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a Lyapunov functional approach is developed to establish the existence of flocking
solutions for the proposed delayed Cucker—Smale model. An analytic formula is
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1. Introduction

Self-organized systems arise very naturally in artificial intelligence, and in physical, biological and social
sciences. Such systems seem to have remarkable capability to regulate the flow of information from distinct
and independent components to achieve prescribed performance. It is of particular interest, in both theories
and applications, to understand how self-propelled individuals use only limited environmental information
and simple rules to organize into ordered motions. These emerging behaviours such as flocking, herding and
schooling have been observed in many self-organized systems, including fish swimming in schools (Pitcher
et al. [13]), birds flying in flocks for the purpose of enhancing the foraging success (Camazine et al. [2]), and
the flight guidance in honeybee swarms (Fetecau and Guo [6]).

The celebrated Cucker—Smale model [4] proposed in 2007 provides a framework to examine the emergent
properties of flocks in order to explain self-organized behaviours in various complex systems. This Cucker—
Smale model has since been extended to include asymmetric influence functions and multi-agent systems
with hierarchical leadership, see [1,3,5,7,9,10] and the references therein. These emerging behaviours are
typically described by the so-called flocking solutions.

A flocking solution of the Cucker—Smale model (that describes the evolution of the position and velocity
of agents/individuals involved) is a solution for which the agents asymptotically reach a uniform velocity
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while remaining in finite distance from each other. In the literature, one talks about unconditional flocking
(if flocking solutions exist for all initial data) and conditional flocking (if flocking solutions exist for only
a certain class of initial configurations). A popular criterion to guarantee unconditional flocking is that the
influence function slowly decays with a diverging tail [11].

In this study, we incorporate processing delay in the influence function into the Cucker—Smale model
and its variations. We extend the aforementioned criterion for unconditional flocking to the delayed model,
using an approach based on a Lyapunov functional and delay differential inequalities. We also examine the
role of this processing delay and its impact on the asymptotic velocity. Our results show that this processing
delay does not change the qualitative flocking behaviours but alters the flocking velocity in a complicated
nonlinear fashion, involving both the initial velocity and the variation of the initial positions. This part of
our work also answered an open problem proposed by Motsch and Tadmor [11].

After a brief introduction into the Cucker—Smale model, we justify the introduction of time delay in the
influence function in Section 2, present an existence criterion for the flocking solution in Section 3, and then
derive an asymptotic flocking velocity formula in Section 4.

2. Cucker—Smale model and delayed influence

We consider the motion of a self-organized group with N agents, with each agent ¢ being characterized
by its position x; € R? and velocity v; € R?, where d > 1 is an integer. The Cucker-Smale model [4] is

given by
N
dXZ‘ dV,‘
G Ve g m e a0 - i), (1)
J#i
where a measures the interaction strength and x = (x1, X2, ...,xx). In the original formulation by Cucker

and Smale, the function a;; takes the following format

cs
Qij (x) = I(|Xi - Xj|)/N (2)
to quantify the pairwise influence of agent j on the alignment of agent i, as a function of the (metric)
distance. This influence function I is a strictly positive monotonically decreasing continuous function with
a prototype given by I(r) = (14 72)7# for r > 0, where 3 is a constant. In the recent study of Motsch and
Tadmor [11], a non-symmetric pairwise influence function

aMT (x) — I(]xi — %;1) 3
) Soess (1% — ) ¥

ij
is used to emphasize the importance of relative influence among agents.

We are interested in a more general setting by incorporating delay arguments in the pairwise influence
due to the finite speed in processing the influence. It seems to be very natural to introduce time lags for
most self-organized systems, and we will show that these time lags will not change the unconditional flocking
property qualitatively, but alter the flocking velocity in a nonlinear way.

