
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2015.20.215
DYNAMICAL SYSTEMS SERIES B
Volume 20, Number 1, January 2015 pp. 215–230

INTERACTION OF MEDIA AND DISEASE DYNAMICS AND

ITS IMPACT ON EMERGING INFECTION MANAGEMENT

Qin Wang

College of Transport & Communications, Shanghai Maritime University

Shanghai, 201306, China

Laijun Zhao∗

Sino-US Global Logistics Institute, Shanghai Jiao Tong University

Shanghai, 200030, China
and

Antai College of Economics & Management, Shanghai Jiao Tong University

Shanghai, 200052, China

Rongbing Huang

School of Administrative Studies, York University
Toronto, M3J 1P3, Canada

Youping Yang

School of Mathematics, Shandong Normal University
Jiannan, 250014, China

Jianhong Wu

Center for Disease Modeling, Department of Mathematics and Statistics
York University, Toronto, M3J 1P3, Canada

(Communicated by Yuan Lou)

Abstract. The 2002-2003 SARS outbreaks exhibited some distinct features
such as rapid spatial spread, massive media reports, and fast self-control. These

features were shared by the 2009 pandemic influenza and will be experienced
by other emerging infectious diseases. We focus on the dynamic interaction

of media reports, epidemic outbreak and behavior change in the population

and formulate a compartmental model, that tracks the evolution of the human
population. Such population is characterized by the disease progression (sus-

ceptible, infected, hospitalized, and recovered) and by the extent to which the

media has impacted, so individuals have modified their behaviors to reduce
their transmissibility and infectivity. The model also describes the dynamics

of media reports by considering how media is influenced by the disease statis-

tics (numbers of infected and hospitalized individuals, for example). We then
conduct linear stability analysis and numerical simulations to study how inter-

action of media reports and disease progress affects the disease transmission

dynamics, so as to shed light on what type of media will be the most effective
for the control of an epidemic.
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1. Introduction. For infectious diseases, specially for emerging diseases, the in-
teraction between awareness programs driven by media and infection control is
complicated and highly nonlinear. On the one hand, the severity of the disease
influences the number of awareness programs. On the other hand, the number of
awareness programs influences the perception of disease [33], alerts the public, and
affects individual behaviors, including contact patterns [4], which in turn impact
the effectiveness of disease intervention measures [26, 24].

Extensive studies investigated the impact of media reports and behavior reaction
on the propagation of emerging diseases [2, 22, 29]. Drache and Feldman [7] inves-
tigated the impact of media reports on 2003 SARS outbreak in Toronto and offered
effective strategies for the crisis. Jones and Salathe [17] studied the relationship be-
tween emotional status and behavioral response of humans by performing an online
survey of H1N1. Ferguson [8], Safi and Agusto [25], Agusto and Gumel [3], Gumel,
McCluskey, and Watmough [11] presented several effective methods to prevent fur-
ther spread of disease dissemination. Sun et al. [28] formulated an SIS model to
investigate the impact of media reports on disease transmission and concluded that
media coverage reduces the number of contacts and shortens the duration of disease
outbreak. Moreover, Vaidya et al. [15] analyzed the interaction mechanism among
Avian influenza, heterogeneous environment and behavior responses to prevent the
spreading of disease.

Two fundamentally different approaches can be used to study the impact of media
effect on disease spread. In the first classical approach, the scholars use different
forms of incidence function to measure media effect. For example, Wang and Xiao
[31] introduced a piecewise continuous transmission rate βexp(−αεI)SI to study
the medial impact in disease spread, with ε = 1 while σ(S, I) = I−Ic > 0 and ε = 0
while σ(S, I) = I−Ic < 0, where Ic denotes certain threshold of infected individuals
above which mass media starts to report the infectious disease. Cui,Tao, and Zhu
[6] incorporated a standard incidence βSI

S+I with classical SIS model to explore the
influence of media coverage on the dissemination of infectious disease. Cui, Sun,
and Zhu [5] applied an exponential incidence µexp(−mI) and Liu et al.[20, 21]
applied βexp(−a1E − a2I − a3H) to investigate the impact of media reports on

disease spread. Li, Ma, and Cui [19] considered incidence rate (β1 − β2I
m+I )SIN (β1 >

