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We revisit Nicholson’s blowflies model with natural death rate
incorporated into the delay feedback. We consider the delay as
a bifurcation parameter and examine the onset and termination of
Hopf bifurcations of periodic solutions from a positive equilibrium.
We show that the model has only a finite number of Hopf bifur-
cation values and we describe how branches of Hopf bifurcations
are paired so the existence of periodic solutions with specific oscil-
lation frequencies occurs only in bounded delay intervals. The bi-
furcation analysis and the Matlab package DDE-BIFTOOL developed
by Engelborghs et al. guide some numerical simulations to iden-
tify ranges of parameters for coexisting multiple attractive periodic
solutions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Experimental data collected by the Australian entomologist Nicholson [23,24] has motivated much
entomological, mathematical and statistical research. In particular, Gurney et al. [10] proposed a delay
differential equation to explain the oscillatory behavior of the observed sheep blowfly Lucilia cuprina
population in [23]. The model developed by Gurney et al. [10] takes the simple-looking form

N ′(t) = f
(
N(t − τ )

) − γ N(t) (1.1)
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with f (N) = pNe−αN . Here N(t) denotes the population of sexually mature adults at time t , p is the
maximum possible per capita egg production rate, 1/α is the population size at which the whole
population reproduces at its maximum rate. In the model, τ is the generation time, or the time taken
from eggs to sexually mature adults, and γ is the per capita mortality rate of adults. Model (1.1) is
called Nicholson’s blowflies equation. It was used by Oster and Ipaktchi [25] for the development of an
insect population, and its modifications have been intensively studied in the literature of theoretical
biology and delay differential equations. Notably, it has been shown that a unique positive equilibrium
of (1.1) is globally asymptotically stable (with respect to nonnegative and nontrivial initial conditions)
for any τ � 0 provided that 1 < p/γ < e2 (see, for example, [12,16,28]). In the case where p/γ > e2,
the positive equilibrium loses its local stability and Hopf bifurcations occur at an unbounded sequence
of critical values. The existence of periodic solutions when the delay τ is not necessarily near the local
Hopf bifurcation values was established by Wei and Li [33], using a global Hopf bifurcation theorem
coupled with Bendixson’s criterion for higher dimensional ordinary differential equations.

In the aforementioned work and much of the existing literature, the mortality of the population
during the maturation process has been ignored. Consideration of the survival probability during the
maturation period requires an additional multiplier, which is delay-dependent, to be incorporated
into the nonlinear delayed feedback term. This leads to the delay differential equation with a delay-
dependent coefficient as follows:

N ′(t) = e−δτ f
(
N(t − τ )

) − γ N(t), (1.2)

where δ > 0 is the death rate of the immature population. One can of course derive this model, as did
in [3,22], from a structured population model for u(t,a) (the population density at age a and time t)
as below

∂t u(t,a) + ∂au(t,a) = −μ(a)u(t,a),

with the stage-specific mortality rate

μ(a) =
{

γ , a > τ,

δ, a < τ.

A simple application of the integration along characteristic lines leads to the model equation for the
matured population N(t) = ∫ ∞

τ u(t,a)da with Ricker’s type birth function f .
The additional term e−δτ is the probability of immature population surviving τ time units before

becoming mature. This addition, as we shall show, leads to rather different dynamics for model (1.2).
More specifically, as the delay τ increases, the positive equilibrium loses its stability and undergoes
local Hopf bifurcations at a finite even number of critical values, and as τ passes a critical thresh-
old, the positive equilibrium regains its stability. As τ keeps increasing and passes another threshold
value, the positive equilibrium disappears and the species becomes extinct (the zero solution is glob-
ally asymptotically stable). We also observe the coexistence of multiple stable periodic solutions. We
note that the coexistence of stable periodic solutions has been a remarkable phenomena in biological
systems [2,11,18,26] and our work seems to be the first result for the simple-looking blowflies delay
differential equation.

The rest of this paper is organized as follows. Section 2 collects some preliminary results on the
structure of equilibria, and the global stability of the trivial equilibrium. We then, in Section 3, fo-
cus on the (local) stability and Hopf bifurcation analysis about the positive equilibrium. The global
continuation of Hopf bifurcations is examined in Section 4, and numerical simulations based on the
bifurcation analysis are reported in Section 5. We then conclude the paper with a summary and some
discussions in Section 6.
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2. Preliminaries

For any τ > 0, let C := C([−τ ,0],R) be the Banach space of continuous functions on [−τ ,0] with
the norm defined as ‖φ‖ = sup−τ�θ�0 |φ(θ)| for φ ∈ C . Initial conditions, as inspired by the biological
applications are taken from the nonnegative cone C+ := C([−τ ,0],R+). For a nontrivial solution, we
always assume that the initial condition is given in the form of N0 = φ, φ ∈ C+ and φ(0) > 0. It
can then be shown that for any such nontrivial initial value N0 = φ, system (1.2) admits a unique
solution Nt through φ [13], and N(t) > 0 for t > 0.

Next, we show that all solutions of (1.2) are ultimately bounded. It follows from (1.2) and

f (x) = pxe−αx � f

(
1

α

)
= p

αe

for all x � 0 that

N ′(t) � −γ N(t) + pe−δτ

αe
.

Thus

lim sup
t→∞

N(t) � pe−δτ

αeγ
.

Summarizing the discussion above, we arrive at the following preliminary result.

Proposition 2.1. For system (1.2) with nontrivial initial conditions, all solutions are positive and ultimately
uniformly bounded in C+ .

Let

R0 = pe−δτ

γ
. (2.1)

It is clear that if R0 � 1, then model (1.2) admits only the trivial equilibrium N = 0, and if R0 > 1,
then, in addition to the trivial equilibrium, there is a unique positive equilibrium

N∗ = 1

α

(
ln

p

γ
− δτ

)
. (2.2)

As R0 is really the basic reproduction ratio of the system, the following result for the global at-
tractivity of the trivial equilibrium is anticipated.

Theorem 2.2. If R0 � 1, then the trivial equilibrium 0 of (1.2) is globally asymptotically stable in C+ . If R0 > 1,
then 0 is unstable and there exists a unique positive equilibrium N∗ , which is given by (2.2).

Proof. The characteristic equation associated with the linearization of model (1.2) at 0 is

λ + γ − e−δτ pe−λτ = 0.

It is well known that all roots of this equation have negative real parts if and only if R0 < 1, i.e.,
0 < e−δτ p < γ , and there exists at least one positive root if R0 > 1 ([14, Theorem A.5] or [27]). This



2568 H. Shu et al. / J. Differential Equations 255 (2013) 2565–2586
shows that the trivial equilibrium is locally asymptotically stable provided that R0 < 1, and is unstable
if R0 > 1.

Next we establish the global attractivity of the trivial equilibrium by using a Lyapunov functional
L : C+ → R,

L(Nt) = Nt(0) + e−δτ

0∫
−τ

pNt(s)e−αNt (s) ds.

