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H I G H L I G H T S

� Metapopulation model to qualify disease transmission in a community and its healthcare facility.
� Focus on the roles of healthcare workers at and visitors to the healthcare facility.
� Quantify disease transmission within the facility and to the community during a disease outbreak.
� Infections by infective residents and visitors in healthcare facility are most important factors.
� Preventing infections of healthcare staff is of the highest priority in disease prevention.
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a b s t r a c t

We develop a deterministic meta-population model to qualitatively capture some key features of disease
transmission between a community and its healthcare facility. We consider the disease transmission
dynamics within a healthcare facility and between the healthcare facility and its community. The focus
of this study is to quantify the roles of the healthcare workers at and visitors to this healthcare facility in
shaping the transmission dynamics during a disease outbreak. We stratify the total population into the
general population in the community and the healthcare workers and visitors in the healthcare facility,
to account for nosocomial transmission in the case when an individual in the community may be
exposed to an infection due to a visit to the healthcare facility. Equilibrium stability analysis is carried out
to inform long-term outcomes of disease dynamics in the coupled community-health care facility
system. The basic reproduction number is calculated and its dependence on the waiting time and various
disease transmission rates is analyzed. Numerical simulations are performed with pertussis as the
disease in question. The results show that waiting time only affects the peak number of infections in
the waiting reception area. The results also indicate that transmission rate of infective residents in the
community and the transmission rate of the infective visitors at the healthcare facility have decisive
impact on disease eradication/persistence of the coupled system; while other modes of transmissions
are less important, affecting the peak number of infections at best.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, impact of travel on the spread of diseases has
become an important topic of interest for public health policy
formation and implementation, qualification of which has imposed a
formidable challenge to modelers. Rvachev and Longini (1985)

considered the airline network and used discrete time difference
equations to study the global spread of influenza. Sattenspiel and
Dietz (1995) proposed a model with travel between populations to
describe the transmission dynamics of measles in the Caribbean island
of Dominica. More recently, Arino and van den Driessche (2003a)
formulated an SIS model with patches for residents of multiple cities
(or discrete geographical regions) who may travel between them, and
gave an explicit expression for the basic reproduction number for the
model, which is a threshold between extinction and invasion of the
disease, with simulations to illustrate that travel can both stabilize and
destabilize the disease-free equilibrium. An SEIRS model was later
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considered by Arino and van den Driessche (2003b), with analytical
results similar to those of Arino and van den Driessche (2003a). In
these studies, travel was assumed to be independent of disease states.
Relevant studies also includeWang and Mulone (2003) andWang and
Zhao (2004, 2005). Salmani and van den Driessche (2006) considered
an SEIRS epidemic model for a population with travel between
multiple patches, and established the global asymptotical stability of
the disease-free equilibrium when the basic reproduction number is
less than unity. They also presented a detailed study of the disease
transmission dynamics for a disease with very short exposed and
immune periods in an environment with two patches. Hsieh et al.
(2007a) formulated an SEIRP model including partially immune
individuals, and established relations, expressed by inequalities,
between the basic reproduction number of the full model and the
basic reproduction number of each patch in isolation. Their numerical
simulations indicated that banning the border does not necessarily
always have a positive impact on the overall spread of disease. Similar
results were also obtained in Gojovic et al. (2009) using the USA and
Canada as two separated patches connected primarily by border
crossing. All these studies demonstrate that travel between patches
can influence disease spread in a very complicated way.

The concepts of patch and travel can be considered in a very
general setting, depending on how a heterogeneous population is
partitioned into non-overlapping sub-populations with flows
among them. In this study, by considering one of the patches as
a major health care facility such as a hospital, we use a patch
model to address nonsocomial infections and infections spread
between the facility and its community. Nosocomial infections of
many communicable diseases are widespread, they result in
substantial morbidity, prolong hospital stay and lead to increase
in direct patient care costs and mortality. Nosocomial transmission
can occur between patients, hospital personnel or, less often,
visitors, from people who may be infectious, in the incubation
period (with mild or no symptoms), or even from chronic carriers.
The US Centers for Disease Control and Prevention (USCDC)
reports that nearly two million patients each year were infected
while in a US hospital, with about 90,000 of them died from the
infection. Deaths due to nosocomial infections is the fourth
leading cause of death in US after heart disease, cancer, and
strokes. The USCDC also estimated an additional cost of 5 billion
dollars to US healthcare in 2000 due to nosocomial infections.

Although our understanding of the epidemiology of nosocomial
transmission has increased dramatically over the last two decades,
the incidence of nosocomial transmission continues to affect the
hospitalized patients. This is particularly so for the 2003 SARS
outbreak when nosocomial transmission occurred in all the
affected regions. This first major infectious disease outbreak in
the 21st century has been modeled and investigated intensively
(e.g., Lipsitch et al., 2003; Riley et al., 2003; Chowell et al., 2003,
2004; Wang and Ruan, 2004; Gumel et al., 2004; Hsieh et al.,
2004a, 2005, 2007b; Webb et al., 2004; Zeng et al., 2007), where
model-based analysis clearly revealed the profound impact of
nosocomial transmissions. In Taiwan, 301 (77.3%) of the 390 cases
with a confirmed source of infection had been infected within a
hospital, of which 67 (22.3%) had died. In particular, of 232 SARS
patients who had been admitted to the National Taiwan University
Hospital (NTUH) from March 14 to June 19, 31 (13.4%) did not have
a history of travel, exposure to SARS patients, or a hospital visit
within 10 days before illness. Hence the only contact history for
these patients was at the NTUH Emergency Room (ER) (Chen et al.,
2004). These 31 cases were almost evenly divided among 3 groups:
ER patients, people who accompanied or visited the patients, and
hospital staff. This ER outbreak finally led to a temporary shut-
down of emergency service at NTUH on May 12 (Hsieh et al.,
2004b). A major reason for this outbreak at NTUH was the closing
of two nearby hospitals on April 24 and 26 due to nosocomial

SARS outbreaks, which forced many individuals living in the
neighborhood community who had been visiting these two
hospitals regularly prior to shutdowns (including some individuals
who had already been infected) to seek medical care at NTUH
instead. This directly contributed to a more congested ER at NTUH,
longer waiting time, and increased likelihood of contacting SARS
infectives during this period before its shutdown. Since some of
those infected in NTUH during this period later infected others in
the community, their clinical visit and waiting time had a direct
impact on their likelihood of being infected nosocomially and on
the subsequent spread of SARS in the community.

