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A B S T R A C T

In vector-borne disease modeling, a key assumption is the host–vector interaction pattern encapsulated

in the host seeking rate. Here, a model for Lyme disease dynamics with different host seeking rates is

used to investigate how different patterns of tick–host interaction affect the model predictions in the

context of tick-borne disease control. Three different host seeking behaviors (the frequency-dependent

rate, the density-dependent rate and the Holling type 2 rate) are compared. The comparison of results

illustrates not only variable relationships between rodents and tick abundance but also different

implications for disease control: (i) for the model with the frequency-dependent rate, reducing rodents is

always bad for containing the disease; (ii) for density-dependent or the Holling type 2 rate, reducing or

increasing rodent population should be carefully considered, since large host population may facilitate

the development of immature ticks, resulting in the immature tick population level so low to sustain the

transmission cycle. Furthermore, we distinguish different mechanisms of dilution effects (pathogen

reduction with the increasing of the host biodiversity) from different tick–host interaction patterns.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Prevention and control of tick-borne diseases is important to
human health, animal welfare and economics. Tick-borne encepha-
litis virus causes thousands of human cases of encephalitis in Europe
and Asia every year (Mansfield et al., 2009; Nonaka et al., 2010), and
Lyme disease remains the world’s most frequently recorded vector-
borne diseases in the temperate zone. More than 20,000 cases are
reported in the United States each year (Kurtenbach et al., 2006;
CDC, 2007), and the number of known endemic areas of Lyme
disease in Canada is predicted to be acceleratingly increasing with
climate change (Ogden et al., 2009). Though a variety of models have
been proposed (see, for example, Caraco et al., 1998; Schmidt and
Ostfeld, 2001; Ogden et al., 2005; Ostfeld, 2011; Wu et al., 2013),
little has been done to describe the relationship between the model
structure and predictions for Lyme disease.

In eastern and central North America, Lyme disease is caused by
spirochete bacterium Borrelia burgdorferi and transmitted by the
tick vector Ixodes scapularis. The transmission process of Lyme
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disease as a zoonotic vector-borne disease is largely affected by the
interaction between the vector and its hosts. The tick vector has a
wide range of hosts, adult ticks always feed on white-tailed deers
while immature ticks normally feed on small mammals, with
white-footed mouse as the most efficient reservoir. Thus it is
naturally proposed that Lyme disease is closely tied to two host
species: deers which determine tick numbers, and rodents
(particularly white-footed mice) which determine tick infection
(Ostfeld, 2011). Two relationships are important in the ecology and
epidemiology of this complex ecological and epidemiological
system. The first is the relationship between deer and tick
abundance. This relationship seems to be variable, sometimes
strong and sometimes weak or nonexistent (Ostfeld, 2011).
Another is the relationship between the disease risk and host
community diversity. Dilution effect, defined when disease
frequency decreases with increasing biodiversity, and the oppo-
site-amplification effect have been discussed in the literature (see
Ostfeld, 2011; Keesing et al., 2006; Rudolf and Antonovics, 2005;
Schmidt and Ostfeld, 2001, 2001; Mitchell et al., 2002; LoGiudice
et al., 2003; Ostfeld and Keesing, 2000; Ostfeld and LoGiudice,
2003; Van Buskirk and Ostfeld, 1995; Ogden and Tsao, 2009). In
particular, different possible mechanisms responsible for dilution
effects were classified in Keesing et al. (2006). These mechanisms
include encounter reduction, transmission reduction, susceptible
host regulation, infected host mortality, recovery augmentation
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Table 1
Variables for the model system (1) and (2).

L The total number of larval ticks

N The total number of tick nymphs

A The total number of adult ticks

MI The number of infectious rodents

NI The number of infectious nymphs

AI The number of infectious adult ticks
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and vector regulation. Three of these mechanisms seem to be
popular and important for the tick-borne disease transmission:
encounter reduction, host regulation and vector regulation
(Ostfeld, 2011). Here, we employ a mathematical dynamical
modeling approach to explore how tick–host interaction patterns
affect disease transmission, with Lyme disease as a case study.