β2 > 0,m > 0) to reflect the effect of media reports on disease spread. Gao and

Ruan [12], Hu, Ma, and Ruan [16] proposed a nonlinear incidence rate βSI
1+αI (α ≥ 0)

as the incidence exhibits near-linear behavior when the infected individuals is low
and approximates a constant when infected number is large. Xiao and Ruan [32]
proposed a type of incidence function kSI

1+αI2 ,with kI measures the infection force

and 1
1+αI2 depicts the media effect to investigate the impact of media coverage on

disease dissemination. Arino and McCluskey [1] assumed that a low population
level leads to the appearance of mass action incidence, and a high population level
induces the proportional incidence.

In the second approach, scholars incorporated the mass action incidence with
an independent media effect function to study the influence of media reports on
disease spread. For example, Misra et al. [23, 27] used the mass action incidence
βXY and media impact term λXM with X(t) denotes the susceptible population,
Y (t) denotes the infective population, and M(t) describes the cumulative number of
awareness programs and the growth rate of which is proportional to the number of
infected population. Yuan, Xue, and Liu [34] combined the mass incidence λkSkΘ
with the media effect independent function to explore the interaction between media
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and disease spread on complex networks, where λ =
∑n

j=1 jIj∑n
k=1 kNk

, Nk represents the

number of nodes with degree k. Funk et al. [9, 10]. concluded that media awareness
have impact on people’s behavior either by reducing susceptibility or by promoting
recovery rate, and assumed that the growth rate of aware population is proportional
to the number of infected individuals and the proportional coefficient is determined
by the rate of infected becoming aware.

In this paper, we focus on the dynamic interaction of media reports, disease
outbreak, and behavior change in the population. We formulate a compartmental
model that tracks the evolution of the population stratified by the disease progres-
sion (susceptible, infected, hospitalized, and recovered) and by the extent to which
the media has impacted, so individuals have reduced their transmissibility and in-
fectivity. We also model the dynamics of media reports by considering how media
is influenced by the disease statistics (numbers of infected and hospitalized individ-
uals, for example). The goal is to gain insights on how the nonlinear interaction
of media reports and disease progress affects the daily incidence of infection, the
accumulated cases over an epidemic, the number of hospitalized individuals, and
the disease induced death rate. In such a way, we try to shed light on what type
of media will be the most effective for the disease infection management, includ-
ing both medical (such as vaccine) and non-medical interventions, so the optimal
choice of focus could be determined and incorporated in the chosen goal(s) by the
management.

2. A disease spreading model with consideration of media reports. Me-
dia reports and disease outbreaks are mutually dependent and interact with each
other. It is therefore important to refine classical mathematical models to reflect
this feature by adding the new dimension of massive news reports and fast informa-
tion flow. Furthermore, media reports and fast information transmission generate
a profound psychological impact on public and have great influence not only on
individual behaviors but also on the formation and implementation of public inter-
vention and control policies. Once a disease breaks out, media programs scramble
to report the disease to alert the public.

We consider the interaction of disease outbreak and media impact into a suscep-
tible-infected-hospitalized-recovered framework. We divide the individuals into six
compartments: Sm, Su, Im, Iu, H,R, which represent the number of individuals that
are susceptible aware, susceptible unaware, infected aware, infected unaware, hos-
pitalized, and recovered, respectively. Let Me(t) denote the number of awareness
programs driven by media reports at time t. For simplicity, in what follows, the
symbol Me is used instead. The graphical illustration of the disease spreading model
with consideration of media reports (media impact model) is shown in Figure 1. The
parameter list is described in Table 1.

Our model on the interaction of media and disease dynamics process is developed
on the following simplified assumptions:

The growth rate of awareness programs increases in proportional to the total
number of infected individuals (Iu + Im) at a rate ρi and the number of hospitalized
individuals H at a rate ρh. Moreover, the number of awareness programs decays
exponentially at a rate ρ. So ρi and ρh can be regarded as a kind of rates of infected
and hospitalized becoming aware, and ρ is the decreasing rate of awareness due to
ineffectiveness. We refer the reader to [32, 1, 23, 27, 34] for details.

Infected aware individuals in subclass Im have the infectivity reduced by a factor
δi(0 ≤ δi ≤ 1) due to alertness or self-imposed quarantine. Similarly, susceptible
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Figure 1. Flow chart for the media impact model.

