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We consider the abstract algebraic-delay differential system,

x′(t) = Ax(t) + F
(
x(t),a(t)

)
,

a(t) = H(xt ,at).

Here A is a linear operator on D(A) ⊂ X satisfying the Hille–
Yosida conditions, x(t) ∈ D(A) ⊂ X , and a(t) ∈ Rn , where X is
a real Banach space. With a global Lipschitz condition on F
and an appropriate hypothesis on the function H , we show
that the corresponding initial value problem gives rise to a
continuous semiflow in a subset of the space of continuous
functions. We establish the positivity of the x-component and give
some examples arising from age structured population dynamics.
The examples come from situations where the age of maturity of
an individual at a given time is determined by whether or not the
resource concentration density, which depends on the immature
population, reaches a prescribed threshold within that time.

© 2013 Published by Elsevier Inc.

1. Introduction

The motivation for this paper comes from the curiosity for analyzing a hyperbolic partial differential
equation (PDE) with a state dependent delay, since not much work has been done on this subject. The
works of Rezounenko, e.g. [11,12], indicate that it is difficult to give a general theory for any kind
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of PDEs with state dependent delays, because the nonlinear term is not Lipschitz on the usual space
of continuous functions and the corresponding initial value problem is not well posed. In the case
of ordinary differential equations (ODEs) with state dependent delays, an alternative is to work on the
space of Lipschitz or C1 functions, as in [16]. The reason that this approach is difficult to carry over
to PDEs is a recurring difficulty which stems from the fact that, in general, it is difficult to construct
a solution of a PDE which is a priori regular. This is why the existing works for PDEs with state
dependent delays only study very special classes of equations.

This paper is about a class of first order hyperbolic equations, different from those studied in [11,
12]. The example in mind comes from a model for an age structured population, with the special
feature that the age of maturity at a given time of an individual is determined by whether or not
the resource concentration density, which depends on the immature population, reaches a prescribed
threshold value within that time. In case of a single population, this takes the form of a first order
hyperbolic PDE coupled to a scalar algebraic-delay term. To the best of our knowledge, this system
has not previously been studied without being reduced to some kind of ODE or integral equation
containing a delay. See [3,2] and references therein.

We now give a mechanistic derivation for the example we have in mind below, to motivate the
main results. We make a comparison with relevant existing results and outline our contribution.

1.1. Mechanistic derivation

The derivation below is adapted from [3].
Consider some abstract habitat and some population of individuals living in this habitat. Let u(t,a)

be the density of individuals of age a at time t . Let the immature population at time t be given by
I(t). Let S(t) denote the concentration density of some resource per unit volume in the habitat at
time t . To derive a deterministic model we need to make some assumptions.

First, we assume that S(t) satisfies S ′(t) = S0 − (γi I(t) + C)S(t). Here S0 > 0 is a constant rate of
food recruited in the habitat, γi > 0 is the rate of food consumption of the immature population per
unit time, and C > 0 represents the resource consumption rate by anything else in the habitat. Since
the resource consumption happens on a much faster time scale than that of life of the population, we
can make a simplifying assumption. If we hold the immature population fixed, we get the equation,
S ′(t) = S0 − (γi I + C)S(t). The steady state is given by the formula S = S0

γi I+C . Since this steady state
is globally stable, the quasi steady state approximation gives

S(t) = S0

γi I(t) + C
. (1)

For further details see [9].
Second we assume that the age of maturity at time t , τ (t), is defined by the condition

t∫
t−τ (t)

S(σ )dσ = T > 0, (2)

where T > 0 is a “size” threshold. This represents the difference between an individual’s size at birth
and their size τ units of time after birth. Combining (1) with (2) gives us

t∫
t−τ (t)

S0

γi I(σ ) + C
dσ = T with I(σ ) =

τ (σ )∫
0

u(σ ,a)da

or equivalently
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t∫
t−τ (t)

S0

[
γi

τ (σ )∫
0

u(σ ,a)da + C

]−1

dσ = T .

