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Abstract An immuno-epidemiological model of pathogen transmission is developed.
This model incorporates two main features: (i) the epidemiological model includes
within-host pathogen dynamics for an infectious disease, (ii) the susceptible individ-
uals to the infection experience a series of exposures via the pathogen before becom-
ing infectious. It is shown that this model leads naturally to a system of differential
delay equations of the threshold type and that these equations can be transformed, in
a biologically natural way, to differential equations with state-dependent delay. An
interesting dynamical behavior of the model is the bistability phenomena, when the
basic reproductive ratio R0 is less than unity, which raises many new challenges to
effective infection control.
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1 Introduction

Epidemiological and in-host models have been separately developed and studied for
many diseases (i.e. Anderson and May 1991; Brauer et al. 2008; Brauer 1990; Brauer
and Castillo-Chavez 2001; Castillo-Chavez et al. 2002; Diekmann and Heesterbeek
2000; Hethcote 2000; Ma et al. 2009; Nowak and May 2001; Thieme 2003). However,
there is evidence that for many diseases important relationships exist between what
is happening in the host and what is occurring at the population level (i.e. André
and Gandon 2006; Dushoff 1996; Gilchrist and Sasaki 2002; Heffernan and Keeling
2009; Hellriegel 2001; Hoppensteadt and Waltman 1971; Martcheva and Sergei 2006;
Waltman 1974). Indeed, immune system and pathogen dynamics cannot be understood
in isolation, since in-host processes interact in many ways with the environment of
the host (Pradeu and Carosella 2006). Despite this, few conceptual frameworks have
been presented which directly link both the between- and in-host populations (André
and Gandon 2006; Dushoff 1996; Gilchrist and Sasaki 2002; Heffernan and Keeling
2009; Hoppensteadt and Waltman 1971; Martcheva and Sergei 2006; Waltman 1974).
Furthermore, in many studies the in-host dynamics are characterized by quite severe
simplifying assumptions. In particular, in-host competitive processes are assumed
to be instantaneous with respect to epidemiological timescales. In reality, in-host
competition between different viral particles can occur at timescales comparable to
those in epidemiology.

In this paper, we present an immuno-epidemiological model which incorporates
pathogen progression to infection in an epidemiological model. The relationship
between the population and in-host dynamics leads to an age-structured epidemio-
logical model with a varying boundary. Importantly, the model structure enables the
study of the effects of multiple exposures to a pathogen on an individual, and how this
is reflected at the population level. Mathematical models have been widely used to
investigate the impact of a single-exposure on infectious diseases (see, for example,
Anderson and May 1991; Brauer 1990; Cooke and Van Den Driessche 1996). Some
previous studies within the fields of Biology and Medicine have shown that there is
an inverse relationship between the dose size at exposure and the length of the latent
phase of infection for some infectious diseases (see, for example Fine 2003; Hollinger
et al. 1991; Hughes et al. 2002; Spekreijse et al. 2011). Recently, there has been an
interest in studying the effects of mulitple exposure to a pathogen on the latent or
exposed stages of infection (Cowling et al. 2013). The model presented here presents
a first mathematical study of this issue.

Our immuno-epidemiological model takes the form of a age-structured system
of differential equations with moving boundary coupled with an algebraic equation.
Using the characteristic method, this model is simplified and reduced to a system of
differential equations with so-called threshold-type delay.
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Threshold delay equations (TDEs) arise naturally in compartmental models for
which the time spent in a particular compartment is not constant, but rather is deter-
mined by the requirement that a fixed threshold quantity of an entity is accumulated
during the time in residence in that compartment. This class of equations has attracted
a lot of attention in recent years (i.e. Kuang and Smith 1992; Smith and Kuang 1992;
Walther 2009 and references therein), and started earlier in the 1960s (Cooke 1967). In
1988, Gatica and Waltman (1988) studied the existence of solutions, and uniqueness
and continuous dependence on initial conditions for some general TDEs arising from
biological problems. Gatica and Waltman (1982, 1988) derived TDEs directly in mod-
els of the immune response. These studies were motivated by the threshold integral
equation models derived by Hoppensteadt and Waltman (1971); Waltman (1974) in the
modelling of epidemics, apparently first used by Cooke (1967) in an epidemiological
setting. In these epidemiological models, a susceptible individual that is first exposed
to a pathogen at time t − T will become infectious at time t provided the individual
accumulates a sufficient dose of infection, usually modeled by some function of the
infective population, during the time from t − T to t .

TDEs can be difficult to analyze. To overcome this difficulty a Global Implicit
Function Theorem (GIFT) (Ichiraku 1985) can be used to further simplify a TDE
system to a state-dependent delay system of differential equations. The linearization
of state-dependent delay equations has been rigorously studied by Walther (2003). For
a complete review on state-dependent delay differential equations we refer the readers
to Hartung et al. (2006).

Our analysis shows that the incorporation of the pathogen dynamics into an epi-
demiological model provides insights into possible mechanisms for multiple stable
states when the basic reproductive ratio (or basic reproduction number) R0 is less
than unity. In most epidemic models, a disease will be eradicated from a population
if R0 < 1, and persists if R0 > 1 (Brauer and Castillo-Chavez 2001; Diekmann and
Heesterbeek 2000; Hellriege et al. 1990; Hethcote 2000). However, in some cases
R0 < 1 is not sufficient to completely remove a disease (see, for example, Van den
Driessche and Watmough 2002; Qesmi et al. 2010, 2011). In this case, the stable
disease-free state competes with a stable endemic state. Such a scenario, known as
the bistable phenomenon, has been explored in many epidemic models, in particular,
in vaccination models with imperfect vaccines (Alexander and Moghadas 2004) and
models containing different classes for susceptibles or infectives (Hadeler and Van
den Driessche 1997; Qesmi et al. 2010, 2011). However, to the best of our knowl-
edge, there is no study to date that has highlighted backward bifurcation or bistable
phenomenon for models with threshold-delay and/or state-dependent delay.