Another more current example is the nosocomial transmission
of Bordetella pertussis, also commonly called whooping cough,
classically recognized as a disease of infants and children. Reported
incidence in adolescents and adults has increased globally at a
significant rate over the past decade or so (Edwards and Talbot,
2006). The incubation period for pertussis is typically seven to
ten days with range of four to 21 days, after which there are
usually some cold-like symptoms such as mild coughing, sneezing,
or runny nose. After one to two weeks, the coughing classically
develops into uncontrollable fits of severe coughing, mostly in
children that could continue for weeks. One of the reasons for this
increase is nosocomial infection of healthcare workers (HCWs)
(Wright et al., 1999; De et al., 2000) by unsuspected (asympto-
matic/subclinical) pertussis patients. Infected HCWs then serve as
vectors of infection to other susceptible contacts, including their
patients, other employees, and even their own children at home,
resulting in substantial costs to the healthcare system. Prevention
by vaccination is of primary importance given the seriousness of the
disease in children. Although treatment is of little direct benefit to
the person infected, antibiotics are recommended because they
shorten the duration of infectiousness (Heininger, 2010).

In this work, we propose a deterministic compartmental model
that focuses on waiting and clinical visit and their roles in disease
transmission within a healthcare facility and in a community. We
assume that individuals waiting at a hospital (or an emergency
room) reception and waiting area can get infected during the
waiting process due to the nosocomial transmission from others
waiting there. We also assume that individuals can get infected
during clinical visits due to the nosocomial transmission from
other visiting individuals as well as infected hospital personnel.
Those infected within the healthcare facility then serve as vectors
of infection for community spread. Incorporating these assump-
tions into a patch model involving two patches, i.e., the commu-
nity and the healthcare facility, leads naturally to a system of
differential equations.

The paper is organized as follows. We formulate the model in
Section 2. In Section 3, we obtain the basic reproduction number
of the model explicitly in terms of model parameters and we
describe the stability of the disease-free equilibrium when the
basic reproduction number is below unity, and persistence of
the disease and the existence of the positive equilibrium when the
basic reproduction number is larger than unity. Numerical simula-
tions, with pertussis as the disease being modeled, are given in
Section 4, to demonstrate the impact of various model parameters,
such as within-patch and between patch disease transmission,
waiting/visiting, and others, that might affect the disease spread.
Finally, we give our conclusions in Section 5.

2. Model formulation

We consider an SIR type of disease transmission, where the
population is divided into three classes: susceptible individuals,
infectious individuals, and recovered individuals. Susceptible
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individuals become infected after contact with infectious indivi-
duals, and remain infective until they recover with immunity.

We consider an idealized situation where populations are
stratified into two patches, patch 1 for those in the community
and patch 2 for healthcare facilities, hence index i reflects this
stratification. Individuals in patch 2 account for all HCWs, inpa-
tients, and other people who regularly work in a healthcare
facility. Namely we let Si(t), Ii(t) and Ri(t) be respectively the
numbers of susceptible, infective, and recovered individuals of
patch i who are currently (at time t ) in the patch i. Note that
residents of patch j who are currently visiting patch i (ia j) are not
included in the above classes. We also let

NiðtÞ ¼ SiðtÞþ IiðtÞþRiðtÞ:

Let SW12ðtÞ, IW12ðtÞ, and RW
12ðtÞ be the numbers of the waiting

susceptibles, infectives, and recovered at time t at the waiting/
reception area, respectively. This category is designed specifically
to examine the impact of outpatients on nosocomial infections.
Also let SV12ðtÞ, IV12ðtÞ and RV

12ðtÞ be the numbers of visiting
susceptibles, infectives and recovered at time t, who visit the
residents in patch 2, or left the reception/waiting area after
completing the waiting process, respectively.

In what follows, we describe the disease transmission
dynamics during two different phases in the hospital: waiting
and visit. For visiting individuals, we include outpatients (includ-
ing ER patients) on clinical visits, their companions, visitors to
inpatients in the wards, and visitors (friends/relatives, delivery
persons, etc.) of the hospital staff. We assume that during the two
phases of visits, the visitors first mingle (or mix) among them-
selves in a reception/waiting area, before proceeding to their
respective visits to have contacts with physicians, nurses, inpati-
ents, other hospital staff members, in addition to other visitors
whom they might come in contact with during the visiting phase.
We also assume homogeneous mixing and standard (frequency-
dependent) incidence. We refer to Fig. 1 for a schematic illustra-
tion of the model. Descriptions of waiting and visiting phases are
provided assuming that the patch 2 is a hospital. Similar explana-
tions are possible when patch 2 is of other types of healthcare
facilities.

2.1. Waiting

We consider the situation where some individuals from patch
1 leave patch 1 to enter patch 2: spending some waiting time in
the reception/waiting area before visiting some residents of
patch 2.

Let γS, γI and γR be the transfer rate of susceptible, infective, and
recovered individuals going from patch 1 to patch 2, respectively.
Therefore, while waiting in reception/waiting area we have

_S
W
12 ¼ γSS1�

sSW12I
W
12

NW
12

�ðμSþd1ÞSW12;

_I
W
12 ¼ γI I1þ

sSW12I
W
12

NW
12

�ðμIþd1ÞIW12;

_R
W
12 ¼ γRR1�ðμRþd1ÞRW

12;

NW
12 ¼ SW12þ IW12þRW

12;

8>>>>>>>>>><
>>>>>>>>>>:

ð2:1Þ

where s is the disease transmission rate of one infective to a
susceptible individual during the waiting process. μS, μI and μR are
the progression rates to the visiting phase. d1 is the natural death
rate, which is very small.

2.2. Visiting

Next we consider the visiting phase. We have

_S
V
12 ¼ μSS

W
12�

βV12S
V
12I

V
12

NV
12

�βV21S
V
12I2

N2
�ðαSþd1ÞSV12;

_I
V
12 ¼ μI I

W
12þ

βV12S
V
12I

V
12

NV
12

þβV21S
V
12I2

N2
�ðαIþd1ÞIV12;

_R
V
12 ¼ μRR

W
12�ðαRþd1ÞRV

12;

NV
12 ¼ SV12þ IV12þRV

12:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:2Þ

βV12 is the disease transmission rate between infective and suscep-
tible visitors from patch 1 during their visit in patch 2, βV21 is the
transmission rate of infective residents in patch 2 to susceptible
visitors from patch 1. αS, αI and αR are the respective transfer rate
of susceptible, infective, and recovered individuals from patch 2 to
patch 1 after their visit.