For convenience, we set S0 = γi = 1.
Finally we assume that the individuals have maximum age 0 < m � ∞ and u(t,a) satisfies the

standard first order hyperbolic PDE,

∂t u(t,a) + ∂au(t,a) = −d(a)u(t,a), t � 0 and 0 � a � m;

u(t,0) = b

( m∫
τ (t)

β(ξ)u(t, ξ)dξ

)
,

where τ (t) is given by

0∫
−τ (t)

[ τ (t+σ )∫
0

u(t + σ ,a)da + C

]−1

dσ = T . (3)

Note that we ignore technicalities concerning whether τ (t) is well defined by (3) at this stage. To
have solutions for t � 0 we must specify the initial conditions,

τ (t) = ϕ(t) for −am � t � 0

and

u(t,a) = ψ(t,a) for −am � t � 0 and 0 � a � m.

Here am ∈ (0,m) is the maximal age of maturity.
A look at (3) reveals that τ (t) depends on the history at time t of the population density, ut ,

and the history of itself, τt . As usual, ut(θ)(·) = u(t + θ)(·) and τt(θ) = τ (t + θ) for θ ∈ [−am,0]. We
assume naively that τ (t) is a function of ut and τt , τ (t) = H(ut , τt) (see Sections 2.1 and 5).

To summarize, we have obtained the initial value problem,

∂t u(t,a) + ∂au(t,a) = −d(a)u(t,a),

u(t,0) = b

( m∫
τ (t)

β(ξ)u(t, ξ)dξ

)
,

τ (t) = H(ut, τt) (4)

for t � 0 and 0 � a � m with initial conditions

τ (t) = ϕ(t) and u(t,a) = ψ(t,a) for −am � t � 0 and 0 � a � m. (5)

Note that for each t � 0,
( ut

τt

) ∈ M0, where

M0 =
{(

ψ

ϕ

)
∈ some subset of C

([−am,0], L1[0,m) × R
) ∣∣∣ ϕ(0) = H(ψ,ϕ)

}
.

The precise definitions of H and M0 are given in Sections 2 and 5.
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We can rewrite the initial value problem (4)–(5) abstractly as

d

dt

(
0

u(t, ·)
)

=
( −u(t,0)

−ua(t, ·)
)

+
(

b(
∫ m
τ (t) β(ξ)u(t, ξ)dξ)

−d(·)u(t, ·)
)

,

τ (t) = H(ut, τt),(
x0
τ0

)
=

(
ψ

ϕ

)
∈ M0.

This mechanistic derivation shows how we are naturally led to considering the more general
algebraic-delay differential system, the initial value problem (6) in Section 2, which is the object
of study in this paper.

1.2. Comparison with existing results

Similar types of structured population models were already considered by Smith in [14]. The mod-
els considered by Smith were reduced to a single retarded functional differential equation whose
nonlinear term is Lipschitz on the usual phase space of continuous functions. Due to the dependence
of the age of maturity on the immature population, this is not possible for the case we are consider-
ing. This is because the second component of the system we are studying, which describes the age of
maturity in the mechanistic derivation above, depends not only on the history of the population den-
sity but also on the history of itself. For a related work on threshold type delay differential equations,
see [4].

More recently, Hbid et al. [2] considered a stage structured population model with the same fea-
ture determining the age of maturity that we have here. However, based on a simplifying assumption,
they reduced the model to an integral equation containing a state dependent delay, for which the
immature population depends only on the history of the state variable, and consequently, does not
need to be initialized.

The nonlinear semigroups approach we are using here was motivated by the works of Thieme [15],
and Magal and Ruan [6,5], specifically for the case of structured population models. For another semi-
group approach for age structured models, see [19]. The basic reference for semigroup theory is [10].

A unification of various fundamental results for PDE with ordinary delay is given in [13], which
uses a more general class of operators than we have here. It would be nice to see if the results pre-
sented here can find such generalizations. For a treatment of reaction diffusion systems with ordinary
delay, see [20].

Also closely related is the recent work of Walther [17] on ODE algebraic-delay differential systems.
Walther considered systems of the form

x′(t) = f
(
xt, r(t)

)
,

0 = Δ
(
r(t), xt

)
,

where x(t) ∈ Rk and r(t) is defined implicitly by the history of the state, xt . As long as the derivative
of Δ in the first component is nonsingular, such systems will be locally uniquely solvable thanks to
the implicit function theorem. Unfortunately, we cannot apply the implicit function theorem for the
case we are considering, so instead we impose a special Lipschitz condition on the function H given
in the next section.

