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Combining biological and chemical control has been an efficient strategy to combat 
the evolution of pesticide resistance. Continuous releases of natural enemies could 
reduce the impact of a pesticide on them and the number to be released should 
be adapted to the development of pesticide resistance. To provide some insights 
towards this adaptation strategy, we developed a novel pest–natural enemy model 
considering both resistance development and inoculative releases of natural enemies. 
Three releasing functions which ensure the extinction of the pest population 
are proposed and their corresponding threshold conditions obtained. Aiming to 
eradicate the pest population, an analytic formula for the number of natural enemies 
to be released was obtained for each of the three different releasing functions, with 
emphasis on their biological implications. The results can assist in the design of 
appropriate control strategies and decision-making in pest management.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Chemical pest control is defined as the reduction of a pest population by using chemical pesticides. 
Because the latter are relatively cheap and are readily available, chemical pest control is the most common 
method used. However, with regular and repeated spraying, a pest may develop resistance to the pesticide 
quickly. As a consequence, there has been decreased susceptibility of pest populations to pesticides that 
were previously effective [23]. Studies indicate that more than 500 species of pests have now developed 
resistance to some pesticides [10,15,34]. Pesticide resistance also leads to increases in farmers’ losses, even 
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though more pesticides are used. For example, in the USA, farmers lost 7% of their crops to pests in the 
1940s, but since the 1980s the percentage lost has increased to 13%; nevertheless, even more pesticides are 
still being used [35].

Therefore, in order to reduce or delay the development of pesticide resistance, a number of strategies have 
been proposed including pesticide switching or rotation, avoiding unnecessary pesticide applications, leaving 
untreated refuges where susceptible pests can survive, and using non-chemical control techniques [7]. The 
concept of integrated pest management (IPM) [9,21,38,36,37,24], an integrated combination of more than 
one method (such as biological control, chemical control, cultural tactics, breeding for host-plant resistance 
etc.), has been developed aiming to maintaining the density of pest populations below their Economic Injury 
Levels (EIL).

Pesticide switching or rotation is the main and usual method to fight pesticide resistance. In our recent 
study [16], we developed a pest population growth model incorporating the evolution of pesticide resistance, 
and introduced three different pesticide switching methods: threshold condition-guided, density-guided and 
EIL-guided. For each method, we discussed the optimal switching time. Moreover, we compared these three 
methods, and our results indicated that either the density-guided method or the EIL-guided method was 
the optimal pesticide switching method, depending on the frequency (or period) of pesticide applications.

Although pesticide switching is an efficient pest control method, it may initiate multi-pesticide resistance 
against which IPM is proposed. Biological control is often a key component of such an IPM strategy [11,22,
27], and is the key method for responding to pesticide resistance [25]. Biological control aims to reduce pest 
populations by releasing natural enemies at some critical time when insufficient reproduction of released 
natural enemies is likely to occur and pest control will be achieved exclusively by the released individuals 
themselves [13,20]. This approach is known as augmentation of natural enemies. There are two general 
means to augmentation: inundative releases and inoculative releases [25].

Inundative release, the releasing of large numbers of natural enemies for immediate reduction of a dam-
aging or near-damaging pest population, has been used frequently. Examples include the mass release of 
the egg parasite Trichogramma for controlling the eggs of various types of moths [25]. This approach is 
usually implemented impulsively, and it has been widely studied through mathematical models, especially 
with impulsive differential equations [20,29,30,28,31–33,17]. For example, Liang et al. [17] developed two im-
pulsive pest–natural enemy interaction models with the development of pesticide resistance in which pulsed 
actions such as pesticide applications and natural enemy releases were considered. A goal of our present 
paper is to estimate how the number of natural enemies to be released should be changed with increasing 
pesticide resistance, to ensure pest eradication. Our analytic study shows how to change this according to 
the cumulative number of dead natural enemies before the next scheduled release time.

Inoculative releasing refers to the continuous releasing of small numbers of natural enemies at prescribed 
intervals throughout the pest period, starting when the pest population is very low. Examples include the 
release of predatory mites to protect greenhouse crops, and the inoculation of soils with the milky spore
pathogen (Bacillus popillae) to control Japanese beetle grubs [18,25]. This releasing strategy is also known 
as consecutive release.

So, if the pests develop resistance to the pesticide and biological control is implemented by inoculative 
release, how many natural enemies need to be released as the resistance to the pesticide evolves? To answer 
such questions, we develop a hybrid impulsive pest–natural enemy model with pesticide sprays in pulses, 
evolution of pesticide resistance and inoculative releases of natural enemies. Three different releasing meth-
ods are proposed and considered: (a) fixed numbers of natural enemies released over the period of pesticide 
application; (b) the numbers of natural enemies released is linearly dependent on time; (c) the numbers 
of natural enemies released is exponentially dependent on time. For each releasing method, we investigate 
the threshold condition for pest eradication, and the optimal number of natural enemies to be released at 
a particular time or at prescribed intervals.
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2. Model and the threshold condition

2.1. IPM model with resistance to pesticides

In this section, we first introduce a simple pest population growth model concerning the evolution of 
pest resistance with impulsive pesticide spraying. We then propose an IPM model with evolution of pest 
resistance. Our main purpose is to investigate how to implement the IPM strategy (such as how to apply 
pesticide and how to release the natural enemies) with the development of the pest resistance such that the 
pest population dies out eventually.

In this study, we assume that the pest population follows the logistic growth equation, i.e.,

dP

dt
= rP

(
1 − P

K

)
, (1)

where P denotes the size of the pest population, r represents the intrinsic growth rate and K represents 
the carrying capacity.

If pesticide resistance is taken into account, then the total pest population P should be divided into 
susceptible and resistant pests, denoted by Ps and Pr, respectively. In this case, the proportion of susceptible 
pests in the population is ω = Ps/P , and then the proportion of resistant pests is 1 −ω. Therefore, the pest 
resistance to the pesticide can be described by 1 − ω or by ω. Because the pest resistance is increasing as 
the number of pesticide applications increase, so ω is dynamically changed. To describe the dynamics of ω, 
Liang et al. proposed the following dynamic equation [16,17]

dω(t)
dt

= d1ω
(
ωqi − 1

)
, τi−1 ≤ t ≤ τi, i ∈ N , (2)

where qi depends on the dosage and the frequency (or period) of pesticide applications. Thus, qi is a function 
of the number of pesticide applications, the dosage Xi of the i-th pesticide application and the time interval 
Δτi = τi − τi−1 between the i-th and (i − 1)-th pesticide applications [19], and τi−1 is the spraying time 
for i ∈ N with τ0 = 0, N = {1, 2, 3, · · ·}, and d1 represents the mortality rate of susceptible pests due to 
the application of pesticide. By a simple calculation, the analytical solution of ω(t) can be determined as 
follows:

ω(t) =
(
1 + eqid1(t−τi−1)

((
ω(τi−1)

)−qi − 1
))− 1

qi , τi−1 ≤ t ≤ τi. (3)

For convenience, in this work we assume that the pesticides are applied periodically, i.e. we have τi −
τi−1 = T , i ∈ N . If so, we can define qi = i/T (i.e. the dosage of pesticide application is normalized as one), 
and then we have

ω(nT ) =
(
1 + end1

(
ω
(
(n− 1)T

)−n/T − 1
))−T/n

, n ∈ N . (4)

Although chemical control is one of the main control tactics of pest control, it may result in high rates 
of failure due to fast development of pest resistance to the pesticide. As mentioned in the introduction, 
combining chemical sprays with biological control is one of the main methods of weakening or delaying the 
resistance of pest to the pesticide.

