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Abstract Integrated pest management options such as combining chemical and bio-
logical control are optimal for combating pesticide resistance, but pose questions if a
pest is to be controlled to extinction. These questions include (i) what is the relation-
ship between the evolution of pesticide resistance and the number of natural enemies
released? (ii) How does the cumulative number of natural enemies dying affect the
number of natural enemies to be released? To address these questions, we developed
two novel pest-natural enemy interaction models incorporating the evolution of pes-
ticide resistance. We investigated the number of natural enemies to be released when
threshold conditions for the extinction of the pest population in two different con-
trol tactics are reached. Our results show that the number of natural enemies to be
released to ensure pest eradication in the presence of increasing pesticide resistance
can be determined analytically and depends on the cumulative number of dead natural
enemies before the next scheduled release time.
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1 Introduction

Pesticide spraying is the main method in pest control. However, after repeated appli-
cations and increasingly higher rates of pesticide usage for a protracted period more
than 500 species of pests have now developed resistance to pesticides (Georghiou
1990; Kotchen 1999; Thomas 1999), leading to increasing crop losses. For example,
in the USA, farmers lost 7 % of their crops to pests in the 1940s, while since the
1980s, the percentage lost has increased to 13 %, even though more pesticides are
being used (Karaagac 2012).

After a pest population develops resistance to a particular pesticide, how can it
be controlled? One method is to use chemical and non-chemical control techniques
at the same time, adopting the integrated pest management (IPM) approach (Onstad
2008; Flint 1987; Van Lenteren and Woets 1988; Van Lenteren 1995, 2000), which
usually helps with resistance management (Peck and Ellner 1997). IPM provides an
alternative to the single weapon (pesticide) approach and it encompasses management
of pests at economically reasonable levels rather than eradicating them completely.
IPM seeks to minimize reliance on pesticides by emphasizing the contribution of
other control methods, including biological control, host-plant resistance breeding,
and cultural tactics.

Indeed, biological control, which is defined as the reduction of pest populations
by natural enemies, has been an important tactic to control pests in an IPM strat-
egy (Greathead 1992; Parker 1971). Typically, it involves an active human role, such
as the supplemental release of natural enemies, known as augmentation. This con-
trol strategy is usually used by releasing natural enemies at a critical time to reduce
a pest’s population (Hoffmann and Frodsham 1993; Neuenschwander and Herren
1988). Relatively few natural enemies may be released at a critical time of the season
(inoculative release) or millions may be released (inundative release) when insuf-
ficient reproduction of released natural enemies is likely to occur and pest control
will be achieved exclusively by the released individuals themselves (Hoffmann and
Frodsham 1993; Neuenschwander and Herren 1988).

Many pulse-like IPM strategies such as releases of natural enemies at critical times
and killing pests instantly by spraying pesticides have been studied by mathemati-
cal models, including impulsive differential equations (Neuenschwander and Herren
1988; Tang et al. 2005, 2008, 2009, 2010, 2013; Tang and Cheke 2008) or peri-
odic spraying of pesticides (Liang and Tang 2010; Parker 1971). Pulse-like culling
of mosquitos has also been modeled in relation to the study of mosquito-borne dis-
eases such as the West Nile virus (Gourley et al. 2007; Terry and Gourley 2010). The
results of such studies indicate that there exist optimal releasing periods or optimal
numbers of pesticide applications, which maximize the benefits of pest control.

However, none of the studies to date considered the relationship between the de-
velopment of pesticide resistance and the number of natural enemies released when
biological and chemical control are used in combination against the same pest. It is
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this subject, an example of which is the combined use of abamectin and Encarsia for-
mosa Gahan (Hymenoptera: Aphelinidae) against the greenhouse whitefly, Trialeu-
rodes vaporariorum Westwood (Homoptera: Aleyrodidae) (Zchori-Fein et al. 1994)
that we address in this paper. Other cases when chemical and biological control have
been used in combination include fipronil and a phorid fly, together with a fungal
pathogen, against red imported fire ants Solenopsis invicta (Oi et al. 2008) and the
ovicide clofentezine in conjunction with the predatory mite Phytoseiulus persimilis
against the two-spotted spider mite Tetranychus urticae in Dwarf Hops (Lilley and
Campbell 1999).

Mathematical models can be important for determining the optimal rates of nat-
ural enemy releases with development of pesticide resistance. In this paper, a model
with an IPM strategy is investigated, i.e. the combination of chemical and biological
control tactics with pesticide resistance is developed and studied. In particular, the
relationship between the number of natural enemies to be released and the evolution
of pest resistance is addressed, and an analytical formula for the calculation of the
number of natural enemies to be released is also provided.

However, in many cases, there is an impact of the pesticide on the natural enemies.
Indeed, a proportion of the natural enemies could be killed at the time the pesticide
is sprayed to kill the pests, resulting in resurgence of the pest populations (Barclay
1982; Debach 1974; Ruberson et al. 1998). In order to reduce the adverse impact of
pesticides on natural enemies, a model with different periods of pesticide spraying
and natural enemy releases is also investigated. Again, the dynamic threshold condi-
tion which ensures the extinction of the pest population is given. Based on this, the
relationship between the number of natural enemies to be released and the evolution
of pest resistance in this new situation is addressed, with another analytical formula
for the calculation of the number of natural enemies to be released provided.

Our results indicate that correct adjustments to the number of natural enemies to
be released depend on the cumulative number of deaths amongst the natural enemies
before the release time, and that the appropriate number for release can be calculated
analytically.

2 Modelling the Evolution of Pest Resistance and the Threshold Condition for
the Pest-Free Solution

In this section, we will develop a simple pest population growth model concerning
the evolution of pest resistance. In particular, the effects of the frequency of pesticide
applications are modelled and investigated. One of our main purposes is to investigate
how to implement a chemical control strategy and manage pest resistance such that
the pest population dies out eventually. In order to address this issue, we focus on the
threshold condition which guarantees the extinction of the pest population.

Throughout this study, the pest population is assumed to grow logistically with an
intrinsic growth rate of r and a carrying capacity parameter η. Then the pest popula-
tion follows:

dP

dt
= rP (1 − ηP ). (1)
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Because of the evolution of pesticide resistance, we assume that the pest popula-
tion (P ) is made up of two parts: susceptible pests (denoted by Ps ) and resistant pests
(denoted by Pr ), and the proportion of susceptible pests in the population is denoted
by a fraction ω (i.e. ω = Ps/P ), the remaining fraction 1 − ω is resistant. That is to
say, 1 − ω can be thought of as the stock of the pesticide resistance (i.e. the evolution
of pesticide resistance can be described by ω). So, we have the resistance evolution
equation

dω(t)

dt
= d1ω

(
ωqi − 1

)
, τi−1 ≤ t ≤ τi, i ∈N . (2)

The deduction of Eq. (2) and its analytical solutions can be found in Appendix A.
Where d1 is the mortality rate of susceptible pests because of the application of pes-
ticide, and qi is a function of the number of pesticide applications, the dosage Xi of
the ith pesticide application and the time interval �τi = τi − τi−1 between the ith
and (i − 1)-th pesticide applications (Milgroom 1990), and τi−1 is the spraying time
for i ∈ N with τ0 = 0, N = {1,2,3, . . .}.