1.3. Outline and main results

In Section 2, we state the relevant technical preliminaries and hypotheses, including the appropri-
ate notion of mild solutions in the subset M0 of the ambient linear space of continuous functions.
In Section 3 we prove the existence and uniqueness of local mild solutions in M0, in Theorem 1.
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In Section 4, we discuss the corresponding semiflow and show that it is continuous in Theorem 2.
In Section 5, we give an application of the general theory in Proposition 3. Finally, in Section 6, we
briefly discuss the upcoming sequel of this work.

2. Technical preliminaries and hypotheses

In this section we state the relevant technical preliminaries and hypotheses. All Banach spaces are
assumed to be over the real numbers. Whenever a product of Banach spaces is considered, we view
it as a Banach space equipped with the corresponding product norm.

2.1. The ambient linear space of initial data

Let δ > 0 and I = [−δ,0]. For F ⊂ E , where E is a Banach space, C(I, F ) denotes the set of con-
tinuous functions mapping I into F . For ψ ∈ C(I, F ), we let ‖ψ‖ be the supremum norm of ψ . Then
(C(I, E),‖ · ‖) is a Banach space.

Suppose that 0 < T < ∞ and y : I ∪ [0, T ] → F is some map. As usual in the literature on delay
equations, for each t ∈ [0, T ], we define yt : I → F by yt(θ) = y(t + θ) for θ ∈ I and call yt the history
of y at time t . If T = ∞ then the same definition applies with t ∈ [0, T ] being replaced with t ∈ [0, T ).

2.2. Hypotheses

(H1) Let (X, | · |) denote a Banach space and suppose that A : D(A) → X with D(A) ⊂ X is a linear
operator satisfying the estimates of the Hille–Yosida theorem. That is, there is some M � 1 and
some ω ∈ R such that the ray (ω,∞) ⊂ ρ(A) and ‖(A − λI)−n‖ � M

(λ−ω)n for λ > ω and for each
positive integer n.

We let X0 = D(A) and A0 denote the part of A in X0. Actually this class of operators falls under
a more general class of well known operators as pointed out in [13]. Set Rλ = (A − λI)−1. Without
loss of generality, assume that ω > 0. It follows from (H1) that A0 generates a C0-semigroup of linear
operators on X0, {T (t)}t�0, and that ‖T (t)‖ � Meωt .

(H2) Let n > 0 be given. Suppose that K is some compact subset of Rn such that K is contained in the
closed ball of radius h > 0 centered at the origin. Set I = [−h,0] ⊂ R and let C0 be some closed
and convex subset of X0. Assume that R0 > 0 and f : R+ → R+ is a strictly increasing function
with f (R0) = 1. Let D(H) = {( ψ

ϕ

) ∈ C(I, C0 × K ) | ‖ψ‖ � R0
}

and suppose H : D(H) → K is a
function which satisfies the following Lipschitz condition: for each Q > 0 there is some L Q > 0

such that, for
( ψ1

ϕ1

)
,
( ψ2

ϕ2

) ∈ D(H) with ‖ψi‖ � Q (i = 1,2), we have

∣∣H(ψ1,ϕ1) − H(ψ2,ϕ2)
∣∣ � f (Q )‖ϕ1 − ϕ2‖ + L Q ‖ψ1 − ψ2‖.

For simplicity of notation, | · | has been used to denote the norm on X and also the norm on Rn .
This will not cause any confusion.