Therefore, in order to depict the effects of pesticide resistance development on pest control in more 
detail, IPM strategies should be considered. That is, the growth of the natural enemy population needs to 
be included in the model. So, we have the following model:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)
dt

= rP (t)
(

1 − P (t)
K

)
− αP (t)N(t), t �= nT,

dN(t)
dt

= βαP (t)N(t) − dN(t) + δ(t),

P
(
nT+) =

(
1 − ω(nT )d1

)
P (nT ), t = nT,

dω(t)
dt

= d1ω(t)
(
ω(t)qn − 1

)
(5)

with initial value P (0+) = P0, N(0+) = N0, ω(0) = ω0. Where qn = n/T , and N(t) is the population 
size of the natural enemy at time t, α denotes the attack rate of the predator, β represents conversion 
efficiency, d is the mortality rate of the natural enemy and δ(t) is the number of natural enemies released 
at time t.

As pest resistance to the pesticide develops, the effect of the pesticide wears off naturally. Thus, in order 
to control the density of the pest population below some critical level, farmers should increase the number 
of natural enemies to be released. In general, with the consideration of pesticide resistance development, it 
is normally difficult to depict the numbers of natural enemies to be released over time. In order to address 
this difficulty, we propose the following possible functions (termed releasing functions):

(i) Step function

δ(t) = δn, t ∈
[
nT, (n + 1)T

)
, (6)

where δn ≥ 0. In this case, we assume that a constant number of natural enemies is released during 
each pesticide application period T .

(ii) Linear function

δ(t) = θt, (7)

where θ is a non-negative constant. In this case, we assume that the number of natural enemies to 
be released depends on the time linearly. The difficulty in this case is how to determine the rela-
tions between the constant θ and time t, i.e. what is the limitation of function δ(t) as t approaches 
infinity?

(iii) Exponential function

δ(t) = exp(at), (8)

where a is positive constant. In this case, we assume that the number of natural enemies to 
be released depends on time exponentially, and the same question as in case (ii) should be ad-
dressed.

Therefore, our main purposes are to determine the effects of the above three releasing functions on control 
of the pest, and then to discuss their biological implications.

2.2. Threshold condition

Here we consider model (5) and examine how to design the releasing functions δ(t) as pesticide resistance 
develops. Of particular interest is to determine the releasing functions δ(t) for a fixed period T so that the 
pest population dies out eventually without switching pesticides.
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The basic properties of the following subsystem
⎧⎨
⎩

dN(t)
dt

= −dN(t) + δ(t),

N
(
0+) = N0

(9)

play key roles for the investigation of model (5).
The analytical solution of this subsystem at any impulsive interval ((n − 1)T, nT ] gives

N∗(t) = e−dt

(
N0 +

t∫
0

δ(s)edsds
)
. (10)

Note that any two solutions of subsystem (9) have the same limit as t → ∞.
Therefore, the expression of the pest-free solution of system (5) is given by

(
0, N∗(t)

)
=

(
0, e−dt

(
N0 +

t∫
0

δ(s)edsds
))

. (11)

For 0 ≤ l < T and n ∈ N , we denote

G(n, l) =
(
−α

l+nT∫
l+(n−1)T

N∗(s)ds
)

and

R0(n, T ) =
(
1 − d1ω(nT )

)
erT .

Then we have the following threshold theorem for the global attractivity of the pest-free solution.

Theorem 2.1. Let

RN
0 (n, T, l) = R0(n, T ) exp

(
G(n, l)

)
(12)

for 0 ≤ l < T , and (P (t), N(t)) be any solution of system (5). Then the pest-free solution (11) is globally 
attractive if RN

0 (n, T, l) ≤ 1.

The proof of this theorem is provided in Appendix A. Based on the main results shown in Theorem 2.1, 
we can now provide the formula of threshold condition RN

0 (n, T, l) for three different releasing functions.

Case 2.2.1. Constant step releasing function, i.e. δ(t) = δn, t ∈ [nT, (n + 1)T ).
Substituting δ(t) = δn, t ∈ [nT, (n + 1)T ) into (9), we have

N∗(t) = δn
d

+
(
N(nT ) − δn

d

)
e−d(t−nT ), t ∈

[
nT, (n + 1)T

)
, (13)

where

N(nT ) = 1 − e−dT

d

n−1∑
δie

−(n−1−i)dT + N0e
−dnT .
i=0
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Thus,

nT+l∫
(n−1)T+l

N∗(t)dt =
nT∫

(n−1)T+l

N∗(t)dt +
nT+l∫
nT

N∗(t)dt

=
nT∫

(n−1)T+l

[
δn−1

d
+

(
N
(
(n− 1)T

)
− δn−1

d

)
e−d(t−(n−1)T )

]
dt

+
nT+l∫
nT

[
δn
d

+
(
N(nT ) − δn

d

)
e−d(t−nT )

]
dt

=
[(

l − 1 − e−dl

d

)
δn − δn−1

d
+ e−dl(1 − e−dT )

d

(
N
(
(n− 1)T

)
− δn−1

d

)
+ T

d
δn−1

]
,

therefore,

G(n, l) = −α

nT+l∫
(n−1)T+l

N∗(t)dt

= −α

d

[(
l − 1 − e−dl

d

)
(δn − δn−1) + e−dl

(
1 − e−dT

)(
N
(
(n− 1)T

)
− δn−1

d

)
+ Tδn−1

]
.= Gδn(n, l), (14)

and the threshold value is given by RN
0 (n, T, l) = R0(n, T ) exp(Gδn(n, l)) .= RN

0δn(n, T, l).
In particular, if δ(t) = δ for all t ∈ [0, +∞), then

N∗(t) = δ

d
+
(
N0 −

δ

d

)
e−dt .= N∗

δ (t),

thus

G(n, l) = −α

nT+l∫
(n−1)T+l

N∗(t)dt

= −α

d

[
δT +

(
N0 −

δ

d

)
e−d(l+(n−1)T )(1 − e−dT

)]
.= Gδ(n, l), (15)

and the threshold value is RN
0 (n, T, l) = R0(n, T ) exp(Gδ(n, l)) 

.= RN
0δ(n, T, l).