As noted in Wonham et al. (2006), a model’s mathematical
structure should be determined by its underlying biological
assumptions, and the model-based prediction is strongly influenced
by the model structure. For vector-borne disease modeling, a key
assumption is the host–vector interaction represented by the
transmission term. Epidemiologists increasingly appreciate that the
disease-transmission term may greatly affect the predicted disease
transmission pattern and disease control strategies (Wonham et al.,
2006). In tick-borne interaction modeling, density-dependent
(Caraco et al., 1998) and frequency-dependent (Gaff and Gross,
2007) functions have been widely used. Some other more
complicated functional responses, such as the one in Ogden et al.
(2005), are also used. These complicated responses, as will be shown,
can be considered as intermediate scenarios between the density-
dependent and frequency-dependent cases and these responses can
be expanded as a combination of the density-dependent and
frequency-dependent forces. In dynamic modeling, prediction of
long-term disease transmission dynamics and evaluation of disease
control strategies are closely related to the calculation of a few
indices summarizing the collective impact of model parameters and
initial conditions. One important predictive index is the basic
reproduction number (Hartemink et al., 2008) which, for tick
population is the total number of female adult ticks produced by a
single female tick during her entire reproduction period; and for
Lyme disease is defined as the average number of secondary cases
caused by one infectious individual placed in a population consisting
entirely of susceptibles. These indices should be evaluated under
different assumptions of tick–host interactions. Also important for
determining the human risk of exposure to Lyme disease, as
emphasized by Ostfeld (2011), is the number of nymphs responsible
for the majority of Lyme disease cases, and three temporally varying
measures: nymphal infection prevalence (NIP: which is the
proportion of nymphs infected with B. burgdorferi), the density of
infected nymphs (DIN) and the density of nymphs (DON). In this
study, we examine how the choice of different transmission terms
qualitatively and quantitatively alters the basic reproduction
numbers, the time-evolution of nymphs, NIP, DIN and DON,
therefore alters predicted disease transmission patterns and control
implications. We hope this modeling approach can contribute to
addressing the question ‘‘why the relationship between deer and
tick abundance be so variable’’ (Ostfeld, 2011). We also show that
while an excessively large rodent population size has positive effects
on disease control, the conceptual mechanisms underlying various
tick–host seeking patterns are different. We clarify this idea in the
context of dilution and/or amplification effect. Moreover, in the case
of density-dependent and Holling type 2 transmission terms, we
observe both the dilution effect and amplification effect of the host
community may take place. Thus, we encounter the dilemma with
respect to the disease control: to reduce or to increase rodent
population. Solving this dilemma relies on and thus calls for accurate
formulation of the transmission patterns of the disease under
consideration.

2. Effects of host seeking patterns on disease dynamics

2.1. The core model and ecological/epidemiological reproduction

numbers

There are many mathematical models developed for tick-borne
disease transmission dynamics, such as those in Bolzoni et al.
(2012), Tagliapietra et al. (2011), Pugliese and Rosà (2008), Rosà
and Pugliese (2007). Here, we adapt the simple model structure of
Caraco et al. (1998) to capture some important features of the
complex epidemiology of Lyme disease. Namely, we use the
system

dLðtÞ
dt
¼ bFA �

1

K
AðtÞ

� �
AðtÞ � ðFL þ mLÞLðtÞ;

dNðtÞ
dt
¼ FLLðtÞ � ðmN þ FNÞNðtÞ;

dAðtÞ
dt
¼ FNNðtÞ � mAAðtÞ

(1)

to describe the tick population dynamics, and formulate the
system

dMIðtÞ
dt

¼ bMFN
M � MIðtÞ

M
NIðtÞ � mMMIðtÞ;

dNIðtÞ
dt

¼ bLFL
MIðtÞ

M
LðtÞ � ðFN þ mNÞNIðtÞ;

dAIðtÞ
dt

¼ FNNIðtÞ þ bNFNðNðtÞ � NIðtÞÞ
MIðtÞ

M
�mAAIðtÞ

(2)

for the disease transmission dynamics. All of the variables and
parameters are presented in Tables 1 and 2. We will also adopt the
parameter set from Caraco et al. (1998). Ticks can feed on various
vertebrates as hosts (Mannelli et al., 2012). To illustrate our
findings, we assume that the immature ticks mainly feed on
rodents, while adults feed on deer. We further assume that the
total rodent population and the deer population are in their
demographic equilibria, fixed at the equilibrium values M and D

respectively, but we assume that rodents may change epidemio-
logical status from susceptible to infected through infection by
infectious ticks. We should emphasize that the ticks host feeding
rates FL, FN, FA are supposed to have various forms (as detailed in
Section 2.2 later). This is different from the model in Caraco et al.
(1998), where only density-dependent tick seeking rate is used.
Since the pathogen is maintained among the immature ticks and
their hosts, the last equation of system (2) can be decoupled from
the system.