Table 1. Meaning of parameters

d1 disease-induced death rate of hospitalized individuals
d0 disease-induced death rate of infected individuals
α hospitalization rate of infected individuals
γ recovery rate of hospitalized individuals
ν self-awareness rate ν
βm the transmission rate of awareness
βu infection rate from subclass Iu to Su
µs awareness loss rate of susceptible individuals
µi awareness loss rate of infected individuals
δs reduced susceptibility factor
δi reduced infectivity factor

aware individuals in Sm have the susceptibility reduced by a factor δs(0 ≤ δs ≤
1) as they lower contact with infected and hospitalized individuals. Specifically,
symbol βu represents infection rate from infected unaware to susceptible unaware.
βuδs denotes infection rate from infected unaware to susceptible aware. βuδi is
the infection rate from infected aware to susceptible unaware. βuδsδi describes the
infection rate from infected aware to susceptible aware.

Individuals in the compartment Su move to compartment Sm with the trans-
mission rate βm by receiving media reports. Individuals in compartment Iu move
to compartment Im at a self-awareness rate ν as when they are sick, they will be
isolated and informed of the dangerous disease by hospital staffs.

Individuals in Sm move back to Su at rate µs, and Im move back to Iu at rate
µi due to awareness loss after a certain period of time.

When susceptible unaware individuals Su contact with infected ones including
Im and Iu, they may become infected unaware Iu. Similarly, when susceptible aware
individuals Sm contact with infected ones, they may become infected aware Im.

We do not consider the demographic process such as natural death and birth rates
because the time scale of the epidemic is usually much shorter than the timescale
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of natural death and birth. Thus, the media impact model can be described by the
following equations

dSm
dt

= −βuδsSm (Iu + δiIm) + βmSuMe − µsSm,

dSu
dt

= −βuSu (Iu + δiIm)− βmSuMe + µsSm,

dIm
dt

= βuδsSm (Iu + δiIm) + νIu − (d0 + α+ µi) Im,

dIu
dt

= βuSu (Iu + δiIm) + µiIm − (d0 + α+ ν) Iu,

H

dt
= α (Iu + Im)− (d1 + γ)H,

dR

dt
= γH,

dMe

dt
= ρi (Iu + Im) + ρhH − ρMe.

(1)

As the duration of the epidemic is short and the number of susceptible individuals
is much higher than the total number of infected and hospitalized individuals, we
simplify the assumptions that the total number of the susceptible is unchanged.
The assumption is similar to those in [21, 9]. Then, we introduce S = Sm +Su and
I = Im + Iu to denote the total numbers of susceptible and infected individuals,
respectively. According to the assumption that S = Sm + Su is a constant, then
Su is equal to S − Sm. Thus, at the disease free equilibrium and the endemic
equilibrium, we have the following equations

˙Sm = −βuδsSm (Iu + δiIm) + βm(S − Sm)Me − µsSm,
˙Im = βuδsSm (Iu + δiIm) + νIu − (d0 + α+ µi) Im,

İu = βu(S − Sm) (Iu + δiIm) + µiIm − (d0 + α+ ν) Iu,

Ḣ = α (Iu + Im)− (d1 + γ)H,

Ṁe = ρi (Iu + Im) + ρhH − ρMe.

(2)

For the analysis of system (2), we define the invariant region which is given by
the following set

D = {(Sm, Im, Iu, H,Me)|Sm, Im, Iu, H,Me ≥ 0}.

When the disease breaks out, authorities at all levels take precautions including
both medical and non-medical measures to minimize the negative effects of disease.
Some measures involved susceptible individuals such as education, vaccination and
raising the alertness can prevent being infected. Other measures involved infected
individuals such as isolation can avoid passing infection to susceptible individuals.

In fact, the media impact model is a more general one. A special case of δs = 0
implies that susceptible aware individuals avoid being infected either by reducing
contact with infected ones or by seeking for vaccine protection. The model studying
the effects of awareness programs on infectious disease dissemination is a special
case of our model if we simply combine the infected aware, infected unaware, and
hospitalized individuals into one class [9]. Another special case of δi = 0 has been
studied by Misra et al., who modeled the disease transmission process by assuming
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that infected aware individuals cannot pass infection to susceptible individuals as
they have been isolated [23].