One of the main purposes of this paper is to investigate how pesticide resistance
affects the extinction of the pest population, in particular how it is affected by the
number or frequency of pesticide applications. To address this question, we assume
that a pest population with periodic application of pesticide (i.e. τi −τi−1 = T , i ∈N )
follows the general impulsive differential equation,

⎧
⎨

⎩

dP (t)

dt
= P(t)F

(
t,P (t)

)
, t �= nT ,

P
(
nT +) = q(nT )P (nT ), t = nT ,

(3)

where q(nT ) denotes the survival rate of the pest population after the nth pesticide
application, which depends on ω(nT ), and naturally we have 0 ≤ q(nT ) < 1 for
all n ∈ N . Function F(t,P (t)) is the growth rate of the pest population including
logistic growth as a special case, and we assume that

(a) The function F is continuous at t �= nT , n ∈ N , and is continuous and differen-
tiable with respect to P , and ∂F/∂P is continuous with respect to P ;

(b) There exist two continuous functions ϕ and λ with ϕ(P ) > 0 for P > 0 and
λ(t) ≥ 0 for t ≥ 0, such that

∂F

∂P
(t,P ) ≤ −ϕ(P )λ(t), for t ≥ 0, P ≥ 0,

and
∫ ∞

0
λ(t)dt = ∞;

(c) There is a β > 0 such that
(i) F(t,0) ≤ β for t ≥ 0,

(ii) q(nT ) exp(
∫ l+nT

l+(n−1)T
F (s,0)ds) ≤ 1 for 0 ≤ l < T and n ∈N .

The general non-autonomous model (3) without impulsive effects has been in-
vestigated by Vance and Coddington (1989), and some sufficient conditions which
ensure the permanence and the extinction of populations were provided. By using
similar methods as those developed by Vance and Coddington (1989), we can obtain
the following result on the extinction of the pest population in model (3).



Adaptive Release of Natural Enemies in a Pest-Natural Enemy System

Theorem 2.1 Suppose that F in (3) satisfies (a), (b), and (c), then for any initial
condition P(0+) = P0 > 0, the solution of (3) satisfies P(t) → 0 as t → ∞.

The proof of this theorem is provided in Appendix B. Note that the main result
in Theorem 2.1 will play a key role in determining the threshold conditions, which
guarantee the extinction of the pest population under additional control strategies and
in the presence of resistance.

3 Interaction Between Pest and Natural Enemy with IPM and Resistance to
Pesticides

IPM involves choosing appropriate tactics from a range of pest control techniques
including biological, cultural, and chemical methods to maintain the density of
the pest population below the Economic Injury Level (EIL) (Flint 1987; Van
Lenteren 1995, 2000; Van Lenteren and Woets 1988). It is well known that sin-
gle chemical control tactics are usually inefficient, and chemical control may re-
sult in high rates of failure due to fast evolution of pest resistance. If so, a com-
bination of biological control tactics is necessary for pest control. In fact, bio-
logical control is often a key component of an IPM strategy (Greathead 1992;
Parker 1971). It is defined as the reduction of pest populations by natural enemies
and typically requires impulsive perturbations such as augmentation, the supplemen-
tal release of natural enemies at a critical time of the season when insufficient repro-
duction of released natural enemies is likely to occur and pest control will be achieved
exclusively by the released individuals themselves (Hoffmann and Frodsham 1993;
Neuenschwander and Herren 1988).

Therefore, if the pest population follows the logistic growth rate, i.e. F(t,P (t)) =
r(1 −ηP (t)), then we can extend the model proposed in the above section by involv-
ing natural enemies and releasing them impulsively as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)

dt
= rP (t)(1 − ηP (t)) − βP (t)N(t),

dN(t)

dt
= γβP (t)N(t) − dN(t),

⎫
⎪⎪⎬

⎪⎪⎭
t �= nT ,

P (nT +) = (1 − ω(nT )d1)P (nT ),

N(nT +) = N(nT ) + δn,

}

t = nT ,

dω(t)

dt
= d1ω(t)

(
ω(t)qn − 1

)
,

(4)

with initial value P(0+) = P0, N(0+) = N0 + δ0, ω(0) = ω0, where qn = n/T , and
N(t) is the population size of the natural enemy at time t , β denotes the attack rate of
the predator, γ represents conversion efficiency, d is the mortality rate of the natural
enemy and in each impulsive time nT there is an introduction δn for the natural
enemy, n ∈N and δ0 is the number of natural enemies released at time zero.

What we want to address for model (4) is to investigate how to design the releasing
constant δn as pesticide resistance develops. Of particular interest is to determine
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the value δn for the fixed period T such that the pest population dies out eventually
without switching pesticides.

3.1 Threshold Condition for the Pest-Free Solution

The basic properties of the following subsystem:
⎧
⎪⎪⎨

⎪⎪⎩

dN(t)

dt
= −dN(t), t �= nT ,

N
(
t+

) = N(t) + δn, t = nT ,

N
(
0+) = N0 + δ0

(5)

play key roles for the investigation of model (4), where n ∈N .
The analytical solution of this subsystem at any impulsive interval ((n − 1)T ,nT ]

gives

N∗(t) = N0e
−dt +

n−1∑

i=0

δie
−d(t−iT ), (n − 1)T < t ≤ nT . (6)

Therefore, the expression for the pest-free solution of system (4) over the nth time
interval (n − 1)T < t ≤ nT is given by

(
0,N∗(t)

) =
(

0,N0e
−dt +

n−1∑

i=0

δie
−d(t−iT )

)

. (7)

For 0 ≤ l < T and n ∈N , we denote

M(n, l) =
(

βN0

d
e−d(l+(n−1)T ) +

n−1∑

i=0

βδi

d
e−d(l+(n−1−i)T )

)
(
e−dT − 1

)

+ βδn

d

(
e−dl − 1

)

and

R0(n,T ) = (
1 − d1ω(nT )

)
erT .

Then we have the following threshold theorem for the pest-free solution.

Theorem 3.1 Let

RN
0 (n,T , l) = R0(n,T ) exp

(
M(n, l)

)
, (8)

for 0 ≤ l < T , and (P (t),N(t)) be any solution of system (4). Then the pest-free
solution (7) is globally attractive if RN

0 (n,T , l) ≤ 1 for all n ∈ N .

Remark 3.2 Note that the formula RN
0 (n,T , l) depends on the number of pesticide

applications, i.e. n, which is dynamic. Although we will address how to determine
the number of natural enemies to be released such that the RN

0 (n,T , l) is less than
one for all n in the coming section, it is very interesting to know, from the pest
control point of view, how the threshold value RN

0 (n,T , l) changes as the releasing
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number of n increases. Thus, we chose RN
0 (n,T , l) as a sequence of threshold values

in Theorem 3.1. From the mathematical point of view, this can be easily realized if
we take the supremum over all n of RN

0 (n,T , l), that is, if supn∈N RN
0 (n,T , l) ≤ 1,

this will lead to a single threshold.

The proof of this theorem is provided in Appendix C. It is interesting to note that
the expression of RN

0 (n,T , l) given by (8) clearly shows the effects of IPM strate-
gies on the pest control: if only the chemical control is applied, the threshold value
RN

0 (n,T , l) is reduced to R0(n,T ) which is obviously no less than RN
0 (n,T , l) due

to

RN
0 (n,T , l) = R0(n,T ) exp

(
−β

∫ l+nT

l+(n−1)T

N∗(s)ds

)

= R0(n,T ) exp
(
M(n, l)

) ≤ R0(n,T );
if only the biological control is implemented, the threshold value RN

0 (n,T , l) is re-
duced to exp (M(n, l)). Therefore, the threshold condition RN

0 (n,T , l) given in (8)
confirms that an integrated control strategy is more effective than any single control
strategy.