Since one adult tick, with average life span 1/mA, can produce an
average of bFA larvae per unit time which will survive to the
nymphal stage with the probability of FL/(FL + mL), and FN/(FN + mN)
gives the nymph survival probability to adults, an adult tick can
reproduce bFAFL/(FL + mL)FN/(mN + FN)/mA adults in its life time, we
naturally define the (ecological) reproduction number for the tick
population as

RTick ¼ bFA
FL

FL þ mL

FN

mN þ FN

1

mA

:

The tick subsystem (1) has always a tick-free equilibrium (0, 0,
0). If the reproduction number for ticks is greater than unity, then
there exists a positive equilibrium, denoted by (L*, N*, A*), with

A� ¼ K bFA �
mN þ FN

FL

mA

FN
ðFL þ mLÞ

� �
¼ KbFA 1 � 1

RTick

� �
;



Table 2
Parameters of the model system (1) and (2).

M The total number of rodents

D The total number of the deers

FA The rate at which adult ticks attack deers, this is a function of D

FL The rate at which larval ticks attach on rodents, this is a function of M

FN The rate at which nymphal ticks bite rodents, this is a function of M

b The larvae hatching per adult tick–deer interaction, in the absence

of tick self-regulation

1/K The scales self-regulation in tick reproduction

mL The larvae death rate

mN The death rate for tick nymphs

mA The death rate for adult ticks

bM Transmission coefficient of spirochete infection to rodents

bL Transmission coefficient of spirochete infection to larval ticks

bN Transmission coefficient of spirochete infection to nymphal ticks
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where L* = (mN + FN)/FL(mA/FNA*) and N* = mA/FNA*. In Caraco et al.
(1998), it was proved that if RTick � 1, then (0, 0, 0) is locally stable.
Using the following Lyapunov function, which has been widely
used in the mathematical biology literature (see, e.g., Guo and Li,
2004; Ma et al., 2003; Korobeinikov and Maini, 2004 and
references therein)

V1ðtÞ ¼ FLLðtÞ þ ðFL þ mLÞNðtÞ þ ðFL þ mLÞðmN þ FNÞ
FN

AðtÞ;

we can show that every solution of (1) converges to (0, 0, 0) if
RTick � 1. On the other hand, if RTick > 1, then (0, 0, 0) is unstable
and a unique positive equilibrium (L*, N*, A*) exists. At this
positive equilibrium, the transmission dynamics subsystem (2)
is reduced to

dMIðtÞ
dt

¼ bMFN
M � MIðtÞ

M
NIðtÞ � mMMIðtÞ;

dNIðtÞ
dt

¼ bLFLL�
MIðtÞ

M
�ðFN þ mNÞNIðtÞ:

(3)

Note that the equation for AI(t) is decoupled from the above
subsystem. Note also that biologically, infectious nymphs deserve
more attention: nymphs transmit the disease more efficiently, and
the bacteria is maintained between hosts and immature ticks
(Ostfeld, 2011). For the limiting system (3), we can compute the
(epidemiological) basic reproduction number using the next
generation matrix method (see Diekmann and Heesterbeek,
2000; van den Driessche and Watmough, 2002). In particular,
we set the disease transmission matrix

F ¼
0 bMFN

bLFL
L�

M
0

0
@

1
A

and the transition matrix

V ¼ mM 0
0 FN þ mN

� �
:

Then the next generation matrix is

FV�1 ¼
0

bMFN

FN þ mN

bLFL
L�

M

1

mM

0

0
BB@

1
CCA;

and the basic reproduction number is calculated as

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bMFN

FN þ mN

bLFLL�

mMM

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bMbLmAA�

mMM

s
:

In the case where R0 > 1, we have a unique positive endemic
equilibrium (M�I , N�I ), given by
M�I ¼ M �mMM2ðFN þ mNÞ
bLFLL�bMFN

¼ M 1 � 1

R2
0

  !
;

N�I ¼
bLFLL�

FN þ mN

1 � 1

R2
0

  !
¼ bLN� 1 � 1

R2
0

  !
:

Since system (3) is of the Ross-Macdonald type, we have

Theorem 2.1. If R0 � 1, the disease free equilibrium is globally

asymptotically stable; if R0 > 1, there exists a positive disease endemic

equilibrium and it is globally asymptotically stable with respect to all

nontrivial solutions.