3. The analysis of periodic oscillatory behaviors. To illustrate the impact
of media reports on people’s behavior, we calculate the disease free equilibrium
E0(0, 0, 0, 0, 0).

According to the definition of Van den Driessche and Watmough [30], we identify
the infected compartments as Im and Iu. We assume the rate of appearance on new
infections is W and rate of transfer of individuals out of Im and Iu is V, thus

W =

[
βuδsSm (Iu + δiIm)

βu(S − Sm) (Iu + δiIm)

]
,V =

[
−νIu + (d0 + α+ µi) Im
−µiIm + (d0 + α+ ν) Iu

]
.

Then the partial derivatives ofW and V with respect to Im and Iu are respectively
described as

W =

[
βuδiδsSm βuδsSm

βu(S − Sm)δi βu(S − Sm)

]
, V =

[
d0 + α+ µi −ν
−µi d0 + α+ ν

]
.

As the basic reproduction number R0 equals the spectral radius of next genera-
tion matrix WV −1, that is R0 = ρ(WV −1), so we have

R0 =
βuS (d0 + α+ µi + δiν)

(d0 + α) (d0 + α+ µi + ν)
.

Based on the analysis, we present a theorem to determine whether the infectious
disease can break out or not.

Theorem 3.1. If R0 < 1, the disease free equilibrium E0(0, 0, 0, 0, 0) is locally
asymptotically stable in D, where the biological region D = {(Sm, Im, Iu, H,Me) ∈
R5

+}. If R0 > 1, the disease free equilibrium E0(0, 0, 0, 0, 0) is unstable.

Proof. Let I denote the identity matrix, then we have the characteristic equation

|λI − J | =

∣∣∣∣∣∣∣∣∣∣
λ+ d0 + α+ µi −ν 0 0 0
−βuSδi − µi λ+ d0 + α+ ν − βuS 0 0 0

0 0 λ+ µs 0 −βmS
−α −α 0 λ+ d1 + γ 0
−ρi −ρi 0 −ρh λ+ ρ

∣∣∣∣∣∣∣∣∣∣
= (λ+ d1 + γ)(λ+ ρ)(λ+ µs)[λ2 + (2d0 + 2α+ µi + ν − βuS)λ

+ (d0 + α)(d0 + α+ µi + ν)(1−R0)].

According to Vieta’s formula we can see that all the five eigenvalues have negative
real part if R0 < 1. It is easy to conclude that the disease free equilibrium E0 is
locally asymptotically stable in D if R0 < 1, which means that the disease may die
out quickly around the disease free equilibrium. Otherwise, if R0 > 1, the disease
may break out and remain endemic.

3.1. Endemic equilibrium structure. In this part, we analyze the endemic equi-
librium structure in detail. For simplicity, we introduce three symbols p1, p2 and
p3, where

p1 =
ρi(γ + d1) + αρh

ρ(γ + d1)
,
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p2 =
(d0 + α) (d0 + α+ µi + ν)

d0 + α+ µi + δiν
,

p3 =
δs(d0 + α+ ν − βuS)− ν

δs(βuSδi + µi)− (d0 + α+ µi)
.

(3)

Then, we can calculate the endemic equilibrium E1(S∗
m, I

∗
m, I

∗
u, H

∗,M∗
e ).

(1): If δs 6= 0, and let Ψ1 = βmβuSδs, then the endemic equilibrium can be written
as the following form

I∗u =
µs[(d0 + α+ µi)p3 − ν]

Ψ1p1(1 + p3)(1 + δip3)− [(d0 + α+ µi)p3 − ν][βmp1(1 + p3) + βuδs(1 + δip3)]
,

I∗m = p3I
∗
u,

S∗
m =

(d0 + α+ µi)p3 − ν
βuδs(1 + δip3)

,

H∗ =
α(1 + p3)I∗u
γ + d1

,

M∗
e = p1(1 + p3)I∗u.

(4)

(2): If δs = 0, the endemic equilibrium can be written as

I∗u =
µs

βmp1(1 + p3)

[
Sβu(1 + δip3)

d0 + α+ ν − µip3
− 1

]
,

I∗m = p3I
∗
u,

S∗
m = S − d0 + α+ ν − µip3

βu(1 + δip3)
,

H∗ =
α(1 + p3)I∗u
d1 + γ

,

M∗
e = p1(1 + p3)I∗u.

