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a b s t r a c t

One of the main challenges for the fresh-food produce industry is to ensure that the produce is free from
harmful pathogens. A potential area of risk is due to cross-contamination in a sanitizing chlorine wash-
cycle, where the same water is used to wash contaminated as well as non-contaminated produce.
However, this is also an area where effective intervention strategies are possible, provided we have a
good understanding of the mechanism of cross-contamination. Based on recent experimental work by
Luo, Y. et al. A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against
pathogen survival and cross-contamination during produce wash, International Journal of Food Microbi-
ology, 158 (2012), 133e139, we have built mathematical models that allow us to quantify the amount of
cross-contamination of Escherichia coli O157:H7 from spinach to lettuce, and assessed the efficacy of the
associated wash-cycle protocols.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Produce washing is an important step in the fresh produce
supply chain that is designed to improve cosmetic appearance,
remove unwanted materials such as dirt and plant exudates and
reduce the incoming microbial load (Gil and et al., 2009). However,
wash water can act as a secondary source of contamination,
enabling pathogens on incoming produce to disperse to multiple
lots if not adequately sanitized. While many studies have explored
sanitization options ranging from ultrasound and ultraviolet radi-
ation to the synergistic effect of ozone and organic acids, in practice,
chlorine remains the most widely used (Davidson and et al., 2013;
Gil and et al., 2009; Luo and et al., 2012).

Despite its pervasive use, the underlying mechanisms that
govern the concentration dynamics of hypochlorous acid and its
role in preventing pathogen cross-contamination during the wash
process are not completely understood. Part of the problem is that
many experiments are conducted at the lab scale under particular
inivasan).
conditions and therefore results from these studies are difficult to
synthesize. In their review of fresh cut produce sanitation, Gil et al.
(Gil and et al., 2009) suggest that, “A standardized experimental
approach to study the efficacy of different sanitizing treatments is
needed considering as much as possible the commercial processing
conditions.”

This is where mathematical modeling can play a fundamental
role as it, along with relevant data, can be used to test mechanistic
hypotheses as well as provide quantifiable links between specific
processing parameters and resulting contamination levels with
economy and scientific rigor. Furthermore, modeling can provide a
well-defined reference point from which to compare various
sanitization strategies even among differing wash conditions and
particular produce/pathogen combinations.

From this perspective we approach the study in (Luo and et al.,
2012), using the resulting time series data and experimental pro-
cedure to build and test amechanisticmodel of thewash process. In
particular, we construct a simple mathematical model, that cap-
tures the essential mechanism for chlorine decay in the wash tank
as well as the cross-contamination dynamics of pathogen transfer
from the wash water to shredded lettuce.
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2. Materials and methods

2.1. Pilot plant experiment

A brief description of the procedure in (Luo and et al., 2012)
provides basic information for our model: baby spinach leaves,
inoculated on average with 104.9 CFU/g of Escherichia coli
O157:H7, and shredded lettuce were placed (adjacent to each
other without mixing) on a conveyor belt and discharged simul-
taneously into an immersion wash tank (volume given by
V¼ 3.2� 106 ml). The entry rate of the shredded lettuce was
approximately 45 kg/min and the spinach to lettuce ratio was
0.2%. The produce remained in the wash tank for an average of
26 s. In order to control pathogen build up in the wash water,
sodium hypochlorite was added every t¼12 minutes with
increasing dose volumes over a continuous wash period of
approximately 36 min. Water quality, free chlorine concentration,
pathogen survival and cross-contamination were monitored. The
experiment was repeated three times. The data values used in this
paper are the average of these measurements.