(H3) Let M0 = {( ψ

ϕ

) ∈ D(H) | ϕ(0) = H(ψ,ϕ) and ‖ψ‖ < R0
}

. Assume M0 
= ∅.
(H4) Suppose F : C0 × K → X is a globally Lipschitz function, i.e., there is some D > 0 such that, for

c1, c2 ∈ C0 and k1,k2 ∈ K , we have |F (c1,k1) − F (c2,k2)| � D(|c1 − c2| + |k1 − k2|).
(H5) (Subtangential condition) We assume that, for each (c,k) ∈ C0 × K ,

lim
h↓0

dist(T (h)c + limμ→∞
∫ h

0 T (s)μRμF (c,k)ds, C0)

h
= 0

holds. Here, dist(x, B) = infb∈B |x−b| for x ∈ X and B ⊂ X . (H5) is a well known condition which
ensures the invariance of a closed and convex set, sometimes referred to as positivity. We refer
readers to [8,13,15] for more detail.
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Definition. Consider the following initial value problem,

⎧⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + F
(
x(t),a(t)

)
,

a(t) = H(xt ,at),(
x0
a0

)
=

(
ψ

ϕ

)
∈ M0.

(6)

By a mild solution of (6) on I ∪ [0, T ] in M0 with T < ∞, we mean a pair of functions
( x(t)

a(t)

)
with the

following properties:

(i) a : I ∪ [0, T ] → K is continuous.
(ii) x : I ∪ [0, T ] → C0 is continuous such that, for each t ∈ [0, T ], ∫ t

0 x(s)ds ∈ D(A) and

x(t) = A

t∫
0

x(s)ds +
t∫

0

F
(
x(s),a(s)

)
ds.

(iii) For 0 � t � T ,
( xt

at

) ∈ M0, i.e., a(t) = H(xt ,at) and ‖xt‖ < R0.

(iv)
( x0

a0

) = ( ψ

ϕ

)
.

We similarly define mild solutions in M0 on I ∪ [0, T ) for T = ∞.
Note that (H1) implies that (ii) is equivalent to

x(t) = T (t)ψ(0) + lim
μ→∞

t∫
0

T (t − s)μRμF
(
x(s),a(s)

)
ds for t ∈ [0, T ]

(see [15]).

3. Local solutions in M0

In this section we establish the existence and uniqueness of local mild solutions for (6) in M0.

Theorem 1. Suppose A : D(A) → X, H : D(H) → K , F : C0 × K → X, and M0 are as in Section 2. Assume
(H1)–(H5) hold. Then the initial value problem (6) has a unique mild solution

( x(t)
a(t)

)
in M0 on I ∪ [0, τ ] for

some 0 < τ < ∞.

Proof. We establish the existence and uniqueness of a local mild solution of (6) in M0 by constructing
a net of approximate solutions using a discrete approximation scheme. This is done in such a way that
the histories of the approximate solutions lie in M0. We show that the net constructed converges to
a local mild solution of (6) in M0. This method is a well known approach. See [15,8,13], for example.
The difference between our version and others is that we must work on a “nonlinear submanifold” of
the ambient space.

Step 1: Constructing an approximate solution of (6) in M0.

We choose R1 > 0 such that ‖ψ‖ < R1 < R0. Set R = R1 − ‖ψ‖. Then 0 < R < R0. Moreover,
f (R1) < 1. By (H2) we can find J > 0 such that if ‖γ1‖, ‖γ2‖ � R1 then, for ϕ1,ϕ2 ∈ C(I, K ), we have

∣∣H(γ1,ϕ1) − H(γ2,ϕ2)
∣∣ � f (R1)‖ϕ1 − ϕ2‖ + J‖γ1 − γ2‖.
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Let ψ(0) = x0 and ϕ(0) = a0. Fix some number ε ∈ (0,1). Pick some 0 < τ � R1 (another upper
bound on τ independent of ε will be imposed later). Using (H5), the strong continuity of T (t), and
the uniform continuity of ψ and ϕ , we can find some 0 < t1 � min{ε,2τ } such that

dist(G(t1), C0)

t1
<

ε

2
,

if s ∈ [0, t1) then
∣∣T (s)

(
x0) − x0

∣∣ � ε,

if s1, s2 ∈ I with |s1 − s2| < t1 then
∣∣ϕ(s1) − ϕ(s2)

∣∣, ∣∣ψ(s1) − ψ(s2)
∣∣ � ε, (7)

where G(t1) = T (t1)x0 + limμ→∞
∫ t1

0 T (t1 − s)μRμ F (x0,a0)ds. Choose x1 ∈ C0 such that

∣∣x1 − G(t1)
∣∣ � εt1

2
+ dist

(
G(t1), C0

)
� εt1.