(5)

Combining with the differential equations of the media impact model, it is easy
to derive that if R0 > 1, a unique equilibrium E1(S∗

m, I
∗
m, I

∗
u, H

∗,M∗
e ) exists in the

biological region D, meaning that if R0 > 1, the disease breaks out and may remain
endemic.

3.2. Periodic oscillatory behaviors. Two reasons result in oscillatory behaviors:
Firstly, media report reduces the susceptibility and infectivity at rates δs and δi,
respectively, which also changes the basic reproduction number. When the basic
reproduction number R0 > 1, oscillatory phenomena can occur. Secondly, it has
been found that the psychological influence of the reported numbers of infected and
hospitalized individuals result in the occurrence of Hopf bifurcation [5].

In the following, we will take the disease transmission coefficient βu and the
reduced infectivity δi as an example. Let Π1 be the curve defined by R0 = 1 in the
(βu, δi)-plane, where

Π1 : δ
(1)
i = δi(βu) =

(d0 + α+ µi)(d0 + α− βuS) + ν(d0 + α)

βuSv
.

In what follows, we consider the case 0 < δi < δ
(1)
i in the (βu, δi)-plane.
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We first note that the Jacobian matrix of Eq. (2) at the endemic equilibrium E1

can be written as

J(E1) =


J1 βuδsS

∗
m + ν βuδs (I∗u + δiI

∗
m) 0 0

J4 J2 −βu(I∗u + δiI
∗
m) 0 0

−βuδiδsS∗
m −βuδsS∗

m J3 0 J5

α α 0 −(d1 + γ) 0
ρi ρi 0 ρh −ρ

 ,
where

J1 = βuδiδsS
∗
m − (d0 + α+ µi),

J2 = βu(S − S∗
m)− (d0 + α+ ν),

J3 = −βuδs (I∗u + δiI
∗
m)− µs − βmM∗

e ,

J4 = −βuδs (I∗u + δiI
∗
m)− µs − βmM∗

e ,

J5 = δiβu(S − S∗
m) + µi.

Let I represent the identity matrix, we can obtain

|λI − J | =

∣∣∣∣∣∣∣∣∣∣
λ− J1 −βuδsS∗

m − ν −βuδs (I∗u + δiI
∗
m) 0 0

−J4 λ− J2 βu(I∗u + δiI
∗
m) 0 0

βuδiδsS
∗
m βuδsS

∗
m λ− J3 0 −J5

−α −α 0 λ+ d1 + γ 0
−ρi −ρi 0 −ρh λ+ ρ

∣∣∣∣∣∣∣∣∣∣
= λ5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ a5.

(6)
Substituting the endemic equilibrium E1(S∗

m, I
∗
m, I

∗
u, H

∗,M∗
e ) into the charac-

teristic equation, we can calculate the coefficients of the characteristic equation.
Actually, we find that the coefficients are determined by those parameters listed in
Table 1 by using a mathematical software called Maple. For convenience, we do not
present the explicit formula of these coefficients as the formulas are very complex.

Let λi (i = 1, 2, ..., 5) be the eigenvalues of the matrix J . If one of the eigenvalues
has a positive real part, the equilibrium is unstable. If all the eigenvalues have
negative real parts, the equilibrium is stable. To investigate periodic oscillations of
the media impact model, we consider the case of the characteristic equation with
a pair of purely imaginary roots, which implies that the parameters satisfy the
following discriminant

∆(βu, δi) = a4(a1a2 − a3)2 − a2(a1a4 − a5)(a1a2 − a3) + (a1a4 − a5)2 = 0. (7)

Let Π2 denote the curve satisfying ∆(βu, δi) = 0 in the (βu, δi)-plane

Π2 : βu = βu(δi).

It is easy to conclude that when the point (βu, δi) is below the curve Π1, there
exists only one locally asymptotically stable disease free equilibrium E0. According
to Routh-Hurwitz criteria, when (βu, δi) is between the curve Π1 and Π2, the en-
demic equilibrium E1 is locally asymptotically stable. Further, when Π2 is crossed,
a Hopf bifurcation can occur.