The article is organized as follows. Section 2 is devoted to the formulation of the
model, that originally takes the form of an age-structured system of differential equa-
tions coupled with an algebraic equation. This system is then reduced to a system of
differential equations with threshold delay in Sect. 3. Using a GIFT, in Sect. 4, we
transform the system with threshold delay to a state-dependent delay system of differ-
ential equations. Properties of the resulting system, such as positivity and existence of
steady states, are established in Sect. 5. We then focus on the stability of the disease-
free equilibrium and prove a sufficient condition for its global stability in Sect. 6. We
perform the analysis of transcritical bifurcation as well as backward bifurcation in
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Sect. 7. Discussion and conclusions are given in Sect. 8. All the proofs of the obtained
results are presented in the Appendix.

2 Model development

2.1 In-host modeling

We are interested in the early stages of infection immediately after exposure to a
pathogen. We will assume that an individual is exposed to an infectious quantum ,
c, which is the unit of pathogen load needed to produce an infection. Therefore, we
will assume that the infectious pathogen load will grow, overcoming the non-specific
immune response. We also assume that during the early stages of infection the specific
immune response is absent since it has not yet been activated by the non-specific
innate immune system. Therefore, we can model the pathogen load after exposure as
an increasing function.

V̇ = r V .

In the early stages of infection we consider an individual to be in the exposed class.
When the pathogen load has increased to a level A we then consider the individual to
be infectious. During the exposed period it is possible for an individual to incur con-
secutive exposures to the pathogen. We assume that the repeated exposures increase
the pathogen load in-host. Hence the pathogen load must also be tracked by an age of
infection, a, since the first exposure of an uninfected individual, and the number of
repeated exposures during the exposed period. Furthermore, since transmission occurs
from infected individuals, the pathogen load due to an exposure will depend on the
infected population. Using the conservation law of mass, the dynamics of the pathogen
load, denoted by V (t, a), during the exposure stage (V (t, a) < A) is governed by the
equation

∂V

∂t
+ ∂V

∂a
= r V (t, a)+ F(I (t)),

subject to the boundary condition describing the pathogen load introduced in the body
of the exposed per each contact:

V (t, 0) = c.

Here, F(I (t)) includes additive pathogen load in the exposed individual due to multi-
ple exposures to infectious individuals, I (t). Furthermore, we suppose that, after the
infectious level A has been achieved, repeated exposure has no effect on increasing
the pathogen load of the host since a new exposure of pathogen load will be small
compared to the total load already residing in the host. Thus, it is reasonable to assume
a saturation effect for an exposed individual. To reflect this, we incorporate the addi-
tive pathogen load due to multiple exposures using the following Holling functional
response type 2 (see Michaelis and Menten 1913).
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F(I (t)) = bcI (t)

k I (t)+ 1
,

where b is the number of effective contacts between an exposed and infectious indi-
viduals, c is the pathogen load introduced in the body of the exposed per each contact,
and k is an adjustable parameter which measures how soon saturation occurs. Note
that, during the exposed and infectious periods of infection, pathogen load generally
rises to high levels (Wodarz 2006). Note that r A > bc/k must be true here, since
a pathogen load introduced in the body must be smaller than the threshold A and
the growth of the pathogen r V must dominate over F(I(t)). In what follows, we will
assume that k > b

r .
Here, we state some properties of the pathogen load which will be used in the next

sections.

Lemma 1 There exists a unique positive function τ : [0,∞) → [0,∞), such that

1. V (t, τ (t)) = A for all t ≥ 0;
2. V (t, a) ≤ A is equivalent to 0 ≤ a ≤ τ(t);
3. the map t �→ t − τ(t) is increasing and τ is bounded;
4. �(τ(t), It ) = 0 where � is a function, defined on R+ × C by,

�(s, φ) = cers +
0∫

−s

e−ru F(φ(u))du − A (1)

and, for each t ≥ 0, It is the history function of the infectious population defined,
on [− maxs∈[0,∞](τ (s)), 0], by

It (θ) = I (t + θ).

Remark 2 Note that, since A is the pathogen load needed for an exposed individual
to become infectious, it is assumed that the pathogen load per contact c < A.

2.2 Between-host modeling

The compartmental model diagram is shown in Fig. 1 and illustrates how a pathogen
can spread in a population. The mathematical model considers a population that is
divided into susceptible (S), exposed (E) and infectious (I ) individuals. Susceptible
individuals enter the population at rate π and, once infected through contact with
infectious individuals β, become exposed. Exposed individuals become infectious
(able to transmit the infection) when the internal pathogen load exceeds the threshold
value A, or equivalently, when the age since exposure is greater than τ(t). Susceptible
individuals die with rate d, exposed individuals of age a since exposure die with rate
δ(a), and infectious individuals die or recover with rate μ. The model is given by the
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Fig. 1 Immuno-epidemiological diagram of early infection. An exposed individual becomes infectious
when pathogen load V > A. Multiple exposures can reduce the time taken to become infectious

following system of algebraic-partial differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṡ(t) = π − βS(t)I (t)− d S(t)
∂E
∂t + ∂E

∂a = −δ(a)E(t, a), if t ≥ 0 and 0 ≤ a ≤ τ(t),

İ (t) = E(t, τ (t))− μI (t)

�(τ(t), It ) = 0

(2)

subject to the following boundary condition

E(t, 0) = βS(t)I (t).

3 Reducing the partial differential to a threshold-delay system

The system of equations (2) may be transformed to a system of threshold delay equa-
tions (Gatica and Waltman 1982; Mahaffy et al. 1998; Metz and Diekmann 1986).
The solution E(t, a) of the second equation of system (2) subject to the following
boundary condition

E(t, 0) = βS(t)I (t)

is given, for t > 0 and a > 0, by

E(t, a) =
{
βe− ∫ a

0 δ(s)ds S(t − a)I (t − a) if t > a,

e− ∫ a
0 δ(s)dse− ∫ a−t

0 δ(s)ds E(0, a) if t ≤ a.
(3)
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Let E(t) = ∫ τ(t)
0 E(t, a)da be the total population of the exposed individuals. Let

τ∞ be the maximal delay (τ∞ = maxs≥0(τ (s))). Using (3), the I−class becomes, for
t ≥ τ∞,

I ′(t) = βe− ∫ τ (t)
0 δ(s)ds S(t − τ(t))I (t − τ(t))− μI (t).