2.2. Chlorine dynamics in the wash tank

As the results in (Luo and et al., 2012) indicate, maintaining a
stable level of free chlorine (FC) concentration in the process water
is difficult. While this is due to a variety of factors, we considered
the effects of the organic load on the chlorine concentration. Fresh-
cut produce, entering the wash tank, introduces a significant
amount of organic material, increasing the chemical oxygen de-
mand (COD) in thewater. Based on the data in (Luo and et al., 2012),
the chemical oxygen demand increased linearly with the amount of
lettuce entering the tank (on a time scale of about 36 min).
Therefore, we modeled the rate of increase of COD by

O0 ¼ k0 (1)

where the 0 denotes the derivative with respect to time, O (mg/L) is
the COD in the wash water and k0 is a constant with units (mg/(L
min)).

To model the FC dynamics in the process water, we built the
following equation

C0 ¼ �lcC � bcOC þ
XN

k¼1

rkc½kt;ktþt0� (2)

where C0 indicates the change in FC in the wash water with respect
to time and C is the concentration (mg/L) of FC available. As chlorine
reacts with organic matter, there is a rapid depletion of FC in the
system. For the majority of “chlorination reactions, the elementary
reaction can be formulated as HOCl þ B / products, where B is an
organic or inorganic compound” (Deborde and von Gunten, 2008).
Using the COD in the wash water as a measure of the concentration
of the organic material present and because the reactivity of HOCl
with organics is usually second order (Deborde and von Gunten,
2008), we modeled the loss of FC as the second term in (2) where
bc is the second order rate constant.

While there are multiple types of organic (and inorganic) ma-
terial in the wash water: bacteria, plant juices, soil, etc. and bc most
likely depends on the chlorine reaction with each of these, we as-
sume bc represents an average type rate (Deborde and von Gunten,
2008). Also, bc is a function of pH, but we assumed the pH is con-
stant, maintained by citric acid (this is a typical procedure in the
fresh processing industry) (Deborde and von Gunten, 2008; Luo
and et al., 2012). Furthermore, referring to the first term in (2), lc
is the natural decay rate of chlorine in tap water.
Usually, wash systems have some kind of dosing scheme to
replenish the loss of FC. Following the study in (Luo and et al.,
2012), we considered a dosing strategy with a fixed period
t¼12 min. Combining these ideas, we used the third term in (2) to
account for the addition of FC to the process water. Here c is the
indicator function, taking the value 1 on time interval [kt,ktþ t0]
for some small time increment t0 and value zero elsewhere, N is the
number of doses added, and rk> 0 reflects the rate increase of FC
from each dose.
2.3. Cross-contamination dynamics in the wash tank

In order to quantify the concentration of pathogen in the pro-
cess water, XW (MPN/ml), we constructed the following equation

X0
W ¼ bWS � bLWXW

L
V
� aXWC (3)

The data (see Fig. 4 in (Luo and et al., 2012)), suggested that the
level of E. coli remaining on the baby spinach during washing
equilibrates quickly during the process, indicating that shed rate
of E. coli from the baby spinach into the wash water is approxi-
mately constant. In terms of our model, we treated the spinach
merely as a pathogen delivery vehicle, implying that there is a
constant rate of E. coli being added to the wash water. Repre-
senting this rate by bWS (MPN/(ml min)), the rate of increase of
pathogen in the wash water is described by the first term in
equation (3).

On the other hand, we considered the binding rate and the
inactivation rate via FC as the two mechanisms that describe how
pathogens are removed from the wash water. For the binding rate,
see the second term of (3), we assumed that the successful contact
and attachment of the pathogen to the produce occurs at a rate that
is proportional to product of XW and L/V where L is the amount of
lettuce (kg) in the wash tank, V is the tank volume and bLW (ml/(g
min)) is the proportionality constant (in other words, the produce
and pathogen are thoroughly mixed in the process water). Again,
working from a well-mixing perspective, we modeled the inacti-
vation of suspended pathogen via free chlorine indicated in the
third term of (3) where C is the concentration of FC and a has units
(l/(mg min)).