This result can be obtained by using the Lyapunov function
V2(t) = MI(t) + mMMNI(t)/(bLFLL*) for the case where R0 � 1, and the
Lyapunov function

V3ðtÞ ¼ MIðtÞ � M�I � M�I ln
MI

M�I

� �
þ mMM

bLFLL�
NIðtÞ � N�I � N�I ln

NI

N�I

� �

in the case where R0 > 1.
Therefore, the dynamics of the model system (Eqs. (1) and (2))

can be determined by the two threshold parameters: the
reproduction number for ticks (RTick) and the basic reproduction
number for the Lyme disease (R0).

2.2. Three scenarios

In this section, we discuss the results with respect to different
host seeking rates.

2.2.1. Frequency dependent seeking rate

One commonly used vector seeking rate is frequency dependent
following Anderson and May (1991) and Wonham et al. (2006) by
assuming that the vector seeking rate is saturated and thus not
limited by the host density. Thus in the frequency-dependent
seeking process, the host searching time of ticks is independent of
the host’s density, and we have FL = p1, FN = p2 and FA = p3, with
constants p1, p2 and p3. In this case, RTick, L*, N* and A* are
independent of the rodent and deer populations. Therefore,
increasing or decreasing the rodent and deer populations has no
effect on tick control. However, increasing the rodent population M

implies that R0 and N�I are decreased. So, reducing rodents is
always not good for disease control. To control the disease, we
should increase the rodent population and set the rodent
population size large enough such that R0 � 1. To achieve
R0 � 1, the rodent population should satisfy

M � bMbLmA

mM

K bp3 � ð p1 þ mLÞ
mN þ p2

p1

mA

p2

� �
:

If more rodents are introduced into the habitat, infectious tick bites
may be wasted such that R0 < 1. We illustrate the above
arguments by the numerical simulations (see Fig. 1). In particular,
we observe that increasing rodents may decrease disease risk,
whether that risk is measured by DIN or by NIP.

2.2.2. Density dependent seeking rate

Another commonly used vector seeking rate is density
dependent, which is termed as mass action (e.g., Wonham et
al., 2006). In the density-dependent seeking process, the host
searching time of ticks is proportional to the reciprocal of the host
density. Hence, we have FL = q1M, FN = q2M and FA = q3D, where q1,
q2 and q3 are constants. Since in this case
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this case, the number of infectious nymphs is a linearly decreasing function of the rodent population. Parameter values are: b = 600, K = 100, mL = 0.7, mN = 0.8, mA = 1,
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RTick ¼ bq3D
q1M

q1M þ mL

q2M

q2M þ mN

1

mA

;

is always an increasing function of D and M. Set RTick ¼ 1, we have
the following equation

mLmN

q1q2

1

M

� �2

þ 1

M

mL

q1

þmN

q2

� �
þ 1 � bq3D

1

mA

¼ 0: (4)

Therefore, if bq3D/mA � 1 then Eq. (4) for M has no positive root.
This means RTick < 1 for all rodent population sizes, and ticks
cannot establish. On the other hand, if bq3D/mA > 1, Eq. (4) has a
unique positive root. In this case, the positive root of Eq. RTick ¼ 1
(Eq. (4)) is

M ¼ 2mLmN=ðq1q2Þ

�ðmL=q1 þ mN=q2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmL=q1 þ mN=q2Þ

2

þ4ðmLmNÞ=ðq1q2Þðbq3D=mA � 1Þ

s :

¼ Mc:

This root M is a decreasing function of D. Hence, if the deer
population D � mA/(bq3) : = Dc, the tick cannot establish because of
insufficient foods for adult ticks. When the deer population
exceeds the critical size mA/(bq3), there is a corresponding critical
size Mc = Mc(D) of the rodent population above which tick
establishment is possible. This critical value Mc of the rodent
population is a decreasing function of the deer population size.