Case 2.2.2. Linear releasing function i.e. δ(t) = θt for all t ∈ [0, +∞).
In this case,

N∗(t) = θ

d

(
t− 1

d

)
+

(
N0 + θ

d2

)
e−dt .= N∗

θ (t),

thus,
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G(n, l) = −α

nT+l∫
(n−1)T+l

N∗(t)dt

= −α

d

[
θT

(
(2n− 1)T

2 + l − 1
d

)
−
(
N0 + θ

d2

)
e−d(l+(n−1)T )(e−dT − 1

)]
.= Gθ(n, l), (16)

and RN
0 (n, T, l) = R0(n, T ) exp(Gθ(n, l)) 

.= RN
0θ(n, T, l).

Case 2.2.3. Exponential releasing function i.e. δ(t) = exp(−at) for all t ∈ [0, +∞).
In this case, we have

N∗(t) =
(
N0 −

1
d + a

)
e−dt + eat

d + a

.= N∗
a (t),

therefore,

G(n, l) = −α

nT+l∫
(n−1)T+l

N∗(t)dt

= −α

[
1
d

(
N0 + 1

d + a

)
e−d(l+(n−1)T )(1 − e−dT

)
+ 1

a(d + a)e
a(l+(n−1)T )(eaT − 1

)]
.= Ga(n, l), (17)

and RN
0 (n, T, l) = R0(n, T ) exp(Ga(n, l)) 

.= RN
0a(n, T, l).

3. Releasing functions based on threshold condition

A main purpose of pest control is to completely eradicate the pest or maintain its density below the EIL. 
From the mathematical point of view, this means that we should keep the threshold value RN

0 (n, T, l) below 
unity (Theorem 2.1) or a given level which is less than 1. From the above discussion, RN

0 (n, T, l) consists 
of two parts: R0(n, T ) (chemical control) and exp(G(n, l)) (biological control). From (4), we conclude that 
ω(nT ) is a decreasing function with respect to the number of increasing pesticide sprays, and this leads 
to the observation that the threshold value R0(n, T ) is an increasing function with respect to the number 
of pesticide sprays. This also indicates that R0(n, T ) could exceed 1 after several pesticide applications. 
Therefore, if only the chemical control is implemented, then pest resurgence could occur due to repeated 
use of the same type of pesticides and evolution of resistance to them. So in order to control the density of 
the pest population below the given level, farmers should increase the number of natural enemies released 
as the pest resistance to the pesticide evolves. But the question arises of how to determine the number of 
natural enemies to be released at any given time with the development of the pest’s resistance?

According to the above discussion, in this subsection we focus on determining the number of natural 
enemies to be released such that the threshold value RN

0 (n, T, l) is less than a given level. That is how to 
determine δn, δ or θ in RN

0δn(n, T, l), RN
0δ(n, T, l) or RN

0θ(n, T, l) such that those threshold values are always 
less than one. Without loss of generality, we assume those threshold values are less than a given constant RC

with RC ≤ 1. If so, the pest population can be successfully controlled and will die out eventually.
Let

RN
0max

(n, T, l) = max
{
RN

0 (n, T, l)
}
, Gmax(n, l) = max

{
G(n, l)

}
.

0≤l<T 0≤l<T
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Then

RN
0max

(n, T, l) ≤ 1 implies RN
0 (n, T, l) ≤ 1

for all l ∈ [0, T ). Therefore, in order to make sure RN
0 (n, T, l) ≤ 1 for all l ∈ [0, T ), we only need 

RN
0max

(n, T, l) = RC ≤ 1.
In fact, we have

∂RN
0 (n, T, l)
∂l

= RN
0 (n, T, l)∂G(n, l)

∂l
,

that is RN
0max

(n, T, l) = R0(n, T ) exp(Gmax(n, l)).

3.1. Determining the constant function δ

Due to the complexity of RN
0δn(n, T, l), we let δn be a constant δ and consider the special case, i.e. we 

focus on RN
0δ(n, T, l) first.

It follows from the function Gδ(n, l) that

∂Gδ(n, l)
∂l

= α

(
N0 −

δ

d

)
e−d(l+(n−1)T )(1 − e−dT

)
,

which indicates that if N0 > δ/d then Gδ(n, l) is an increasing function with respect to l. Thus, we have

RN
0δmax

(n, T, l) = R0(n, T ) exp
(
Gδ(n, T )

)
= R0(n, T ) exp

(
−α

d

(
δT +

(
N0 −

δ

d

)
e−dnT

(
1 − e−dT

)))

= RN
0δ(n, T, T ).

Similarly, if N0 ≤ δ/d then Gδ(n, l) is a decreasing function with respect to l. Therefore, we have

RN
0δmax

(n, T, l) = R0(n, T ) exp
(
Gδ(n, 0)

)
= R0(n, T ) exp

(
−α

d

(
δT +

(
N0 −

δ

d

)
e−d(n−1)T (1 − e−dT

)))

= RN
0δ(n, T, 0).

Based on the above, we consider the following two cases:

Case 3.1.1. N0 > δ/d.
In this case, solving the following equation

RN
0δmax

(n, T, l) = R0(n, T ) exp
(
Gδ(n, T )

)
= RC (18)

with respect to δ, yields

δ =
− d

α ln( RC

R0(n,T ) ) −N0e
−dnT (1 − e−dT )

T − 1
de

−dnT (1 − e−dT )
.= δ1(n). (19)
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It follows from Gδ(n, T ) ≤ 0 and (18) that if R0(n, T ) ≤ RC for some n ∈ N , then RN
0δ(n, T, l) ≤ RC , 

which means that the chemical control alone can suppress the pest outbreak at the initial stage. However, 
once the pest resistance develops such that R0(n, T ) > RC , then the releases of natural enemies are necessary 
to maintain RN

0δ(n, T, T ) as a constant RC . All these results confirm that δ strictly depends on the number 
of pesticide applications n. Therefore, the number of natural enemies to be released (i.e., δ for all n ∈ N ) 
can be defined as follows

δ =
{
δc, if R0(n, T ) ≤ RC ,

δ1(n), if R0(n, T ) > RC ,
(20)

where δc can be zero or a relatively small positive constant.
Due to the evolution of pest resistance we can easily obtain the following limitation

R0(n, T ) =
(
1 − d1ω(nT )

)
erT → erT as n → ∞.

Therefore,

δ1(n) → − d

αT
lnRC + dr

α
as n → ∞.

Case 3.1.2. N0 ≤ δ/d.
In this case, we let

RN
0δmax

(n, T, l) = R0(n, T ) exp
(
Gδ(n, 0)

)
= RC . (21)

By using the same methods as those in Case 3.1.1 we can see that if R0(n, T ) ≤ RC for some n ∈ N then 
we can let δ = δC ; if R0(n, T ) > RC then solving Eq. (21) with respect to δ, yields

δ =
− d

α ln( RC

R0(n,T ) ) −N0e
−d(n−1)T (1 − e−dT )

T − 1
de

−d(n−1)T (1 − e−dT )
.= δ2(n). (22)

Therefore, the number of natural enemies to be released (i.e., δ for all n ∈ N ) can be defined as follows:

δ =
{
δc, if R0(n, T ) ≤ RC ,

δ2(n), if R0(n, T ) > RC

(23)

with

δ2(n) → − d

αT
lnRC + dr

α
as n → ∞.