Calculating the time derivative of L along solutions of model (1.2), we obtain

L′|(1.2) = −γ N(t) + e−δτ pN(t)e−aN(t) � γ (R0 − 1)N(t) � 0

if R0 � 1, and L′|(1.2) = 0 if and only if N(t) = 0. Thus, the global stability of the trivial equilibrium
follows from the Lyapunov–LaSalle invariance principle [13]. �
3. Stability and Hopf bifurcation of the positive equilibrium

In this section we assume that R0 > 1, which ensures the existence of the positive equilibrium N∗ .
We investigate the stability of N∗ and identify the parameter range in which the time delay can
destabilize N∗ , leading to Hopf bifurcations.

Let τmax = (1/δ) ln(p/γ ). Then R0 > 1 if and only if p/γ > 1 and 0 � τ < τmax. Therefore, through-
out this section, we assume that p/γ > 1. Next we investigate the dynamics of model (1.2) for
τ ∈ [0, τmax). Linearizing (1.2) around N∗ we obtain

N ′(t) = −γ N(t) + b(τ )N(t − τ ), (3.1)

where

b(τ ) = γ

(
1 − ln

p

γ
+ δτ

)
. (3.2)

The characteristic equation of (3.1) is

λ + γ − b(τ )e−λτ = 0. (3.3)

We use the delay τ > 0 as a bifurcation parameter and investigate the stability changes at N∗ and
the existence of periodic oscillations. First we note that when τ = 0, the characteristic equation (3.3)
gives

λ = b(0) − γ = −γ ln
p

γ
< 0.

Thus a stability change at N∗ can only happen when there are characteristic roots crossing the imag-
inary axis to the right. We thus look for a pair of purely imaginary roots λ = ±iω with ω > 0 for
τ > 0. Substituting λ = iω into (3.3) and separating the real and imaginary parts, we obtain

ω + b(τ ) sinωτ = 0, γ − b(τ ) cosωτ = 0.



H. Shu et al. / J. Differential Equations 255 (2013) 2565–2586 2569
Equivalently,

sinωτ = − ω

b(τ )
, cosωτ = γ

b(τ )
. (3.4)

Squaring and adding both equations of (3.4) lead to

ω2 = b2(τ ) − γ 2. (3.5)

Therefore, Eq. (3.5) has a positive root if and only if |b(τ )| > γ or equivalently,

p

γ
> e2 and τ <

1

δ

(
ln

p

γ
− 2

)
=: τ̂ . (3.6)

This immediately gives the following result on the stability of N∗: if

1 <
p

γ
� e2, and τ ∈ [0, τmax),

then model (1.2) has a unique positive equilibrium N∗ , which is locally asymptotically stable.
In the sequel, we assume that

(H1) p/γ > e2 and 0 < τ < τ̂ .

Then Eq. (3.5) has a unique positive real root

ω = ω(τ) =
√

b2(τ ) − γ 2. (3.7)

Note that the existence of positive ω alone does not ensure that Eqs. (3.4) have a solution (ω, τ ) as
this is only a necessary condition for (3.3) to have a pair of purely imaginary roots ±iω. It follows
from (H1) that δτ + 1 < ln(p/γ )− 1 < ln(p/γ ), which implies that b(τ ) < 0. Thus we have from (3.4)
that sinωτ > 0 and cosωτ < 0, which implies that ωτ ∈ (π/2+2nπ,π +2nπ) for some nonnegative
integer n. Substituting (3.7) into (3.4) gives

sin
(
τ

√
b2(τ ) − γ 2

) = −
√

b2(τ ) − γ 2

b(τ )
, cos

(
τ

√
b2(τ ) − γ 2

) = γ

b(τ )
. (3.8)

If (3.8) has a solution in (0, τ̂ ), then (3.3) has a pair of purely imaginary roots ±iω with ω given
by (3.7). Therefore, we seek positive solutions of Eqs. (3.8) in (0, τ̂ ).

Let n be a nonnegative integer and x = θn(τ ) be the unique solution of the equation

cos x = − γ τ√
x2 + γ 2τ 2

, x ∈
(

π

2
+ 2nπ,π + 2nπ

)
.

It follows from the Implicit Function Theorem that for fixed n, θn(τ ) is continuous on [0, τ̂ ] and
differentiable on (0, τ̂ ), with θn(0) = π/2 + 2nπ . Note that b(τ̂ ) = −γ . Thus ω(τ) → 0, sin θn(τ ) → 0
and cos θn(τ ) → −1 as τ → τ̂ . As a consequence, θn(τ̂ ) = π + 2nπ . Moreover, using the fact that
sin x = x/

√
x2 + γ 2τ 2, we have

θ ′
n(τ ) = γ θn(τ )

θ2(τ ) + γ 2τ 2 + γ τ
> 0 (3.9)
n
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and

θ ′′
n (τ ) = −2γ θn(τ )(θn(τ )θ ′

n(τ ) + γ τ)

(θ2
n (τ ) + γ 2τ 2 + γ τ)2

< 0

for all τ ∈ (0, τ̂ ). Hence θn(τ ) is strictly increasing and concave down on τ ∈ [0, τ̂ ] for all n.
Define a function

S(τ ) = τ

√
b2(τ ) − γ 2, τ ∈ [0, τ̂ ].

We note that S(τ ) is always nonnegative and

S ′(τ ) = b2(τ ) − γ 2 + γ δτb(τ )√
b2(τ ) − γ 2

. (3.10)

Denote S1(τ ) = b2(τ ) − γ 2 + γ δτb(τ ). Substituting b(τ ) into S1(τ ), we have

S1(τ ) = 2δ2γ 2τ 2 + 3δγ 2
(

1 − ln
p

γ

)
τ + γ 2 ln

p

γ

(
ln

p

γ
− 2

)
.

It is easy to check that S1(τ ) has two positive zeros c and c̄ with

c =
3(ln p

γ − 1) −
√

(ln p
γ )2 − 2 ln p

γ + 9

4δ
,

c̄ =
3(ln p

γ − 1) +
√

(ln p
γ )2 − 2 ln p

γ + 9

4δ
. (3.11)

It is readily seen from (H1) that c < τ̂ < c̄. Thus S1(τ ) > 0 on [0, c) and S1(τ ) < 0 on (c, τ̂ ], which
implies that S(τ ) is strictly increasing on [0, c) and strictly decreasing on (c, τ̂ ]. We further have

S ′′(τ ) = γ δ

(b2(τ ) − γ 2)3/2

(
2b(τ )

(
b2(τ ) − γ 2) − δγ 2τ

)
< 0

for τ ∈ (0, τ̂ ). Therefore, S(τ ) is strictly increasing on [0, c) and strictly decreasing on (c, τ̂ ]. More-
over, S(τ ) is concave down on [0, τ̂ ] with its maximum value being S(c) = c

√
b2(c) − γ 2, and

S(0) = S(τ̂ ) = 0. Observe that τ = τ ∗ > 0 is a solution of (3.8) if and only if θn(τ ∗) = S(τ ∗) for
some nonnegative integer n. Thus we arrive at the following result.