However, E(t) is explicitly given, for t ≥ τ(t), by

E(t) = β

τ(t)∫

0

e− ∫ θ
0 δ(s)ds S(t − θ)I (t − θ)dθ.

Thus, we omit the E-equation and, furthermore, the system (2) will be reduced, for
t ≥ τ∞, to a threshold-delay (TDE) system

⎧⎪⎪⎨
⎪⎪⎩

S′(t) = π − βS(t)I (t)− d S(t),

I ′(t) = βe− ∫ τ (t)
0 δ(s)ds S(t − τ(t))I (t − τ(t))− μI (t),

�(τ(t), It ) = 0.

(4)

4 Reducing the threshold-delay to state-dependent delay system

The system (4) consists of a threshold-delay system of differential equations coupled
in a complicated manner. It is difficult to conduct analysis on such systems (Alt 1979;
Kuang and Smith 1992; Smith and Kuang 1992; Walther 2009) [see also Sect. 2.5
of the survey (Hartung et al. 2006)]. To overcome this difficulty we use a GIFT and
show that the TDE system (4) can be reduced to a system of differential equations
with state-dependent delay.

Denote by C the space of continuous functions defined on [−τ∞, 0]. Let a function
h : C → R. The function h is said to be decreasing if, for φ,ψ ∈ C, φ(θ) ≤ ψ(θ)

implies that h(φ) ≥ h(ψ). We have the following Lemma.

Lemma 3 There exists a unique and continuously differentiable map σ : C → R+
such that �(σ(φ), φ) = 0 for any φ ∈ C. Furthermore, the function σ is decreasing
and satisfies

σ(0) = 1

r
ln

(
A

c

)
. (5)

Thus, the threshold-delay system (4) is equivalent to the state-dependent delay
differential system given, for t ≥ τ∞, by

{
S′(t) = π − βS(t)I (t)− d S(t),

I ′(t) = βe− ∫ σ(It )
0 δ(s)ds S(t − σ(It ))I (t − σ(It ))− μI (t),

(6)
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where σ : C → R+ is a decreasing and continuously differentiable map which
satisfies

�(σ(φ), φ) = 0 for any φ ∈ C and σ(0) = 1

r
ln

(
A

c

)
.

Thus, by making a change of variables x(t) = S(t + σ(0)) and y(t) = I (t + σ(0)),
system (6) can be written as a state-dependent delay differential system, for t ≥ 0,

{
x ′(t) = π − βx(t)y(t)− dx(t),

y′(t) = βe− ∫ σ(yt )
0 δ(s)ds x(t − σ(yt ))y(t − σ(yt ))− μy(t).

(7)

Existence and uniqueness of solutions of (7) cannot be easily deduced. Equation (7)
can be written as

X ′(t) = g(Xt ), for t ≥ 0, (8)

where Xt is defined by Xt (θ) = X (t + θ) for θ ∈ [−σ(0), 0], and the function
g : C × C → R2 is given, for φ,ψ ∈ C , the space of continuous functions on
[−σ(0), 0], by

g(φ,ψ) =
(

π − βφ(0)ψ(0)− dφ(0),

βe− ∫ σ(ψ)
0 δ(s)dsφ(−σ(ψ))ψ(−σ(ψ))− μψ(0)

)
.

Since σ(φ) is continuously differentiable on C , then g is also continuously differen-
tiable on C ×C . Therefore, existence and uniqueness of a solution of (7) is defined on
[0,+∞) for an initial condition belonging to C1, and the space of continuously differ-
entiable function on [−σ(0), 0] follows from Mallet-Paret et al. (1994) and Walther
(2003). One may note that it is not reasonable to expect a well-posed state-dependent
delay differential problem by searching for solutions in C (see Walther 2003).

5 Properties of the model and existence of steady states

In this section, we focus on some properties of (7) including positivity and the existence
of steady states. In the following it is assumed the existence and uniqueness of solutions
of (7) hold for t ∈ [−σ(0),+∞).

Proposition 4 For all nonnegative initial conditions, the unique solution (x(t), y(t))
of (7) is nonnegative and bounded.

The model (7) has a disease-free equilibrium (DFE) given by,

E f = (x, 0) =
(π

d
, 0

)
,

in which there is no infection. This result is straightforward and can be obtained, for
instance, using a method similar to the one presented in Adimy et al. (2010). It can
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also be obtained using the same proof for SIR models with constant delay since σ is
a bounded function.

We now focus on the existence of endemic states of (7).

Proposition 5 Assume that, for all y positive,

e− ∫ σ(y)
0 δ(s)ds <

βy + d

d
e− ∫ σ(0)

0 δ(s)ds . (9)

Then, system (7) has:

(i) at least one endemic equilibrium if βπe− ∫ σ(0)
0 δ(s)ds

μd > 1;

(ii) no endemic equilibrium if βπe− ∫ σ(0)
0 δ(s)ds

μd ≤ 1.

However, if (9) does not hold, then system (7) has:

(iii) at least one endemic equilibrium if βπe− ∫ σ(0)
0 δ(s)ds

μd ≥ 1;

(iv) at least two endemic equilibria if Rc <
βπe− ∫ σ(0)

0 δ(s)ds

μd < 1, where Rc is a given
positive constant;

(v) at least one endemic equilibrium if Rc = βπe− ∫ σ(0)
0 δ(s)ds

μd ,

(vi) no endemic equilibrium if βπe− ∫ σ(0)
0 δ(s)ds

μd < Rc.

Moreover, all the endemic equilibria, E∗ = (x∗, y∗) , satisfy

βπe− ∫ σ(y∗)
0 δ(s)ds = μ(βy∗ + d) and x∗ = π

βy∗ + d
. (10)

Remark 6 Let x = π
d and R0 be the following positive number

R0 = βxe− ∫ σ(0)
0 δ(s)ds

μ
. (11)

The quantity R0 is called the basic reproductive ratio (or basic reproduction number),
and is defined as the number of secondary infections produced by a single infective
in a totally susceptible population. Here, R0 is determined by the number of exposed
individuals that an infectious individual produces, on average, βx

μ
during their aver-

age lifespan ( 1
μ

), and the survival probability e− ∫ σ(0)
0 δ(s)ds into the infectious state.