In particular, if δi = δ for i ∈ N0, where N0 = {0,1,2,3, . . .}, then for subsys-
tem (5) there exists a unique periodic solution, denoted by NT (t) and

NT (t) = δ exp(−d(t − (n − 1)T ))

1 − exp(−dT )
, t ∈ (

(n − 1)T ,nT
]
, n ∈ N

with initial value N(0+) = δ/(1 − exp(−dT )). It is easy to prove that for every so-
lution N(t) of (5) in the case of δi = δ for i ∈ N0 we have |N(t) − NT (t)| → 0 as
t → ∞. For this special case, the threshold value given by (8) does not depend on
l ∈ [0, T ), we therefore denote this by R

NT

0 (n,T ) and we have

R
NT

0 (n,T ) = R0(n,T ) exp

(
−β

∫ l+nT

l+(n−1)T

NT (s)ds

)

= R0(n,T ) exp

(
−βδ

d

)
. (9)

Then the pest-free periodic solution (0,NT (t)) is globally attractive provided that
R

NT

0 (n,T ) ≤ 1.
Note that if δi = δ for i ∈ N0 in (4), then

RN
0 (n,T , l) = R0(n,T ) exp

(
βN0

d
e−d(l+(n−1)T )

(
e−dT − 1

) + βδ

d
e−d(l+nT ) − βδ

d

)

.= RN
0 (n,T , l),

which indicates that RN
0 (n,T , l) → R

NT

0 (n,T ) as n → ∞.
It follows from (24) that ω(nT ) is a monotonically decreasing function with re-

spect to the number of pesticide applications, i.e. the instant killing rate becomes
smaller and smaller as the pesticide resistance develops, which results in an increas-
ing of the threshold value R0(n,T ). To prevent the threshold value RN

0 (n,T , l) from
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falling below a given level as the pesticide resistance develops, possible options in-
clude switching to a different pesticide or releasing more natural enemies or both.
The question is: if we do not switch the pesticides and rely on increasing the number
of natural enemies released, how do we determine the new release number such that
the threshold value RN

0 (n,T , l) is less than a given level? This is the key question
that we will focus on in the rest of this paper.

3.2 Determining the New Number of Natural Enemies to be Released

The threshold value R
NT

0 (n,T ) reveals how the chemical and biological control tac-
tics contribute to the pest control, in which R0(n,T ) shows the effects of the fre-
quency of pesticide applications and development of pest resistance on the control
output, and the second part exp(−βδ/d) represents the contribution of natural ene-
mies. We know that R0(n,T ) is a monotonically increasing function with respect to
n and T , which indicates that chemical control alone will quickly fail once strong
pesticide resistance develops. So the question is how to release the natural enemies
such that the threshold value RN

0 (n,T , l) or R
NT

0 (n,T ) is relatively small, for ex-
ample less than one forever? That is, how to determine δn or δ in RN

0 (n,T , l) or

R
NT

0 (n,T ) such that those threshold values equal a constant RC? Due to the com-

plexity of RN
0 (n,T , l), we first consider the R

NT

0 (n,T ).
In fact, solving equation

R0(n,T ) exp

(
−βδ

d

)
= RC (10)

with respect to δ, yields

δ = − d

β
ln

(
RC

R0(n,T )

)
, n ∈N . (11)

If we aim to eradicate the pest population, then we can assume that the constant
RC is less than one. It is interesting to note from (11) that if R0(n,T ) ≤ RC for
some n ∈ N , then δ ≤ 0, which means that the chemical alone can suppress the
pest outbreak at the initial stage. But once the pest resistance develops such that
R0(n,T ) > RC , then pulsed releases of natural enemies are necessary to maintain
R

NT

0 (n,T ) as a constant RC . All these results confirm that the number to be released
δ depends strictly on the number of pesticide applications n. Therefore, the number
of natural enemies to be released δ for all n ∈N can be defined as follows:

δ = δn =

⎧
⎪⎨

⎪⎩

δc, if R0(n,T ) ≤ RC,

− d

β
ln

(
RC

R0(n,T )

)
, if R0(n,T ) > RC,

(12)

where δc can be zero or a relatively small positive constant.
Note that in (12), δ is switched between δc and −(d/β) ln(RC/R0(n,T )), which

is similar to the idea of the well-known bang-bang control (Artstein 1980).
To show the effects of the releasing constant δ determined by formula (12) on the

control of the pest with development of pesticide resistance, we carried out numerical
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Fig. 1 Calculation of R
NT
0 (n,T ) and numerical simulations of model (4) with constant pulse releasing

of natural enemies. The baseline parameter values are as follows: d1 = 0.8, r = 0.5, ω0 = 0.99, d = 0.2,

β = 0.3, T = 0.6, RC = 0.95, δc = 0 and δ = 0.1. (a) The plot of R
NT
0 (n,T ) with respect to n; (b) The

time series of the pest population associated with (a); (c) The plot of R
NT
0 (n,T ) with respect to n using

the formula (12) to determine the δ; (d) The time series of the pest population associated with (c)

investigations of the model (4) in which δn is given by a constant or determined by
formula (12). It follows from Fig. 1 that the threshold value R

NT

0 (n,T ) is increasing
as the number of pesticide applications n increases if we fixed all parameters as those
in Fig. 1(a), and then R

NT

0 (n,T ) will exceed one after six pesticide applications. If
so, the density of the pest population will decrease firstly due to the high efficacy
of the pesticide at the initial stage, and then the pest population will resurge expo-
nentially (see Fig. 1(b)), which means that the constant releasing strategy cannot be
successful for pest control. However, if we only release natural enemies once the pest
resistance develops at a certain stage, for example R0(n,T ) increases and exceeds a
predefined level RC (i.e. R0(n,T ) > RC ). That is we let δc = 0 and assume that δ is
determined by formula (12). Figure 1(c) provides an example of this strategy, and it
is seen that the threshold value R

NT

0 (n,T ) is increasing firstly and then it maintains
a constant RC . The numerical solution for the pest population for this case is shown
in Fig. 1(d), and it is interesting to note that the pest population decreases and will
eventually go to extinction due to RC = 0.95 for this example.
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Now let us turn to the general case, i.e. the threshold value RN
0 (n,T , l), which

depends on the length of the interval [0, T ).
Let RN

0max
(n,T , l) = max0≤l<T {RN

0 (n,T , l)}, then

RN
0max

(n,T , l) < 1 implies RN
0 (n,T , l) < 1

for all l ∈ [0, T ). In fact, we have

∂RN
0 (n,T , l)

∂l
= RN

0 (n,T , l)
∂M(n, l)

∂l

with

∂M(n, l)

∂l
=

(

βN0e
−d(l+(n−1)T ) +

n−1∑

i=0

βδie
−d(l+(n−1−i)T )

)
(
1 − e−dT

) − βδne
−dl

= βe−dl

((

N0e
−d(n−1)T +

n−1∑

i=0

δie
−d(n−1−i)T

)
(
1 − e−dT

) − δn

)

.= βe−dl(Dn−1 − δn),

where Dn−1 = (N0 exp (−d(n − 1)T ) + ∑n−1
i=0 δi exp (−d(n − 1 − i)T )) ×

(1 − exp (−dT )), and note that
(

N0e
−d(n−1)T +

n−1∑

i=0

δie
−d(n−1−i)T

)

= N∗((n − 1)T
)

represents the total survival number of natural enemies at time (n − 1)T . Therefore,
Dn−1 denotes the cumulative number of natural enemy deaths before time nT . There-
fore, if Dn−1 ≤ δn, then RN

0 (n,T , l) is a decreasing function with respect to l, thus
RN

0max
(n,T , l) = RN

0 (n,T ,0); If Dn−1 > δn, then RN
0 (n,T , l) is an increasing func-

tion with respect to l, thus RN
0max

(n,T , l) = RN
0 (n,T ,T ).