Now, we will derive the transversality condition. Taking the parameter of δi as
an example, we finally obtain a theorem which can determine whether the periodic
oscillations exist or not.
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Theorem 3.2. The periodic oscillations can occur when δi satisfies

(5ω4
0 −3a2ω

2
0 +a4)(

da1

dδi
ω4

0 −
da3

dδi
ω2

0 +
da5

dδi
)− (2a3ω0−4a1ω

3
0)(

da4

dδi
ω0−

da2

dδi
ω3

0) < 0.

(8)

Proof. Assume there exists a parameter δ
(2)
i , such that λ = ±iω0 (ω0 ∈ R) is a pair

of purely imaginary roots. Differentiating Eq. (6) with respect to δi, we are led to

(5λ4 + 4a1λ
3 + 3a2λ

2 + 2a3λ+a4)
dλ

dδi
+
da1

dδi
λ4 +

da2

dδi
λ3 +

da3

dδi
λ2 +

da4

dδi
λ+

da5

dδi
= 0.

Then we can have

(
dλ

dδi
)−1 = − 5λ4 + 4a1λ

3 + 3a2λ
2 + 2a3λ+ a4

da1
dδi
λ4 + da2

dδi
λ3 + da3

dδi
λ2 + da4

dδi
λ+ da5

dδi

,

Performing some operations we can derive that

d(Reλ)

dδi
|λ=iω0,∆=0

= Re(
dλ

dδi
)−1|λ=iω0,∆=0

= Re

[
− 5λ4 + 4a1λ

3 + 3a2λ
2 + 2a3λ+ a4

da1
dδi
λ4 + da2

dδi
λ3 + da3

dδi
λ2 + da4

dδi
λ+ da5

dδi

]
|λ=iω0,∆=0

= −
[
Ψ2(

da1

dδi
ω4

0 −
da3

dδi
ω2

0 +
da5

dδi
)−Ψ3(

da4

dδi
ω0 −

da2

dδi
ω3

0)

]
.

where Ψ2 = 5ω4
0 − 3a2ω

2
0 + a4,Ψ3 = 2a3ω0 − 4a1ω

3
0 .

Incorporating the above result with the definition of periodic oscillation

d(Reλ)

dδi
|
δi=δ

(2)
i ,ω=ω0

> 0, (9)

we then finally prove the theorem.

According to the Vieta’s formula we can prove that the characteristic equation
always has one eigenvalue whose real part is negative. Based on the above analysis,
we can conclude that if (βu, δi) is below the curve Π1, then the system only has
one disease free equilibrium. If (βu, δi) falls between Π1 and Π2, then the endemic
equilibrium is locally asymptotically stable. As (βu, δi) increases through Π2, we can

obtain a critical value δ
(2)
i such that the characteristic equation has a pair of purely

imaginary roots satisfying the condition equation (7) and inequality (9). That is
to say, for (βu, δi) that above Π2 and in the first quadrant region, the periodic
oscillations can occur. Similar analysis can be conducted for other parameters. To
show the case of periodic oscillations, we carry out simulations in the next section.

4. A case study. The interaction of media impact and disease spreading is very
complex. When the disease is serious, government would take measures to prevent
the disease from further dissemination. In this case, people’s behavior, the suscep-
tibility and infectivity of the disease maybe influenced greatly. Furthermore, at an
early stage, mass media is greatly influenced by the reported number of infected
individuals, but as time goes on, media reports are largely affected by the number of
hospitalized individuals. To explore the interaction of media reports and disease dy-
namics, we carry out a case study of SARS outbreak in Great Toronto Area (GTA)
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Table 2. Parameters for the simulation of SARS in GTA

Symbol d1 d0 α γ δs δi ν ρh ρi ρ µs µi
Value 0.01 0.00001 0.33 0.05 0.50 0.50 0.26897 0.08 0.01 0.06 0.01 0.001

The value of parameters d1, d0, α, γ, ρh come from [21], value of parameters δs, δi, ρ come from

[23], others are estimated according to experience.

in this section. Definitely, the effect of uncertainties in the parameter estimates does
exist because uncertainty is the only certainty there is. But a detailed functional
description for such uncertainty that follows certain distribution [18, 13, 14] is not
available and would be very hard to reach as the model is already very complex.
Thus, uncertainty is not included in this manuscript. Related parameter values are
listed in Table 2.