Generally, the quantity R0 determines whether a given disease may spread (R0 > 1),
or die out (R0 < 1) in a population. For a review on R0 see Heffernan et al. (2005).

6 Asymptotic stability of the trivial steady state

In the next theorem, we give a sufficient condition for the disease-free steady state of
(7), when it is unique, to be globally asymptotically stable. Let α be the positive real

value given by α = e
∫ σ(0)
σ∗ δ(s)ds such that σ ∗ = infφ∈C σ(φ) ≥ 0.
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Theorem 7 Assume that
αR0 < 1. (12)

Then, the disease-free equilibrium of (7) is globally asymptotically stable.

Next, we analyze the local asymptotic stability of the disease-free equilibrium
of system (7), E f = (x, 0), by studying the sign of the real parts of eigenvalues
of the associated characteristic equation (see Hartung et al. 2006; Walther 2003 for
more details about linearization and stability of state-dependent delay differential
equations).

Linearizing system (7) at an equilibrium (xe, ye) ∈ (
R+)2 gives the following

linear system

⎧⎪⎨
⎪⎩

x ′(t) = −βx(t)ye − βy(t)xe − dx(t),

y′(t) = βe− ∫ σ(ye)
0 δ(s)ds ye

(
x(t − σ(ye))− δ(σ (ye))σ ′(ye)y(t)xe

)
+βe− ∫ σ(ye)

0 δ(s)ds xe y(t − σ(ye))− μy(t).

Substituting the Anstaz E0eλt , where E0 = (x0, y0) , leads to

⎧⎪⎨
⎪⎩
λeλt x0 = −βeλt x0 ye − βeλt y0xe − deλt x0,

λeλt y0 = βe− ∫ σ(ye)
0 δ(s)ds ye

(
eλ(t−σ(ye))x0 − δ(σ (ye))σ ′(ye)eλt y0xe

)
+βxee− ∫ σ(ye)

0 δ(s)dseλ(t−σ(ye))y0 − μeλt y0.

Without loss of generality, we may assume y0 = 1. Eliminating eλt , we obtain x0 =
− βxe
λ+d+βye where λ is a root of the characteristic functions

�(λ) = λ+ μ− βxee− ∫ σ(ye)
0 δ(s)dse−λσ(ye)

+βe− ∫ σ(ye)
0 δ(s)ds ye

(
e−λσ(ye) βxe

λ+d+βye + δ(σ (ye))σ ′(ye)xe
)
.

(13)

We easily obtain the following theorem.

Theorem 8 The DFE E f = (x, 0) of (7) is unstable when R0 > 1, and locally
asymptotically stable when R0 < 1.

7 Bifurcation analysis

7.1 Transcritical bifurcation

This section is devoted to the local asymptotic stability analysis of the positive steady
state E∗ of (7) . We are going to investigate the sign of real parts of eigenvalues of
(13) to obtain the existence of a transcritical bifurcation. Throughout this section, we
assume the function σ is given by σ(φ) = νσ̃ (φ), where ν is a positive parameter
and σ̃ : C+ → R+ is a positive, decreasing, bounded and differentiable function.
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Equation (7) reads

⎧⎨
⎩

x ′(t) = π − βx(t)y(t)− dx(t),

y′(t) = βe− ∫ νσ̃ (yt )
0 δ(s)ds x(t − νσ̃ (yt ))yt (t − νσ̃ (yt )))− μy(t).

(14)

Moreover, we assume conditions (9) and R0 > 1 hold, to ensure the existence of the
positive steady state E∗ of (7). We will study the behaviour of solutions around the
positive steady state E∗ ≡ (x∗, y∗) when the parameter ν changes and condition (9)
holds true.

One can see that R0 ≤ 1 is equivalent to ν ≥ ν0 where ν0 is a positive value given
by

ν0 = �−1
(

log

(
μd

βπ

))
and �(ν) =

νσ̃ (0)∫

0

δ(s)ds.

This describes the fact that exposure duration cannot be too long for system (14) to
exhibit a steady state other than the disease-free equilibrium. In other words, a long
period of exposure will render the endemic equilibria unachievable.

The positive steady state E∗ ≡ (x∗, y∗) depends on the parameter ν ∈ [0, ν0) and
y∗ is given implicitly by

βπe− ∫ νσ̃ (y∗(ν))
0 δ(s)ds = μ(βy∗(ν)+ d), ν ∈ [0, ν0). (15)

Hence, by the Implicit Functions Theorem, y∗ is a decreasing continuously differen-
tiable function of ν. Taking ν as a real parameter, our purpose is to prove the existence
of the transcritical bifurcation of (14).

From (13), the characteristic equation associated with E∗(ν) is written as

�(λ, ν) = λ+ μ+ να (ν) σ̃ ′(y∗(ν))e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds

+β (ν, λ) e− ∫ νσ̃ (y∗(ν))
0 δ(s)dse−λνσ̃ (y∗(ν)), (16)

where

α (ν)=βy∗(ν)x∗(ν)δ(νσ̃ (y∗(ν))) and β (ν, λ)=βx∗(ν)
(

βy∗(ν)
λ+ d + βy∗(ν)

−1

)
.

The next result states the existence of a transcritical bifurcation of the positive steady
state when ν = ν0. The proof is given in Appendix E.

Theorem 9 Assume that condition (9) holds. When ν = ν0, the positive steady state
undergoes a transcritical bifurcation, that is for ν < ν0, ν close to ν0, the posi-
tive steady state is locally asymptotically stable, whereas, the trivial steady state is
unstable, and for ν > ν0 the DFE is locally asymptotically stable of (14).
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7.2 Backward bifurcation

When condition (9) does not hold, the case (iv) of Proposition (5) indicates the exis-
tence of at least two endemic equilibria, Em = (xm, ym) and EM = (xM , yM ). There-
fore, a backward bifurcation may occur for values of R0 such that Rc < R0 < 1
(where the locally-asymptotically stable DFE co-exists with a locally-asymptotically
endemic equilibrium).