If the reproduction number for ticks RTick > 1, ticks can establish
in the habitat and the equilibrium abundances are

A� ¼ K bq3D � ðFL þ mLÞ
mN þ FN

FL

mA

FN

� �
; L� ¼ mN þ FN

FL

mA

FN
A�;

N� ¼ mA

FN
A�;
which are all increasing functions of D. Hence, reducing the deer is
always beneficial for tick control. In this case, the adult tick
population size A* = K(bq3D � mA(1 + (mL/(q1M)))(1 + (mN/(q2M))))
is an increasing function of M. Note that the adult tick population is
saturated at the state K(bq3D � mA) if the deer population is fixed.
The population sizes for larvae and nymphs, L* and N*, can be either
increasing or decreasing while M is increased.

Note that R2
0 ¼ ðbMbLmAKÞ=mM½ðbq3D=MÞ � ðmA=MÞð1 þ

ðmL=ðq1MÞÞÞ ð1 þ ðmN=ðq2MÞÞÞ�. Therefore, R0 is an increasing
function of D, so reducing deers is beneficial for controlling the
disease. Using this formula for R0, we can derive from ð@R2

0Þ=@M ¼
0 the following equation:

3
mL

q1

mN

q2

1

M

� �2

þ 2
mN

q2

þ 2
mL

q1

� �
1

M
þ 1 � bq3D

mA

¼ 0:

When D > Dc, that is, the deer host is abundant, the above equation
has one positive root M0. Then, R0 ¼ R0ðMÞ as a function of M

increases for M � M0 (ð@R2
0Þ=@M > 0 when M < M0) and then

decreases for M > M0 (ð@R2
0Þ=@M < 0 when M > M0). Consequently,

reducing rodents does not necessarily contribute to the disease
control. Setting R0 ¼ 1, we get

bMbLmA

mMM
K bq3D � mA 1 þ mL

q1M

� �
1 þ mN

q2M

� �� �
¼ 1:

This equation has two positive roots for M for the fixed deer
population D. These two positive roots indicate two critical values
of rodents size for pathogen maintenance: one corresponds to the
case where the tick population size is too small (due to small
rodent size) to sustain the transmission cycle. The other to the case
where the host population size is so large that immature ticks
develop too fast, resulting in a low immature tick population level
that no longer sustains the transmission cycle. In this case, large
rodent population size will also waste effective infectious bites,
leads to the dilution effect due to encounter reduction. This is
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illustrated in Fig. 2. In particular, increasing rodents may increase
or disease risk.

2.2.3. Holling type 2 seeking rate

For the Holling type 2 functional response (Holling, 1959), we
have FL = c1M/(a1 + b1M), FN = c2M/(a2 + b2M) and FA = c3D/
(a3 + b3D), where ai, bi and ci are constants for i = 1, 2, 3. Because
the Holling type 2 response is a mediate situation between the
frequency dependent seeking rate and density dependent seeking
rate, we can reproduce the results in the first two cases using this
host–vector interaction pattern by changing a few parameters in
this transmission term. Figs. 3 and 4, with two different sets of
parameters for the interaction term, illustrate this mediate
situation.

3. Discussion

In this paper we investigate the impact of tick seeking
assumptions on the Lyme disease prediction. Three different tick
seeking assumptions are considered: (i) the average number of
bites made by a tick in per unit time is saturated at a constant, and
independent of the host density (frequency-dependent rate); (ii)
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the number of bites made by a tick per unit time increases linearly
with host population size (the density-dependent rate); and (iii) the
number of bites made by a tick per unit time increases with host
density when the density is small, but becomes saturated with large
host population size (the Holling type 2 rate). Conflicting outbreak
predictions are generated by different assumptions: The frequency-
dependent assumption predicts that reducing the rodent population
will always reduce Lyme disease outbreaks, whereas the density-
dependent and Holling type 2 seeking assumptions predict that this
will reduce or exacerbate infection risk.