We know that SARS attacked GTA on February 23, 2003. Up to May 14, 2003 on
which World Health Organization removed GTA from the list of SARS emergency,
the disease made 257 people ill and stay in hospitals. Unfortunately, the second
outbreak swept GTA due to the infection between doctors and patients, which led
to the tighten control within the hospitals and health care facilities.

According to 1996 census, the susceptible individuals of GTA was 5,446,104 in
2003. We take the value of the hospitalization rate from infected compartment to
hospitalized compartment as α = 0.33. The disease induced death rate of infected
individuals and hospitalized individuals are d0 = 0.00001 and d1 = 0.01 in GTA,
respectively. The hospital stay of patients is about 20 days, so we set the value of
the recovery rate of hospitalized individuals as γ = 0.05 [21]. Due to the presence
of SARS, avian influenza, and H1N1, many scholars try to explore the impact of
media reports on disease outbreak. Based on previous studies [29, 21], we take the
transmission rate of awareness as βm = 9.1809×10−8 and take the infection rate as
βu = 8.63× 10−8 to investigate the effect of media reports on SARS epidemic. We
fix the rates of infected and hospitalized individuals becoming aware at ρi = 0.01
and ρh = 0.08. The decreasing rate of awareness is set to ρ = 0.06. The values of
reduced susceptibility and infectivity are δs = 0.50 and δi = 0.50, respectively [23].

The detailed parameter values are listed in Table 2. Based on the above analysis,
we can get the basic reproduction number R0 = 1.105, and the endemic equilibrium

E1 = (763920, 1169.6, 1218.4, 13134, 17909).

In this scenario, we obtain five eigenvalues as follows

λ1,2 = ±0.0261i, λ3 = −0.0746, λ4 = −0.3374, λ5 = −0.2985.

Using the Runge-Kutta method, Figure 2(a) shows the variation of the number
of infected-aware and infected-unaware individuals with respect to time step. It is
apparent that as time goes on, the numbers of infected-aware and infected unaware
individuals experience several obvious fluctuations and behave in a timely periodi-
cally oscillatory fashion. From Figure 2(b), we observe that the curves denoting the
numbers of hospitalized individuals and awareness programs also show sustained
periodic oscillatory behavior. However, the peak of hospitalized individuals is much
bigger than infected individuals as most sick people stay in hospitals seeking for
medical treatment. Figure 2(c) shows the developing trend of the number of sus-
ceptible aware individuals versus time. The number of susceptible aware individuals
is greatly influenced by media reports as when mass media struggles to alert the
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public to take precautions to protect themselves, the number of susceptible aware
individuals reaches a peak point.
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Figure 2. Variation of different numbers versus time.
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Figure 3. Phase portrait of the system.

To show the stability of (M∗
e , I

∗) in (Me − I) plane and (S∗
m, I

∗) in (Sm − I)
plane we present Figure 3, which illustrates the relationship between the number of
infected individuals versus awareness programs and susceptible aware individuals.
From the two limit circles, we can see that with the intervention of media reports,
both trajectories in (Me − I) and (Sm − I) planes behave periodic oscillations.

Furthermore, the analysis of the impact of related parameters on the SARS
progression is fairly important. Figure 4 shows the variation of the number of
infected individuals versus time under different transmission rates of awareness,
infection rates from susceptible unaware to infected unaware, susceptibility and
infectivity coefficients. As can be seen from Figure 4 (a), the number of infected
individuals decreases sharply as transmission rate of awareness increases. Stronger
awareness lessens the number of infected individuals although the amplitude of
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oscillations is amplified and the infected individuals still experience several sustained
periodic oscillations. Figure 4 (b) reveals that infection rate βu greatly affects the
infected numbers. The periodic oscillations occur for βu = 0.47

5446104 . As βu decreases

to βu = 0.45
5446104 , the endemic equilibrium is locally asymptotically stable. In other

words, higher infection rate βu is detrimental to the control of infectious disease
spreading as the higher the infection rate becomes, the more frequent and powerful
oscillations occur, which implies the harder to eradicate the infectious disease. From
Figures 4 (c) and 4 (d), it can be seen that reducing infectivity is favorable to
suppress further deterioration of the situation. But only reducing the susceptibility
without limiting the infectivity is still not an effective way to control the disease
propagation.