Finally, the contamination dynamics for the lettuce depend on
the binding rate (i.e. the rate at which pathogen in the water binds
to the lettuce), the FC inactivation of pathogen attached to the
lettuce as well as the average time the lettuce spends in the wash
tank. We modeled this as

X0
L ¼ bLWXW � aXLC � c1XL (4)

where XL (MPN/g) quantifies the amount of pathogen on the lettuce
in the tank. The first term in (4) indicates the rate increase of
pathogen transferring from the water to the lettuce, the second
term reflects the inactivation of pathogen on the lettuce due to FC.
For the third term, we assumed that the exit time of the lettuce
from the wash tank is exponentially distributed with mean 1/c1.
That is, 1/c1 (min) reflects the average dwell time for the lettuce in
the wash tank. Note that we did not include produce to produce
type transmission of the pathogen.
2.4. Complete model

Combining the dynamics of the water chemistry and pathogen
transmission, our model is defined by the following system of
equations:
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O0 ¼ k0
C0 ¼ �lcC � bcOC þ
XN

k¼1

rkc½kt;ktþt0�

X0
W ¼ bWS � bLWXW

L
V
� aXWC

X0
L ¼ bLWXW � aXLC � c1XL

(5)

on the phase space where C, O, XW, and XL are all nonnegative. It is
clear by inspection that the model is positively invariant on this
space, indicating that the solutions make sense in an industrial
context. See Table 1 for a complete list of the model parameters and
their respective units.
2.5. Parameter fitting

All parameter values used in our model are reported in Table 1,
and all simulations and optimization methods for fitting were
implemented in MATLAB R2010a (The Mathworks, Inc.). We ob-
tained some of these values from the literature. However, other
parameters like L, k0 and bWS were specific to our model, and the
ones such as bC, a and bLW, were not readily available from the
literature for the experimental conditions used. These parameter
values were determined as follows:

The produce is discharged into the wash tank at a constant rate
N1 g/min. Moreover, the average wash time is 1/c1 min, and the
spinach to lettuce ratio is given by q, we deduced that the amount of
lettuce (g) in the tank is a constant, given by

L ¼ ð1� qÞN1=c1 (6)

Next, the rate of change of COD from equation (5) is linear in
time, and a fitting of the data from (Luo and et al., 2012) yielded a
value for the slope k0 of this line as 32.3 mg/(L min).

Following the experiment in (Luo and et al., 2012), we let s

(MPN/g) be the average amount of Escherichia coli on the incoming
inoculated spinach. Also, we defined XS (MPN/g) to be the average
level of pathogen remaining on the spinach during washing. Since
the rate of spinach coming into the tank is qN1 (g/min) we calcu-
lated the rate of pathogen addition to the wash water, bWS (MPN/
(ml min)), as

bWS ¼
ðs� XSÞqN1

V
(7)

In equation (2) for the FC levels in the tank, C only depends on
itself and COD levels, as we have assumed that it does not depend
on the pathogen levels in the tank. From (Hua and et al., 1999), we
obtained the natural decay rate lC of FC as 1.7� 10�3/min at 5+ C.
For the FC depletion rate, bC, due to the organic load, and the
chlorine dosing parameters, r1, r2 and r3, we used the subroutine
“fminsearch” in MATLAB, to fit equation (2) to the full 36 min of
data from (Luo and et al., 2012). Parameter values for bC and r1, r2
and r3 are listed in Table 1.

Following these parameter fits, we used the resulting FC levels
in the rate equations in model (5) to determine the pathogen levels
in the water and on the lettuce in order to optimize for the pa-
rameters a and bLW. Again, we used the full 36 min data set from
(Luo and et al., 2012) and the subroutine “fminsearch” in MATLAB.
3. Results and discussion

3.1. Model fitting

Fig. 1(a) shows the amount of free chorine levels, and Fig. 1(b)
and (c) show the pathogen levels in the water and on the lettuce,
respectively, using both the data in (Luo and et al., 2012) as well as
our model described in equation (5) with parameter values coming
from Table 1.