The two equilibria, denoted Em = (xm, ym) and EM = (xM , yM ) , that we will
choose are those for which, ym and yM are the first two solutions of equationχ(y) = μ

given by (19) with χ ′(ym) > 0 and χ ′(yM ) < 0. Thus,

β + νδ(νσ̃ (ym(ν)))σ̃
′(ym(ν)) (d + βym(ν)) < 0,

β + νδ(νσ̃ (yM (ν)))σ̃
′(yM (ν)) (d + βyM (μ)) > 0. (17)

We state and prove the following theorem. The proof is given in Appendix F.

Theorem 10 Assume that condition (9 ) does not hold. When ν = ν0, the system (14)
undergoes a backward bifurcation. That is, for ν < ν0, ν close to ν0, there is only one
positive steady state which is locally asymptotically stable whereas the trivial steady
state is unstable; and for ν ≥ ν0, ν close to ν0, the DFE together with an endemic
equilibrium are locally asymptotically stable whereas a second positive steady state
exists and is unstable.

Remark 11 Note that in the case of no additive exposure, i.e, b = 0, system (7) is a
system of constant-delay differential equations. Moreover, no backward bifurcation
occurs. Indeed, in the absence of additive exposure, condition (9) holds true for all
parameters of system (7). Generally, there is a positive threshold b∗

1 above which
the backward bifurcation appears and another positive threshold b∗

2 below which the
backward bifurcation disappears. To prove this, we need to emphasize the dependence
of the delay function σ by the number of contacts during the exposure period, b.
Namely, σ(b, y) = σ(y) for b ≥ 0 and y ≥ 0. Note that, for any b ≥ 0 and y ≥ 0,

σ (b, 0) = σ(0, y) = σ(0, 0) = 1

r
ln

(
A

c

)
.

Consider the function χ̂ given, for b ≥ 0 and y ≥ 0, by

χ̂(b, y) = βπe− ∫ σ(b,y)
0 δ(s)ds

βy + d
.

Note that χ̂ has the same values as the function χ defined in (19) for each b and y.
When b = 0, this function will be given by

χ̂ (0, y) := βπe− ∫ σ(0,0)
0 δ(s)ds

βy + d
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and satisfies χ̂ (0, y) < χ̂(0, 0) for all y ≥ 0 and χ̂(b, 0) = χ̂ (0, 0) for all y ≥ 0.
Furthermore,χ is increasing by means of b > 0. Using the equation�(σ(b, z), z) = 0
for z ∈ R, where � is the function given in (1), the derivative of the function σ(b, .)
is given by

σ ′
z(b, z) = − bc

(1 + kz)2

∫ 0
−σ(b,z) e−rudu

rcerσ(b,z) + bcz
1+kz

(
erσ(b,z)) − 1

) .

In particular, we have

σ ′
z(0, z) = 0, σ ′

z(b, 0) = −b

∫ 0
−σ(0,0) e−rudu

rerσ(0,0)
and lim

b→∞ σ
′
z(b, 0) = −∞.

On the other hand, χ̂(b, .) is differentiable and its derivative, for each b ≥ 0, is given
by

χ̂y
′
(b, y) = βπe− ∫ σ(b,y)

0 δ(s)ds −σ ′
z(b, y)δ(σ (b, y)) (βy + d)− β

(βy + d)2
.

Thus, χ̂y
′
(0, 0) = −πe− ∫ σ(0,0)

0 δ(s)ds β2

d2 < 0 and limb→∞ χ̂y
′
(b, 0) = +∞. Fur-

thermore, for each b ≥ 0, χ̂y
′
(., 0) is an increasing function. Hence, since χ̂ ′(., 0)

is continuous function on R+, there exists a unique b∗
1 > 0 such that χ̂ ′

y(b
∗
1, 0) =

0, χ̂ ′
y(b, 0) < 0 for b ∈ [0, b∗

1[ and χ̂ ′(b, 0) > 0 for b > b∗
1. In particular, for each

b > b∗
1, there exists y∗ > 0 close to zero and satisfies χ(b, y∗) > χ(b, 0). This means

that the backward bifurcation appears for all b > b∗
1 (see the proof of Proposition 5).

On the other hand, for y > 0,

χ̂y
′
(0, y) = −e− ∫ σ(0,0)

0 δ(s)ds β2π

(βy + d)2
< 0.

Thus, there exists b∗
2 > 0 such that, for b < b∗

2, χ(b, y) < χ(b, 0) for all y > 0.
Finally, the backward bifurcation disappears for all b < b∗

2

8 Discussion

In this paper, we have proposed an immuno-epidemiological model with threshold
delay to understand the effect of the duration of latency and how this is affected by
multiple exposures to a pathogen. We find that, when the basic reproductive ratio
R0 < 1, the model has a locally-asymptotically stable DFE, however, to eradicate an
infectious disease, it may not be sufficient to reduce R0 below unity. For example, a
small increase in the transmission rate, (β), causes a large increase in the number of
disease cases. A subsequent small decrease in the transmission rate does not lead to the
sudden disappearance of the endemic disease. Decreasing the number of exposures, b,
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has the effect of eradicating the disease (see Remark 11). Another eradication factor is
the exposure duration (ν) which cannot be too long for system (14) to exhibit a steady
state other than the eradication of infection.

In the case of the forward transcritical bifurcation (ν ∈ [0, ν0)), long exposed
periods (ν) lead to the eradication of infection. This is meaningful since, from Eq. (5),
a long exposed period to reach the threshold A needs either a small amount of the
pathogen load introduced to the body (c), or a low internal growth production rate
(r ) of the pathogen. However, large amounts of the pathogen load introduced to the
body during the exposed period (ν) lead to a shorter time for the exposed individual
to become infectious.

In the case of bistability, the asymptotic behavior of the proportion of infectives
depends on the initial conditions. Here, a large initial number of infectives can cause
a large endemic equilibrium to arise rather suddenly even if other parameters, such
as β and σ(0), reduce R0 < 1. To eradicate the infectious disease here, R0 must be
further reduced.

Our work has several limitations. There is clearly still room to strengthen condition
(9) and to find more relevant biological interpretations of our results. Of particular
importance, our results need to be extended to specifically incorporate vaccination
events. Besides incorporating vaccination, work is needed to account for a transmission
rate that depends on the pathogen load of an infectious individuals or on the duration
of exposure.