Lemma 3.1. The function θn(τ ) is strictly increasing and concave down on τ ∈ [0, τ̂ ] satisfying θn(0) = π/2+
2nπ and θn(τ̂ ) = π + 2nπ for all nonnegative integers n. The function S(τ ) is concave down on [0, τ̂ ] with
its maximum value being S(c) = c

√
b2(c) − γ 2 , and S(0) = S(τ̂ ) = 0. Let K be the smallest integer such that

S(c) < θK (c). Then we have the following:

(i) For any nonnegative integer j � K + 1, S(τ ) − θ j(τ ) has no zeros in [0, τ̂ ];
(ii) Eqs. (3.8) have at least K roots in [0, c), and exactly K roots in [c, τ̂ ].
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Proof. We are left to show (i) and (ii). Note that S(τ ) � S(c) < θK (c) < π + 2Kπ < θ j(τ ) for any
j � K + 1, τ ∈ [0, τ̂ ], thus (i) follows.

For any 0 � j � K − 1, we have θ j(c) � θK−1(c) � S(c) and θ j(0) > 0 = S(0). Moreover, θ ′
j(c) > 0 =

S ′(c), it follows from the Intermediate Value Theorem that S(τ )− θ j(τ ) has at least one zero in [0, c).
This implies that Eqs. (3.8) have at least K roots in [0, c). Now, we show that Eqs. (3.8) have exactly K
roots in [c, τ̂ ]. We note that S(τ ) − θ j(τ ) is strictly decreasing in (c, τ̂ ] for any nonnegative integer j.
Furthermore, S(τ̂ ) = 0 < θ j(τ̂ ) = π + 2 jπ , it follows that S(τ ) − θ j(τ ) has exactly one zero in [c, τ̂ ]
if and only if S(c) � θ j(c), which happens if and only if 0 � j � K − 1. The proof is complete. �

In order to show that there are only a finite number of distinct positive solutions to (3.8), we
require a generic transversality condition. By (3.9) and (3.10), at any τ such that S(τ ) = θ j(τ ), we
have

S ′(τ ) − θ ′
j(τ ) = b2(τ ) − γ 2 + δγ τb(τ )√

b2(τ ) − γ 2
− γ θ j(τ )

θ2
j (τ ) + γ 2τ 2 + γ τ

= b2(τ ) − γ 2 + δγ τb(τ )√
b2(τ ) − γ 2

− γ τ
√

b2(τ ) − γ 2

τ 2(b2(τ ) − γ 2) + γ 2τ 2 + γ τ

= τb(τ )√
b2(τ ) − γ 2(τb2(τ ) + γ )

(
b3(τ ) − b(τ )γ 2 + δγ 2 + δγ τb2(τ )

)
. (3.12)

Define the function

g(τ ) = b3(τ ) − b(τ )γ 2 + δγ 2 + δγ τb2(τ ), τ � 0. (3.13)

We claim that g(τ ) is a strictly increasing function on [0, c] with g(0) < 0 and g(c) > 0. In fact, we
have g(c) = δγ 2 > 0 and

g′(τ ) = δγ
(
4b2(τ ) + 2δγ τb(τ ) − γ 2)

= δγ 3
(

6δ2τ 2 − 10

(
ln

p

γ
− 1

)
δτ + 4

(
ln

p

γ
− 1

)2

− 1

)
,

which is a quadratic polynomial of τ and has two positive roots with the smaller one given by

5(ln p
γ − 1) −

√
(ln p

γ − 1)2 + 6

6δ
> c,

where c is defined in (3.11). Since the leading coefficient of g′(τ ) is positive, we have g′(τ ) > 0 for
any τ ∈ [0, c]. Next, we show that g(0) < 0, which, from the definition of b(τ ) in (3.2) and g(τ )

in (3.13), is equivalent to the inequality

γ

(
1 − ln

p

γ

)3

− γ

(
1 − ln

p

γ

)
+ δ < 0. (3.14)

Note that positive solutions of (3.8) exist only if S(c) > π/2, which is the same as

(cδ)2
((

1 − ln
p

γ
+ cδ

)2

− 1

)
>

π2δ2

4γ 2
.
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For simplicity, we denote u = cδ > 0 and a = ln(p/γ ) − 1 > 1. The above inequality can be written as

π2δ2

γ 2
< 2u2(2(u − a)2 − 2

)
. (3.15)

On the other hand, we obtain from S ′(c) = 0 that 2u2 − 3au + a2 − 1 = 0 and

u = 3a − √
a2 + 8

4
<

a2 − 1

3

since a > 1. Substituting 2u2 by 3au − a2 + 1 and applying the above inequality for u into (3.15) yield

π2δ2

γ 2
<

(
3au − a2 + 1

)(−au + a2 − 1
)

= −3a2u2 + 4au
(
a2 − 1

) − (
a2 − 1

)2

<
4a2(a2 − 1)2

3
,

which implies

δ

γ
<

2√
3π

a
(
a2 − 1

)
< a3 − a =

(
ln

p

γ
− 1

)3

−
(

ln
p

γ
− 1

)
.

Thus, (3.14) follows and we conclude that g(0) < 0. This proves our claim. Therefore, g(τ ) has a
unique root, denoted by c0, in [0, c]. Furthermore, we have g(τ ) < 0 for τ ∈ [0, c0) and g(τ ) > 0 for
τ ∈ (c0, c]. Thus, it follows from (3.12) and the fact b(τ ) < 0 that if τ ∈ [0, c0), then S ′(τ ) − θ ′

j(τ ) > 0
for all integers j � 0; and if τ ∈ (c0, c], then S ′(τ ) − θ ′

j(τ ) < 0 for all integers j � 0.

For τ ∈ (c, τ̂ ], we have S1(τ ) = b2(τ ) − γ 2 + γ δτb(τ ) < 0, which together with the fact b(τ ) < 0
implies that g(τ ) = b(τ )S1(τ ) + δγ 2 > 0. This yields S ′(τ ) − θ ′

j(τ ) < 0 for all integers j � 0 when
τ ∈ (c, τ̂ ]. Summarizing the above argument, we obtain the following lemma.

Lemma 3.2. Assume that S(c) > π/2. Let c0 be the unique root of g(τ ) = 0 on the interval [0, c] with g(τ )

defined in (3.13). Then for any integer j � 0,

S ′(τ ) − θ ′
j(τ )

{
> 0, τ ∈ [0, c0),

< 0, τ ∈ (c0, τ̂ ].
It can be observed from the above lemma that S(τ ) − θ j(τ ) is strictly increasing in (0, c0) and

strictly decreasing in (c0, τ̂ ), which implies that it attains its maximum at τ = c0. We next use this
fact to prove the following proposition.

