offloading algorithm AGILE
and RSSM based on the proposed models. Extensive sim-
ulation experiments were conducted to evaluate the per-
formance of AGILE and RSSM, and the experimental
results show that AGILE has advantages on solving mobile
application tasks’ offloading problem and can efficiently
save energy.

In our further study, three issues will be considered.
First, we will further study software error, transmission
error, encryption rate and so on, and redefine the producing
method of these parameters to make the simulation more
consistent with the real world. Second, multi-data centers
are to be taken into account, and the trade-off between them
will be investigated. Third, we will consider the experiment
with real-world traces, and to test the performance in our
daily-used mobiles.
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