By employing the same ideas as for the threshold value R
NT

0 (n,T ) and the same
methods as above, we assume, without loss of generality, that there exists an integer
n′ ∈ N such that (i) R0(n,T ) ≤ RC for n ≤ n′ due to the high effectiveness of pesti-
cide applications in the initial stage and (ii) R0(n,T ) > RC for n > n′. Thus, we let
δn = δc for n ≤ n′ and let RN

0max
(n,T , l) = RC for n > n′. In the light of the above,

we consider the following two cases:

Case 3.1 Dn−1 ≤ δn for all n ∈ N , i.e. the new number to be released is not less than
the cumulative death number.

In this case, RN
0max

(n,T , l) = RN
0 (n,T ,0) = RC . It follows from (8) that we have

M(n,0) = ln (Rc/R0(n,T )), that is
(

βN0

d
e−d(n−1)T +

n−1∑

i=0

βδi

d
e−d(n−1−i)T

)
(
e−dT − 1

) = ln

(
RC

R0(n,T )

)
.
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This indicates that

δn ≥ Dn−1 = − d

β
ln

(
RC

R0(n,T )

)
.

Therefore, if Dn−1 ≤ δn, then the minimum number of natural enemies released
which maintains the threshold value RN

0 (n,T , l) = RC is Dn−1, denoted by min δn.
That is, the new number to be released, δn, can be determined as follows:

δn =
{

δc, if n ≤ n′,

min δn = − d
β

ln(
RC

R0(n,T )
), if n > n′.

(13)

Comparing (13) with (12), we conclude that when the new number of natural ene-
mies to be released, i.e. δn, is no less than the cumulative number of natural enemy
deaths before time nT , the minimum number of natural enemies to be released can
be determined by the same method as those in formula (12).

Case 3.2 Dn−1 > δn for all n ∈ N , i.e. the new number to be released is less than the
cumulative death number.

In this case, we let G
n

′ = N0 + ∑n′
i=0 δc exp (diT ), and

An = − dednT

β(1 − e−dT )
ln

(
RC

R0(n,T )

)
− G

n
′

for n > n′, the new number of natural enemies to be released δn can be determined as
follows:

δn =

⎧
⎪⎪⎨

⎪⎪⎩

δc, if n ≤ n′,

An′+1e
−d(n′+1)T , n = n′ + 1,

(An − An−1)e
−dnT , if n > n′ + 1.

(14)

The detailed deduction of formula (14) can be seen in Appendix D. Based on the
methods proposed in Cases 3.1 and 3.2, the new number of natural enemies to be
released for more complex cases can be determined by a combination of the formu-
lae (13) and (14).

It is interesting to note that the number of newly released natural enemies in
Case 3.2 is relatively small compared to those in Case 3.1. However, in formula (14)
we always need δn < Dn−1 for n > n′, which will result in some difficulty for imple-
mentation. Thus, in order to control the pest population successfully, careful moni-
toring of the densities of both pest and natural enemy populations should be carried
out once the pests become highly resistant to the pesticide.

4 Different Patterns of Insecticide Applications and Natural Enemy Releases

In practice, there are some adverse impacts of many pesticides on natural enemies
(Ruberson et al. 1998) and in order to reduce these we will consider in this section
that there are different control periods between chemical control and biological con-
trol. Following the ideas proposed by Tang et al. (2010, 2013), we assume that the
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pesticide is sprayed at impulsive time τn, and a constant number of natural enemies
is released at each impulsive time λm. Considering the evolution of pesticide resis-
tance and different control periods between chemical control and biological control,
we have the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)

dt
= rP (t)

(
1 − ηP (t)

) − βP (t)N(t), t �= τn,

dN(t)

dt
= γβP (t)N(t) − dN(t), t �= λm,

P
(
τ+
n

) = (
1 − ω(τn)d1

)
P(τn), t = τn,

N
(
λ+

m

) = N(λm) + δn, t = λm,

dω(t)

dt
= d1ω(t)

(
ω(t)qn − 1

)
, τn−1 ≤ t < τn

(15)

with initial value P(0+) = P0, N(0+) = N0, ω(0) = ω0.
We consider in the following case that pesticides are sprayed more frequently than

releases of natural enemies so that different patterns of insecticide applications and
natural enemy releases are applied in the model (15) (Tang et al. 2010, 2013).

For simplicity, we assume that the natural enemies are released periodically with
period TN , i.e. λm+1 − λm ≡ TN for all m, and pesticides are sprayed kp + 1 times
within the period TN . In order to avoid applying pesticides and natural enemies si-
multaneously, we assume that for n ∈N ,

(n − 1)TN < (n − 1)TN + τ1 < (n − 1)TN + τ2 < · · · < (n − 1)TN + τkp+1 < nTN.

4.1 Threshold Condition for the Pest-Free Solution

The basic properties of the following subsystem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN(t)

dt
= −dN(t), t �= hTN,

N
(
t+

) = N(t) + δh, t = hTN,

N
(
0+) = N0

(16)

play key roles for the investigation of model (15), where h ∈ N . Note that this is
virtually Eq. (5) with different parameters.

By simple calculations, the analytical solution of system (16) at any impulsive
interval ((h − 1)TN,hTN ] can be determined as follows:

N∗(t) =
(

N0 +
h−1∑

i=1

δie
idTN

)

e−dt , (h − 1)TN < t ≤ hTN . (17)

Therefore, the expression for the pest-free solution of system (15) over the hth time
interval (h − 1)TN < t ≤ hTN is given by (0,N∗(t)).

In order to obtain the threshold conditions for the pest population fall to zero,
we further assume that the pesticides are sprayed periodically with period τ , which
satisfies τj+1 − τj = τ for j = 1,2, . . . , kp and TN − τkp+1 + τ1 = τ .
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Denote

R0(hTN, τ) = (
1 − d1ω(hTN)

)
erτ ,

and

Dh−1 = e
−d((h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
1 − e−dτ

)
.

Then for the pest-free solution we have following the threshold theorem.

Theorem 4.1 Let

R
TN

0 (h,TN)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R0(hTN, τ) exp{β
d
e
−d((h−1)TN+τkp )

(N0 + ∑h−1
i=1 δie

idTN )(e−dτ − 1)},
Dh−1 ≤ δh,

R0(hTN, τ) exp {β
d
e−dhTN (N0 + ∑h

i=1 δie
idTN )(e−dτ − 1)},

Dh−1 > δh.

(18)

Then the pest-free solution (0,N∗(t)) is globally attractive for solution of (15) if
R

TN

0 (h,TN) < 1.

The proof of this theorem is provided in Appendix E. The expression of
R

TN

0 (h,TN) reflects the effects of pesticide resistance development, spraying pe-
riod, the number of natural enemies released and their releasing period on the pest
control. Obviously, it is not a constant and depends on the timings of the pesticide
applications. In particular, the first term R0(hTN, τ) shows the effects of the pest’s
growth rate, pesticide resistance development, and active ingredient effectiveness on
the threshold conditions, and the second term involves all factors related to natural
enemies including their initial density (N0), attack rate (β), releasing period (TN ) and
the total number newly released (δi, i = 1,2, . . . , h − 1). Therefore, it is quite diffi-
cult to maintain the threshold value R

TN

0 (h,TN) less than one or some given constant
as the pesticide resistance evolves. So, in the following, we also choose the number
of natural enemies newly released as parameters and fix all others with the aim of
determining the new number of natural enemies to be released.

4.2 Determining the New Number of Natural Enemies to be Released

In this section, we will investigate how to release the natural enemies such that the
threshold value R

TN

0 (h,TN) is relatively small, for example less than one forever.