Future infectious disease research would benefit by striving to not only continue to
understand the properties of an invading pathogen, or the body’s response to infections,
but how these properties jointly affect the propagation of an infection throughout a
population. These initial results offer a refinement to current immuno-epidemiological
modelling methodology, and reinforce how coupling principles of pathogen dynamics
and immunology in-host with epidemiology can provide insight into a multi-scaled
description of an infection.

Overall, these results constitute an important step towards articulating an inte-
grated, more refined epidemiological theory of the reciprocal influences between host-
pathogen interactions, epidemiological mixing, and disease spread.

Acknowledgments The authors thank the reviewers and editors for their comments. The authors also
thank James McCaw for useful discussions. This work was supported by NSERC, MITACS and an Early
Researcher Award (Ontario).

Appendix A: Proof of Lemma 1

Proof Let t be a fixed positive real value. Since V (t, .) is an increasing function for
a ≥ 0 such that V (t, a) ≤ A, then there exist a unique τ(t) ≥ 0 which is the first instant
such that V (t, τ (t)) = A. Furthermore, V (t, a) ≤ A is equivalent to 0 ≤ a ≤ τ(t).
Now, differentiating both sides of the equation V (t, τ (t)) = A with respect to t, we
obtain

∂

∂a
V (t, τ (t))

d

dt
(t − τ(t)) = r V (t, τ (t))+ F(I (t)).
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Thus, since V (t, a) is increasing for a ≤ τ(t) and the right hand side of the above
equation is positive, the function t−τ(t) is increasing for t ≥ 0. Using the characteristic
method (See, Webb 1985), we obtain, for a ≤ τ(t) and 0 ≤ a ≤ t,

V (t, a) = cera +
0∫

−a

e−ru F(I (t + u))du.

Thus, V (t, τ (t)) = A leads to

cerτ(t) +
0∫

−τ(t)
e−ru F(I (t + u))du = A.

Furthermore, τ is bounded on [0,∞[ and, for t ∈ [0,∞[,

τ (t) ≤ 1

r
ln

(
A

c

)
.

��

Appendix B: Proof of Lemma 3

Proof To prove this Lemma, we will use a global implicit function theorem (GIFT)
in Ichiraku (1985, Theorem 3) (See Appendix 1). In what follows, we will prove
conditions 1–3 of this theorem:

1) Let φ ∈ C . We need to solve the equation �(s, φ) = 0 for s > 0. This last
equation can be written as

0∫

−s

eru F(φ(u))du + cers − A = 0.

Remember that c < A. Thus, �(0, φ) = c − A < 0. Moreover, since �(s, φ) >
cers − A, lims→∞�(s, φ) = ∞. Hence, there exists s0 > 0 such that�(s0, φ) =
0. On the other hand, the derivative Ds�(s, φ) is given by

Ds�(s, φ) = rcers + ers F (φ(−s))− F (φ(0)) .

However, since k > b
r , we have,

max
x≥0

(F (x)) = bc

k
< rcers, for all s > 0.

Thus, Ds�(s, φ) > 0 for all s > 0 and �(., φ) is increasing. Consequently, there
exists unique s0 > 0 such that �(s0, φ) = 0.
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2) The second partial derivative Dφ�(s, φ) is given by

Dφ�(s, φ) =
0∫

−s

e−ru DF(φ(u))du

for s ≥ 0 andφ ∈ C . This map is invertible since F is an increasing function.
3) Let (si , φi )i≥1 be a sequence of vectors in R+ × C such that �(si , φi ) = 0 and

the sequence φi converge to φ in C as i tends to infinity. Thus, for i ≥ 1,

0∫

−si

e−ru F(φ(u))du = −cers + A > 0

and, consequently,

cersi < A.

This implies that the sequence si is bounded and, thus, there xists a subsequence
of si which converges to a point in R+.

Finally, using the GIFT theorem in Ichiraku (1985, Theorem 3), there exists a unique
and continuous map σ : C → R+ such that �(σ(φ), φ) = 0 for any φ ∈ C . The
function σ is given, for φ ∈ C, by

0∫

−σ(φ)
e−ru F(φ(u))du = −cerσ(φ) + A.

Thus, since F(0) = 0, erσ(0) = A
c . Consequently,

σ(0) = 1

r
ln

(
A

c

)
> 0.

Using the global function theorem, for Banach spaces, in Dieudonné et al. (1960, chp.
6, pp. 270), we conclude that the map σ s continuously differentiable and satisfy, for
all ψ ∈ C,

σ ′(φ)ψ = − Dφ�(σ(φ), φ)ψ

Ds�(σ(φ), φ)
= −

∫ 0
−σ(φ) e−ru DF(φ(u))ψ(u)du

cerσ(φ) + erσ(φ)F (φ(−σ(φ)))− F (φ(0))
(18)

for φ ∈ C . Since Dφ�(σ(φ), φ) and Dφ�(σ(φ), φ) are positive for all φ ∈ C, the
function σ(.) is decreasing. This achieves the proof of the Lemma. ��
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Appendix C: Proof of Proposition 5

Proof Define, for y ≥ 0, the function

χ(y) := βπe− ∫ σ(y)
0 δ(s)ds

βy + d
. (19)

Note that any nontrivial equilibrium E∗ = (x∗, y∗) atisfy χ(y∗) = μ.We have

χ(0) = βπe− ∫ σ(0)
0 δ(s)ds

d
and lim

y→+∞χ(y) = 0.

Moreover, condition (9) is equivalent to χ(z) < χ(0) for all z positive. Hence, the
existence and number of positive equilibria depends on the sign of χ(0) − μ. This
prove all the assertions of the proposition. ��

Appendix D: Proof of Theorem 7

Proof Let α ∈ R be given by α = e
∫ σ(0)
σ∗ δ(s)ds such that σ ∗ = infφ∈C σ(φ) ≥ 0.

Assume that αR0 < 1, then for ε small enough

α
(π

d
+ ε

)
βe− ∫ σ(0)

0 δ(s)ds < μ. (20)

Furthermore we already have

lim sup
t→∞

x(t) ≤ π

d
.