2.3. Community and healthcare facility

We assume that residents in the community (patch 1) can be
infected by infected individuals present in the community, includ-
ing those who had been in a healthcare facility and those who
work in the healthcare facility (thus claiming residency in patch 2).
In addition to general mixing in the community, residents in patch
2 get infected from other infectives in the healthcare facility which
includes coworkers (I2) and visitors (IV12). The transmission
dynamics within each patch is given as follows. For patch 1,

_S1 ¼ π1�
ðβ11I1þβ21I2Þ

N1þN2
S1�ðd1þγSÞS1þαSS

V
12;

_I1 ¼
ðβ11I1þβ21I2Þ

N1þN2
S1�ðd1þδ1þγIÞI1þαI I

V
12;

_R1 ¼ δ1I1�ðd1þγRÞR1þαRR
V
12:

8>>>>>>><
>>>>>>>:

ð2:3Þ

For patch 2,

_S2 ¼ π2�d2S2�
β2S2I2
N2

�ðβ12I1þβ22I2Þ
N1þN2

S2�
β12S2I

V
12

NV
12

;

_I2 ¼
β2S2I2
N2

þðβ12I1þβ22I2Þ
N1þN2

S2þ
β12S2I

V
12

NV
12

�ðd2þδ2ÞI2;

_R2 ¼ δ2I2�d2R2:

8>>>>>>><
>>>>>>>:

ð2:4Þ

Fig. 1. Schematic diagram of disease progression (horizontal) and transmission
(vertical).
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Here π1 is the daily number of newborns (into the susceptible
class) of patch 1; π2 is the constant recruitment (into the
susceptible class) of patch 2; d2 is the natural death rate of
residents in patch 2, β11 and β2 are the respective disease
transmission rates between residents in patch 1 and patch 2; δi
is the recovery rate of the infectives in patch i; β21 is the
transmission rate of the infective residents in patch 2 to the
susceptibles in patch 1 in the community; β12 is the transmission
rate of the infectious residents in patch 1 to the susceptible
residents in patch 2 in the community; β22 is the transmission
rate of the infectives in patch 2 to the susceptible residents in
patch 2 in the community; and β12 is the disease transmission rate
of infective visitors from patch 1 to susceptible residents in patch
2 in the healthcare facility. For pertussis, most infected adult
healthcare workers have only mild cold-like symptoms and there-
fore are asymptomatically infectious while remaining at work.
Moreover, in our model for pertussis, the recovery compartment as
we defined in the model includes the removed individuals.

We further set the initial conditions for System (2.1)–(2.4) as
follows:

Sl12ð0ÞZ0; Il12ð0ÞZ0; Rl
12ð0ÞZ0; l¼W ;V ;

Sið0ÞZ0; Iið0ÞZ0; Rið0ÞZ0; i¼ 1;2: ð2:5Þ

It is very easy to verify that the solution of System (2.1)–(2.4)
with nonnegative initial values is biologically realistic. That is, the
solution is nonnegative and bounded for finite time T.

Lemma 2.1. The solution of System (2.1)–(2.4) with an initial
condition (2.5) is nonnegative for all tZ0.

Lemma 2.2. There exists a positive number M40 such that for any
solution of System (2.1)–(2.4) with initial condition (2.5), there must
be a T40 such that Sl12ðtÞrM, Il12ðtÞrM, Rl

12ðtÞrM, SiðtÞrM,
IiðtÞrM, and RiðtÞrM, for l ¼ W, V, i¼1,2, and tZT.

Proof. For VðtÞ ¼NW
12ðtÞþNV

12ðtÞþN1ðtÞþN2ðtÞ and m¼minfd1; d2g,
we have

_V ðtÞ ¼ π1þπ2�d1ðNW
12ðtÞþNV

12ðtÞþN1ðtÞÞ�d2N2ðtÞrπ1þπ2�mVðtÞ:
ð2:6Þ

Hence, a straightforward argument of the standard comparison
argument of differential equations yields that, for any ε40, there
exists T40 such that VðtÞrM9ðπ1þπ2Þ=mþε, for tZT . The
proof is complete. □

3. Reproduction number and disease eradication

For System (2.1)–(2.4), we have the disease-free equilibrium

E0 ¼ ðSW12; IW12;RW
12; S

V
12; I

V
12;R

V
12; S1; I1;R1; S2; I2;R2Þ ¼ ðSWn

12 ;0;0; SV
n

12 ;0;

0; Sn1;0;0; S
n

2;0;0Þ, where SW
n

12 ¼ π1γSðd1þαSÞ=a, SV
n

12 ¼ π1μSγS=a,
Sn1 ¼ π1ðd1þαSÞðd1þμSÞ=a, Sn2 ¼ π2=d2, and a¼ d1ðd1þμSÞðd1þαSÞþ
d1γSðμSþd1þαSÞ.

In order to calculate the basic reproduction number R0, which
is the mean number of secondary infections caused by an infected
individual in a population of susceptibles, based on the next
generation matrix (Diekmann et al., 1990; van den Driessche and
Watmough, 2002), we define

F ¼

sSW12I
W
12

NW
12

βV12S
V
12 I

V
12

NV
12

þβV21S
V
12I2

N2

ðβ11I1 þβ21I2Þ
N1 þN2

S1
β2S2 I2
N2

þðβ12I1 þβ22I2Þ
N1 þN2

S2þβ12S2 I
V
12

NV
12

0
BBBBBBBBB@

1
CCCCCCCCCA

and

V ¼

ðμIþd1ÞIW12�γI I1
ðαIþd1ÞIV12�μI I

W
12

ðd1þδ1þγIÞI1�αI I
V
12

ðd2þδ2ÞI2

0
BBBB@

1
CCCCA:

Then,

F ¼

s 0 0 0

0 βV12 0 βV21S
Vn

12

Sn2

0 0 β11S
n

1
Sn1 þSn2

β21S
n

1
Sn1 þSn2

0 β12S
n

2

SV
n

12

β12S
n

2
Sn1 þSn2

β2þ β22S
n

2
Sn1 þ Sn2

0
BBBBBBB@

1
CCCCCCCA
;

V ¼

μIþd1 0 �γI 0
�μI αIþd1 0 0
0 �αI d1þδ1þγI 0
0 0 0 d2þδ2

0
BBBB@

1
CCCCA:

Then R0 ¼ ρðFV �1Þ, where ρðAÞ denotes the spectral radius of a
matrix A, is the basic reproduction number for System (2.1)–(2.4).

Define

M1 ¼

s�ðμIþd1Þ 0 γI 0

μI βV12�ðαIþd1Þ 0 βV21S
Vn

12

Sn2

0 αI
β11S

n

1
Sn1 þSn2

�ðd1þδ1þγIÞ β21S
n

1
Sn1 þ Sn2

0 β12S
n

2

SV
n

12

β12S
n

2
Sn1 þSn2

β2þ β22S
n

2
Sn1 þSn2

�ðd2þδ2Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

The stability modulus of an n�n matrix A, denoted by s(A), is
defined by

sðAÞ9maxfRez : z is an eigenvalue of Ag:
Clearly, M1 is irreducible and has nonnegative off-diagonal ele-
ments. Then sðM1Þ is a simple eigenvalue of M1 with a positive
eigenvector (see Smith and Waltman, 1995, Theorem A.5). And
note that if M1 ¼ F�V , then the following is implied by the proof
of van den Driessche and Watmough (2002, Theorem 2) with
J1 ¼M1.