It follows that

∣∣x1 − T (t1)x0
∣∣ � εt1 +

t1∫
0

M2eωt1
∣∣F

(
x0,a0)∣∣ds

� 2τ + M22τeω2τ
∣∣F

(
x0,a0)∣∣.

This, combined with |x1 − x0| � |x1 − T (t1)(x0)| + |T (t1)(x0) − x0|, tells us that we can choose τ
independently of ε and t1 so that |x1 − x0| � R .

We define a function x1 : I ∪ [0, t1] → C0 by

x1(t) =
{

ψ(t) if t ∈ I,
t

t1
x1 + t1−t

t1
x0 if t ∈ [0, t1].

Then, for t ∈ [0, t1], x1(t) is a parameterization of the straight line segment joining x0 and x1, meaning
that x1(t) ∈ C0 ∩ B R(x0), where B R(x0) denotes the closed ball of radius R in X0 about x0, which is
convex. Consequently, for t ∈ [0, t1], x1

t ∈ C(I, C0) and ‖x1
t ‖ � R1 < R0.

To find a corresponding approximation for the second component of the system, we wish to solve
the equation

a1(t) =
{

ϕ(t) if t ∈ I,
H(x1

t ,a1
t ) if t ∈ [0, t1]. (8)

To show that (8) has a unique solution, we construct an appropriate contraction on C(I ∪ [0, t1], K )

which is a closed subset of the Banach space C(I ∪ [0, t1],Rn) since K is closed. Note that {x1
t } ×

C(I, K ) ⊂ D(H) for t ∈ [0, t1]. So let A : C(I ∪ [0, t1], K ) → C(I ∪ [0, t1],Rn) be given by the right-hand
side of (8). It follows from (H2) that

(Aa)(s) ∈ K for each s ∈ I ∪ [0, t1] and that Aa is continuous on I ∪ [0, t1]
and

‖Aa −Ab‖ � W ‖a − b‖ for some W < 1.

Therefore, Eq. (8) has a unique solution, denoted by a1.
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This concludes the first step of our recursion and we have obtained appropriate functions x1 : I ∪
[0, t1] → C0 and a1 : I ∪[0, t1] → K . By relabeling if necessary, we assume that t1 is chosen maximally
in the following way:

Let S1 = sup{s ∈ [0,2τ ] | 0 < s � ε, ξ ∈ [0, s) ⇒ |T (ξ)x0 − x0| � ε , if s1, s2 ∈ I and |s1 − s2| < s then
|ϕ(s1) − ϕ(s2)| and |ψ(s1) − ψ(s2)| � ε , dist(T (s)x0 + limμ→∞

∫ s
0 T (s − ξ)μRμ F (x(0),a(0))ds, C0) �

εs/2}. Clearly, S1 
= ∅. By a standard continuity argument, it is easy to see that sup(S1) ∈ S1 and we
set t1 = max(S1).

Let t0 = 0. Suppose that k � 1 and that we are granted a sequence of mesh points (t j, x j,a j(t j)),
and corresponding functions, x j ∈ C(I ∪ [0, t j], C0) and a j ∈ C(I ∪ [0, t j], K ) such that, for each 1 �
j < k, the following properties hold:

If t j−1 < τ then (P1)–(P7) hold and if t j−1 � τ then t j = t j−1.

(P1) t j � 2τ and 0 < t j − t j−1 � ε .
(P2) If s ∈ [0, t j − t j−1) then |T (s)x j−1 − x j−1| � ε . Moreover, for s1, s2 ∈ I ∪ [0, t j−1], if |s1 − s2| <

t j − t j−1 then |a j−1(s1) − a j−1(s2)|, |x j−1(s1) − x j−1(s2)| � ε .

(P3) dist(T (t j − t j−1)x j−1 + limμ→∞
∫ t j

t j−1
T (t j − s)μRμ F (x j−1,a j−1(t j−1))ds, C0) � ε(t j − t j−1)/2.

(P4) t j is chosen maximally with respect to (P1)–(P3). Namely, t j = maxξ∈[0,2τ ]{(P1)–(P3) hold with
‘ξ ’ in place of ‘t j ’}.