Proposition 3.3. Assume that S(c0) > θ0(c0), where c0 is defined in Lemma 3.2. Let K1 be the smallest integer
such that S(c0) � θK1 (c0). Then there are exactly 2K1 positive numbers 0 < τ0 < τ1 < · · · < τ2K1−1 < τ̂ such
that τK1−1 < c0 < τK1 and θn(τn) = S(τn), θn(τ2K1−n−1) = S(τ2K1−n−1) for 0 � n � K1 − 1. Moreover,
K1 = K if S(c0) � θK (c0); and K1 = K + 1 if S(c0) > θK (c0), where K is defined in Lemma 3.1.

Proof. From the choice of K1, we have S(c0) > θ j(c0) for all 0 � j < K1 and S(c0) � θ j(c0) for all
j � K1. Note that S(c) > S(c0) > θ0(c0) > θ0(0) = π/2. It then follows from Lemma 3.1 and Lemma 3.2
that for j � K1, S(τ ) − θ j(τ ) has no simple zero in [0, τ̂ ], and for 0 � j < K1, S(τ ) − θ j(τ ) has
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exactly two distinct simple zeros; one in the interval (0, c0), denoted by τ j , and the other in the
interval (c0, τ̂ ), denoted by τ2K1− j−1, respectively. Especially, by choosing j = K1 − 1 we obtain 0 <

τK1−1 < c0 < τK1 < τ̂ . Moreover, from the monotonicity of S(τ ) − θ j(τ ) with respect to j we have
τ0 < τ1 < · · · < τ2K1−1.

Finally, from the definition of K in Lemma 3.1, we have θK−1(c) � S(c) < θK (c). If S(c0) � θK (c0),
it then follows from S(c0) − θK−1(c0) > S(c) − θK−1(c) � 0 that K1 = K . Here we have made use
of the fact that S(τ ) − θK1 (τ ) achieves its maximum at τ = c0 (Lemma 3.1). If S(c0) > θK (c0), then
θ j(τ ) ∈ [π/2 + 2 jπ,π + 2 jπ ] and thus θK (c) < θK+1(c0). Therefore, we obtain from S(c0) < S(c) <

θK (c) < θK+1(c0) that K1 = K + 1. This ends the proof. �
Lemma 3.4. Let λ(τ ) = ξ(τ ) + iω(τ) be a root of the characteristic equation (3.3) near τ = τ ∗ satisfying
ξ(τ ∗) = 0 and ω∗ = ω(τ ∗) > 0. Then we have the following transversality condition:

sgn

(
d Re(λ(τ ∗))

dτ

)
= sgn

(
S ′(τ ∗) − θ ′

j

(
τ ∗))

for some integer j � 0.

Proof. Substituting λ(τ ) into the characteristic equation (3.3) and taking the derivative with respec-
tive to τ , we obtain

dλ

dτ
− e−λτ db(τ )

dτ
+ b(τ )e−λτ

(
λ + τ

dλ

dτ

)
= 0.

Note that b′(τ ) = δγ and e−λτ = (λ + γ )/(b(τ )). Then

dλ

dτ
= −b(τ )λ2 + δγ λ − b(τ )γ λ + δγ 2

τb(τ )λ + b(τ ) + τγ b(τ )
. (3.16)

It follows from (3.16) that at τ = τ ∗ , λ = iω∗ and

d Re(λ(τ ∗))
dτ

= Re

(
b(τ ∗)ω∗2 + δγ 2 + (δ − b(τ ∗))γω∗i

b(τ ∗) + τ ∗γ b(τ ∗) + τ ∗b(τ ∗)ω∗i

)

= b4(τ ∗) − b2(τ ∗)γ 2 + δγ τ ∗b3(τ ∗) + δγ 2b(τ ∗)
(b(τ ∗) + τ ∗γ b(τ ∗))2 + (τ ∗b(τ ∗)ω∗)2

= b(τ ∗)g(τ ∗)
(b(τ ∗) + τ ∗γ b(τ ∗))2 + (τ ∗b(τ ∗)ω∗)2

.

Therefore, by (3.12), we obtain

sgn

(
d Re(λ(τ ∗))

dτ

)
= sgn

(
b
(
τ ∗)g

(
τ ∗)) = sgn

(
S ′(τ ∗) − θ ′

j

(
τ ∗)). �

Remark 3.5. Note that in the classical Hopf bifurcation theorem, the transversality condition is
sgn(d Re(λ(τ ∗))/dτ ) 	= 0. Here, we provide a simple geometric method to check the conditions by
determining whether the two curves S(τ ) and θ j(τ ) intersect transversally for some integer j � 0.

Now, applying Lemmas 3.2, 3.4 and Proposition 3.3 to the characteristic equation (3.3), and noting
that 0 is a root if and only if ln(p/γ ) = δτ , i.e., R0 = 1, we have the following theorem concerning
the stability of the positive equilibrium N∗ of model (1.2) and Hopf bifurcation.
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Theorem 3.6. Consider model (1.2).

(i) If 1 < p/γ � e2 , then N∗ is asymptotically stable for all τ ∈ [0, τmax).
(ii) Assume p/γ > e2 , and let τ̂ , c0 , K1 be defined in (H1), Lemma 3.2 and Proposition 3.3, respectively. Then

we have the following results:
(a) If S(c0) � θ0(c0), then N∗ is asymptotically stable for all τ ∈ [0, τmax).
(b) If S(c0) > θ0(c0), then there exist exactly 2K1 local Hopf bifurcation values, namely, 0 < τ0 < τ1 <

· · · < τ2K1−1 < τ̂ such that model (1.2) undergoes a Hopf bifurcation at N∗ when τ = τ j for 0 � j �
2K1 − 1. Given any n ∈ {0,1, . . . , K1 − 1}, when τ is sufficiently close to τn, the period of the periodic
solution is in the interval (2τn/(2n + 1),4τn/(4n + 1)); when τ is sufficiently close to τ2K1−n−1 , the
period of the periodic solution is in the interval (2τ2K1−n−1/(2n + 1),4τ2K1−n−1/(4n + 1)). Further-
more, N∗ is asymptotically stable for τ ∈ [0, τ0) ∪ (τ2K1−1, τmax), and unstable for τ ∈ (τ0, τ2K1−1).

Proof. (i) has been verified earlier.
(iia) If S(c0) < θ0(c0), then S(τ ) − θ0(τ ) � S(c0) − θ0(c0) < 0 for all τ ∈ [0, τ̂ ), which implies that

N∗ is asymptotically stable for all τ ∈ [0, τ̂ ). When τ ∈ [τ̂ , τmax), we have |b(τ )| < γ , which excludes
the existence of purely imaginary eigenvalues and thus implies that N∗ is also asymptotically stable
for all τ ∈ [0, τmax).