We observe from Fig. 1(a) that our model fits the FC levels very
well, with a root mean square error (RSME) of about 0.48. Also, it
captures most of the dynamics of the pathogen levels, with a scaled
(in order to equally weight the residuals) RSME of about 1.8, for the
model fitting in Fig. 1(b) and (c). However, the last two data points
are not explained well by our model. This further has the effect of
lowering the solution peaks obtained using our model in the
respective figures for the pathogen levels, indicating why these
peaks do not quite match the data there. If we remove the last two
time points from the data for the pathogen levels in the water on
the lettuce, and run an optimization to fit for the parameters a and
bLW, we obtain the results shown in Fig. 2(a) and (b). In this case,
a¼0.52 and bLW¼ 0.47 (with a scaled RSME reduced to around 1.5),
which are not very different from the values obtained from using
the full data set. From an experimental view, it is not entirely clear
what conditions affected these final data points.

3.2. Comparing experimental results from varying scales

Given that our model describes most of the underlying mech-
anisms involved in the produce wash, it is useful as a reference
point to compare parameters obtained from experiments at
different scales. For instance, using lab-scale data from (Nou and
et al., 2011) as well as from (Shen and et al., 2013), we calculated
bC, the depletion rate of FC in process water due to the organic load.
On the lab-scale, these data indicated that bCz2� 10�3 L/(mg
min), whereas our model informed by data in (Luo and et al., 2012),
reported that bC¼ 5.38� 10�4 L/(mg min). This suggested that lab
scale experiments represent this mechanism relatively well.

However, when considering the inactivation rate of E. coli via FC,
a L/(mg min), there was a larger discrepancy between the two
experimental scales. Unpublished lab-scale data for pathogen
inactivation suggested that for suspended E. coli levels at 8 Log CFU,
awas on the order of 300e500 L/(mgmin), in comparisonwith our
model prediction that a¼0.75 L/(mg min). Part of this discrepancy
may be linked with the fact that the incoming pathogen levels shed
into the wash water are relatively low (� 5 Log CFU, as in (Luo and
et al., 2012)). This difference in magnitude suggests the importance
of future experiments, examining pathogen inactivation of FC, to
use low pathogen concentrations in the wash water.

In terms of cross-contamination, this discrepancy was also
present when comparing lab and semi-commercial experiments.
For instance, following the experiment in (Luo and et al., 2011), 30 g
of lettuce inoculated with 104 CFU/g of E. coli O157:H7 was added to
3000 ml of water and 120 g of uninoculated lettuce was added
immediately after. The mixture was then manually agitated for 30 s
and then measurements for E. coli transfer were made. Using this
data, we calculated the average transfer rate, bLW ml/(g min), to be
approximately 30.6. The value obtained from our model fit from
data in (Luo and et al., 2012) was bLW¼ 0.38 ml/(g min), indicating
that cross-contamination occurs at a much lower rate on the
commercial scale most likely due to multiple factors that cannot be
readily controlled.

3.3. Quantifying residual FC

In order to keep the process water free of pathogens and hence
minimize cross-contamination during produce washing, there must
be sufficient residual FC in thewater. As pointed out in (G�omez-L�opez
and et al., 2014; Shen and et al., 2013), in experimentswith increasing
COD levels, this residual FC concentration is the essential factor for



Table 1
List of parameters and their values. All the values were obtained using data from (Luo and et al., 2012) except lc, which was obtained from (Hua and et al., 1999).