(P5) |x j − T (t j − t j−1)x j−1 − limμ→∞
∫ t j

t j−1
T (t j − s)μRμ F (x j−1,a j−1(t j−1))ds| � ε(t j − t j−1).

(P6) x j ∈ B R(x0).

(P7)

x j(t) =
{

x j−1(t) if t � t j−1,
t−t j−1
t j−t j−1

x j + t j−t
t j−t j−1

x j−1 if t ∈ [t j−1, t j]

and

a j(t) =
{

a j−1(t) if t � t j−1,

H(x j
t ,a j

t ) if t ∈ [t j−1, t j].

Note that we denote by ‘x j ’ and ‘a j ’ both members of C0 and K , respectively, and the corre-
sponding functions since this should not cause any confusion.

In order to complete the recursion, we show that (P1)–(P7) hold for j = k whenever τ is small
enough. It should be noted that τ has not yet been chosen.

If it happens that tk−1 � τ then we set tk = tk−1, and we are done. Otherwise, by the same proce-
dure as in the first step of the recursion, we can find some tk � 2τ and xk ∈ C0 such that (P1)–(P5)
hold. We need to verify (P6), then (P7) will follow exactly as in the first step of the recursion when
(8) was solved using the contraction mapping principle. The purpose of the tedious estimates below
is to show that τ can in fact be chosen a priori depending only on the initial data. These calculations
are essentially those given in [15], but we repeat them here for completion. It should be noted that
we use the hypothesis ω > 0 from (H1) to establish (9).

For j � k, it follows from (P5) that |x j − T (t j − t j−1)x j−1| � ε(t j − t j−1)+| limμ→∞
∫ t j

t j−1
T (t j − s)×

μRμ F (x j−1,a j−1(t j−1))ds|. Then

∣∣F
(
x j−1,a j−1(t j−1)

)∣∣ �
∣∣F

(
x j−1,a j−1(t j−1)

) − F
(
x0,a0)∣∣ + ∣∣F

(
x0,a0)∣∣

� D
(∣∣x j−1 − x0

∣∣ + ∣∣a j−1(t j−1) − a0
∣∣) + ∣∣F

(
x0,a0)∣∣

� D(R + 2h) + ∣∣F
(
x0,a0)∣∣ := P .
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Clearly P depends only on the initial data. Thus,

∣∣x j − T (t j − t j−1)x j−1
∣∣ � Z(t j − t j−1), where Z = (

1 + M2eω2τ P
)
.

Having this at our disposal, we next show that, for each j � k,

∣∣x j − T (t j)x0
∣∣ � M Zeωt j t j. (9)

In fact, we have

∣∣x j − T (t j − t j−2)x j−2
∣∣

�
∣∣x j − T (t j − t j−1)x j−1

∣∣ + ∣∣T (t j − t j−1)x j−1 − T (t j − t j−2)x j−2
∣∣

� Z(t j − t j−1) + ∣∣T (t j − t j−1)(x j−1 − T (t j−1 − t j−2)x j−2
∣∣

� Z(t j − t j−1) + Meω(t j−t j−1) Z(t j−1 − t j−2)

� M Zeω(t j−t j−2)(t j − t j−2).

Continuing in this way, we can prove (9). It follows form (9) that

∣∣xk − x0
∣∣ �

∣∣xk − T (tk)x0
∣∣ + ∣∣T (tk)x0 − x0

∣∣ � M Zeω2τ 2τ + ∣∣T (tk)x0 − x0
∣∣. (10)

Then we can choose τ > 0 such that xk ∈ B R(x0) and note that, by virtue of (10) and the strong
continuity of T (t), this choice is independent of ε .

This completes the recursion and we conclude that, for each positive integer j, we can find appro-
priate mesh points and functions such that (P1)–(P7) hold if t j−1 < τ and otherwise t j = t j−1.