That is, how to determine δh in R
TN

0 (h,TN) such that those threshold values equal a
constant RC (<1)?

In fact, if R0(hTN, τ) < RC for some h, then R
TN

0 (h,TN) < RC . As in Sect. 3.2,
we assume that there exists an integer h′ ∈ N such that (i) R0(hTN, τ) ≤ RC for
h ≤ h′ and (ii) R0(hTN, τ) > RC for h > h′. Thus, we let δh = δc for h ≤ h′ and
let R

TN

0 (h,TN) = RC for h > h′. Similarly, by using the same methods as those in
Sect. 3 we can consider following two cases.
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Case 4.1 Dh−1 ≤ δh, i.e. the new number to be released is no less than the cumulative
death number

In this case, let R
TN

0 (h,TN) = RC , we get

β

d
e
−d((h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)

= ln

(
RC

R0(hTN, τ)

)
, h ∈N . (19)

This indicates that

δh ≥ Dh−1 = − d

β
ln

(
RC

R0(hTN, τ)

)
.

Therefore, if Dh−1 ≤ δh, then the minimum number of natural enemies released
which maintains the threshold value R

TN

0 (h,TN) = RC is Dh−1, denoted by min δc.
That is, the new number to be released δh can be determined as follows:

δh =
{

δc, if h ≤ h′,

min δh = − d
β

ln(
RC

R0(hTN ,τ)
), if h > h′.

(20)

Case 4.2 Dh > δh+1, i.e. the new number to be released is less than the cumulative
death number.

In this case, we let

A′
h = − dedhTN

β(1 − e−dτ )
ln

(
RC

R0(hTN, τ)

)
− N0 − δc

h′∑

i=1

eidTN

for h > h′, the new number of natural enemies to be released δh can be determined
as follows:

δh =

⎧
⎪⎪⎨

⎪⎪⎩

δc, if h ≤ h′,

A′
h′+1e

−d(h′+1)TN , h = h′ + 1,

(A′
h − A′

h−1)e
−dhTN , if h > h′ + 1.

(21)

Comparing the formula (21) with the formula (14) obtained in Sect. 3.2, we con-
clude that the similar formula for the number of natural enemies newly released can
be obtained under different patterns of pesticide applications and natural enemy re-
leases. By the same methods as described in this section, we can study several other
patterns such as natural enemy releases being more frequent than pesticide applica-
tions (Tang et al. 2010, 2013).
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5 Discussion

In most cropping systems, application of pesticides is still the principal tactic for
controlling pests once the density of pests reaches a certain threshold level such as
the economic threshold. This is because pesticides can be relatively cheap and are
easy to spray, fast-acting, and in most instances can be relied on to control the pests
(Flint 1987; Van Lenteren 1995, 2000; Van Lenteren and Woets 1988). However,
frequent use of one kind of pesticide may create selection pressure for evolution
of pest resistance to that pesticide. If too large a proportion of a pest population
develops resistance to the pesticide’s active ingredient, the susceptibility of the entire
pest population to it will be lost eventually, leading to pest resurgences and outbreaks.

How to manage or delay the development of pesticide resistance is a serious issue.
The obvious principle for delaying the development of pesticide resistance is avoiding
unnecessary pesticide applications. The main practical tactics for the management of
pest resistance are switching pesticides periodically, leaving untreated refuges where
susceptible pests can survive, using non-chemical control techniques, and adopting
the integrated pest management (IPM) approach (Onstad 2008). Although the tac-
tic of switching pesticides is useful for delaying the emergence of resistance against
some pesticides, the frequency of pesticide spraying is still increasing and it could
lead to multiple resistance. IPM approach often involves the release of natural ene-
mies, in combination with application of pesticides. This approach has its own chal-
lenge. For instance, the effectiveness of pesticides may wear off (e.g. Zchori-Fein et
al. reported 100 % mortality of natural enemies 2 hours after spraying abamectin, but
0 % 24 hours after (Zchori-Fein et al. 1994)). Also, repeated releases of the same
number of natural enemies is either insufficient if they no longer suppress the pest
population once resistance develops, or the number released is too large, which is not
cost effective and may cause secondary outbreaks or pest resurgence. Therefore, in
order to avoid multiple resistance, one possible way is to release different numbers of
natural enemies according to the evolution of pesticide resistance. The key question
is then how to determine the number of natural enemies to be released anew, with
the aim of eradicating the pest population, i.e. how to determine the new number of
natural enemies to be released at each control action?

To address this question, we first developed the single pest growth model with
pulses of pesticide applications and evolution of pesticide resistance, and the thresh-
old condition, which guarantees the extinction of the pest population was derived.
Secondly, we extended the single pest growth model to include natural enemies with
pulsed releases, and the threshold condition which guarantees the extinction of the
pest population was obtained. Two interesting cases concerning the number of nat-
ural enemies released anew are discussed and analyzed. One case concerns when
the number of natural enemies released at time nT is no larger than the cumulative
number of their deaths before nT , and the other case concerns when the number
of natural enemies released at time nT is larger than the cumulative number of their
deaths before nT . For each case, the analytical formula for determining the new num-
bers of natural enemies to be released are provided, and the effects of key factors on
newly released number of natural enemies have been discussed. This may help the
design of the most cost-effective control strategy and help to manage pest resistance.
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However, determining the number of natural enemies to be released is not the only
issue involved in biological control tactics. Although we considered factors such as
natural enemy attack rates, there are other characteristics of natural enemies such as
their ability to exploit spatially heterogeneous populations of pests, variation in their
generation times, pest refuges, and mutual interference that influence the dynamics
(Beddington et al. 1978).

Finally, different patterns of releasing natural enemies and spraying pesticides are
addressed, because most natural enemies are adversely affected by pesticides (Ruber-
son et al. 1998), which usually kill both the pest and their natural enemies (Debach
1974). In this study, we considered the reduction of such adverse impacts by exam-
ining a strategy involving pesticide spraying kp + 1 times in one period of natural
enemy releases TN , while assuming that the releasing actions and spraying actions
cannot occur simultaneously. The threshold condition which guarantees the extinc-
tion of the pest population and the new number of natural enemies to be released in
this strategy were derived. We also mentioned that the strategy for releasing natural
enemies more than once in each period of pesticide spraying can be studied simi-
larly.

IPM strategies have been extensively used in practice, and mathematical modelling
concerning IPM has significantly contributed to understanding of the interaction be-
tween pest and natural enemy populations and evaluating the effectiveness of pest
control actions. Various mathematical models have been developed to describe the
effects of multiple control methods including chemical and biological controls on
successful pest management (Tang et al. 2005, 2008, 2010, 2013, 2012; Tang and
Cheke 2008; Tang and Liang 2013), and some important questions concerning IPM
strategies have been addressed. However, the most important factor, pesticide resis-
tance, was not included in those models. In this study, we have tried to fill this gap
by employing a pesticide resistance evolution equation, but there are still many key
issues which need to be investigated in more detail, such as how to determine the
switching frequency of unrelated pesticides once the pests have become highly resis-
tant? Using real data sets to estimate the pesticide evolution rate is also problematic.
We will address these questions in the near future.