If S(c0) = θ0(c0), then S(τ )− θn(τ ) has no zero in [0, τ̂ ] for n � 1 and S(τ )− θ0(τ ) has one double
zero c0 in [0, τ̂ ], which imply that the transversality condition is not satisfied and all eigenvalues
remain to the left of the pure imaginary axis. Therefore, N∗ is still asymptotically stable for τ ∈ [0, τ̂ ).
Similarly, we can extend the stable region to [0, τmax) because |b(τ )| < γ for τ ∈ [τ̂ , τmax).

(iib) If S(c0) > θ0(c0), then it follows from Proposition 3.3 that there are exactly 2K1 positive
simple roots, namely, 0 < τ0 < τ1 < · · · < τ2K1−1 < τmax such that τK1−1 < c0 < τK1 and

θn(τn) = S(τn), θn(τ2K1−n−1) = S(τ2K1−n−1)

for 0 � n � K1 − 1. For any given n ∈ {0,1, . . . , K1 − 1}, applying Lemma 3.4, we obtain

sgn

(
d Re(λ(τn))

dτ

)
= sgn

(
S ′(τn) − θ ′

n(τn)
) = 1,

sgn

(
d Re(λ(τ2K1−n−1))

dτ

)
= sgn

(
S ′(τ2K1−n−1) − θ ′

n(τ2K1−n−1)
) = −1.

Therefore, this pair of simple conjugate purely imaginary eigenvalues ±iω(τn) cross the imaginary
axis from left to right, and the pair of simple conjugate purely imaginary eigenvalues ±iω(τ2K1−n−1)

cross the imaginary axis from right to left. Thus, we can easily obtain the stability of N∗ for τ ∈ [0, τ̂ ).
Similar to (iia), we can obtain the stability of N∗ for τ ∈ [τ̂ , τmax). Note that

2π

ω(τn)
= 2πτn

τn

√
b2(τn) − γ 2

= 2πτn

θn(τn)
,

2π

ω(τ2K1−n−1)
= 2πτ2K1−n−1

τ2K1−n−1
√

b2(τ2K1−n−1) − γ 2
= 2πτ2K1−n−1

θn(τ2K1−n−1)
,

and θn ∈ ( π
2 + 2nπ,π + 2nπ). Therefore, we have

2τn

2n + 1
<

2π

ω(τn)
<

4τn

4n + 1
and

2τ2K1−n−1

2n + 1
<

2π

ω(τ2K1−n−1)
<

4τ2K1−n−1

4n + 1
.

The Hopf bifurcation theorem for delay differential equations [13,15] applies and there are small am-
plitude periodic solutions bifurcating at τ = τn with periods between 2τn/(2n + 1) and 4τn/(2n + 1),
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and at τ = τ2K1−n−1 with periods between 2τ2K1−n−1/(2n + 1) and 4τ2K1−n−1/(4n + 1) for n ∈
{0,1, . . . , K1 − 1}. �
Remark 3.7.

(i) In case (iib) of Theorem 3.6, we notice that K1 � 1 by the definition of K1 in Proposition 3.3.
Therefore, the necessary and sufficient condition for the occurrence of Hopf bifurcation is
p/γ > e2 and S(c0) > θ0(c0).

(ii) It is noted that if S(c) � π/2, then S(c0) < θ0(c0) is always satisfied. Thus we have a sufficient
and easily verifiable condition for the nonexistence of Hopf bifurcations.

Let

Γ =
{
φ ∈ C+: ‖φ‖ � 1

α
, φ(0) > 0

}

and

τ̄ = 1

δ

(
ln

p

γ
− 1

)
∈ (τ̂ , τmax).

Then by the method of Lyapunov functional, we obtain the following global stability result of N∗ .

Theorem 3.8. If either

1 <
p

γ
� e, and τ ∈ [0, τmax) (3.17)

or

p

γ
> e, and τ ∈ [τ̄ , τmax) (3.18)

holds, then all solutions of model (1.2) with nontrivial initial conditions converge to N∗ .

Proof. It follows from Eq. (1.2) that

N ′(t) � −γ N(t) + p

αeδτ+1
,

which, together with (3.17) and (3.18), implies that

lim sup
t→∞

N(t) � p

αγ eδτ+1
� 1

α
and N∗ ∈

(
0,

1

α

]
.

Thus Γ is positively invariant and attracts all solutions of (1.2) with nontrivial initial conditions. This
allows us to consider the solutions of (1.2) with initial conditions in Γ . Define a Lyapunov functional
V : Γ →R,

V (Nt) = Nt(0) − N∗ ln Nt(0) + e−δτ

0∫ [
f
(
Nt(s)

) − f
(
N∗) ln f

(
Nt(s)

)]
ds,
−τ
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where f (x) = pxe−αx . Calculating the time derivative of L along the positive solutions of model (1.2),
we obtain

V ′∣∣
(1.2) = −γ N(t) + γ N∗ − N∗

N(t)
e−δτ f

(
N(t − τ )

) + e−δτ f
(
N(t)

)
− e−δτ f

(
N∗) ln f

(
N(t)

) + e−δτ f
(
N∗) ln f

(
N(t − τ )

)
.

Using e−δτ f (N∗) = γ N∗ and denoting h(x) = x − 1 − ln x for x > 0, we obtain

V ′∣∣
(1.2) = −γ N(t) + e−δτ f

(
N(t)

) − γ N∗ ln f
(
N(t)

) + γ N∗ ln f
(
N(t − τ )

)
− γ N∗ ln

N∗ f (N(t − τ ))

N(t) f (N∗)
− γ N∗h

(
N∗ f (N(t − τ ))

N(t) f (N∗)

)

= −γ N(t) + e−δτ f
(
N(t)

) + γ N∗ ln
N(t) f (N∗)
N∗ f (N(t))

− γ N∗h

(
N∗ f (N(t − τ ))

N(t) f (N∗)

)
.

We note that

−γ N(t) + e−δτ f
(
N(t)

) = −γ N(t) + γ N∗ f (N(t))

f (N∗)

= γ N(t)

(
−1 + N∗ f (N(t))

N(t) f (N∗)
− N∗

N(t)
+ f (N∗)

f (N(t))

)
+ γ N∗ − γ N(t)

f (N∗)
f (N(t))

= γ N(t)

(
f (N(t))

f (N∗)
− 1

)(
N∗

N(t)
− f (N∗)

f (N(t))

)
+ γ N∗ − γ N(t)

f (N∗)
f (N(t))

.

Therefore,

V ′∣∣
(1.2) = γ N(t)

(
f (N(t))

f (N∗)
− 1

)(
N∗

N(t)
− f (N∗)

f (N(t))

)

− γ N∗h

(
N∗ f (N(t − τ ))

N(t) f (N∗)

)
− γ N∗h

(
N(t) f (N∗)
N∗ f (N(t))

)
.