Type Parameter Description Values & units

From (Luo and et al., 2012) c1 Reciprocal of average wash time 2.3/min
s Pathogen level on spinach 104.9 MPN/g
V Volume of wash tank 3.2� 106 ml
N1 Incoming rate of produce 45,000 g/min
t Chlorine dosing period 12 min
t0 Duration of dose 2 min
q Ratio of spinach to lettuce 0.2%

Calculated L Amount of lettuce in wash tank 19,526 g
lc Natural decay rate of FC 1.7� 10�3/min
bWS Effective pathogen rate entering water 1.95 MPN/(ml min)
k0 COD increase rate 32.3 mg/(L min)

Model fit bc Depletion rate of FC in wash water 5.38� 10�4 L/(mg min)
r1 Add. rate of FC at dose 1 12.75 mg/(ml (min)2)
r2 Add. rate of FC at dose 2 7.47 mg/(ml (min)2)
r3 Add. rate of FC at dose 3 5.56 mg/(ml (min)2)
А Inactivation rate of pathogen via FC 0.75 L/(mg min)
bLW Pathogen binding rate: water to lettuce 0.38 ml/(g min)
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controlling pathogen inactivation, as opposed relying on ORP, for
instance. Furthermore, “understanding the dynamic interactions
between organic load and FC concentration is critical to developing
practical sanitization strategies for maintaining safety of fresh-cut
produce” (Shen and et al., 2013). Referring to Fig. 1(a), it is clear
that the rise in the COD levels was the main cause for the FC levels to
fall rapidly, and this subsequently caused the pathogen levels both in
the water and the lettuce to rise. Because our model is informed by
the direct quantification of these interactions, as opposed to merely a
correlative description, it has predictive power and could be used, for
instance, to deduce that any technique used to lower the reaction rate
between the free chlorine and the COD, would have a considerable
impact on controlling the pathogen levels. Furthermore, given such a
technique, our model could directly predict the scope of this control,
especially for extendwash times. That is, ourmodel coupled together
with streamlined experiments (as in Luo and et al., 2012) could be
used to test optimal chlorine sanitization strategies for lengthy wash
times that would otherwise be costly and difficult to monitor. Fig. 3
uses the model to predict the dynamics of the chlorine and path-
ogen levels after two additional chlorine dosing cycles (i.e. up to
60 min), assuming a linear rise in COD levels and a similar chlorine
dosing scheme as in (Luo and et al., 2012).

3.4. Model validation and predictability

In order to validate our model described in equation (5), we
used the first 12 min of data from (Luo and et al., 2012) to deter-
mine our model parameters and then compared the model pre-
dictions with the remaining 24 min of FC and pathogen
concentration data from (Luo and et al., 2012). To determine the
parameters bC, r1, a, and bLW, we used data from the first 12 min of
the experiment in (Luo and et al., 2012). In particular, we used the
subroutine ‘fminsearch’ in MATLAB to minimize the least square
error for the parameter fits. This procedure yielded the follow
values: first using equations (1) and (2), we calculated
bC¼ 5.26� 10�4 and r1¼13.08, RSME of 2.6 and then using the
resulting FC levels, we ran the optimization with equations (3) and
(4) to obtain bLW¼ 0.74 and a¼0.50, with weighted root mean
square error (RMSE) of 0.63.

To use our model against the remaining 24 min of data coming
from (Luo and et al., 2012), we needed values for r2 and r3, the
effective addition rates of FC following doses 2 and 3 respectively.
Since these values are dependent on the physical addition of
chlorine to the process water, we used equation (2) and only the FC
data at 12 and 14 min as well as 24 and 26 min coming from (Luo
and et al., 2012) (i.e. data from the dosing periods). We found
that r2¼ 7.18 and r3¼ 5.01 (calculations not shown).
Fig. 4 shows the model predictions against the data for the

remaining 24 min (note that the model fit and data from the first
12 min are included as the model was run for the full 36 min). The
scaled RSME (in order to equally weight the residuals) for predicted
vs observed C, XW and XL was approximately 3.3. Fig. 4(a) shows
that the model nicely captures the mechanisms for FC dynamics.
However, two points are worth noting. First, the depletion of FC
from 2 to 10 min of data indicates a variation from exponential
decay, as assumed by the model. This may have to do with the fact
that the FC was not yet thoroughly mixed throughout the process
water. Our model fit overmatched the data from about 7 to 12 min
and this translated into the under-matching of the model fit in
Fig. 4(b). That is, the E. coli level in the water at 12 min was pre-
dicted to be slightly lower than observed.