In this work, the classical Lotka–Volterra predator-prey model (i.e. Holling type
I functional response) has been employed to describe the interactions between the
prey and predator populations. However, what we want to know is how the threshold
dynamics change once other types of functional response functions including Holling
type II have been chosen. Also, the impulsive releasing strategies were applied at
fixed time moments, so another interesting question is how to determine the threshold
value as shown in (12) if the continuous releasing method is used. We will focus on
these problems in the near future.
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and by the International Development Research Centre.
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Appendix A: The Deduction of Eq. (2) and Its Solution

Because Ps = ωP and Pr = (1 − ω)P , and d1 is the mortality rate of susceptible
pests, d2 is the mortality rate of resistant pests when the pesticide is sprayed, so we
have

⎧
⎪⎨

⎪⎩

dPs

dt
= ωrP (1 − ηP ) − d1Ps,

dPr

dt
= (1 − ω)rP (1 − ηP ) − d2Pr .

However, for simplification we assume that the resistant pests display near-complete
resistance to the pesticide, which means that d2 ≈ 0. Therefore,

dP

dt
= dPs

dt
+ dPr

dt
= rP (1 − ηP ) − ωd1P.

Then we get

dω

dt
= d

dt

(
Ps

P

)
= d1ω(ω − 1).

This resistance evolution equation has been widely used recently in different fields
(Hall et al. 2004; Bonhoeffer and Nowak 1997; Gubbins and Gilligan 1999; Laxmi-
narayan and Simpson 2000; Milgroom et al. 1989).

In practice, the evolution of pesticide resistance is dependent on the dosage of the
pesticide applications, the frequency of applications or the pesticide application pe-
riod. Although linking the evolution of pesticide resistance to the pest growth model
is a great challenge, it is well known that the less frequent are the pesticide appli-
cations (i.e. the longer the period between them), the slower the development of the
pest resistance. One possible way is to consider the effect of each pulse spraying of
pesticides on the evolution of pesticide resistance as a perturbation constant, i.e. we
have

dω(t)

dt
= d1ω

(
ωqi − 1

)
, τi−1 ≤ t ≤ τi, i ∈ N ,

with initial value ω(τi−1) at each time interval t ∈ [τi−1, τi] and ω(τ0) = ω(0) = ω0
is given. Where qi denotes the perturbation constant of the ith pulse spraying of
pesticides, which depends the number of pesticide applications, dosage Xi of the
ith pesticide application and time interval �τi . This equation resembles the classical
Richards equation. As such, we anticipate the approach in resistant equation can be
used to describe analytically the functional format of qi .

The analytical solution of ω(t) can be determined as follows:

ω(t) = (
1 + eqid1(t−τi−1)

((
ω(τi−1)

)−qi − 1
))− 1

qi , τi−1 ≤ t ≤ τi, (22)

which indicates that

ω(τi) = (
1 + eid1

(
ω(τi−1)

−qi − 1
))−1/qi . (23)

For simplification, we assume that the same dosage of pesticides is applied each
time, and without loss of generality we let Xi = 1 for all i ∈ N . It follows from
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the main text that one possible definition of qi is as follows: qi = i/�τi , and then
�τi = T for all i ∈ N . For this special case, the evolution of ω at each time point nT

can be expressed as

ω(nT ) = (
1 + end1

(
ω

(
(n − 1)T

)−n/T − 1
))−T/n

, n ∈N . (24)

Appendix B: The Proof of Theorem 2.1

For any given ε > 0 (ε small enough), we will first show that there exists a τ(ε) > 0
such that

P(τ) ≤ εe−βT . (25)

Otherwise, P(t) ≥ ε exp (−βT ) for all t ≥ 0. It follows from (b) that ∂F/∂P ≤ 0 and
then

F
(
s,P (s)

) ≤ F
(
s, εe−βT

)
, for s ≥ 0.

Since

F
(
s, εe−βT

) − F

(
s,

ε

2
e−βT

)
= ε

2
e−βT ∂F

∂P

(
s, η(s)

)
,

where ε
2 exp (−βT ) < η(s) < ε exp (−βT ). Again assumption (b) implies that

∂F

∂P

(
s, η(s)

) ≤ −ϕ0λ(s),

where ϕ0 = min{ϕ(P ) : exp (−βT )ε/2 ≤ P ≤ ε exp (−βT )}. Thus, we get

F
(
s,P (s)

) ≤ F

(
s,

ε

2
e−βT

)
− ε

2
e−βT ϕ0λ(s) ≤ F(s,0) − ε

2
e−βT ϕ0λ(s).

For any t ≥ 0, there is a h ∈N , such that (h − 1)T < t ≤ hT . Therefore,

εe−βT ≤ P(t)

=
h−1∏

i=1

q(iT )P0 exp

((∫ T

0
+

∫ 2T

T

+· · · +
∫ (h−1)T

(h−2)T

+
∫ t

(h−1)T

)
F

(
s,P (s)

)
ds

)

≤
h−1∏

i=1

q(iT )P0 exp

((∫ T

0
+· · · +

∫ (h−1)T

(h−2)T

+
∫ t

(h−1)T

)

×
(

F(s,0) − ε

2
e−βT ϕ0λ(s)

)
ds

)

=
h−1∏

i=1

q(iT )P0 exp

((∫ T

0
+· · · +

∫ t

(h−1)T

)
F(s,0)ds

)

× exp

(∫ t

0

(
−ε

2
e−βT ϕ0λ(s)

)
ds

)
.
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For ε > 0 small enough and assumption (c) yields

q(iT ) exp
∫ iT

(i−1)T

F

(
s,

ε

2
e−βT

)
ds ≤ 1, i = 1,2, . . . , h,

and F(s,0) ≤ β . Hence,

εe−βT ≤ P(t) ≤ P0e
βT exp

(∫ t

0

(
−ε

2
e−βT ϕ0λ(s)

)
ds

)
→ 0

as t → ∞, in particular, P(t) < ε exp (−βT ) for t large enough. This contradiction
establishes that (25) is true for some τ .

Now we will prove that

P(t) ≤ ε for t ≥ τ. (26)

Suppose that P(τ1) > ε ≥ ε exp (−βT ) for some τ1 > τ and there is a n ∈ N , such
that (n − 1)T ≤ τ1 < nT . Then there exists a t1 ∈ (τ, τ1), such that

P(t1) = εe−βT ,

and P(t) > ε exp (−βT ), for t ∈ (t1, τ1], which means that for any k ∈ N , t1 �= kT ,
due to 0 ≤ q(kT ) < 1. Therefore, either t1 > (n − 1)T or t1 < (n − 1)T . If t1 >

(n − 1)T , (this indicates τ1 > (n − 1)T ), then τ1 − t1 < T and

ε < P (τ1) = P(t1) exp

(∫ τ1

t1

F
(
s,P (s)

)
ds

)

≤ εe−βT exp

(∫ τ1

t1

F
(
s, εe−βT

)
ds

)

≤ εe−βT eβT = ε,

this is a contradiction. So t1 < (n − 1)T , then there is a m ∈ N , m < n such that
(m − 1)T < t1 < mT (let t1 = (m − 1)T + l, 0 < l < T ) and τ1 − t1 < T , otherwise,
τ1 − t1 ≥ T , i.e. τ1 ≥ T + t1, and P(t) > ε exp (−βT ), t ∈ (t1, t1 + T ]. Therefore,
(m− 1)T < t1 < mT < t1 +T < (m+ 1)T , and solving (3) from t1 to t1 +T , we get

εe−βT < P (t1 + T )

= q(mT )P (t1) exp

(∫ mT

t1

F
(
s,P (s)

)
ds

)
exp

(∫ t1+T

mT

F
(
s,P (s)

)
ds

)

≤ q(mT )εe−βT exp

(∫ t1+T

t1

F
(
s, εe−βT

)
ds

)

= q(mT )εe−βT exp

(∫ mT +l

(m−1)T +l

F
(
s, εe−βT

)
ds

)

≤ εe−βT ,

this is a contradiction, thus τ1 − t1 < T . Therefore, if τ1 > (n − 1)T , then

ε < P (τ1)

= q
(
(n − 1)T

)
P(t1) exp

(∫ (n−1)T

t1

F
(
s,P (s)

)
ds

)
exp

(∫ τ1

(n−1)T

F
(
s,P (s)

)
ds

)
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= q
(
(n − 1)T

)
P(t1) exp

(∫ τ1

t1

F
(
s,P (s)

)
ds

)

≤ q
(
(n − 1)T

)
P(t1) exp

(∫ τ1

t1

F
(
s, εe−βT

)
ds

)

≤ εe−βT eβT = ε,

it is a contradiction, if τ1 = (n − 1)T , then

ε < P (τ1)

= P(t1) exp

(∫ (n−1)T

t1

F
(
s,P (s)

)
ds

)

≤ P(t1) exp

(∫ (n−1)T

t1

F
(
s, εe−βT

)
ds

)

≤ εe−βT eβT = ε.