Lemma 3.1. The following equivalences hold:

R0413sðM1Þ40; R0o13sðM1Þo0:

The linearization of (2.1)–(2.4) at E0 is as follows:

_S
W
12 ¼ γSS1�sIW12�ðμSþd1ÞSW12;

_I
W
12 ¼ γI I1þsIW12�ðμIþd1ÞIW12;
_R
W
12 ¼ γRR1�ðμRþd1ÞRW

12:

8>>><
>>>:

ð3:1Þ

_S
V
12 ¼ μSS

W
12�βV12I

V
12�

βV21S
Vn

12

Sn2
I2�ðαSþd1ÞSV12;

_I
V
12 ¼ μI I

W
12þβV12I

V
12þ

βV21S
Vn

12

Sn2
I2�ðαIþd1ÞIV12;

_R
V
12 ¼ μRR

W
12�ðαRþd1ÞRV

12:

8>>>>>>>><
>>>>>>>>:

ð3:2Þ

_S1 ¼ � β11S
n

1

Sn1þSn2
I1�

β21S
n

1

Sn1þSn2
I2�ðd1þγSÞS1þαSS

V
12;

_I1 ¼
β11S

n

1

Sn1þSn2
I1þ

β21S
n

1

Sn1þSn2
I2�ðd1þδ1þγIÞI1þαI I

V
12;

_R1 ¼ δ1I1�ðd1þγRÞR1þαRR
V
12:

8>>>>>>><
>>>>>>>:

ð3:3Þ
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_S2 ¼ �d2S2�
β12S

n

2

Sn1þSn2
I1� β2þ

β22S
n

2

Sn1þSn2

� �
I2�

β12S
n

2

SV
n

12

IV12;

_I2 ¼
β12S

n

2

Sn1þSn2
I1þ

β12S
n

2

SV
n

12

IV12þ β2þ
β22S

n

2

Sn1þSn2
�d2�δ2

� �
I2;

_R2 ¼ δ2I2�d2R2:

8>>>>>>><
>>>>>>>:

ð3:4Þ

Then we have the characteristic equation

ðλþd2Þ2g1ðλÞg2ðλÞg3ðλÞ ¼ 0;

where

g1ðλÞ ¼ ðλþμSþd1Þðλþd1þγSÞðλþαSþd1Þ�μSγSαS;

g2ðλÞ ¼ ðλþμRþd1Þðλþd1þγRÞðλþαRþd1Þ�μRγRαR;

and

g3ðλÞ ¼ ðλþμIþd1�sÞ ðλ�βV12þαIþd1Þ λ� β11S
n

1

Sn1þSn2
þd1þδ1þγI

� ���

� λ�β2�
β22S

n

2

Sn1þSn2
þd2þδ2

� �
�β12β21S

n

1S
n

2

ðSn1þSn2Þ2
�βV21S

Vn

12

Sn2

� αIβ12S
n

2

Sn1þSn2

�
þβ12S

n

2

SV
n

12

λ� β11S
n

1

Sn1þSn2
þd1þδ1þγI

� �#)

�μIγI αI λ�β2�
β22S

n

2

Sn1þSn2

��
þd2þδ2Þþ

β21S
n

1

Sn1þSn2

β12S
n

2

SV
n

12

#
: ð3:5Þ

So, g1ðλÞ ¼ λ3þa1λ2þa2λþa3, where a1 ¼ 3d1þμSþαSþγS, a2 ¼
ðd1þμSÞð2d1þαSþγSÞþðd1þγSÞðd1þαSÞ,
a3 ¼ ðd1þμSÞðd1þγSÞd1þðd1þμSþγSÞd1αS. Then ai40, i ¼ 1, 2, 3,
and
a1a2�a3 ¼ ½a1ðd1þαSÞþðd1þμSÞðd1þγSÞ�ð2d1þμSþγSÞþμSαSγS40.
Thus by Routh–Hurwitz criterion, g1ðλÞ ¼ 0 has roots with negative
real parts. Similarly, we can also show that g2ðλÞ ¼ 0 has roots with
negative real parts. So, stability of the disease-free equilibrium is
totally determined by the distribution of solutions of g3ðλÞ ¼ 0.
Note that g3ðλÞ ¼ 0 is the characteristic equation of the following

_I
W
12 ¼ γI I1þsIW12�ðμIþd1ÞIW12;

_I
V
12 ¼ μI I

W
12þβV12I

V
12þ

βV21S
Vn

12

Sn2
I2�ðαIþd1ÞIV12;

_I1 ¼
β11S

n

1

Sn1þSn2
I1þ

β21S
n

1

Sn1þSn2
I2�ðd1þδ1þγIÞI1þαI I

V
12;

_I2 ¼
β12S

n

2

Sn1þSn2
I1þ

β12S
n

2

SV
n

12

IV12þ β2þ
β22S

n

2

Sn1þSn2
�d2�δ2

� �
I2:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3:6Þ

Since

_I
W
12

_I
V
12
_I1
_I2

0
BBBBB@

1
CCCCCA¼M1

IW12
IV12
I1
I2

0
BBBB@

1
CCCCA;

the solutions of g3ðλÞ ¼ 0 are the eigenvalues of M1. Hence, by
Lemma 3.1, if R0o1, all roots of g3ðλÞ ¼ 0 have negative real parts.
If R041, g3ðλÞ ¼ 0 has at least one root with positive real part.

Theorem 3.1. If R0o1, the disease-free equilibrium E0 is asympto-
tically stable, but unstable if R041.

From Lemma 3.1, we have R0 ¼ 13sðM1Þ ¼ 0; i.e., λ¼ 0 is an
eigenvalue of M1. That is to say, R0 ¼ 13g3ð0Þ ¼ 0. Note that
g3ðþ1Þ-þ1. Then g3ð0Þo0 if and only if g3ðλÞ ¼ 0 has one
positive root. Hence, R0o ð4 Þ13g3ð0Þ4 ðoÞ0.