In the following, we adopt a numerical approach to analyze the effects of the inoculation releasing con-
stant δ defined by formula (20) or (23) on the success of the pest control with the development of pesticide 
resistance. Fig. 1(a) plots the RN

0δ with respect to n under constant δ = 0.1, we can see that the threshold 
value RN

0δ is increasing with respect to n if we fixed all parameters. Note that RN
0δ will exceed one after 

applying three rounds of IPM strategies. In this strategy, the density of the pest population will decrease 
firstly due to the high efficacy of the pesticide at the initial stage and then the pest population will increase 
and even outbreak again after applying IPM strategies several times (see Fig. 1(b)), which means that 
a constant releasing strategy cannot be effective for long term pest management. Therefore, the number 
of natural enemies to be released should be changed with the evolution of pesticide resistance. Fig. 1(c) 
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Fig. 1. Calculation of RN
0δ and numerical simulations of model (5) with constant releasing of natural enemies. The baseline parameter 

values are as follows: d1 = 0.8; r = 1.1; d = 0.4; α = 0.3; ω0 = 0.99, β = 0.3, T = 0.6, RC = 0.95, δc = 0. (a) The plot of RN
0δ

with respect to n under constant δ = 0.1 releases; (b) The time series of the pest population associated with (a); (c) The plot 
of RN

0δ(n, T, l) with respect to n using the formula (20) to determine the δ; (d) The time series of the pest population associated 
with (c).

plots RN
0δ and δ with respect to n under δ(t) = δ defined by formula (20). In this strategy, the pest population 

will die out after several rounds of pest control (see Fig. 1(d)).

3.2. Determining the step function δn

Now let us turn to the general case, i.e. the threshold value RN
0δn(n, T, l).

Firstly, taking the derivative of the function Gδn(n, l) with respect to l yields:

∂Gδn(n, l)
∂l

= −α

[
δn − δn−1

d
− e−dl

((
N
(
(n− 1)T

)
− δn−1

d

)(
1 − e−dT

)
+ δn − δn−1

d

)]
, (24)

where

N
(
(n− 1)T

)
= 1 − e−dT

d

n−2∑
i=0

δie
−(n−2−i)dT + N0e

−d(n−1)T .

In practice, in order to maintain the density of the pest population below the threshold value, the number 
of natural enemies to be released (i.e. δn) should be an increasing function with respect to n as the pest 
resistance develops and the pesticide efficiency decreases. This indicates that we must have δn ≥ δn−1 for 
some n ∈ N in the initial stage. However, the number of natural enemies to be released could be reduced 
once the cumulative number of natural enemies reaches a certain level and the natural balance between 
predator and prey is restored. Based on the above and without loss of generality, we assume that there 
exists a positive constant h such that δn ≥ δn−1 for n ≤ h and δn < δn−1 for n > h.
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According to the expression of (24), for the first few pesticide applications (i.e. δn ≥ δn−1 for n ≤ h), 
if N((n − 1)T ) ≤ δn−1/d, then we have ∂Gδn(n, l)/∂l ≤ 0. This indicates that Gδn(n, l) is a decreasing 
function with respect to l, thus

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gδnmax

(n, l)
)

= R0(n, T ) exp
(
Gδn(n, 0)

)
.

However, if N((n − 1)T ) > δn−1/d and δn ≥ δn−1 in the initial stage, then there is an l∗ such that 
∂Gδn(n, l∗)/∂l = 0. This shows that Gδn(n, l) reaches its maximal value at l = l∗, i.e., we have

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gδnmax

(n, l)
)

= R0(n, T ) exp
(
Gδn

(
n, l∗

))
,

where

l∗ = 1
d

ln
(

1 + (dN((n− 1)T ) − δn−1)(1 − e−dT )
δn − δn−1

)
. (25)

After some pesticide applications, the number of natural enemies to be released is reduced such that δn <

δn−1 for n > h, and if N((n − 1)T ) ≤ δn−1/d, then

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gδnmax

(n, l)
)

= R0(n, T ) exp
(
Gδn

(
n, l∗

))
.

If δn < δn−1 and N((n − 1)T ) > δn−1/d, then we have ∂Gδn(n, l)/∂l > 0. This shows that Gδn(n, l) is an 
increasing function with respect to l. Thus

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gδnmax

(n, l)
)

= R0(n, T ) exp
(
Gδn(n, T )

)
.

By employing the same ideas as for the threshold value RN
0δ(n, T, l) and the same methods as above, 

we assume, without loss of generality, that there exists an integer n′ ∈ N ∗ (N ∗ = {0, 1, 2, · · ·}) such that 
(i) R0(n, T ) ≤ RC for n ≤ n′ due to the high effectiveness of pesticide applications in the initial stage and 
(ii) R0(n, T ) > RC for n > n′. Thus, we let δn = δc for n ≤ n′ and let RN

0δnmax
(n, T, l) = RC for n > n′. In 

the light of the above, we consider the following two cases:

Case 3.2.1. δn ≥ δn−1 (i.e. n′ < n ≤ h).
In this case, if N((n − 1)T ) ≤ δn−1/d, then Gδn(n, 0) = ln(Rc/R0(n, T )), that is,

−α

d

(
δn−1

(
T − 1 − e−dT

d

)
+ N

(
(n− 1)T

)(
1 − e−dT

))
= ln

(
Rc

R0(n, T )

)
.

Therefore,

δn =
− d

α ln( Rc

R0(n+1,T ) ) − (1−e−dT

d

∑n−1
i=0 δie

−(n−1−i)dT + N0e
−dnT )(1 − e−dT )

T − 1−e−dT

d

.= δ(11)
n . (26)

If N((n − 1)T ) > δn−1/d, then RN
0δnmax

(n, T, l) = RN
0δn(n, T, l∗). Letting RN

0δnmax
(n, T, l) = RC , it follows 

from (12) that we have Gδn(n, l∗) = ln(Rc/R0(n, T )), that is,

−α

d

(
l∗(δn − δn−1) + Tδn−1

)
= ln

(
Rc

R0(n, T )

)
, (27)

where l∗ is given by (25).
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According to (27), we can determine δn for this case, we denote it as δ(12)
n .

Case 3.2.2. δn < δn−1 (i.e. n > h).
In this case, if N((n − 1)T ) ≤ δn−1/d, then RN

0δnmax
(n, T, l) = RN

0δn(n, T, l∗) = RC . It follows from (27)
that we can determine δn as δ(12)

n .
If N((n − 1)T ) > δn−1/d, then ∂Gδn(n, l)/∂l > 0, that is, Gδn(n, l) is an increasing function with respect 

to l. So

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gδnmax

(n, l)
)

= R0(n, T ) exp
(
Gδn(n, T )

)
.