The second aspect concerns the FC level during the 34e36 min
time span. Fig. 4(a) shows that the predicted FC level was lower
than the corresponding data. This is curious as the data indicated
that the FC level increased even though there was no external
dosing. Although our model described the rest of the dynamics of
the pathogen levels quite well (Fig. 4(b) and (c)), the model pre-
diction under-matched the observed FC level during the 34e36min
interval, which was a major contributor to the RSME. From an
experimental view, it is not entirely clear what conditions affected
these final two data points.

Table 2 offers a comparison between parameters fit from the first
12min of data from (Luo and et al., 2012) and parameters fit from the
full data set. Notice that the two sets of values are very similar,
indicating that model has predictive value and describes the main
mechanisms quite well. The largest discrepancies concern a and bLW.
Table 2 shows that a is lower when fit to the first 12 min of data. As
above, this is most likely due to the fact that thorough mixing of the
FC had not yet occurred in thewashwater. In terms of bLW, data for XL

(the pathogen level on the lettuce) at time 24 min as well as
34e36min are lower thanmight be expected (Fig. 4(c)). These points
have the effect of lowering the value of bLW when using the full data
set for fitting. As the values of the parameters did not significantly
differ whenwe used data points up to the first 12min, we did not try
to fit the data using more time values, say up to the first 24 min, and
then try to make predictions with our model.

3.5. Quantitative microbial risk assessment (QMRA)

In terms of controlling cross-contamination during processing
of fresh produce, intervention strategies ideally need to be
informed by both pathogen prevalence and concentration at



Fig. 1. Time plots of (a) Free chlorine levels, (b) E. coli levels in the water, and (c) E. coli
levels on the lettuce. The solid line is from the model described in equation (5), and
the� values are the data points from (Luo and et al., 2012).

Fig. 2. Time plots of (a) E. coli levels in the water, and (b) E. coli levels in the lettuce,
after removing the last two data points in Fig. 1(b) and (c). The solid line is from the
model described in equation (5), and the� values are the data points from (Luo and
et al., 2012). There is no change in the free chlorine when we remove the last two
data points.
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various stages. Typically, stochastic/agent-based models have been
employed to address these concerns, quantifying risk over a variety
of factors. For instance, the FDA has developed models such as FDA-
iRisk and QPRAM (Quantitative Produce Risk Assessment Model)
(https://irisk.foodrisk.or and Febr 19, 2015). iRisk is a freely avail-
able, web-based, risk modeling tool that can address local risk
questions at the farm level as well as larger scale issues at the
supply chain level, tracing risk from farm to fork. QPRAM is an
agent-based model that focuses on the risk levels at a particular
farm or processing facility.

While these models are promising, parameters at some key
steps are either unknown or loosely estimated. Therefore, the risk
outputs from these models may lack sufficient confidence. This is
where mechanistic modeling can provide significant information.
By elucidating themechanisms of cross-contamination dynamics at
focused spatial/temporal hubs in the supply chain, these models
can narrow specific parameters of the larger scale risk models. For
instance, in (Rodríguez and et al., 2011), a stochastic model for
cross-contamination of Escherichia coli O157:H7 during lettuce
processing was developed to understand the prevalence and con-
centration of E. coli in bags of post-processed fresh-cut lettuce.
Transfer coefficients describing the pathogen transfer for various
scenarios involving produce, equipment and process water were
estimated by fitting probability distributions to relevant data,
providing the backbone of the model.