It is therefore important to calculate g3ð0Þ, which is given by

g3ð0Þ ¼ ðμIþd1�sÞ ð�βV12þαIþd1Þ � β11S
n

1

Sn1þSn2
þd1þδ1þγI

� ���

� �β2�
β22S

n

2

Sn1þSn2
þd2þδ2

� �
�β12β21S

n

1S
n

2

ðSn1þSn2Þ2
�βV21S

Vn

12

Sn2

� αIβ12S
n

2

Sn1þSn2

�
þβ12S

n

2

SV
n
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� β11S
n

1

Sn1þSn2
þd1þδ1þγI

� �#)

�μIγI αI �β2�
β22S

n

2

Sn1þSn2

��
þd2þδ2Þþ

β21S
n

1

Sn1þSn2

β12S
n

2

SV
n

12

#
: ð3:7Þ

Although we are unable to derive an explicit expression forR0, the
matrices F and V that do shed some lights on is dependent on the
model parameters. In addition to the disease transmission rates
being important parameters, the transfer rates between patches
and the progression rate from waiting to visiting phase (i.e.,
waiting time) both appear in F or V, and hence play a role in the
disease dynamics. We now present a theorem which assures the
existence of a disease endemic equilibrium and disease persis-
tence, when the basic reproduction number is larger than unity.
The proof is given in the Appendix.

Theorem 3.2. Let R041. Then System (2.1)–(2.4) has one positive
equilibrium, and there is an ϵ40 such that every solution ðSW12ðtÞ;
IW12ðtÞ;RW

12ðtÞ; SV12ðtÞ; IV12ðtÞ;RV
12ðtÞ; S1ðtÞ; I1ðtÞÞ;R1ðtÞ; S2ðtÞ; I2ðtÞ;R2ðtÞÞ of

(2.1)–(2.4) with initial condition (2.5) and IW12ð0Þþ IV12ð0Þþ I1ð0Þþ
I2ð0Þ40 satisfies

lim inf
t-1

Sl12ðtÞZϵ; lim inf
t-1

Il12ðtÞZϵ; lim inf
t-1

Rl
12ðtÞZϵ; l¼W ;V ;

lim inf
t-1

SiðtÞZϵ; lim inf
t-1

IiðtÞZϵ; lim inf
t-1

RiðtÞZϵ; i¼ 1;2:

In the next section, we will attempt to investigate the actual
impact of the waiting time and disease transmission rates on the
dynamic behavior of the system based on the results of our
analysis, and to illustrate the biological significance of these results
with the help of numerical simulations.

4. Numerical simulations

In this section, we perform numerical simulations with pertu-
ssis as the illness in question to illustrate our results. The time
unit for the model parameters is in days. For the pertussis, the
average infectious period is about three weeks, so δ1 ¼ δ2 ¼ 1=21
(Hethcote, 1997, 2000). Assuming that the average lifetime of
a person is around 60 years, then the natural death rate is d1 ¼
d2 ¼ 1=ð60� 365Þ � 4:57� 10�5 (Hsieh et al., 2007a). Suppose
that the waiting time is 3 h and the visiting time is 1 h, then
μs ¼ μI ¼ μR ¼ 8, αS ¼ αI ¼ αR ¼ 24. We also assume γS ¼ γR ¼ 0:01
and γI ¼ 0:3, i.e., on the average 1% population in the community
will move from patch 1 to patch 2 every day while an infected
(symptomatic) person goes to patch 2 (hospital) within 3.3 days.
We let β11 ¼ 0:2, and all the other transmission rates are 0.1. We
also assume that the daily births in the community are π1 ¼ 5
(assuming that the yearly birth rate is approximately 1.8% in the
community of 100 000) and the recruitment in the health facility
is π2 ¼ 0:1 (assuming that the yearly recruitment rate in the
healthcare facility is also 1.8%). The model parameters and their
values are listed in Table 1.

In all simulations, we use initial values of (200, 100, 50, 100, 50,
30, 100 000, 1000, 500, 2000, 100, 100). That is, we consider a
hypothetical scenario of a community with a population of around
100 000, hospital(or a healthcare system) with around 2000 staff
members (including non-medical workers) (World Health
Organization, 2012; Bigbee, 2007), and initially a low pertussis
prevalence (around 1%). The first simulation result is given in
Fig. 2, where for the blue trajectory we have μS ¼ μI ¼ μR ¼ 8, i.e.,
mean waiting time of 3 h, and subsequently R0¼5.73. Note that
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the basic reproduction numbers for the pertussis models in
Hethcote (2000) are found to be 3.7 and 5.4. Also note that in
Fig. 2 as well as in the next figure, all axes are given in log base
10 scale, to better highlight some scenarios where the outbreak
initially peaks at a large number of infections, but eventually goes
to the DFE or approaches an endemic equilibrium with low
prevalence.

The outbreak increases initially, peaking for all infective classes
at approximately t¼37, then decreases to 0 as the system tends to
the globally asymptotically stable endemic equilibrium En. If we
further increase the waiting time from 3 h to 6 h (μS ¼ μI ¼ μR ¼ 4
for green trajectory) while keeping all other parameter values the
same, R0¼5.79 is only slightly increased and the peak is almost the
same as the blue trajectory.

However, the peak number of the infectives in the waiting/
reception area (IW12) increases (comparing the green trajectory with
the blue trajectory) as the waiting time increases while the other
three infective classes are not noticeably affected. Therefore,

a longer waiting time at clinics leads to a more significant increase
in peak number of infections in the waiting/reception area.

On the other hand, if we decrease the waiting time to 30 min
by letting μS ¼ μI ¼ μR ¼ 24 as in the red trajectory, R0¼5.69
decreases only slightly and the system still approaches an endemic
equilibrium. Hence decrease in waiting time does not drastically
alter the dynamic behavior of the system.

In Fig. 3, we now increase the transmission rate of infective
visitors in the community to susceptible residents in the health-
care facility β12 from 0.1 to 0.3 while keeping all other parameters
the same as in Fig. 2, then we have R0¼7.30 and the system still
approaches an endemic equilibrium (blue trajectory), as the
analytical result predicts. Interestingly, an increase in β12 causes
the peak number of infectives in the healthcare facility (I2) to
increase, while having no noticeable effect on the numbers of any
other infec'tive class. The red trajectory, with an even higher
transmission rate β12 ¼ 2, further confirms our observation.

Table 1
Summary table for model parameters and their values used in simulations.