Therefore, RN
0δnmax

(n, T, l) = RN
0δn(n, T, T ) = RC indicate that Gδn(n, T ) = ln(Rc/R0(n, T )). Solving this 

equation with respect to δn, we have

δn =
− d

α ln( Rc

R0(n,T ) ) − (N((n− 1)T ) − δn−1
d )(1 − e−dT )e−dT − Tδn−1

T − 1−e−dT

d

+ δn−1

=
− d

α ln( Rc

R0(n,T ) ) − (1−e−dT

d

∑n−2
i=0 δie

−(n−2−i)dT + N0e
−d(n−1)T − δn−1

d )(1 − e−dT )e−dT

T − 1−e−dT

d

− Tδn−1

T − 1−e−dT

d

+ δn−1

.= δ(21)
n . (28)

In summary, we can see that δn for all n ∈ N ∗ can be defined as follows:

δn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δc, if n ≤ n′,

δ
(11)
n , if n′ < n ≤ h and N((n− 1)T ) ≤ δn−1

d ,

δ
(12)
n , if n′ < n ≤ h and N((n− 1)T ) > δn−1

d ,

δ
(12)
n , if n > h and N((n− 1)T ) ≤ δn−1

d ,

δ
(21)
n , if n > h and N((n− 1)T ) > δn−1

d .

(29)

Since 0 ≤ δn ≤ δn−1 for n > h, we have δn − δn−1 → 0 as n → ∞. It follows from 0 ≤ l∗ < T that

0 ≥ l∗(δn − δn−1) > T (δn − δn−1) → 0 as n → ∞.

Thus, according to (27), we get

δ(12)
n → − d

αT
lnRC + dr

α
as n → ∞.

Further, according to (13), we can get

N
(
(n− 1)T

)
− δn−1 = δn−2 − δn−1

d
+

(
N
(
(n− 2)T

)
− δn−2

)
e−dT ,

which indicates that

N
(
(n− 1)T

)
− δn−1 → 0 as n → ∞.
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Therefore, according to (28), we have

δ(21)
n → − d

αT
lnRC + dr

α
as n → ∞.

3.3. Determining the linear function θt

In this subsection, we will investigate how to determine θ (that is how to determine the number of natural 
enemies θt to be released at time t) based on the threshold value RN

0θ(n, T, l).
By using the same methods as those shown in Subsection 3.2, differentiating Gθ(n, l) with respect to l

we can get

∂Gθ(n, l)
∂l

= α

((
N0 + θ

d2

)
e−d(l+(n−1)T )(1 − e−dT

)
− θ

d
T

)

.= α

(
Dn−1e

−dl − θ

d
T

)
,

where Dn−1 = (N0 + θ/d2)e−d(n−1)T (1 − e−dT ). Letting ∂G(n, l)/∂l = 0 and solving this equation with 
respect to l, we get one root, denoted by l∗∗, and

l∗∗ = 1
d

ln
d(N0 + θ

d2 )(1 − e−dT )
θT

− (n− 1)T.

If Dn−1 > θT/d, that is,

n < 1 + 1
dT

ln
(
d(N0 + θ

d2 )(1 − e−dT )
θT

)
.= nθ,

then l∗∗ > 0, and

RN
0max

(n, T, l) = RN
0
(
n, T, l∗∗

)
= R0(n, T ) exp

{
G
(
n, l∗∗

)}
= R0(n, T ) exp

{
−α

d
θT

[
T

2 + 1
d

ln
(
d(N0 + θ

d2 )(1 − e−dT )
θT

)]}
.

If Dn−1 ≤ θT/d, then RN
0 (n, T, l) is a decreasing function with respect to l ∈ [0, T ). Thus

RN
0max

(n, T, l) = RN
0 (n, T, 0)

= R0(n, T ) exp
{
−α

d

[
θT

(
(2n− 1)T

2 − 1
d

)
−
(
N0 + θ

d2

)
e−d(n−1)T (e−dT − 1

)]}
.

By employing the same ideas as for the threshold value RN
0δ(n, T, l) and the same methods as above, we 

assume, without loss of generality, that there exists an integer n′ ∈ N such that (i) R0(n, T ) ≤ RC for 
n ≤ n′ due to the high effectiveness of pesticide applications in the initial stage and (ii) R0(n, T ) > RC for 
n > n′. Thus, we let δn = δc for n ≤ n′ and let RN

0θmax
(n, T, l) = RC for n > n′. In the light of the above, 

we consider the following two cases:

Case 3.3.1. Dn−1 > θT/d (i.e. n < nθ), i.e. the new number to be released is less than the cumulative death 
number.
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In this case RN
0θmax

(n, T, l) = RN
0θ(n, T, l∗∗) = RC . It follows from (12) that we have Gθ(n, l∗∗) =

ln(Rc/R0(n, T )), i.e.,

−α

d
θT

[
T

2 + 1
d

ln
(
d(N0 + θ

d2 )(1 − e−dT )
θT

)]
= ln

(
RC

R0(n, T )

)
. (30)

From (30), we have

ln
(
d(N0 + θ

d2 )(1 − e−dT )
θT

)
= −dT

2 − d2

αθT
ln
(

RC

R0(n, T )

)
,

i.e.,

d(N0 + θ
d2 )(1 − e−dT )
θT

= e−
dT
2 exp

[
− d2

αθT
ln
(

RC

R0(n, T )

)]
.= e−

dT
2 e−

d2N0A
θ .

Thus,

d(N0 + θ
d2 )

θT
e

d2N0A
θ = e−

dT
2

1 − e−dT
.

Further we have

(
d2N0

θ
+ 1

)
e

d2N0A
θ = dTe−

dT
2

1 − e−dT

and

(
Ad2N0

θ
+ A

)
e

d2N0A
θ +A = dTAeA− dT

2

1 − e−dT
. (31)

Solving Eq. (31) with respect to θ, yields two roots

θ1 = d2N0A

Lambert W(0, dTAe(A− dT
2 )

1−e−dT ) −A
(32)

and

θ2 = d2N0A

Lambert W(−1, dTAe(A− dT
2 )

1−e−dT ) −A
, (33)

where A = 1/(αTN0) ln(RC/R0), and the Lambert W(i, x) (i = 0, 1) function is defined in Appendix B. 
From this we can prove that only the root θ2 > 0 is well defined (the proof is presented in Appendix B).

Thus, θ in linear function for all n ∈ N can be defined as follows

θ =
{
δc, if n ≤ n′,

θ2, if n′ < n < nθ.
(34)

Thus, the number of natural enemies to be released θt at time t (t ∈ [(n − 1)T, nT )) for Case 3.3.1 can be 
determined correspondingly.
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Fig. 2. Calculation of RN
0θ(n, T, l) and numerical simulations of model (5) with δ(t) = θt. The baseline parameter values are as 

follows: d1 = 0.95; r = 2; d = 0.4; α = 0.4; ω0 = 0.99, β = 0.2, T = 0.5, RC = 0.95, δc = 0, N0 = 2. (a) The plot of θ with respect 
to n; (b) The plot of ln(θ) with respect to n; (c) The plot of δ(t) with respect to t; (d) The plot of RN

0δ(n, T, l) with respect to n
using the formula (35) to determine the θ; (e) The time series of the pest population associated with (a); (f) The time series of the 
pest population without releasing natural enemies.