Since the function f (N) is strictly increasing and concave down on [0,1/α], we obtain that

(
f (N(t))

f (N∗)
− 1

)(
N∗

N(t)
− f (N∗)

f (N(t))

)
� 0

for N(t) � 1/α, and the equality holds only if N(t) = N∗ . We further note that h(x) � 0 for x > 0
and h(x) = 0 if and only if x = 1. Hence, V ′|(1.2) � 0 for all N ∈ Γ , and thus the omega limit sets of
the solutions are contained in U , the largest invariant subset of {V ′|(1.2) = 0}. It can be verified that
V ′|(1.2) = 0 implies N(t) = N∗ . Therefore, U = {N∗}. By the Lyapunov–LaSalle invariance principle [13],
we can conclude that the positive equilibrium N∗ is globally asymptotically stable if either (3.17) or
(3.18) holds. �
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4. Onset and termination of Hopf branches

Note that Theorem 3.6 states that if p/γ > e2, τ < τ̂ and S(c0) > θ0(c0), then periodic solutions
can bifurcate from N∗ when τ is near the local Hopf bifurcation values τ j , j = 0,1,2, . . . ,2K1 − 1.
In this section, we study the global continuation of these local bifurcating periodic solutions by using
the global Hopf bifurcation theorem for delay differential equations [6,34] and show that model (1.2)
admits periodic solutions globally for the delay τ in a finite interval (τ0, τ2K1−1) including the values
that are not necessarily near the local Hopf bifurcation values. Let z(t) = N(τ t), model (1.2) can be
rewritten as a general functional differential equation in the following form

z′(t) = F (zt, τ , T ), (t, τ , T ) ∈R× I ×R+, (4.1)

where I = (0, τmax) and

F (zt, τ , T ) = −γ τ z(t) + τe−δτ pz(t − 1)e−αz(t−1). (4.2)

Here zt(θ) = z(t + θ) for θ ∈ [−1,0], and zt ∈ X := C([−1,0],R+). Identifying the subspace of X
consisting of all constant functions from [−1,0] to R+ with R+ , we obtain a restricted function given
by

F̃ := F |R+×I×R+ : R+ × I ×R+ →R.

It follows from (4.2) that, for (z, τ , T ) ∈R+ × I ×R+ , F̃ takes the form

F̃ (z, τ , T ) = −τγ z + τe−δτ pze−αz.

Obviously, F̃ is twice continuously differentiable, i.e., the assumption (A1) in [34] holds. We denote
the set of stationary solutions of Eq. (4.1) by

O(F ) = {
(z̃, τ̃ , T̃ ) ∈R+ × I ×R+: F̃ (z̃, τ̃ , T̃ ) = 0

}
.

It follows from Theorem 2.2 that O(F ) = {(0, τ , T ), (N∗, τ , T ); (τ , T ) ∈ I × R+}. For any stationary
solution (z̃, τ , T ), the characteristic function is

�(z̃,τ ,T )(λ) = λ − D F (z̃, τ , T )
(
eλ·)

= λ + τγ − τe−δτ pe−α z̃(1 − α z̃)e−λ.

Note that, for any (z̃, τ̃ , T̃ ) ∈ O(F ), if R0 	= 1, then

D F (z̃, τ̃ , T̃ ) 	= 0.

This implies that if R0 > 1, then λ = 0 is not a characteristic value of any stationary solution of (4.1)
and hence the assumption (A2) in [34] holds. It can be checked easily from (4.2) that the smoothness
condition (A3) in [34] is satisfied. As in [34], a stationary solution (z̃, τ̃ , T̃ ) of (4.1) is called a center
if det�(z̃,τ̃ ,T̃ )(im(2π/T̃ )) = 0 for some positive integer m. A center (z̃, τ̃ , T̃ ) is said to be isolated if it

is the only center in some neighborhood of (z̃, τ̃ , T̃ ) and it has only finitely many purely imaginary
characteristic values of the form im(2π/T̃ ), where m is an integer.

Theorem 3.6 implies that if p/γ > e2, 0 � τ < τmax and S(c0) > θ0(c0), then for each n =
0,1, . . . ,2K1 − 1 the stationary solution (N∗, τn,2π/(ωnτn)) is an isolated center of (4.1) with
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ωn =
√

b2(τn) − γ 2, b(τn) = γ

(
1 − ln

p

γ
+ δτn

)
, (4.3)

and there is only one purely imaginary characteristic value of the form im(2π/T̃ ) with m = 1 and
T̃ = 2π/(ωnτn). Thus, J (N∗, τn,2π/(ωnτn)), the set of all such positive integers m, contains only one
element {1}. Moreover, if follows from Lemma 3.4 that the crossing number ζ1(N∗, τn,2π/(ωnτn)) at
each of these centers is

ζ1

(
N∗, τn,

2π

ωnτn

)
= − sgn

(
d(Re λ(τ ))

dτ

∣∣∣∣
τ=τn

)

= − sgn
(

S ′(τn) − θ ′
j(τn)

)
=

{−1, 0 � n � K1 − 1,

1, K1 � n � 2K1 − 1,
(4.4)

where j ∈ {0,1, . . . , K1 − 1} is the unique integer such that S(τn) = θ j(τn), and thus the condition
(A4) in [34] holds.

Next we define a closed subset Σ(F ) of X × I ×R+ by

Σ(F ) = Cl
{
(z, τ , T ) ∈ X × I ×R+: z is a nontrivial T-periodic solution of (4.1)

}
,

and for each n = 0,1, . . . ,2K1 − 1, let C(N∗, τn,2π/(ωnτn)) denote the connected component of
(N∗, τn,2π/(ωnτn)) in Σ(F ), where ωn and τn are defined in (4.3) and Proposition 3.3, respectively.
C(N∗, τn,2π/(ωnτn)) is a nonempty subset of Σ(F ) by Theorem 3.6. It follows from the global bifur-
cation theorem [34, Theorem 3.3] that either

(a) C(N∗, τn,2π/(ωnτn)) is unbounded in X × I ×R+ , or
(b) C(N∗, τn,2π/(ωnτn)) is bounded, C(N∗, τn, 2π

ωnτn
) ∩ O(F ) is finite and

∑
(z̃,τ ,T )∈C(N∗,τn, 2π

ωnτn
)∩O(F )

ζm(z̃, τ , T ) = 0

for all m = 1,2, . . . , where ζm(z̃, τ , T ) is the mth crossing number of (z̃, τ , T ) if m ∈ J (z̃, τ , T ),
otherwise, ζm(z̃, τ , T ) is zero.

The subsequent four lemmas exclude case (a) and thus case (b) must hold.