This is a contradiction. Hence, such τ1 does not exist. Therefore, P(t) ≤ ε for t ≥ τ ,
that is limt→∞ P(t) = 0. The proof is complete.

Appendix C: The Proof of Theorem 3.1

It is seen from the second equation of system (4) that dN(t)/dt > −dN(t). Consid-
ering the following impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t)

dt
= −dy(t), t �= nT ,

y
(
t+

) = y(t) + δn, t = nT ,

y
(
0+) = N0 + δ0.

(27)

According to the comparison theorem on impulsive differential equations, B1 yields
N(t) ≥ y(t) = N∗(t). It follows from the first equation of system (4) that

dP (t)

dt
≤ rP (t)

(
1 − ηP (t)

) − βP (t)N∗(t).

Now we consider the following impulsive differential equation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= rx(t)

(
1 − ηx(t)

) − βx(t)N∗(t), t �= nT ,

x
(
nT +) = (

1 − ω(nT )d1
)
x(nT ), t = nT ,

dω(t)

dt
= d1ω(t)

(
ω(t)qn − 1

)
,

x
(
0+) = P(0)

.= P0.

(28)

Again according to the comparison theorem on impulsive differential equations we
have P(t) ≤ x(t).

By using the formula of (24), we can easily have
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q(nT )
.= 1 − ω(nT )d1

= 1 − d1

(1 + end1((ω((n − 1)T ))− n
T − 1))

T
n

and

F(s, x)
.= r − rηx(s) − βN∗(s).

Now we test and verify the conditions of Theorem 2.1. It is easy to see that condi-
tion (a) holds true naturally, and

F(s,0) = r − βN∗(s) ≤ r

and

∂F (s, x)

∂x
= −rη,

∫ ∞

0
ηds = ∞.

Therefore,

exp

(∫ l+nT

l+(n−1)T

F (s,0)ds

)
= exp

(∫ l+nT

l+(n−1)T

r − βN∗(s)ds

)

= erT exp

(∫ l+nT

l+(n−1)T

(−βN∗(s)
)
ds

)

with

exp

(∫ l+nT

l+(n−1)T

(−βN∗(s)
)
ds

)

= exp

((
βN0

d
e−d(l+(n−1)T ) +

n−1∑

i=0

βδi

d
e−d(l+(n−1−i)T )

)
(
e−dT − 1

)

+ βδn

d

(
e−dl − 1

)
)

= exp
(
M(n, l)

)
.

Thus,

q(nT ) exp

(∫ l+nT

l+(n−1)T

F (s,0)ds

)

= R0(n,T ) exp
(
M(n, l)

)

.= RN
0 (n,T , l).

According to Theorem 2.1, we can see that if RN
0 (n,T , l) ≤ 1, then x(t) → 0 as

t → ∞. Consequently, we have P(t) → 0 as t → ∞ provided RN
0 (n,T , l) ≤ 1.

Next, we prove that N(t) → N∗(t) as t → ∞. For any 0 < ε < d/(λβ), there
exists a t1 > 0 such that 0 < P(t) < ε for all t ≥ t1. Without loss of generality, we
may assume that 0 < P(t) < ε holds true for all t > 0, then we have

−dN(t) ≤ dN(t)

dt
≤ (λβε − d)N(t).
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For the left-hand inequality, it follows from impulsive differential equation (27) that
N(t) ≥ y(t) = N∗(t). For the right-hand inequality, considering the following impul-
sive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

dz(t)

dt
= (λβε − d)z(t), t �= nT ,

z
(
t+

) = z(t) + δn, t = nT ,

z
(
0+) = N0 + δ0.

(29)

The analytical solution of the above system at any impulsive interval ((n − 1)T ,nT ]
gives

z∗(t) = N0e
(λβε−d)t +

n−1∑

i=0

δie
(λβε−d)(t−iT ), (n − 1)T < t ≤ nT . (30)

Therefore, for any ε1 > 0, there exists a t2 > 0 such that

N∗(t) − ε1 < N(t) < z∗(t) + ε1

for t > t2. Let ε → 0, then we have

N∗(t) − ε1 < N(t) < N∗(t) + ε1

for t > t2, which indicates that N(t) → N∗(t) as t → ∞. Therefore, the pest-free
solution (7) is globally attractive if RN

0 (n,T , l) ≤ 1. The proof is complete.

Appendix D: Determining the New Number of Natural Enemies to be Released
for Case 3.2

In this case RN
0max

(n,T , l) = RN
0 (n,T ,T ) = RC . It follows from (8) that we have

M(n,T ) = ln (Rc/R0(n,T )), that is
(

βN0

d
e−dnT +

n∑

i=0

βδi

d
e−d(n−i)T

)
(
e−dT − 1

) = ln

(
RC

R0(n,T )

)
,

this indicates that

G
n

′ +
n∑

i=n′+1

δie
diT = − dednT

β(1 − e−dT )
ln

(
RC

R0(n,T )

)
. (31)

That is
n∑

i=n′+1

δie
diT = − dednT

β(1 − e−dT )
ln

(
RC

R0(n,T )

)
− G

n
′ .= An.

Therefore, when n = n′ + 1 we get

δn′+1 = An′+1e
−d(n′+1)T .

When n = n′ + 2, we have

δn′+1e
d(n′+1)T + δn′+2e

d(n′+2)T = An′+2,
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that is

δn′+2 = (An′+2 − An′+1)e
−d(n′+2)T .

Similarly, when n = n′ + 3 we get

δn′+1e
d(n′+1)T + δn′+2e

d(n′+2)T + δn′+3e
d(n′+3)T = An′+3,

that is

δn′+3 = (An′+3 − An′+2)e
d(n′+3)T .

By induction, the new number of natural enemies to be released δn can be determined
as follows:

δn =

⎧
⎪⎪⎨

⎪⎪⎩

δc, if n ≤ n′,

An′+1e
−d(n′+1)T , n = n′ + 1,

(An − An−1)e
−dnT , if n > n′ + 1.

Appendix E: The Proof of Theorem 4.1

It is seen from the second equation of system (15) that dN(t)/dt > −dN(t). Con-
sidering the following impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t)

dt
= −dy(t), t �= hTN,

y
(
t+

) = y(t) + δh, t = hTN,

y
(
0+) = N0.

(32)

According to the comparison theorem on impulsive differential equations, (E1) yields
N(t) ≥ y(t) = N∗(t). It follows from the first equation of system (15) that

dP (t)

dt
≤ rP (t)

(
1 − ηP (t)

) − βP (t)N∗(t).