To obtain an approximate solution in M0, we need to show that this process ends after a finite
number of steps. That is, we want to see that, for some positive integer j, t j � τ . We assume, by way
of contradiction, that t j < τ for each j. So there is some 0 < t � τ such that t j ↑ t and t > t j . By the
same calculations as those on pp. 32–33 of [15], we deduce that x j → x for some x ∈ C0. Now we
define the function x : I ∪ [0, t] → C0 by

x(s) =
{

x j(s) if −h � s � t j,

x if s = t.
(11)

Clearly, x is continuous. Since for each s ∈ [0, t], ‖xs‖ � R1, the Lipschitz estimate for H with respect
to R1 and the contraction mapping principle give us a unique continuous solution to the equation

a(s) =
{

ϕ(s) if s ∈ I,

H(xs,as) if s ∈ [0, t],

where x is given by (11). By uniqueness, it follows that a(s) = a j(s) for s ∈ I ∪ [0, t j]. By exploiting
uniform continuity of x and a on I ∪ [0, t], and of the map [0, t] � s �→ |T (s)x − x| we can find 0 <

δ < ε such that t + δ � 2τ , and |s1 − s2| < δ ⇒ |x(s1) − x(s2)|, |a(s1) − a(s2)| < ε , and 0 � s < δ ⇒
|T (s)x − x| < ε/3. Fix α ∈ (0, δ). Since t + α > t j , by maximality, we see that for each j, one of
(P1)–(P3) is not satisfied when ‘t j ’ is replaced by ‘t + α’. It is clear that (P1) is not satisfied for at
most finitely many j when t j is replaced with t + α, and similarly for (P2). Therefore, there are
infinitely many j such that
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dist

(
T (t + α − t j−1)x j−1 + lim

μ→∞

t+α∫
t j−1

T (t + α − s)μRμF
(
x j−1,a j−1(t j−1)

)
ds, C0

)

> ε(t + α − t j−1)/2.

Letting j tend to infinity and exploiting continuity shows that the subtangential condition, (H5), is
violated, a contradiction.

Step 2: Estimates for the ε-approximate solution between mesh points.

The procedure in Step 1 granted us for each 0 < ε < 1 an approximate solution, which we denote
by

( x(t)
a(t)

)
, where x : I ∪ [0, τ ] → C0 and a : I ∪ [0, τ ] → K satisfy

x(t) = x j(t) and a(t) = a j(t) if s � t j

and [0, τ ] ⊂ ⋃
1� j�k(ε)[t j−1, t j] for some k(ε) = k < ∞ such that tk−1 < τ and tk � τ . Before moving

on to Step 3, we obtain crucial estimates for the components of our approximate solutions.
First we note that by (P2), (P5), and (P7) if s ∈ [t j−1, t j] then |x(s)− x(t j−1)| � |x j − x j−1| � c1ε for

some constant c1 independent of ε . Similarly, we wish to show that there is some c > 0 independent
of ε such that

∣∣a(s) − a(t j−1)
∣∣ � cε for s ∈ [t j−1, t j]. (12)

We achieve this by showing that ‖as − at j−1‖ � cε for each s ∈ [t j−1, t j]. Let θ ∈ [−h,0] be given. If
s + θ � t j−1 then |a(s + θ)− a(t j−1 + θ)| � ε by (P2) from Step 1. Otherwise, s + θ � t j−1. In this case,
we have, by (P2), by the definition of a, and by the Lipschitz estimate for H with respect to R1 in
Step 1, that

∣∣a(s + θ) − a(t j−1 + θ)
∣∣ �

∣∣a(s + θ) − a(t j−1)
∣∣ + ∣∣a(t j−1) − a(t j−1 + θ)

∣∣
�

∣∣a(s + θ) − a(t j−1)
∣∣ + ε

� J‖xs+θ − xt j−1‖ + f (R1)‖as+θ − at j−1‖ + ε.

Using (P2) and ξ ∈ [t j−1, t j] ⇒ |x(ξ) − x(t j−1)| � c1ε , it is easy to see that ‖xs+θ − xt j−1‖ � gε for
some constant g > 0 independent of ε . Therefore, we have that, for each s ∈ [t j−1, t j],

‖as − at j−1‖ � J gε + f (R1) sup
θ∈I∩[t j−1−s,0]

‖as+θ − at j−1‖ + ε. (13)

The function (s, θ) �→ ‖as+θ − at j−1‖ defined on the compact set K0 := {(s, θ) | s ∈ [t j−1, t j], θ ∈ I ∩
[t j−1 − s,0]} is continuous and hence attains its maximum for some (s∗, θ∗) ∈ K0. By (13), we get

‖as∗+θ∗ − at j−1‖ � J gε + f (R1)‖as∗+θ∗ − at j−1‖ + ε.