A host species that is a competent reservoir for B. burgdorferi can
cause infection in a high proportion of the ticks that feed on it in
nature. In our model, we first consider rodents as the sole host
species for immature ticks. Ecologically, rodent is a competent
reservoir, which is efficient in feeding and infecting ticks. In reality,
the host community of ticks is very complicated and shows high
level of diversity (Mannelli et al., 2012; Ostfeld, 2011). If we add
another host species to the model, whereas the added species
shares the similar growth and reservoir competence with the
existing rodent population, then increasing the rodent population
size in the model can be considered as adding this species to the
existing host community, which in turn enhancing the biodiversity
in the habitat with an additional similar host species. Then we can
use the model to study the effect of increasing biodiversity on
pathogen transmission and disease risk. We emphasize that a
multi-host model will be needed if different rodent species
behaves differently with respect to the disease and/or have
different life history parameters. Adding disease incompetent
reservoirs into the existing community was shown to dilute the
Lyme disease transmission (Ostfeld and Keesing, 2000). However,
increasing the community diversity with a disease competent
reservoir species (increasing the rodent population size in our
model) can also reduce the disease transmission, as our analysis
suggested. We addressed this dilution effect for different host
seeking patterns. For the frequency-dependent seeking rate, the
infectious nymph population size and the epidemiological basic
reproduction number are decreased with increasing rodent
population because the infectious bites of nymphs are wasted in
superfluous susceptible rodents, i.e., the number of infectious ticks
per rodent would be very low such that the pathogen can not be
transmitted to new ticks. This phenomenon occurs when lots of
infectious bites are wasted on the host population, making the per
capita transmission rates actually fall. This mechanism can be
termed as encounter reduction (Keesing et al., 2006), which is also
similar to the study about West Nile virus transmission (Wonham
et al., 2006), where it was noted that increasing the bird
population might decrease the pathogen risk for the frequency-
dependent contact process. However, for the density-dependent
case, both the amplification effect and dilution effect were
observed. With low level of biodiversity, increasing biodiversity
provides more food supply for immature ticks and thus increases
tick survival and abundance, which in turn enhancing the disease
risk. However, with high level of biodiversity, increasing the
biodiversity may induce a decrease in pathogen transmission,
yielding the dilution effect. The infectious nymph population and
the epidemiological basic reproduction number are decreased
while the rodent population is increased because of the fast
development of the larvae to the adult stage thanks to the
sufficient food (rodents) supply. However, since the adult tick
population may be saturated at a level limited by its food supply
(deers), the nymph population can only survive at a low
abundance. Since the pathogen transmission cycle is maintained
between rodents and immature ticks, and the population of
infectious nymphs is directly regulated by the population of larvae
and nymphs (as shown in the limiting system (3)), the total
number of immature ticks regulates the disease risk. Thus, large
rodent populations promote the development of immature ticks
and the abundance of immature ticks becomes low, reducing the
probability for ticks to infect the rodents and the probability for
ticks to get infected. The mechanism under this dilution effect can
be termed as vector regulation (Keesing et al., 2006). However, this
development related dilution shows the decrease of disease
incidence as the result of the large development rate with a small
size of immature ticks to sustain the transmission cycle. Note that,
whether the seeking rate is density-dependent or frequency-
dependent, our model suggests that high host diversity is more
likely to decrease rather than to increase disease risk, which is
consistent with the other studies such as Keesing et al. (2006).
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Our hypothetical model with a density-dependent rate
indicates that the tick populations and the density of infected
nymphs (DIN) are positively and closely tied to the deer population
(as one increases, so does the other). Thus deer abundance
threshold is critical for tick survival and disease transmission. Deer
control would be considered as a method of reducing the tick
population and human risk to exposure to the Lyme disease.
However, as reviewed in Ostfeld (2011, p. 32), some studies show
that even deers are eliminated, reduced by hunting, or excluded by
fencing, the next several years sees an increase in the proportion of
immature ticks that are infected with Lyme disease spirochetes,
thus the increase in disease risk. The inconsistency of our result
and those studies arises from our assumption that deers are the
sole host for adult ticks and that rodents are the host for immature
ticks. In reality, adult ticks that would have fed on deers will evolve
to feed on other hosts, such as rodents in the case when deers are
rare (Ostfeld, 2011, p. 32). Incorporating this evolutionary selective
behavior of ticks would enrich our understanding of mapping
disease risks and controlling disease transmission. However, our
model with frequency dependent seeking rate indicates that the
tick abundance and disease risk are independent of the deer
population, thus there is no threshold of deer abundance, which in
turn supporting that reducing deer is not necessarily an efficient
way to control the disease sometimes.