0 1000 2000 3000
1600

1800

2000

2200

2400

2600

2800

t

In
fe

ct
ed

 in
di

vi
du

al
s 

I

 

 
β

m
  = 0.5/5446104

β
m

  = 0.6/5446104

0 1000 2000 3000
0

500

1000

1500

2000

2500

3000

3500

t

In
fe

ct
ed

 in
di

vi
du

al
s 

I

 

 
β

u
  = 0.47/5446104

β
u
  = 0.45/5446104

(a) (b)

0 1000 2000 3000
0

500

1000

1500

2000

2500

t

In
fe

ct
ed

 in
di

vi
du

al
s 

I

 

 

δ
i
  = 0.5

δ
i
  = 0

0 1000 2000 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t

In
fe

ct
ed

 in
di

vi
du

al
s 

I

 

 
δ

s
 = 0.5

δ
s
  = 0

(c) (d)

Figure 4. Variation of the number of infected individuals versus
time under different impact factors.

Figure 5 (a) reveals that the awareness of susceptible individuals highly affects the
progression of infectious disease. Reminding susceptible individuals to stay alert to
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Figure 5. Variation of the number of infected individuals versus
time under different awareness loss rates.

the potential infection danger and avoid going to public places which can reduce the
contact rate with infected individuals can prevent themselves from further infection.
Figure 5 (b) shows that only raising the awareness of infected individuals without
alerting susceptible individuals is not an effective way to alleviate the infection
although all infected individuals are familiar with the potential infection possibility.
This may suggest related authorities that keeping releasing true information to alert
the susceptible individuals is necessary.

Last point that should be mentioned is that the rates of infected and hospital-
ized becoming aware ρi, ρh and the decreasing rate of awareness ρ significantly
influence the number of awareness programs and people’s behavior, which in turn
affect the disease progression. Applying official media with higher credibility and
audience rating is beneficial to alleviate further infection. Not the more the number
of awareness programs, the better the disease can be controlled. Too many media
reports which go against the stability condition may cause a storm of serious panic
and irrational behaviors.

5. Conclusions and remarks. In this paper, a media impact model has been
proposed to study the interaction of media impact and disease dynamics. Key
implications are listed as follows.

1) We have formulated a media impact model incorporating a susceptible-infected-
hospitalized-recovered compartment model with awareness programs driven by me-
dia reports. Both susceptible and infected classes are subdivided into 2 types, in-
cluding aware and unaware subclasses, according to whether they keep alertness to
infectious disease. We have assumed that the growth rate of awareness programs is
proportional to the number of both infected and hospitalized individuals. Moreover,
disease spread leads to the increase of awareness, which in turn lower susceptibility
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and infectivity as susceptibles reduce contacts with infected ones and infected ones
take positive cure measures to fight off the disease.

2) To analyze the periodic oscillation behavior of the model, we carry out sta-
bility analysis of disease free equilibrium and endemic equilibrium by using Routh-
Hurriwitz criteria. Moreover, the condition determining the occurrence of sustained
periodic oscillations is investigated to show how media reports impact the disease
dynamics.

3) We carry out a case study of SARS outbreaks in GTA to illustrate the in-
teraction of media reports and disease dynamics. Results show that the system is
highly complex as lots of factors affect the SARS progression, such as the number of
awareness programs,transmission rate of awareness, infection rate of unaware indi-
viduals, reduced susceptibility and infectivity, awareness loss rate, rates of infected
and hospitalized individuals becoming aware, and decreasing rate of awareness loss
due to ineffectiveness. We should deal with the epidemic carefully, otherwise, it can
result in potential disastrous consequences.

Our results could offer some useful suggestions for authorities and share impli-
cations for crisis management. Authorities at all levels need to justify whether
media reports positively influence the situation or negatively throw the public into
a panic. Current work is in no way to illustrate the interaction of media impact
and disease dynamics exhaustively and can be expanded from many aspects, for
example, incorporating complex network with this model, investigating a nonlin-
ear contact incidence rate which better describes the actual disease dynamics and
considering a partially effective media report which is much more complicated but
worth trying.
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