Lemma 4.1. All non-constant and nonnegative periodic solutions of (4.1) are uniformly bounded, namely,
there exist constants ε, M > 0 such that for any t ∈ R, ε � z(t) � M. Consequently, the projection of
C(N∗, τn,2π/(ωnτn)) onto X is bounded.

Proof. From the proof of Proposition 2.1, we obtain an upper bound M := p/(αeγ ). We are left to
show that any periodic solution z(t) is bounded from below. Let zmin := mint∈R z(t) = z(tmin) for some
tmin > 0. It follows from z′(tmin) = 0 that

γ zmin = e−δτ f
(
z(tmin − 1)

)
,
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where f (x) = pxe−αx . Note that f (x) > γ eδτ x for all x ∈ (0, N∗). We claim z(tmin −1) > N∗; otherwise
f (z(tmin − 1)) > γ eδτ z(tmin − 1), which, together with the above equation, implies zmin > z(tmin − 1),
a contradiction to the definition of zmin. Therefore, we have

γ zmin = e−δτ f
(
z(tmin − 1)

)
� e−δτ pN∗e−aM =: γ ε.

This completes the proof. �
Lemma 4.2. The projection of C(N∗, τn,2π/(ωnτn)) onto I is bounded.

Proof. Note that N∗ is globally asymptotically stable when τ = 0. This excludes the existence of
periodic solutions at τ = 0. Theorem 3.8 shows that N∗ is also globally asymptotically stable, and
thus no periodic solution exists when τ ∈ [τ̄ , τmax). Therefore, periodic solutions are possible only
when τ is bounded. This ends the proof. �
Lemma 4.3. Assume that p/γ > e2 . Then Eq. (4.1) has no periodic solution of period 2.

Proof. Let u(t) be a periodic solution of (4.1) with period 2. Set u1(t) = u(t) and u2(t) = u(t − 1).
Then (u1(t), u2(t)) is a periodic solution of the following system of ordinary differential equations:

u′
1(t) = −τγ u1(t) + τe−δτ pu2(t)e−αu2(t),

u′
2(t) = −τγ u2(t) + τe−δτ pu1(t)e−αu1(t). (4.5)

Let (P (u1, u2), Q (u1, u2)) denote the vector field of (4.5), then we have

∂ P

∂u1
+ ∂ Q

∂u2
= −2τγ < 0

for all (u1, u2). Thus, the nonexistence of periodic solutions for (4.5) follows from the classical Bendix-
son’s negative criterion. This ends the proof. �

Using the general Bendixson’s criterion developed by Li and Muldowney [17] and an argument
similar to [33, Lemma 4.2], we can prove the following lemma.

Lemma 4.4. If

e2 < p/γ < σ e2, (4.6)

where σ > 1 is the largest real root of the equation xe3−xe = 1, then Eq. (4.1) has no periodic solutions of
period 4.

Remark 4.5. We conjecture that the constant σ in (4.6) can be replaced by infinity, that is, Lemma 4.4
holds as long as e2 < p/γ .

Note that Eq. (4.1) has no periodic solutions of period 2 or 4, and thus has no periodic solutions
of period 2/k or 4/k for any positive integer k. It follows from Lemmas 4.3 and 4.4 that the period T
of a periodic solution on the connected component C(N∗, τ j,2π/(ω jτ j)) satisfies

2
< T <

4

2 j + 1 4 j + 1
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if (z, τ , T ) ∈ C(N∗, τ j,2π/(ω jτ j)) ∪ C(N∗, τ2K1− j−1,2π/(ω2K1− j−1τ2K1− j−1)) for any integer 0 � j �
K1 − 1. Therefore, the projection of C(N∗, τn,2π/(ωnτn)) onto the T -space is bounded.

It follows from Lemma 4.1 that the periodic solutions are all bounded away from zero. Thus there
is no need to consider the boundary equilibrium. We define

O∗(F ) := {(
N∗, τ , T

)
: (τ , T ) ∈ I ×R

}
.

It follows from the above four lemmas that for each 0 � n � 2K1 −1, C(N∗, τn,2π/(ωnτn)) is bounded,
C(N∗, τn,2π/(ωnτn)) ∩ O∗(F ) is finite and

∑
(z̃,τ ,T )∈C(N∗,τn, 2π

ωnτn
)∩O∗(F )

ζ1(z̃, τ , T ) = 0. (4.7)

We are now in the position to state our result concerning the properties of the global Hopf branches.

Theorem 4.6. Assume that R0 > 1, S(c0) > θ0(c0), and e2 < p/γ < σ e2 , where σ > 1 is given as in
Lemma 4.4. Then for Eq. (4.1), we have the following results:

(i) All global Hopf branches are bounded for n = 0,1, . . . ,2K1 − 1;
(ii) Each global Hopf branch connects a pair of Hopf bifurcation values τ j and τ2K1− j−1 for j = 0,1, . . . ,

K1 − 1;
(iii) For each τ ∈ (τ j, τ2K1− j−1) with 0 � j � K1 − 1, Eq. (4.1) has at least one periodic solution with period

in (2/(2 j + 1),4/(4 j + 1)).

Proof. The boundedness of global Hopf branches is a direct consequence of the four lemmas we have
established above. It follows from (4.4) and (4.7) that any global Hopf branch must contain at least
two Hopf bifurcation values, one is τ j for some j ∈ {0,1, . . . , K1 − 1} and the other is τ2K1−l−1 for
some l ∈ {0,1, . . . , K1 − 1}. Next, we claim that each global Hopf branch connects exactly a pair of
Hopf bifurcation values τ j and τ2K1− j−1 for j = 0,1, . . . , K1 − 1. Suppose, on the contrary, there ex-
ists a global Hopf branch connecting two Hopf bifurcation values τ j and τ2K1−l−1 with j, l � K1 − 1
and j 	= l. Without loss of generality, we assume j < l. Note that, on the Hopf bifurcation branch
near the Hopf bifurcation value τ = τ j , the minimal period of a periodic solution is in the inter-
val (2/(2 j + 1),4/(4 j + 1)), and near the Hopf bifurcation value τ = τ2K1−l−1, the minimal period
is in (2/(2l + 1),4/(4l + 1)). By the continuity of Hopf bifurcation branch, there must exist a non-
constant periodic solution of period 2/(2 j + 1). This contradicts to the nonexistence of period 2
solutions. Finally, for 0 � j � K1 − 1, the Hopf bifurcation branch C(N∗, τ j,2π/(ω jτ j)) is connected,
thus its projection onto the I-space is also connected and contains two points τ j and τ2K1− j−1. This
implies that for each τ ∈ (τ j, τ2K1− j−1), there exists at least one periodic solution with period in
(2/(2 j + 1),4/(4 j + 1)). This completes the proof. �
5. Numerical simulations, and the coexistence of multiple stable periodic solutions

In this section, we present some numerical simulations to demonstrate our theoretical results and
show that multiple stable periodic solutions can coexist. The global Hopf branches are computed by a
Matlab package DDE-BIFTOOL developed by Engelborghs et al. [4,5].