In general, the influence of agents on each other is realized in various fashions including smell, sound and
vision. For example, the influence among honey bees is transferred mainly by a certain chemical material [12],
while the influence among geese is mainly made through vision [11]. As such, the influence of an agent on
another is naturally transferred with a finite speed. We will focus in this study on the case of delayed
processing of the information about the location and velocity of neighbouring agents, resulting in the
following modified Cucker—Smale model with delay:



Y. Liu, J. Wu / J. Math. Anal. Appl. 415 (2014) 53-61 55

dx;
a = vy, — —aZa” (Vj(t—T) _Vi(t)), (4)

where 7 denotes the communication time between agents i and j, which includes the response time of
agent 7, a;; = aCS or aMT.

To specify a solutlon for the self-organized system (4), we need to specify the initial conditions
Xz(e) = fl(e)v VZ(Q) = gl(e) for 6 € [_T7 0]7 (5)

where f and g are given continuous vector-valued functions. It will be shown that the final flocking velocity
will depend not only on the size of the time lag, but also on the variation of the agent positions at the initial
time interval.

As usual, we let dx and dy denote the diameters in position and velocity spaces, namely,

dx(x) = Hl.l_%x{\xj -xl},  dv(v)= H}?}X{M —vil}.

A solution {x;(t),v;(t)}}¥, of system (4) subject to the initial condition (5) is called a flocking solution if
it converges to a flock in the sense that

supdx (x(t)) < +oo and lim dy(v(t)) =0. (6)
t>0 t—4o00

We can simplify the model by using similar arguments used in [11]. Namely, using the boundedness of a;;
and by rescaling « if necessary, we may assume that a;; are normalized so that ) i Qi (x) < 1 for all x.
Let

an *lfza’lj tiT &ij(t):aw( (tiT))

J#i

then we can rewrite system (4) in the form

dXi dVi _
Ve i a(Vi(t) = vi(t)), (7)

where

\_/'i(t) = Zaij(t)vj(t - 7').

j=1

Remark 2.1. Due to the definitions of dx and dy with the super-norm, functions dx (x(t)) and dy (v(t)) are
not in general C'' smooth, so we will use upper Dini derivative in the discussion below. This is defined, for
a given function w that is continuous at ¢, by

DFw(t) =limsuph™ ' [w(t + k) — w(t)].

h—0t

If w is differentiable at ¢, then DT w(t) = dqggt) = 1 (t). In general, we have a sequence h, — 01 so that

Dtw(t) = lim, o0 hy, Hw(t + hy) — w(t)]. More importantly, for a given ¢ and for given x, there exist
integers r and s so that dx (x(t)) = |x,(t) — xs(t)| and a sequence h,, — 0T so that

Dtdx (x(t)) = Hm hy ' [|xe(E+ hn) = xs(t 4 ha)| = [x0(6) = x5(8)|] < |%n(t) — %s(2)].

n—oo
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A similar observation applies to D*dy (v(t)) and D*[dy (v(t))]?. This observation will be used in the next
section.

3. The existence of flocking solutions

In order to establish the existence of the flocking solution of system (7) with the initial condition (5), we
need the following

Lemma 3.1. (See [11].) Let S be an antisymmetric matriz, S;; = —Sj; with |S;;| < M for a constant M
and for i # j. Let u,w € RN be two given real vectors with positive entries, and let U and W denote their

respective sums: U = 3, u; and W = >_jwj. Fix 0> 0 and define
MO) = #A0), A0):={j|u; =0U and w; > OW}.
Then
(Su,w)| < MU (1 - X2(6)6?).
We can now apply the above technical lemma to system (7) to obtain
Lemma 3.2. Let {x;(t),v;(t)} be a solution of the dynamical system (7). Fiz t > 0 and 6 > 0, and let
Apq(0) = #{j | ap;(t) > 0 and aq(t) > 0}

Then the diameters of this solution, dx (t) := dx (x(t)) and dy(t) := dy (v(t)), satisfy

D+dX(t) < dV(t)7

Dtdy(t) < a(l ~ min qu(e)eﬂ)dv(t — 1) — ady (t).

pq

Proof. We use Remark 2.1 at the end of the last section to find integers p, ¢, » and s such that

o [vp(t) = vq()] = dv (), [x:(t) — xs(t)| = dx (1);
o Dtdx(t) < [%:(t) — %s(t)] = [V (t) — vs(t)] < dv(D);
o DYy (t))* < 2(vp(t) = vg(t),Vp(t) — V4 (2)).