Then for ε > 0, there is T1 > 0 such that x(t) ≤ π
d + ε.Thus, for t ≥ T1 + σ(0)

ẏ(t) ≤ −μy(t)+ βe− ∫ σ(yt )
0 δ(s)ds yt

(π
d

+ ε
)

y(t − σ(yt )) (21)

≤ −μy(t)+ β
(π

d
+ ε

)
e− ∫ σ∗

0 δ(s)ds y(t − σ(yt ))

≤ −μy(t)+ αβ
(π

d
+ ε

)
e− ∫ σ(0)

0 δ(s)ds y(t − σ(yt ))

Now, consider the linear scalar equation

ẏ(t) = −μy(t)+ αβ
(π

d
+ ε

)
e− ∫ σ(0)

0 δ(s)ds y(t − σ(0)). (22)

We claim that the trivial equilibrium y = 0 of Eq. (22) is globally asymptotically
stable (GAS). Indeed, Eq. (22) is linear and its characteristic equation around the
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trivial equilibrium y = 0 is given by

�(λ) = λ+ μ− αβ
(π

d
+ ε

)
e− ∫ σ(0)

0 δ(s)dse−λσ(0) = 0.

Let λ = a + ib a root of �(λ) with a ≥ 0. Then | e−λσ(0) |≤ 1. Therefore, from the
above characteristic equation and (20),

| λ+ μ | = αβ
(
π
d + ε

)
e− ∫ σ(0)

0 δ(s)ds | e−λσ(0) |
≤ αβ

(
π
d + ε

)
e− ∫ σ(0)

0 δ(s)ds

< μ.

However, since a ≥ 0, | λ+ μ |≥ μ hold true. This is a contradiction and, therefore,
every root of the equation �(λ) = 0 has negative real part and the trivial equilibrium
y = 0 of the linear equation (22) is locally asymptotically stable. It follows directly
that y = 0 of this equation is also GAS.

On the other hand, from Lemma (3), and (18), σ is continuously differentiable and
its derivative σ ′ is bounded on C . Thus, using Theorem 2.4 of Gyori and Hartung
(2007) paper, we deduce that the trivial equilibrium of equation

ẏ(t) = −μy(t)+ αβ
(π

d
+ ε

)
e− ∫ σ(0)

0 δ(s)ds y(t − σ(yt ))

is GAS. Let (x(t), y(t)) be a solution of Eq. (7) with positive initial condition. It fol-
lows, by comparison, that y(t) converges to 0 as t tends to ∞. Furthermore, integrating
the first equation in (7) and taking the limit, we obtain limt→∞ x(t) = π

d . The proof
of Theorem 7 is complete. ��

Appendix E: Proof of Theorem 8

Proof The characteristic equation (13), when ye = 0 and xe = x , is given by

�(λ) = λ+ μ− βxe− ∫ σ(0)
0 δ(s)dse−λσ(0) = 0. (23)

Thus,

�(0) = −βxe− ∫ σ(0)
0 δ(s)ds + α = μ

(
1 − βx

μ
e− ∫ σ(0)

0 δ(s)ds
)
,

= μ (1 − R0)

and limλ→∞�(λ) = +∞. When R0 > 1 holds, then�(0) < 0, so there exists λ0 > 0
such that �(λ0) = 0. This proves the instability of the trivial steady state.

123



An immuno-epidemiological model With threshold delay 361

Conversely, assume that R0 < 1. Let λ = a + ib a root of �(λ) with a ≥ 0. Then
| e−λσ(0) |≤ 1. Therefore, from (23),

| λ+ μ | = βxe− ∫ σ(0)
0 δ(s)ds | e−λσ(0) |

≤ βxe− ∫ σ(0)
0 δ(s)ds

= R0μ < μ.

However, since a ≥ 0, | λ+ μ |≥ μ hold true. This is a contradiction and, therefore,
every root of the equation �(λ) = 0 has negative real part and the DFE E f is locally
asymptotically stable. ��

Appendix E: Proof of Theorem 9

Proof The stability and uniqueness of the DFE follows from Theorems 7 and 8. We
investigate local asymptotic stability of E∗(ν) in a neighborhood of ν0. We have

�(0, ν) = μ− βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds + Q(ν),

where

Q(ν) = βe− ∫ νσ̃ (y(ν))
0 δ(s)ds βx∗(ν)y∗(ν)

d+βy∗(ν)

+ νβy∗(ν)x∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)dsδ(νσ̃ (y∗(ν)))σ̃ ′(y∗(ν))

= βe− ∫ νσ̃ (y∗(ν))
0 δ(s)ds x∗(ν)y∗(ν)

(
β

d+βy∗(ν) + νδ(νσ̃ (y∗(ν)))σ̃ ′(y∗(ν))
)
.

However, β
d+βy∗(ν) + νδ(νσ̃ (y∗(ν)))σ̃ ′(y∗(ν)) > 0. Therefore, Q(ν) > 0. On the

other hand, from (15),

μ− βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds = μ− βe− ∫ νσ̃ (y∗(ν))

0 δ(s)ds

d + βy∗(ν)
= 0.

Thus,�(0, ν) > 0, which prove that λ = 0 is not a root of�(λ, ν) = 0 for ν close to
ν.

Therefore, �(λ, ν) = 0 is equivalent to

λ+ μ+ βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)dse−λνσ̃ (y∗(ν)) = Q1 + Q2, (24)

where

Q1 = βy∗(ν)
λ+ d + βy∗(ν)

βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)dse−λνσ̃ (y∗(ν))
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and

Q2 = νβx∗(ν)δ(νσ̃ (y∗(ν)))y∗(ν)σ̃ ′(y∗(ν))e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds .

Now, let λ = a + ib be a root of�(λ, ν)with a ≥ 0. Then λ = 0 and | e−λνσ̃ (y∗(ν)) |≤
1. Thus

| Q1 + Q2 |= βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds | βy∗(ν)

λ+ d + βy∗(ν)
e−λνσ̃ (y∗(ν))

+νy∗(ν)δ(νσ̃ (y∗(ν)))σ̃ ′(y∗(ν)) |
≤ βx∗(ν)y∗(ν)e− ∫ νσ̃ (y∗(ν))

0 δ(s)ds | β

d + βy∗(ν)
+ νδ(νσ̃ (y∗(ν)))σ̃ ′(y∗(ν)) | .