Case 3.3.2. Dn−1 ≤ θT/d (i.e. n ≥ nθ), i.e. the new number of natural enemies to be released is not less 
than the cumulative death number.

In this case RN
0θmax

(n, T, l) = RN
0θ(n, T, 0) = RC . Solving this equation with respect to θ, we get

θ =
− d

α ln( RC

R0(n,T ) ) −N0e
−d(n−1)T (1 − e−dT )

T (2n−1
2 T − 1

d ) + 1−e−dT

d2 e−d(n−1)T
.= θ3.

Thus, if n ≥ nθ, then the minimum number of natural enemies released which maintains the threshold 
value RN

0 (n, T, l) = RC is determined by − 2dt
(2n−1)T 2α ln( RC

R0(n,T ) ) at time t.
Therefore, θ in linear function for all n ∈ N can be determined as follows:

θ =

⎧⎪⎨
⎪⎩

δc, if n ≤ n′,

θ2, if n′ < n < nθ,

θ3, n ≥ nθ.

(35)

Similarly, the number of natural enemies to be released θt at time t (t ∈ [(n − 1)T, nT )) for Case 3.3.2 can 
be determined correspondingly.

To show the effects of the number of natural enemies released which is defined by formula (35) on the pest 
control with the evolution of pesticide resistance, we carried out numerical investigations. Fig. 2(a, b, c, e) 
shows that at the initial stage, the chemical strategy alone can successfully control the pest population such 
that its density decreases very quickly, which indicates that it is not necessary to release natural enemies due 
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to the high efficacy of the pesticides. Thus, we have δ(t) ≈ 0 (i.e. θ ≈ 0, as shown in Fig. 2(a, b and c)). As 
the development of pesticide resistance, in order to maintain the threshold value of RN

0θ below a constant Rc

which is less than one (as shown in Fig. 2(d)), the releasing constant θ and consequently the releasing 
number of the natural enemies δ(t) at time t begins to increase very fast in response to pesticide resistance 
(Fig. 2(a and c)). Otherwise, resurgence must occur after the first application or after several applications 
of the pesticide, as shown in Fig. 2(f). In the following pesticide application periods, δ(t) is increasing slowly 
and eventually tends to a constant and the pest population will die out eventually, as shown in Fig. 2(c) 
and Fig. 2(e), respectively. At the same time, the threshold value RN

0θ closes to Rc, a given constant which 
is less than one.

All these results indicate that only chemical control can restrain pest outbreaks at the initial stage. 
However, with the development of pesticide resistance, the efficiency of the pesticide becomes weaker and 
weaker gradually, and a small number of natural enemies cannot restrain the growth of the pest populations 
after several applications of the pesticide. Therefore, in order to control the pest population below some 
critical level, farmers should increase the number of natural enemies rapidly in a short time until the 
number of natural enemies reaches some critical level (at this level, chemical and biological control together 
can prevent the pest populations from outbreaking again). After that, a small number of natural enemies 
released could control the pest population successfully, which depends on the accumulation of the number 
of natural enemies released.

In response to pesticide resistance, the releasing number of natural enemies should vary in accordance 
with the development of resistance, which is dynamic. Our results shown here can help the design of optimal 
control tactics aiming to eradicate the pest population or maintain its density below some critical level, for 
example EIL.

4. Globally attractive pest-free solution and threshold condition

In previous sections, we focused on any pest-free solution defined by (11) and investigated its stability 
and related biological implications.

However, it follows from the literature [3] that we can find a unique globally attractive solution of 
subsystem (9). In fact, if we let u(t) = 1/N(t), then the first equation of subsystem (9) can be re-written as

du(t)
dt

= du(t)
(

1 − u(t)
d/δ(t)

)
, (36)

which has a globally attractive solution

u(t) =
( ∞∫

0

e−dsδ(t− s)ds
)−1

.

Consequently, subsystem (9) has a globally attractive solution

N(t) =
∞∫
0

e−dsδ(t− s)ds. (37)

From which we can see that the pest-free solution of system (5) is given by (0, N(t)).
Therefore, if we only focus on the pest-free solution (0,N(t)), then the threshold conditions and analytical 

formula of δn discussed in Section 3 could be much more simple and precise, and we will address these aspects 
briefly in this section.
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Case 4.1.1. Constant step releasing function, i.e. δ(t) = δn, t ∈ [nT, (n + 1)T ).
Substituting δ(t) = δn, t ∈ [nT, (n +1)T ) into (9), we get the globally attractive solution of subsystem (9)

for t ∈ [nT, (n + 1)T )

Nδn(t) =
∞∫
0

e−dsδ(t− s)ds = δn
d

(
1 − e−d(t−nT )) + 1 − e−dT

d

n∑
i=0

δn−ie
−d(t−(n−i+1)T ).

It follows from Theorem 2.1 that the threshold value for the global attractivity of the pest free solution 
(0, Nδn(t)) of system (5) can be obtained, i.e. we have

RN
0δn(n, T, l) = R0(n, T ) exp

(
Gδn(n, l)

)
,

where

Gδn(n, l) = −α

d

[(
l − 1 − e−dl

d

)
(δn − δn−1) + e−dl

(
1 − e−dT

)(
Nδn

(
(n− 1)T

)
− δn−1

d

)
+ Tδn−1

]
.

Further, by using similar methods as those in Case 2.2.1, we can prove that if RN
0δn(n, T, l) ≤ 1, then the 

pest free solution (0, Nδn(t)) is globally attractive.
Specially, if we choose δ(t) = δ for all t ≥ 0, then

N(t) =
∞∫
0

e−dsδ(t− s)ds = δ

d
.

Therefore,

RN
0 = R0 exp

(
−α

l+nT∫
l+(n−1)T

N(t)dt
)

= R0(n, T )e− δαT
d

.= RN
0δ(n, T ).

Once again, according to Theorem 2.1 we can conclude that the equilibrium (0, δ/d) of system (5) is globally 
attractive if RN

0δ(n, T ) ≤ 1.
Letting RN

0δ(n, T ) = RC first and solving this equation with respect to δ, yields

δ = − d

αT
ln
(

RC

R0(n, T )

)
.

Thus, the new number of natural enemies to be released at time t can be defined as

δ =
{
δc, if R0(n, T ) ≤ RC ,

− d
αT ln( RC

R0(n,T ) ), if R0(n, T ) > RC .
(38)

For the case of RN
0δn(n, T ) = RC , δn can be determined by the similar method as those in Subsection 3.2

due to Gδn(n, l) and Gδn(n, l) having the same formula.