We choose the following set of parameter values:

γ = 1, δ = 0.01, p = 15, α = 1. (5.1)

It is easy to calculate τ̂ = 70.805 < τ̄ = 170.805 < τmax = 270.805, and R0 > 1 if and only if 0 �
τ < τmax. It can be verified that the conditions of case (iib) in Theorem 3.6 are satisfied only if
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Fig. 1. The graphs of S(τ ) and θi(τ ) for i = 0,1, . . . ,6. This gives the solution τn , n = 0,1, . . . ,11 of (3.8).

0 � τ < τmax. By Theorem 3.6, we know that there are exactly 12 (with K1 = 6) local Hopf bifurcation
values, namely,

0 < τ0 = 1.614 < τ1 = 6.528 < τ2 = 12.013 < τ3 = 18.371

< τ4 = 26.349 < τ5 = 40.639 < τ6 = 49.664 < τ7 = 60.824

< τ8 = 65.469 < τ9 = 68.265 < τ10 = 69.926 < τ11 = 70.709 < τ̂ ,

as shown in Fig. 1. Correspondingly,

ω0 = 1.365 > ω1 = 1.303 > ω2 = 1.233 > ω3 = 1.150

> ω4 = 1.042 > ω5 = 0.833 > ω6 = 0.864 > ω7 = 0.458

> ω8 = 0.331 > ω9 = 0.227 > ω10 = 0.133 > ω11 = 0.044.

All global Hopf branches of periodic solutions emanating from the Hopf bifurcation points are depicted
in Fig. 2. It is seen from Fig. 2 that these branches are all bounded and each branch connects exactly
a pair of bifurcation values τ j and τ11− j with integer 0 � j � 5, respectively. DDE-BIFTOOL allows
us to draw the associated principal Floquet multipliers in Fig. 3 (if the principal Floquet multiplier is
larger than 1, then the corresponding periodic solution is unstable, otherwise, the bifurcated periodic
solution is stable [13]). It is observed in Fig. 3 that the first branch is stable for small τ , and becomes
unstable as τ increases, and regains its stability as τ is sufficiently large. On the contrary, the second
branch is initially unstable and becomes stable later but eventually loses its stability as τ further
increases. The other four branches are always unstable. In addition, the periods of periodic solutions
on the ( j + 1)th Hopf branch are in the interval (2/(2 j + 1),4/(4 j + 1)) with the integer j satisfying
0 � j � 5 (see Fig. 4). We can also easily verify that N∗ is stable for τ ∈ [0, τ0) ∪ (τ11, τmax) and is
unstable for τ ∈ (τ0, τ11).

It is interesting to note in Fig. 2 that when τ ∈ (τ j, τ11− j), 1 � j � 5, there are j + 1 associated
Hopf branches. This makes the coexistence of multiple periodic solutions possible. Indeed, as shown
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Fig. 2. The bifurcation diagram showing stability switch at positive equilibrium N∗ and all global Hopf branches of model (1.2)
with parameter values given in (5.1).

Fig. 3. The principal Floquet multipliers of periodic solutions on all Hopf branches of model (1.2) with parameter values given
in (5.1).

in Fig. 3, there exists an interval of τ (for instance, 20 � τ � 60) on which more than one periodic
solutions are stable. We take τ = 21 and observe from Figs. 2 and 3 that there are two stable periodic
solutions located on the first and second branches, respectively, and two unstable periodic solutions
lying on the third and fourth branches. In Fig. 5, we observe two stable periodic solutions for the same
τ value (τ = 21). We observe that the periodic solution located on the first Hopf branch has period of
44 and is a slowly-oscillating periodic solution, while the periodic solution on the second Hopf branch
has a period of 15 and is a fast-oscillating periodic solution. As shown in Figs. 6 and 7, there also
exist two unstable periodic solutions which are the sources accounting for transient oscillations from
cycles with small periods to a regular cycle with a larger period on the first Hopf branch. This suggests
(numerically) that the slowly-oscillating periodic solution may have a larger basin of attraction.
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Fig. 4. The periods of periodic solutions on the Hopf branches of model (1.2) with parameter values given in (5.1).

Fig. 5. Two coexisting stable periodic solutions for τ = 21 with parameter values given in (5.1). Left: a stable periodic solution
on the first branch with period 44. Right: a stable periodic solution on the second branch with period 15.

6. Summary and discussion

We have revisited Nicholson’s blowflies model by incorporating the mortality of the population
during the maturation process into the delayed feedback, which has been ignored in the litera-
ture. Regarding the delay as the bifurcation parameter, we have shown that the revised model
(1.2) possesses very different dynamics compared with model (1.1) in which the mortality rate of
the immature individuals is not explicitly incorporated into the model system. Especially, we have
proven that if p/γ > e2 and S(c0) > θ0(c0), then four threshold values τ0 < τ2K1−1 < τ̄ < τmax char-
acterize the dynamics. The positive equilibrium N∗ of (1.2) is locally asymptotically stable when
τ ∈ [0, τ0) ∪ (τ2K1−1, τmax), and is globally asymptotically stable when τ ∈ [τ̄ , τmax), and when
τ � τmax, model (1.2) admits only the trivial equilibrium resulting in the extinction of the species.
It has been shown that the model has only a finite even number of Hopf bifurcation values. We have
also described how branches of Hopf bifurcations are paired indicating that periodic solutions with
specific oscillation frequencies can exist only in bounded delay intervals.
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Fig. 6. An unstable periodic solution with period 9 on the third branch is observed when τ = 21. The solution undergoes some
transient oscillations and eventually converges to the stable slowly-oscillating periodic solution on the first branch.

Fig. 7. An unstable periodic solution with period 6 on the fourth branch.

To the best of our knowledge, this is the very first paper proving that the global Hopf branches
are all bounded, and each branch connects exactly two local Hopf bifurcation values resulting in mul-
tiplicity of periodic solutions and coexistence of multiple stable periodic solutions. The techniques
we used in this paper can also be employed to explore the global Hopf branch structure for other
models with age-structures, and in particular, for diffusive Nicholson’s blowflies equations consid-
ered in [7–9,19–21,29–32,35] and the references therein. It would be interesting to see what kind
of new oscillatory patterns may emerge for the non-autonomous version of the model we consid-
ered [1].

We should point out that the proof of Theorem 4.6 utilized a global Hopf bifurcation theorem due
to Wu [34] and a general Bendixson’s criterion developed by Li and Muldowney [17]. In particular, we
applied the general Bendixson’s criterion to exclude the existence of a periodic solution of period 4
(Lemma 4.4). To relax our conditions, a new approach is needed to prove the nonexistence of periodic
solutions for a four-dimensional ordinary differential equation system. We conjecture that Eq. (4.1)
has no periodic solutions of period 4 provided p/γ > e2.
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