Therefore, we have

2 2

D [dy ()] < 20{vp(t) — v (t), vp(t) — Vq(t)) — 20| vy (t) — vo(t)]"

Noting that »_, ap;(t) = >_; Gq;(t) = 1, we obtain
9p(0) = %alt) = 3 O, (6 = 7) = Yttt — 7
= Z Gqi(t) Z ap; (L) v;(t —7) = Z ap; (t) Z agi(t)vi(t — 7)

= Z ;i (1)agi(t) (vt — 1) = vilt — 7).
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This leads to
2 ~ - 2
D [y (0] = 20 S s 01w, = 1) = wile = 1)ovilt) = va(0) = o) - vaOF | 9
iy

Let S;; = (vj(t = 7) —vi(t = 7),vp — Vq), u; = Ggi(t) and w; = ap;(t). Then for the fix 6 > 0, by
Lemma 3.1, we have

[(Suw)] = |3 s (Oage (D) (vt = ) = vilt = 7),v, = va)
< (1 — min Af,q(e)e?)dv(t — )y (8).

From this and (8) it follows that

Dtdy(t) < af (1-minX2,(0)6%)dv (t = 7) — dv (1))

raq

completing the proof. O
Lemma 3.3. Suppose the diameters dx(t) and dy (t) are governed, fort > 0, by the inequalities:

Ddx(t) < dv(t),
D+dv(t) < a[l — w(dx(t — T))]dv(t — ’7') — adv(t),

where (+) is a positive continuous function with diverging tail in the sense that faoo Y(r)dr = oo for some
a >0, then sup,>, dx(t) < co and dy(t) — 0 as t — oo.

Proof. We use a Lyapunov functional inspired by the work of Ha and Liu [8]. Consider

dx(t—T)

0
E(dx,dv)(t) = dv(t)+01 / 1/)(7“)d7"+0é/dv(t+9)d9

We have for t > 7 the following estimate

dx (t—7) 0
DVE(dx,dy)(t) = Ddy(t) + aD™ / z/)(r)dr+aD+/dV(t+9) do
0 -7
o[l = (dx(t —7))]dv(t —7) — ady(t)
+ ady (t) — ady(t —7) + ap(dx (t — 7)) D dx (t — 7)
< —ap(dx(t—7))dv(t—7)+ a(dx(t —7))dy(t —7)
=0.

Thus the functional E is an energy functional in the sense that it is decreasing along the trajectory
(dx(t),dy(t)). We deduce that

dx (t—7) 0 dx(0) -
dy (t) + « P(r)dr+a [ dy(t+0)do < dy(T)+« Y(r)ydr+a | dy(0)do.
/ / o/ 0/

-7

o



58 Y. Liu, J. Wu / J. Math. Anal. Appl. 415 (2014) 53-61

It follows from the fact that ¢ has a divergent tail that there must be a constant d* < oo so that dx (¢) < d*
for all ¢ > 0. Consequently, we have

o[l —¢(dx(t —7))]dv(t—7) — ady(t)

<
<a(l—y*)dy(t—7) — ady (),

where ¢* = mingg,<q- ¥(r) > 0. We can then use a standard argument in the theory of delay differential
equations to show that dy (t) — 0 as t — co. This completes the proof. O

We can now state our main result for the existence of flocking solutions.

Theorem 3.1. Assume that the influence function I satisfies faoo I*(r)dr = oo for some a > 0. Then the
solution {(x;(t),vi(t))}N., for the self-organized systems (4) with either a;; = a° or aM™ converges to

i J
a flock.

Proof. Since I is decreasing, under the normalization condition, we have I(|x; — x;|) < I(0) < 1. Then we
have

I{dx (1) < I(jx; —xil) < 1.