Case 4.1.2. Linear releasing function, i.e. δ(t) = θt for all t ≥ 0.
Substituting δ(t) = θt into (9), the globally attractive solution of subsystem (9) can be obtained as

N(t) =
∞∫
e−dsδ(t− s)ds = θ

d

(
t− 1

d

)
.= Nθ(t).
0
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From a biological point of view, we require Nθ(t) ≥ 0. Therefore, in the following we only focus on the case 
t > 1/d. Thus,

G(n, l) = −α

l+nT+ 1
d∫

l+(n−1)T+ 1
d

Nθ(t)dt

= −αθT

d

(
2n− 1

2 T + l

)
.= Gθ(n, l),

and RN
0 (n, T, l) = R0(n, T ) exp(Gθ(n, l)) 

.= RN
0θ(n, T, l). Moreover, the pest free solution (0, Nθ(t)) of sys-

tem (5) is globally attractive if RN
0θ(n, T, l) ≤ 1 for all l ∈ [0, T ).

It follows from the expression of Gθ(n, l) that this is a decreasing function with respect to l. Therefore,

Gθmax(n, l) = Gθ(n, 0) = −αθT 2(2n− 1)
2d ,

and

RN
0max

(n, T, l) = R0(n, T ) exp
(
Gθ(n, 0)

)
= R0(n, T ) exp

(
−αθT 2(2n− 1)

2d

)
.

Letting RN
0max

(n, T, l) = RC and solving this equation with respect to θ, yields

θ = − 2d
αT 2(2n− 1) ln

(
RC

R0(n, T )

)
.

Therefore, the new number of natural enemies to be released at time t can be determined as

δt =
{
δct, if n ≤ n′,

− 2dt
αT 2(2n−1) ln( RC

R0(n,T ) ), if n > n′,
(39)

where n′ satisfy R0(n′, T ) ≤ RC and R0(n′ + 1, T ) > RC .

Case 4.1.3. Exponential releasing function, i.e. δ(t) = exp(at) for all t ≥ 0.
In this case, the globally attractive solution of subsystem (9) is given by

N(t) =
∞∫
0

e−dsδ(t− s)ds = 1
a + d

eat
.= Na(t).

By simple calculation we have

G(n, l) = −α

l+nT∫
l+(n−1)T

Na(t)dt = −αea((n−1)T+l)

a(a + d)
(
eaT − 1

)
.

Therefore, the threshold value for global attractivity of the pest free solution (0,Na(t)) of system (5) is 
given by

RN
0 (n, T, l) = R0(n, T, l) exp

(
−α

a(a + d)e
a((n−1)T+l)(eaT − 1

)) .= RN
0a(n, T, l)

and the pest free solution (0, Na(t)) is globally attractive provided that RN
0a(n, T, l) ≤ 1.
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It is easy to see that RN
0a(n, T, l) is a decreasing function with respect to l, therefore,

RN
0max

(n, T, l) = R0(n, T ) exp
(

−α

a(a + d)e
a(n−1)T (eaT − 1

))
.

Letting RN
0max

(n, T, l) = RC , we get

− α

a(a + d)e
a(n−1)T (eaT − 1

)
= ln

(
RC

R0(n, T )

)
.

Thus the constant a can be obtained from the above equation, and consequently the new number of 
natural enemies to be released (i.e. exp(at)) at time t can be determined.

5. Discussion

It is well known that pesticide resistance is a serious issue in pest control. Because chemical control is 
cheaper, easier to use and more efficient [9,36–38], it is still the main means for pest control. However, 
frequent sprays of one kind of pesticide may lead to decreasing susceptibility of the pest to the pesticide and 
then the pest develops resistance to the pesticide, resulting in pest population resurgences and outbreaks.

Once the pest develops resistance to the pesticide, the simple and direct method for successful pest 
control is switching to another kind of pesticide. However, the pesticide switching method will result in 
multiple pesticide resistance, and lead to negative effects on pest control. In order to delay the development 
of pesticide resistance, a reasonable strategy is to adopt the IPM approach [21], that is combining chemical 
control with other forms of pest control (such as biological control). For example, a pest control strategy is 
implemented by releasing natural enemies at the same time as pulse spraying of pesticide [17]. In many cases, 
pesticides act not only on the pest species, but also on the natural enemies, resulting in the resurgence of 
the pest populations [2,6,26]. In order to reduce the negative impact of pesticide on the natural enemies and 
maximize the efficiency of biological control, the inoculative release of a small number of natural enemies 
throughout the pest period is a feasible method. The key question is how to determine the number of natural 
enemies at every release time, with the aim of letting the density of the pest population getting no larger 
than some critical level (such as EIL) or eradicating its population, if the strategy of inoculative releases of 
natural enemies is implemented as pesticide resistance develops.

To address this question, we first developed a pest–natural enemy model in which pulsed actions such as 
spraying of pesticide, continuous operation with inoculative releasing of natural enemies and the evolution 
of pesticide resistance were considered. The threshold condition which guarantees the extinction of the pest 
population for the general strategy of inoculative releasing of natural enemies was given. Specially, the 
threshold conditions with the aim of eradicating the pest population with three different releasing strategies 
were derived. For each releasing strategy, the methods and analytical formulae for determining the numbers 
of natural enemies to be released were investigated and the appropriate analytical expressions derived. 
Finally, the more detailed threshold conditions for the existence of the globally attractive pest-free solution 
with three different releasing tactics were discussed. The results obtained in the present work clearly show 
how to determine the number of natural enemies to be released in response to pesticide resistance, which is 
dynamic and varies as resistance develops. Therefore, the results shown here can help the design of optimal 
control tactics in the face of pesticide resistance.

Note that only the simplest pest–natural enemy system has been employed in the present work to ad-
dress the key issues related to management of pest resistance. However, several factors including functional 
responses of the natural enemies to the pest, the effects of environmental variations (climate, food avail-
ability and so on) on the growth of both pest and natural enemy populations have not been included in 
the model, which could significantly affect the outcome of pest control [14,5,12,40,8,1,39]. Therefore, more 
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realistic pest–natural enemy ecosystems with the effects of periodic variation of environments on the growth 
of pest populations should be considered in the near future aiming to address: how the periodic variation 
of environments affects the evolution of pest resistance and, consequently, how to determine the number of 
natural enemies to be released with the pest resistance?
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Appendix A. The proof of Theorem 2.1

Proof of Theorem 2.1. At the beginning of the proof, we will give the threshold condition about the attrac-
tion of the null solution of the following general impulsive differential equation,

⎧⎨
⎩

dP (t)
dt

= P (t)F
(
t, P (t)

)
, t �= nT,

P
(
nT+) = q(nT )P (nT ), t = nT,

(A.1)

where q(nT ) denotes the survival rate of the pest population after the n-th pesticide application, which 
depends on ω(nT ), and naturally we have 0 ≤ q(nT ) < 1 for all n ∈ N . Function F (t, P (t)) is the growth 
rate of the pest population including logistic growth as a special case, and we assume that:

(a) The function F is continuous at t �= nT , n ∈ N , and is continuous and differentiable with respect to P , 
and ∂F/∂P is continuous with respect to P ;

(b) There exist two continuous functions ϕ and λ with ϕ(P ) > 0 for P > 0 and λ(t) ≥ 0 for t ≥ 0, such 
that

∂F

∂P
(t, P ) ≤ −ϕ(P )λ(t), for t ≥ 0, P ≥ 0,

and

∞∫
0

λ(t)dt = ∞;

(c) There is a β > 0 such that
(i) F (t, 0) ≤ β for t ≥ 0,
(ii) q(nT ) exp(

∫ l+nT

l+(n−1)T F (s, 0)ds) ≤ 1 for 0 ≤ l < T and n ∈ N .