At the decontamination step, however, the chlorine concentra-
tion was assumed constant during a full day of production
(Rodríguez and et al., 2011). In light of the aforementioned dis-
cussion concerning the depletion of FC via the organic load, it
seems important to use pathogen transfer coefficients during the
produce wash that reflect these dynamics. This is where our model
could play a vital role. By using data from (Buchholz and et al.,
2012a; Buchholz and et al., 2012b), for instance, bWS could be
adjusted to reflect various levels of pathogen entering the wash
tank. Then, tuning the parameters of our model to fit the details of
the particular wash procedure (such as wash time, produce wash
rate, volume of the wash tank, etc.) our model outputs could be



Fig. 3. Simulations over time of (a) free chlorine levels, (b) E. coli levels in the water,
and (c) E. coli levels in the lettuce by numerically solving for the variables described in
equation (5), after two additional chlorine dosing cycles.

Fig. 4. Time plots of (a) Free chlorine levels, (b) E. coli levels in the water, and (c) E. coli
levels on the lettuce. The solid line is the model, described in equation (5), fit (for the
first 12 min) and then the model prediction (for the last 24 min) and the� values are
the data points from (Luo and et al., 2012).
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used to calculate pathogen transfer. As an example of this, Fig. 5(a)
and (b) compares our model predictions for E. coli levels in the
water and on the lettuce exiting the wash tank, linked to two
different shed rates of say, for example, 0.25 MPN/(ml min) of
pathogens into the water and 2.5 MPN/(ml min) of pathogens into
the water. We have chosen values for bWS which differ by an order
of magnitude in order to illustrate the sensitivity of the model to
this shed rate. Note that all other parameters are fixed with values
listed in Table 2. The advantage here is two fold: first, the transfer
coefficients associated to the wash step would have a mechanistic
basis and second, our model could allow for easy and economic
testing (as opposed to extensive experiments) to determine how
significantly the organic load affects the contamination results
within the larger stochastic model.

4. Conclusions

This study is an initial step towards understanding and quan-
tifying the underlying mechanisms involved in commercial scale
washing of fresh cut produce. We constructed a mathematical
model that is able to continuously describe the dynamics of water



Table 2
Comparison of the parameters of the model from fits using the first 12 min of data (column 2), and the full data set (column 3) from (Luo and et al., 2012). Units for the various
parameters are the same as in Table 1.

Parameter Description Fit to first 12 min data set Fit to 36 min data set

bC Depletion rate of FC in wash water 5.26� 10�4 5.38� 10�4

r1 Add. rate of FC at dose 1 13.08 12.75
r2 Add. rate of FC at dose 2 7.18 7.47
r3 Add. rate of FC at dose 3 5.01 5.56
a Inactivation rate of pathogen via FC 0.50 0.75
bLW Pathogen binding rate: water to lettuce 0.74 0.38

Fig. 5. Simulations of (a) E. coli levels in the water, and (b) E. coli levels in the lettuce
after numerically solving the rates described in equation (5) using bWS¼ 0.25 MPN/(mL
min) (dashed lines) and bWS¼ 2.5 MPN/(mL min) (solid lines). All other parameter
values are as in Table 2. The free chlorine levels are the same as in Fig. 1.
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chemistry and pathogen cross-contamination during the wash
procedure outlined in (Luo and et al., 2012). The highlights of our
model are its simplicity, its ability to capture most of the mecha-
nisms that account for FC fluctuation and pathogen transfer during
fresh produce washing, and as discussed in Section 3.4, its ability to
predict the dynamics of the FC and pathogen levels. We also have
shown that our model can serve as a benchmark to help compare
decontamination experiments at different scales as well as identify
particular assumptions that can inform streamlined future experi-
ments. In addition, coupled with stochastic QMRA models, our
mechanistic modeling regime can provide a foothold toward a
more standardized approach for food safety and the evaluation of
intervention strategies. Finally, we expect that our model frame-
work, that is, our mechanistic description of FC depletion and
pathogen transfer, can be used to understand cross-contamination
duringwash procedures that involve other produce/pathogen pairs.
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