In mathematical biology, different contact rates between the
vector and hosts are proposed under different assumptions. The
frequency dependent seeking rate (the tick seeking rate is
independent of the host population size) is suitable for the case
when the host population size is very large, while on the contrary,
the density-dependent seeking rate (the vector seeking rate is
proportional to the host population size) is suitable for the case
when the host population size is small. In this sense, the model
with Holling type 2 transmission term is more appropriate. Our
model with different vector seeking patterns shows why in some
cases the deer population abundance is closely related to ticks (as
in the density-dependent case), and why the relationship is weak
(as in the frequency-dependent case). In response to the question
‘‘why might the relationship between deer and tick abundance be
so viable, sometimes strong and sometimes weak or nonexistent?’’
proposed in Ostfeld (2011), we provided an interpretation from our
modeling approach: when the deer population size is small, it is
more appropriate to use density-dependent seeking pattern to
describe tick–host interaction, thus the threshold of deer
abundance is important and the deer and tick populations are
closely related; while deers are abundant, the tick seeking rate is
likely to be fixed, regardless of the deer population density (it is
more appropriate to use frequency-dependent seeking rate to
model the tick–host interaction), the threshold deer abundance is
absent and the relationship between deers and tick abundances is
nonexistent.

The host seeking behavior will have implications for control
strategies based on the conceptual model. In the frequency-
dependent interaction scenario, increasing rodents is always
advantageous to contain the disease since more rodents may
waste the infectious tick biting. However, for the density-
dependent and Holling type 2 interaction scenarios, increasing
rodents may increase or decrease the disease risk because of the
existence of both the amplification effect and dilution effect.
When the rodent population size is low, it is suggestive to reduce
rodents to reduce the development of ticks, thus reducing the
reproduction number of ticks and eradicating ticks. On the other
hand, when the rodent population size is high, increasing the
rodents will increase the development rates of immature ticks.
Because of the self-regulation of the tick population, we may have
saturated adult tick population. Thus, the population size of
immature ticks stays at a low level due to the large development
rate at the immature stage of ticks. Since the disease pathogen is
maintained in the immature stage of ticks, the disease risk is
lowered. Fig. 5 shows a special case where both increasing and
decreasing the rodent population are beneficial for disease
control. Although increasing or decreasing the rodent population
may lead to more or less adults ticks, the infectious ticks may
become less and the disease risk is lowered.

For tick-borne diseases, such as Lyme disease, we should not
directly use some existing results arising from mosquito-borne
diseases such as those in Wonham et al. (2006) where the bird
reservoirs are not explicitly incorporated as a food supply for
mosquitoes. Moreover, for the mosquito-borne disease, the
transmission cycle is mainly maintained in the infected adult
mosquito-reservoir-susceptible adult mosquito cycle, while the
Lyme transmission is maintained in the infected nymphs-
reservoir-susceptible larvae cycle, where nymphal and larval tick
populations may be regulated by the adult survival probability,
involving another host community different from that for
immature ticks. In conclusion, our study shows that the tick–
juvenile host interaction has to be considered as an important
factor when investigating Lyme disease transmission. Our
theoretical results advocate the pressing need for empirical studies
on the functional form of interspecific transmission process in
multihost pathogen system. Moreover, other transmission com-
plications should be considered in the context of disease
transmission.

In the Lyme disease transmission, various host species are
involved, which makes it a multi-host system. For the disease
transmission dynamics, dilution effects (Bolzoni et al., 2012;
Tagliapietra et al., 2011; Pugliese and Rosà, 2008; Rosà and
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Pugliese, 2007) and amplification effect are observed (Ogden and
Tsao, 2009) by mathematical models. For the dynamics of Lyme
disease transmission in multi-host system, we refer the reader to a
recent review (Mannelli et al., 2012). In our present study, we
mainly focus on the effect of tick seeking assumptions on model
predictions. Here we use the Lyme disease as a representative of
tick-borne diseases, however the model structure is also suitable to
describe other tick-borne disease dynamics transmitted by three-
host ticks, and the methodologies here can also be used to predict
the disease risk of other tick-borne pathogens.

We have interpreted our analysis solely in terms of Lyme
disease prevention and control. For example, we concluded that in
many cases it is preferable to protect rodents, or even enhance
their populations. How the presence of large rodent populations
affects the population dynamics for other species and for human
health remains a much challenging issue in managing a complex
ecosystem with conflicting goals.
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