If aj; = af;° in (4), then a;(t) > w for all ¢ # j and

o) =1= Dt =7)>1- N ) 1O M=),
If a;; = af‘;[T in (4), then
_ I(jxi(t) — %, (1)) I(dx(t— 1))
ai;(t) = =
" Sone I(xi(t) — xi(t)]) N

for all ¢ # j and

) I(O) I(dX(t - T))
aii(t) =1—- ) ay(t—7)= g '
(t) ; (t=7) SOV T(|xa(t) — %k ()])

Thus all the alignment coefficients a;;(t) in (7) are lower-bounded by a;;(t) > W.

Let 0(t) := W, then miny, A,q(6) = N in Lemma 3.2. Thus the diameters dx(¢) and dy (t) are
governed by the inequalities:

DT dx(t)
DT dy(t)

dV (t)a

<
<al[l-=IP(dx(t—7))]dv(t—7) — ady(t).

The result follows from Lemma 3.3 with o (r) = I?(r). O
We note that with 7 = 0, Theorem 3.1 reduces to the main result in [11, Theorem 4.1]. To obtain

this extension of Theorem 4.1 in [11] for the case with delay, we relied heavily on the use of a Lyapunov
functional.
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4. Flocking velocity and the impact of processing delay
Using the variation-of-constants formula, we can rewrite the solution of system (7) with the initial

value (5) as

¢
x;(t) = (1 - e_o‘t) &:( )+ / (1- et s) Za” x(s —7))v;(s —7)ds, 9)

vi(t) = e g (0) + « / ea(t=9) Z aij(x(s = 7))vj(s — 7)ds. (10)

For the asymptotic flocking velocity, we start with a general result as follows.

Theorem 4.1. Assume that the influence function I satisfies f:o I*(r)dr = oo for some a > 0. Then the
asymptotic flocking velocity v is given by

im vit) —veo = S0 L@ o Le0) -k
Jm vilt) = veo = 5o 4 oo [wi +£i(0) — £i(=7)],

where

Proof. By Theorem 3.1, we have lim;_,o |v;(t) —v;(t)] = 0 for all 7, j. Thus there is an asymptotic flocking
velocity v, such that limg_, o v;(t) = v for all d.

On the other hand, since x;(t) — x;(t — 7) ft L Vi(s)ds = Tv;(n) for some n € (t — 7,t), we conclude
limy s oo (%i(t) — %i(t — 7)) = TVeo. A direct computatlon, using Egs. (9) and (10), yields that

x;(t) = (1 - e*o‘t) %0) +£;(0) + / —e(t=9) Za” vj(s —71)ds

j=1
Thus
LN
tgxfw/zlaij(x(s ) (vi(s —7) = vi(s — 7)) ds
0 7=
= Jim_[xtt) = (e =)~ B g0+ X )
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=TVoo — gi(0) _ £;(0) + Yoo + £ (1) :=w;.
« o
Then we have
) v BO @
t£+moovl(t)7v°°7 1+a7+1+a7[wl+fl(0) (=),

completing the proof. 0O

Remark 4.1. In Theorem 4.1, if a;; = a;; for all ¢, j then Zf\il w; = 0. Thus

Zi]\il gi(0) o
N(+ar) " N(I+ar) ; [£:(0) — £i(=7)]-

Voo =

Remark 4.2. Theorem 4.1 gives a positive answer to the problem posed in [11, Remark 4.2] about whether v,
can be computed from the initial configuration. We also note that the time delay impacts on the final
flocking velocity in a nonlinear way, and the variation of the initial position during the delay interval may
also contribute to the determination of the final velocity.

5. Conclusions and discussions

It is of particular interest, in both theories and applications, to understand how self-propelled individuals
use only limited environmental information and simple rules to organize into ordered motions. In this paper,
we extended the Cucker—Smale model by incorporating the communication time lag between agents. It was
shown, using some Lyapunov functional and delay differential inequalities, that the communication delay
does not affect the existence of flocking solutions when the influence function has a divergent tail. We also
gave a positive answer to the open problem posed by Motsch and Tadmor, that relates the final flocking
velocity to the time lag, and the variation of the initial position during the delay interval.
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