Then we have the following lemma.

Lemma 2.2. Suppose that F in (A.1) satisfies (a), (b) and (c), then for any initial condition P (0+) = P0 > 0, 
the solution of (A.1) satisfies P (t) → 0 as t → ∞.

Lemma 2.2 was proved in [17], and it is useful to determine the threshold conditions which guarantee the 
extinction of the pest population under additional control strategies in our study.
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Now we prove Theorem 2.1. It is seen from the second equation of system (5) that dN(t)/dt >
−dN(t) + δ(t). Consider the following impulsive differential equation

⎧⎨
⎩

dy(t)
dt

= −dy(t) + δ(t),

y
(
0+) = N0.

(A.2)

According to the comparison theorem on differential equations, we can conclude that N(t) ≥ y(t) = N∗(t). 
It follows from the first equation of system (5) that

dP (t)
dt

≤ rP (t)
(

1 − P (t)
K

)
− αP (t)N∗(t).

Now we consider the following impulsive differential equation
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= rx(t)
(

1 − x(t)
K

)
− αx(t)N∗(t), t �= nT,

x
(
nT+) =

(
1 − ω(nT )d1

)
x(nT ), t = nT,

dω(t)
dt

= d1ω(t)
(
ω(t)qn − 1

)
,

x
(
0+) = P (0) .= P0.

(A.3)

Again according to the comparison theorem of impulsive differential equations we have P (t) ≤ x(t).
By using the formula of (4) we can easily have

q(nT ) .= 1 − ω(nT )d1

= 1 − d1

(1 + end1((ω((n− 1)T ))− n
T − 1))T

n

and

F (s, x) .= r − rx(s)
K

− αN∗(s).

Now we test and verify the conditions of Lemma 2.2. It is easy to see that condition (a) holds true naturally, 
and

F (s, 0) = r − αN∗(s) ≤ r,

∂F (s, x)
∂x

= − r

K
,

∞∫
0

1
K

ds = ∞.

Therefore,

exp
( l+nT∫

l+(n−1)T

F (s, 0)ds
)

= exp
( l+nT∫

l+(n−1)T

r − αN∗(s)ds
)

= erT exp
( l+nT∫

l+(n−1)T

(
−αN∗(s)

)
ds

)

= erT exp
(
G(n, l)

)
.
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Thus

q(nT ) exp
( l+nT∫

l+(n−1)T

F (s, 0)ds
)

= R0(n, T ) exp
(
G(n, l)

)
.= RN

0 (n, T, l).

According to Lemma 2.2, we can see that if RN
0 (n, T, l) ≤ 1, then x(t) → 0 as t → ∞. Consequently, we 

have P (t) → 0 as t → ∞ provided that RN
0 (n, T, l) ≤ 1.

Next, we prove that N(t) → N∗(t) as t → ∞. For any 0 < ε < d/(αβ), there exists a t1 > 0 such that 
0 < P (t) < ε for all t ≥ t1. Without loss of generality, we may assume that 0 < P (t) < ε holds true for all 
t > 0, then we have

−dN(t) + δ(t) ≤ dN(t)
dt

≤ (αβε− d)N(t) + δ(t).

For the left hand inequality, it follows from impulsive differential equation (A.2) that N(t) ≥ y(t) = N∗(t). 
For the right hand inequality, consider the following impulsive differential equation

⎧⎨
⎩

dz(t)
dt

= (αβε− d)z(t) + δ(t),

z
(
0+) = N0.

(A.4)

The analytical solution of the above system at any impulsive interval ((n − 1)T, nT ] gives

z∗(t) = e(αβε−d)t
(
N0 +

t∫
0

δ(s)edsds
)
. (A.5)

Therefore, for any ε1 > 0, there exists a t2 > 0 such that

N∗(t) − ε1 < N(t) < z∗(t) + ε1

for t > t2. Let ε → 0, then we have

N∗(t) − ε1 < N(t) < N∗(t) + ε1

for t > t2, which indicates that N(t) → N∗(t) as t → ∞. Therefore, the pest-free solution (11) is globally 
attractive if RN

0 (n, T, l) ≤ 1. The proof is complete. �
Appendix B. The definition of Lambert W function and the proof of θ1 < 0 and θ2 > 0

The Lambert W function [4] is defined to be the multivalued inverse of the function z 	→ z exp(z)
satisfying

Lambert W(z) exp
(
Lambert W(z)

)
= z.

First of all, the function z exp(z) has the positive derivative (z + 1) exp(z) if z > −1. Define the inverse 
function of z exp(z) restricted on the interval [−1, ∞) to be Lambert W(0, z). Similarly, we define the 
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inverse function of z exp(z) restricted on the interval (−∞, −1] to be Lambert W(−1, z). For more details 
see Corless et al. [4].

Now we prove that there is only one root θ2, which is well defined.
Let

f(x) = xe−
x
2 − 1 + e−x,

then

f(0) = 0 and f ′(x) =
(

1 − x

2

)
e−

x
2 − e−x.

Let

g(x) = e
x
2 f ′(x) = 1 − x

2 − e−
x
2 ,

then we have

g(0) = 0 and g′(x) = −1
2
(
1 − e−

x
2
)
.

Based on the above, we can see that g′(x) < 0 for x > 0. This indicates that g(x) is a decreasing function 
with respect to x for x > 0. Therefore, g(x) < 0 for x > 0. So, f ′(x) < 0 for x > 0, that is f ′(x) is 
a decreasing function with respect to x for x > 0. Therefore, f(x) < 0 for x > 0. This indicates that

0 <
dTe−

dT
2

1 − e−dT
< 1.

Since A < 0, we have

dTAe(A− dT
2 )

1 − e−dT
> AeA > −e−1,

this indicates that

Lambert W
(

0, dTAe(A− dT
2 )

1 − e−dT

)
> A

and

Lambert W
(
−1, dTAe(A− dT

2 )

1 − e−dT

)
< A.

Therefore, from the expressions of θ1 and θ2, we have θ1 < 0 and θ2 > 0. This indicates that only the root θ2
is well defined, as θ is a nonnegative constant.
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