Parameter Definition Value

γS Transfer rate of susceptible individual leaving patch 1 to patch 2 0.01
γI Transfer rate of infective individual leaving patch 1 to patch 2 0.3
γR Transfer rate of recovered individual leaving patch 1 to patch 2 0.01
μS Progression rate of susceptible individual to visiting phase 8
μI Progression rate of infective individual to visiting phase 8
μR Progression rate of recovered individuals to visiting phase 8
αS Transfer rate susceptible individual leaving patch 2 to patch 1 after the visiting 24
αI Transfer rate infective individual leaving patch 2 to patch 1 after the visiting 24
αR Transfer rate recovered individual leaving patch 2 to patch 1 after the visiting 24
s Disease transmission rate during the waiting process 0.1
d1 ;d2 Natural death rates of patch 1 and patch 2, respectively 4.57�10�5 (Hsieh et al., 2007a)
π1 Daily number of newborns in patch 1 5.0
π2 Recruitment rate of patch 2 0.1
β11 Disease transmission rate between residents in patch 1 0.2
β2 Disease transmission rate between residents in patch 2 0.1
βV12 Disease transmission rate between visitors from patch 1 during their visit stay in patch 2 0.1
βV21 Disease transmission rate of infective residents in patch 2 to susceptible visitors from patch 1 0.1
β21 Disease transmission rate of infectious residents in patch 2 to susceptibles in patch 1 in the community 0.2
β12 Disease transmission rate of infectious residents in patch 1 to susceptible residents in patch 2 in the community 0.1
β22 Disease transmission rate of infectives in patch 2 to susceptible residents in patch 2 while in the community 0.1
β12 Disease transmission rate of infective visitors from patch 1 to susceptible residents in patch 2 in the healthcare facility Variable
δ1, δ2 Recovery rate of infectives in patch 1 and patch 2, respectively 1

21
(De et al., 2000; Hethcote, 1997)
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Fig. 2. β12 ¼ 0:1 and all other parameter values are as shown in Table 1. System
(2.1)–(2.4) has a global stable endemic equilibrium E*. Blue line: μS ¼ μI ¼ μR ¼ 8,
R0¼5.73. Green line: μS ¼ μI ¼ μR ¼ 4, R0¼5.79. Red line: μS ¼ μI ¼ μR ¼ 24, R0¼5.69.
All axes are in log base 10 scale. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 3. Blue line: β12 ¼ 0:3. R0¼7.30. All other parameters are shown in Table 1 and
initial values are as in Fig. 2. System (2.1)–(2.4) has a global stable endemic
equilibrium E*. Red line: β12 ¼ 2. R0¼13.49. All axes are in log base 10 scale. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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However, if we decrease the transmission rates between
residents in the community β11 ¼ 0:02 and in the healthcare
facility β2 ¼ 0:01, and the transmission rate of infective visitors
to γI ¼ 0:02, with all other parameters and initial values the same
as in Fig. 2, then R0 ¼ 0:93o1. Subsequently, System (2.1)–(2.4)
has a globally stable disease-free equilibrium E0¼(136.5, 0, 0, 45.5,
0, 0, 109 227.1, 0, 0, 2188.2, 0, 0) given blue trajectory in Fig. 4. If we
also decrease the transmission rate of infective visitors in the
community to susceptible residents in the healthcare facility
β12 ¼ 0:01, we get an even smaller R0¼0.776 and System
(2.1)–(2.4) also approaches E0, as in the red trajectory in Fig. 4.

Extensive numerical simulations with different transmission
rates indicate that only decreasing β11, β2, β12 can decrease R0
down to less than 1, while decrease in other transmission rates
results only in minor decrease in R0. Therefore, the transmission
rates of the infectives in the community and in the healthcare
facility are most impactful in determining the dynamic behavior of
the epidemic.

5. Conclusions/discussion

Although the waiting time of visitors at healthcare clinics does
not affect the asymptotic (long-term) behaviors of the system, an
increase in waiting time can lead to an increase in peak number of
infections among the susceptibles waiting in the waiting/reception
area while not affecting the number of infections among any other
groups of susceptibles (Fig. 2). During the outbreak of SARS cases
that were linked to the NTUH Emergency Room between April 29
and May 16, 2003, 11 of 31 (35%) infections that were determined
to have occurred in the NTUH ER had onset within 2 short days
during May 11–12, leading to a complete shutdown of the ER on
May 12 (Chen et al., 2004). Hence, a long waiting time in a
crowded ER might very well contribute to a drastic upsurge in
cases in a short time, resulting in a stern challenge to hospital
emergency healthcare response and perhaps even in the need for
extreme intervention measures. Note further that the waiting
times of both the susceptibles and the infectives (respectively μS
and μI) appear in the formula for R0, indicating that how long these
individuals are kept waiting in the waiting-reception area does
impact the likelihood of an outbreak, although not the qualitative
dynamic behaviors of the system.

An increase in transmission rate of infective visitors in the
community to susceptible residents in the healthcare facility β12

causes only the peak number of infectives in the healthcare facility
(I2 or the healthcare facility staff) to increase, while having no
noticeable effect on the numbers of any other infective class
(Fig. 3). Thus our simulations highlight the important role that
infective visitors may play in a nosocomial outbreak.

Furthermore, only the disease transmission rates between
residents in the community β11 and in the healthcare facility β2,
along with the transmission rate of the infective visitors from the
community to the susceptible residents in the healthcare facility
β12, are important in affecting the dynamic behavior of the
epidemic model (Fig. 4). That is, sufficient decrease in these three
rates can effectively lower R0 down to below 1 and thus alter the
asymptotic behavior of the system from globally stable endemicity
to a disease-free state. All other transmission rates have little effect
in decreasing R0. Therefore, in order to eradicate the epidemic, it is
critical to prevent infections by the infective residents in the
community and in the healthcare facility, and by the infective
visitors from community to residents in healthcare facility. Pre-
venting infections among infective visitors in the healthcare
facility βV12 and through infective residents of healthcare facility
to susceptible visitors βV21 are, on the other hand, comparatively
not as crucial as the aforementioned control measures. Similarly
for the transmission rates in the community involving the resi-
dents of healthcare facility namely, β12, β21, and β22, which do not
lead to a noticeable change in R0.

We have isolated three modes of transmission that are candi-
dates for effective infection prevention: transmissions between
residents in the community and between residents in the health-
care facility, and transmission from infective visitors to susceptible
residents in the healthcare facility. Noting that the residents in
healthcare facility are in fact the healthcare workers and other
staff in the facility, increased infections among the healthcare
facility staff is a certain sign of a nosocomial outbreak. Subse-
quently, preventing infections among healthcare staff is of the
highest priority as a public health measure in prevention of
nosocomial outbreaks.