Now we consider the following impulsive differential equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= rx(t)

(
1 − ηx(t)

) − βx(t)N∗(t), t �= τn,

x
(
hT +

p

) = (
1 − ω(hTp)d1

)
x(hTp), t = τn,

dω(t)

dt
= d1ω(t)

(
ω(t)qn − 1

)
,

x
(
0+) = P(0)

.= P0.

(33)

Again according to the comparison theorem on impulsive differential equations, we
have P(t) ≤ x(t).

By using the formula of (24), we can easily have

q(nT )
.= 1 − ω(nT )d1

= 1 − d1

(1 + end1((ω((n − 1)T ))− n
T − 1))

T
n
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and

F(s, x)
.= r − rηx(s) − βN∗(s).

Now we test and verify the conditions of Theorem 2.1. It is easy to see that condition
(a) holds true naturally, and

F(s,0) = r − βN∗(s) ≤ r

and

∂F (s, x)

∂x
= −rη,

∫ ∞

0
ηds = ∞.

Therefore,

exp

(∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

F(s,0)ds

)
= exp

(∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

r − βN∗(s)ds

)

= erτ exp

(∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

(−βN∗(s)
)
ds

)
,

where k ≥ 1, τk = kτ , and
∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

(−βN∗(s)
)
ds

= −β

∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

(

N0 +
h−1∑

i=1

δie
idTN

)

e−dsds

= β

d
e−d(l+(h−1)TN+τk−1)

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)

for l ∈ (0, τ ] and 1 ≤ k ≤ kp , thus

R̂
TN

0 (h, k − 1, TN, l)

.= q
(
(h − 1)TN + τk

)
exp

(∫ l+(h−1)TN+τk

l+(h−1)TN+τk−1

F(s,0)ds

)

= R0
(
(h − 1)TN + τk

)

× exp

(
β

d
e−d(l+(h−1)TN+τk−1)

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

,

where R0((h − 1)TN + τk, τ ) = (1 − d1ω((h − 1)TN + τk)) exp (rτ ).
Moreover,
∫ l+hTN

l+(h−1)TN+τkp

(−βN∗(s)
)
ds

=
∫ hTN

l+(h−1)TN+τkp

(−βN∗(s)
)
ds +

∫ l+hTN

hTN

(−βN∗(s)
)
ds
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= −β

∫ hTN

l+(h−1)TN+τkp

(

N0 +
h−1∑

i=1

δie
idTN

)

e−dsds

− β

∫ l+hTN

hTN

(

N0 +
h∑

i=1

δie
idTN

)

e−dsds

= β

d
e
−d(l+(h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

) + βδh

d

(
e−dl − 1

)

.= (l),

therefore,

R̂
TN

0 (h, kp,TN, l)
.= q(hT ) exp

(
r −

∫ l+hTN

l+(h−1)TN+τkp

βN∗(s)ds

)

= R0(hTN, τ)e(l),

for l ∈ (0, τ ].
According to Theorem 2.1, we can see that if R̂

TN

0 (h, k − 1, TN , l) ≤ 1, then
x(t) → 0 as t → ∞. Consequently, we have P(t) → 0 as t → ∞ provided
R̂

TN

0 (h, k − 1, TN, l) ≤ 1, for k = 1,2, . . . , kp + 1.

Because R̂
TN

0 (h, k−1, TN , l) increases with respect to k and l, for k = 2,3, . . . , kp ,
we have

R̂
TN

0max
(h, k − 1, TN , l)

= R̂
TN

0 (h, kp − 1, TN, τ )

= R0
(
(h − 1)TN + τkp , τ

)

× exp

(
β

d
e
−d((h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

.

From

∂R̂
TN

0 (h, kp,TN, l)

∂l
= R̂

TN

0 (h, kp,TN, l)
∂(l)

∂l

= R̂
TN

0 (h, kp,TN, l)βe−dl(Dh−1 − δh),

we conclude that if Dh−1 > δh then R̂
TN

0 (h, kp,TN, l) increases with respect to l, so

R̂
TN

0max
(h, kp,TN, l)

= R̂
TN

0 (h, kp,TN, τ)

= R0(hTN, τ) exp

(
β

d
e−dhTN

(

N0 +
h∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

.

We can easily see that R̂
TN

0max
(h, k − 1, TN, l) < R̂

TN

0max
(h, kp,TN, l). Therefore,
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R
TN

0 (h,TN) = max
{
R̂

TN

0max
(h, k − 1, TN , l), R̂

TN

0max
(h, kp,TN, l)

}

= max
{
R̂

TN

0 (h, kp − 1, TN , τ ), R̂
TN

0 (h, kp,TN, τ)
}

= R0(hTN, τ) exp

(
β

d
e−dhTN

(

N0 +
h∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

.

If Dh−1 ≤ δh then R̂
TN

0 (h, kp,TN, l) decreases with respect to l, so

R̂
TN

0max
(h, kp,TN, l)

= R̂
TN

0 (h, kp,TN,0)

= R0(hTN, τ) exp

(
β

d
e
−d((h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

.

Due to the development of pest resistance, we can see that R0(hTN, τ) >

R0((h − 1)TN + τkp , τ ), thus R̂
TN

0 (h, kp,TN,0) > R̂
TN

0 (h, kp − 1, TN, τ ), that is

R̂
TN

0max
(h, k − 1, TN , l) < R̂

TN

0max
(h, kp,TN, l), therefore,

R
TN

0 (h,TN)

= max
{
R̂

TN

0max
(h, k − 1, TN, l), R̂

TN

0max
(h, kp,TN, l)

}

= max
{
R̂

TN

0 (h, kp − 1, TN, τ ), R̂
TN

0 (h, kp,TN,0)
}

= R0(hTN, τ) exp

(
β

d
e
−d((h−1)TN+τkp )

(

N0 +
h−1∑

i=1

δie
idTN

)
(
e−dτ − 1

)
)

.

thus, if R
TN

0 (h,TN) < 1, then P(t) → 0 as t → ∞.
The following proof is the same as Theorem 3.1. The proof is complete.

Appendix F: Determining the New Number of Natural Enemies to Be Released
for Case 4.2

In this case, solving equation

R
TN

0 (h,TN) = RC

with respect to δi , yields

h∑

i=1

δie
idTN = − dedhTN

β(1 − e−dτ )
ln

(
RC

R0(hTN, τ)

)
− N0, h ∈ N . (34)

Due to δi = δc, when i ≤ h′, we have

N0 + δc

h′∑

i=1

eidTN +
h∑

i=h′+1

δie
idTN = − dedhTN

β(1 − e−dτ )
ln

(
RC

R0(hTN, τ)

)
,
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that is

h∑

i=h′+1

δie
idTN = − dedhTN

β(1 − e−dτ )
ln

(
RC

R0(hTN, τ)

)
− N0 − δc

h′∑

i=1

eidTN
.= A′

h.

Therefore, when h = h′ + 1, we have

δh′+1 = A′
h′+1e

−d(h′+1)TN .

When h = h′ + 2, we get

δh′+1e
d(h′+1)TN + δh′+2e

d(h′+2)TN = A′
h′+2,

that is

δh′+2 = (
A′

h′+2 − A′
h′+1

)
e−d(h′+2)TN .

Similarly, when h = h′ + 3, we get

δh′+3 = (
A′

h′+3 − A′
h′+2

)
e−d(h′+3)TN .

By induction, the new number of natural enemies to be released δh can be determined
as follows:

δh =

⎧
⎪⎪⎨

⎪⎪⎩

δc, if h ≤ h′,

A′
h′+1e

−d(h′+1)TN , h = h′ + 1,

(A′
h − A′

h−1)e
−dhTN , if h > h′ + 1.
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