However

β

d + βy∗(ν)
+ δ(νσ̃ (y∗(ν)))νσ̃ ′(y∗(ν)) > 0

and σ̃ ′(y∗(ν)) < 0. Thus,

| Q1+Q2 | ≤ βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds

(
β

d+βy∗(ν)+δ(νσ̃ (y
∗(ν)))νσ̃ ′(y∗(ν))

)
y∗(ν)

≤ βx∗(ν)e− ∫ μσ̃ (y∗(ν))
0 δ(s)ds .

Moreover, μ = βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds and | λ+ μ |> μ. Thus,

βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)ds | 1 + e−λνσ̃ (y∗(ν)) |

≤| μ+ βx∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)dse−λνσ̃ (y∗(ν)) |

≤| λ+ μ+ βpγ x∗(ν)e− ∫ νσ̃ (y∗(ν))
0 δ(s)dse−λνσ̃ (y∗(ν)) |

=| Q1 + Q2 |
≤ βx∗(ν)e− ∫ νσ̃ (y∗(ν))

0 δ(s)ds .

Consequently,

| 1 + e−λνσ̃ (y∗(μ)) |≤ 1,

which is false since λ = 0 is not a root of�(λ, ν). Therefore, every root has negative
real part and the local asymptotic stability of the positive steady state immediately
follows ��

Appendix F: Proof of Theorem 10

Proof We will prove that the equilibrium EM (ν) = (xM (ν), yM (ν)) is locally asymp-
totically stable and Em(ν) = (xm(ν), ym(ν)) is unstable when R0 < 1 or equivalently
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ν > ν0. First of all, we prove that λ = 0 is not a root of �(λ, ν) = 0 for ν close to ν.
Using the above definition of α(ν) and β(ν, 0),

�(0, ν) = μ− βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)ds + Q(ν),

where

Q(ν) = βe− ∫ νσ̃ (yM (ν))

0 δ(s)ds βxM (ν)yM (ν)
d+βyM (ν)

+νβyM (ν)xM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)dsδ(νσ̃ (yM (ν)))σ̃
′(yM (ν))

= βe− ∫ νσ̃ (yM (ν))

0 δ(s)ds xM (ν)yM (ν)
(

β
d+βyM (ν)

+ νδ(νσ̃ (yM (ν)))σ̃
′(yM (ν))

)
.

However, from (17), β
d+βyM (ν)

+ νδ(νσ̃ (yM (ν)))σ̃
′(yM (ν)) > 0. Therefore, Q(ν) >

0. On the other hand, from (15),

μ− βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)ds = μ− πβe− ∫ νσ̃ (yM (ν))

0 δ(s)ds

d + βyM (ν)
= 0.

Thus,�(0, ν) > 0, which prove that λ = 0 is not a root of�(λ, ν) = 0 for ν close to
ν0,

Therefore, �(λ, ν) = 0 is equivalent to

λ+ μ+ βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)dse−λνσ̃ (yM (ν)) = Q1 + Q2, (25)

where

Q1 = βyM (ν)

λ+ d + βyM (ν)
βxM (ν)e

− ∫ νσ̃ (yM (ν))

0 δ(s)dse−λνσ̃ (yM (ν))

and

Q2 = νβxM (ν)δ(νσ̃ (yM (ν)))yM (ν)σ̃
′(yM (ν))e

− ∫ νσ̃ (yM (ν))

0 δ(s)ds .

Now, let λ = a+ib be a root of�(λ, ν)with a ≥ 0. Then λ = 0 and | e−λνσ̃ (zM (ν)) |≤
1. Thus,

| Q1 + Q2 | = βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)ds | βyM (ν)

λ+ d + βyM (ν)
e−λνσ̃ (yM (ν))

+νyM (ν)δ(νσ̃ (yM (ν))) |
≤ βxM (ν)yM (ν)e

− ∫ νσ̃ (yM (ν))

0 δ(s)ds | β

d + βyM (ν)

+δ(νσ̃ (yM (ν)))νσ̃
′(yM (ν)) | .
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However β
d+βyM (ν)

+ δ(νσ̃ (yM (ν)))νσ̃
′(yM (ν)) > 0 and σ̃ ′(yM (ν)) < 0. Thus,

| Q1 + Q2 |≤ βxM (ν)e
− ∫ νσ̃ (yM (ν))

0 δ(s)ds
(

β

d + βyM (ν)
+ δ(νσ̃ (yM (ν)))νσ̃

′(yM (ν))

)
yM (ν)

≤ βxM (ν)e
− ∫ μσ̃ (yM (ν))

0 δ(s)ds .

Moreover, μ = βxM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)ds and | λ+ μ |> μ. Thus,

βxM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)ds | 1 + e−λνσ̃ (yM (ν)) |
≤| μ+ βxM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)dse−λνσ̃ (yM (ν)) |
≤| λ+ μ+ βxM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)dse−λνσ̃ (yM (ν)) |
=| Q1 + Q2 |
≤ βxM (ν)e− ∫ νσ̃ (yM (ν))

0 δ(s)ds .

Consequently,

| 1 + e−λνσ̃ (yM (μ)) |≤ 1,

which is false since λ = 0 is not a root of�(λ, ν). Therefore, every root has negative
real part and the endemic equilibrium EM is locally asymptotically stable.

The characterstic equation associated to Em(ν) = (xm(ν), ym(ν)) satisfies

�(0, ν) = βe− ∫ νσ̃ (ym (ν))
0 δ(s)ds xm(ν)ym(ν)

(
β

d + βym(ν)
+ νδ(νσ̃ (ym(ν)))σ̃

′(ym(ν))

)
.

However, from (17), β
d+βym (ν)

+ νδ(νσ̃ ym(ν)))σ̃
′(ym(ν)) < 0. Therefore,�(0, ν) <

0. Thus, there exists λ∗ > 0 such that �(λ∗, ν) = 0. This concludes the proof of the
theorem. ��
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