Finally, although we use pertussis as the illness modeled in our
numerical simulation study, there are many diseases that are
transmitted by healthcare workers. An example is the outbreak
of antibiotic resistant bacteria, where the healthcare workers
might be contaminated for a short duration until they properly
wash their hands, but never become infected. However, they could
conceivably cause infections among patients through contacts
with the patients while being contaminated (e.g., D'Agataa et al.,
2007). It would be interesting to see how our model structure can
be modified to address this type of contamination–infection
interaction. Moreover, studies have shown that there are many
ways to reduce infections among residents, e.g., frequent hand
washing and vaccination of unsuspected pertussis patients, includ-
ing asymptomatically infected healthcare workers. These are not
the focus of the present study. How to incorporate a wide range of
interventions at the community level and the equally wide range
of contamination reduction measures in the healthcare facility in a
comprehensive model to understand the infection dynamics of the
coupled facility-community remains an interesting and challen-
ging task for future studies.
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Appendix A. Proof of Theorem 3.2

Proof. From (2.3) and (2.4), we have

_S1Zπ1�ðβn

1þd1þγSÞS1;
_S2Zπ2�ðβ2þβn

2þβ12þd2ÞS2;

(

where βn

1 ¼maxfβ11; β21g, βn

2 ¼maxfβ12; β22g. Then, S1ðtÞ and S2ðtÞ
are ultimately bounded below by some positive constant, for
example, mS1 ¼ π1=ð2ðβn

1þd1þγSÞÞ and mS2 ¼ π2=ð2ðβ2þβn

2þβ12þ
d2ÞÞ, which are independent of the initial conditions. Then there is
a t140 such that S1ðtÞZmS1 , S2ðtÞZmS2 for tZt1. By (2.1), we
have

_S
W
12 ¼ γSS1�

sSW12I
W
12

NW
12

�ðμSþd1ÞSW12ZγSmS1 �ðsþμSþd1ÞSW12:

for tZt1. By a standard comparison argument, there exists
t24t140, such that SW12ZmSW12

9γSmS1=ð2ðsþμSþd1ÞÞ for tZt2,
which implies that SW12 is ultimately bounded below by some
positive constant. Similarly, we can show that SV12 is ultimately
bounded below by some positive constant. And so is RW12, RV12, Ri,
i¼ 1;2, if IW12, IV12, Ii, i¼ 1;2, are ultimately bounded below by some
positive constant independent of initial values. Therefore, it
suffices to prove that

lim inf
t-1

Il12ðtÞZϵ; l¼W ;V ; lim inf
t-1

IiðtÞZϵ; i¼ 1;2:

Define

X ¼ fðSW12; IW12;RW
12; S

V
12; I

V
12;R

V
12; S1; I1;R1; S2; I2;R2ÞAR12

þ : i¼ 1;2g;
X0 ¼ fðSW12; IW12;RW

12; S
V
12; I

V
12;R

V
12; S1; I1;R1; S2; I2;R2ÞAX : IW12þ IV12

þ I1þ I240g;
∂X0 ¼ X\X0:

Next we will show that System (2.1)–(2.4) is uniformly persistent
with respect to ðX0; ∂X0Þ. It is easy to verify that X and X0 are
positively invariant with respect to System (2.1)–(2.4). Further-
more, by Lemma 2.2, there exists a compact set B in which all
solutions of (2.1)–(2.4) initiated in X will enter and remain forever
after. The compactness condition (C4:2) in Thieme (1993) is easily
verified for this set B. Let ΦðtÞ ¼ ðSW12ðtÞ; IW12ðtÞ;RW

12ðtÞ; SV12ðtÞ; IV12ðtÞ;
RV
12ðtÞ; S1ðtÞ; I1ðtÞ;R1ðtÞ; S2ðtÞ; I2ðtÞ;R2ðtÞÞ. Denote

M∂ ¼ fΦð0Þ : ΦðtÞA∂X0; tZ0g:

We now show that

M∂ ¼ fðSW12;0;RW
12; S

V
12;0;R

V
12; S1;0;R1; S2;0;R2Þ : SW12Z0; RW

12Z0;

SV12Z0;RV
12Z0; SiZ0;RiZ0; i¼ 1;2g: ðA:1Þ

Suppose that Φð0ÞAM∂ . It suffices to show that IW12 ¼ 0, IV12 ¼ 0,
IiðtÞ ¼ 0 for any tZ0 and i¼1,2. If it is not true, then there exists
t0Z0 such that IW12ðt0Þþ IV12ðt0Þþ I1ðt0Þþ I2ðt0Þ40. Then Φðt0ÞAX0

contradicts to Φð0ÞAM∂ . This proves (A.1).
Denote the ω-limit set of the solution of System (2.1)–(2.4)

starting in Φð0ÞAX by ωðΦð0ÞÞ. Let
Ω¼ [ fωðΦð0ÞÞ : Φð0ÞAM∂g:

Restricting System (2.1)–(2.4) on M∂ gives

_S
W
12 ¼ γSS1�ðμSþd1ÞSW12;
_R
W
12 ¼ γRR1�ðμRþd1ÞRW

12;

_S
V
12 ¼ μSS

W
12�ðαSþd1ÞSV12;

_R
V
12 ¼ μRR

W
12�ðαRþd1ÞRV

12;

_S1 ¼ π1�ðd1þγSÞS1þαSS
V
12;

_R1 ¼ αRR
V
12�ðd1þγRÞR1;

_S2 ¼ π2�d2S2;
_R2 ¼ �d2R2:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA:2Þ
It is easy to verify that System (A.2) has an unique equilibrium
E1 ¼ ðSWn

12 ;0; SV
n

12;0; S
n

1;0; S
n

2;0Þ. Thus ðSWn

12 ;0;0; SV
n

12 ;0;0; S
n

1;0;0; S
n

2;

0;0Þ is the unique equilibrium of System (2.1)–(2.4) in M∂ . It is
easy to check that E1 is locally asymptotically stable. This implies
that E1 is globally asymptotically stable since (A.2) is a linear
system. Therefore Ω¼ fE0g. And E0 is a covering of Ω, which is
isolated and is acyclic(since there exists no solution in M∂ which
links E0 to itself). Finally, the proof of the persistence will be done
if we show E0 is a weak repeller for X0, i.e.

lim sup
t-1

distðΦðtÞ; E0Þ40;

where ΦðtÞ is an arbitrarily solution with initial value in X0. By
Leenheer and Smith (2003, Proof of Lemma 3.5), we need only
prove

WsðE0Þ \ X0 ¼∅; ðA:3Þ

where WsðE0Þ is the stable manifold of E0. Suppose that it is not
true, then there exists a solution ΦðtÞ in X0, such that

lim
t-1

SW12ðtÞ ¼ SW
n

12 ; lim
t-1

SV12ðtÞ ¼ SV
n

12 ;

lim
t-1

S1 ¼ Sn1;

lim
t-1

S2ðtÞ ¼ Sn2; lim
t-1

IiðtÞ ¼ 0;

lim
t-1

IW12ðtÞ ¼ lim
t-1

RW
12ðtÞ ¼ 0;

lim
t-1

IV12ðtÞ ¼ lim
t-1

RV
12ðtÞ ¼ 0;

lim
t-1

RiðtÞ ¼ 0; i¼ 1;2:

Then, for δ40, there exists T40 such that

SW
n

12 �δoSW12ðtÞoSW
n

12 þδ; SV
n

12�δoSV12ðtÞoSV
n

12þδ;

Sn1�δoS1oSn1þδ; Sn2�δoS2oSn2þδ; 0r IW12ðtÞo
δ

2
;

0rRW
12ðtÞo

δ

2
; 0r IV12ðtÞo

δ

2
; 0rRV

12ðtÞo
δ

2
;

0r IiðtÞo
δ

2
; 0rRiðtÞo

δ

2
;

ðA:4Þ
for all tZT and i¼1,2. Then for tZT , we have

βV21S
V
12I2

N2
Z

βV21ðSV
n

12�δÞ
Sn2þ2δ

I2 ¼
βV21S

Vn

12

Sn2
I2�

βV21ð2SV
n

12þSn2Þδ
ðSn2þ2δÞSn2

I2

Z
βV21S

Vn

12

Sn2
I2�

βV21ð2SV
n

12þSn2Þδ
ðSn2Þ2

I2;

S1
N1þN2

Z
Sn1�δ

Sn1þSn2þ2δ
¼ Sn1
Sn1þSn2

� ð3Sn1þSn2Þδ
ðSn1þSn2ÞðSn1þSn2þ2δÞ
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Z
Sn1

Sn1þSn2
�ð3Sn1þSn2Þδ

ðSn1þSn2Þ2
;

S2
N1þN2

Z
Sn2�δ

Sn1þSn2þ2δ
¼ Sn2
Sn1þSn2

� ðSn1þ3Sn2Þδ
ðSn1þSn2ÞðSn1þSn2þ2δÞ

Z
Sn2

Sn1þSn2
�ðSn1þ3Sn2Þδ

ðSn1þSn2Þ2
;

β12S2I
V
12

NV
12

Z
β12ðSn2�δÞ
SV

n

12þ2δ
IV12 ¼

β12S
n

2

SV
n

12

IV12�
β12ðSV

n

12þ2Sn2Þδ
ðSVn

12þ2δÞSVn

12

IV12

Z
β12S

n

2

SV
n

12

IV12�
β12ðSV

n

12þ2Sn2Þδ
ðSVn

12Þ2
IV12:

Then from (2.1)–(2.4), we have

_I
W
12ZγI I1þ

sðSWn

12 �δÞ
SW

n

12

IW12�ðμIþd1ÞIW12;

_I
V
12ZμI I

W
12þ

βV12ðSV
n

12�δÞ
SV

n

12

IV12þ
βV21S

Vn

12

Sn2
I2�

βV21ð2SV
n

12þSn2Þδ
ðSn2Þ2

I2�ðαIþd1ÞIV12;

_I1Z
Sn1

Sn1þSn2
�ð3Sn1þSn2Þδ

ðSn1þSn2Þ2

" #
ðβ11I1þβ21I2Þ�ðd1þδ1þγIÞI1þαI I

V
12;

_I2Z
β2ðSn2�δÞ

Sn2
I2þ

Sn2
Sn1þSn2

�ðSn1þ3Sn2Þδ
ðSn1þSn2Þ2

" #
ðβ12I1þβ22I2Þþ

β12S
n

2

SV
n

12

IV12

�β12ðSV
n

12þ2Sn2Þδ
ðSVn

12Þ2
IV12�ðd2þδ2ÞI2;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ðA:5Þ
for all tZT . Define

M2 ¼

s
SW

n

12

0 0 0

0 βV12
SV

n

12

0 βV21ð2SV
n

12 þ Sn2Þ
ðSn2Þ2

0 0 β11ð3Sn1 þSn2Þ
ðSn1 þ Sn2Þ2

β21ð3Sn1 þ Sn2Þ
ðSn1 þSn2Þ2

0 β12ðSV
n

12 þ2Sn2Þ
ðSVn

12 Þ2
β12ðSn1 þ3Sn2Þ
ðSn1 þ Sn2Þ2

β2
Sn2
þβ22ðSn1 þ3Sn2Þ

ðSn1 þSn2Þ2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

then, (A.4) implies that

_I
W
12

_I
V
12
_I1
_I2

0
BBBBB@

1
CCCCCAZ ðM1�δM2Þ

IW12
IV12
I1
I2

0
BBBB@

1
CCCCA

for tZT .

Since R041 implies sðM1Þ40, we can choose δ40 small
enough such that sðM1�δM2Þ40. Since matrix M1�δM2 has a
positive eigenvalue sðM1�δM2Þ with a positive eigenvector, it is
easy to see that IW12-1, IV12-1, I1-1, I2-1 as t-1, a
contradiction to (A.4). Thus (A.3) holds. By Zhao (1995, Theorem

2.4), System (2.1)–(2.4) has an equilibrium En ¼ ðSW12; I
W
12;

R
W
12; S

V
12; I

V
12;R

V
12; S1; I1;R1; S2; I2;R2ÞAX0. Then, I

W
12þ I

V
12þ I1ðtÞþ

I240, without loss of generality, we suppose I
W
1240. Let

N1 ¼ S1þ I1þR1, N2 ¼ S2þ I2þR2, N
V
12 ¼ S

V
12þ I

V
12þR

V
12. From the

first equations of (2.3) and (2.4), it follows that S140 and S240.

Otherwise, we have π1þαSS
V
12 ¼ 0 and π2 ¼ 0, which is a contra-

diction. By the second equation of (2.2), I
V
1240. Otherwise, we

have μI I
W
12þβV21S

V
12I2=N2 ¼ 0, again a contradiction. If I1 ¼ 0, then

by the second equation of (2.3), we have β21S1I2=ðN1þN2Þþ
αI I

V
12 ¼ 0, a contradiction, thus I140. Hence, R1 ¼ ðδ1I1þαRR

V
12Þ=

ðγRþd1Þ40, R
W
12 ¼ γRR1=ðμRþd1Þ40, R

V
12 ¼ μRR

W
12=ðαRþd1Þ40. If

I2 ¼ 0, then by the second equation of (2.4), we have β12S2I1=

ðN1þN2Þþβ12S2I
V
12=N

V
12 ¼ 0, a contradiction, thus I240. Hence,

R2 ¼ δ2I2=d240. If S
W
12 ¼ 0, then by the first equation of (2.1), we

have γSS1 ¼ 0 which is a contradiction, then S
W
1240 and S

V
12 ¼ 0.

Otherwise, by the first equation of (2.2), we have μSS
W
12 ¼ 0, a

contradiction again. Thus we have En ¼ ðSW12; I
W
12;R

W
12; S

V
12; I

V
12; R

V
12;

S1; I1;R1; S2; I2;R2Þ40 which is a component-wise positive equili-
brium of (2.1)–(2.4). This completes the proof. □
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