This, combined with the fact that f (R1) < 1, gives us

‖as∗+θ∗ − at j−1‖ � ( J g + 1)
(
1 − f (R1)

)−1
ε. (14)

Then (14) and (13) together tell us that (12) holds with c = ( J g +1)+ f (R1)( J g +1)(1− f (R1))
−1 > 0.

Clearly c depends only on the initial data.
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Step 3: The net of approximate solutions converges to a solution as ε ↓ 0.

Using (P1), (P2), (P5), and the estimate (12) from Step 2, then proceeding exactly as on p. 34
in [15], we obtain

∣∣∣∣∣x j − T (t j)x0 − lim
μ→∞

t j∫
0

T (t j − s)μRμF
(
x(s),a(s)

)
ds

∣∣∣∣∣ � dεeωt j t j (15)

for some constant d > 0 independent of ε . With the help of (15), we can argue in the same way as
in [15] to get the critical estimate

∣∣∣∣∣x(t) − T (t)x0 − lim
μ→∞

t∫
0

T (t − s)μRμF
(
x(s),a(s)

)
ds

∣∣∣∣∣ � dε,

which holds for each t ∈ [0, τ ]. The constant d is larger than before (we relabeled) but still indepen-
dent of ε . To complete this step, we must show that the net

( xε (t)
aε (t)

)
for ε ∈ (0,1) of approximate

solutions converges to a solution of (6).
First we show that

{( xε

aε

)}
is Cauchy in the complete metric space C(I ∪ [0, τ ], C0 × K ). If

( xε (t)
aε (t)

)
and

( yδ (t)

bδ(t)

)
for ε , δ ∈ (0,1) are approximate solutions, then (dropping the superscripts) we get

∣∣x(t) − y(t)
∣∣ � (ε + δ)d +

∣∣∣∣∣ lim
μ→∞

t∫
0

T (t − s)μRμ(F
(
x(s),a(s)

) − F
(

y(s),b(s)
)

ds

∣∣∣∣∣

� (ε + δ)d +
t∫

0

M2eω(t−s)D
(∣∣x(s) − y(s)

∣∣ + ∣∣a(s) − b(s)
∣∣)ds. (16)

Since ‖xt‖, ‖yt‖ � R1 for t ∈ [0, τ ], we get

∣∣a(t) − b(t)
∣∣ � J‖xt − yt‖ + f (R1)‖at − bt‖

and hence

sup
−t−h�θ�0

∣∣a(t + θ) − b(t + θ)
∣∣ �

(
1 − f (R1)

)−1
J sup

−t−h�θ�0

∣∣x(t + θ) − y(t + θ)
∣∣. (17)

Then, by (16), (17), and an application of Gronwall’s inequality, we have

sup
−t−h�θ�0

∣∣x(t + θ) − y(t + θ)
∣∣ ↓ 0 uniformly with respect to t ∈ [0, τ ] as ε, δ ↓ 0.

It follows that ‖x − y‖∞ ↓ 0 and ‖a − b‖∞ ↓ 0 as ε ↓ 0 and δ ↓ 0. Therefore,
{( xε (t)

aε (t)

)}
converges

uniformly to a mild solution of (6) on I ∪ [0, τ ] in M0 as ε ↓ 0.
The uniqueness deserves a few remarks. We suppose that

( x(t)
a(t)

)
and

( y(t)
b(t)

)
are two mild solutions

of (6) respectively on I ∪ A1 and I ∪ A2 in M0 with the same initial data. Here Ai = [0, τi] or Ai =
[0, τi) for 0 < τi � ∞, for each i = 1,2. Let A = A1 ∩ A2. We will show that the two solutions agree
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on A. Assume first that x 
= y. Let α := inf{t ∈ A | x(t) 
= y(t)}. Then x(t) = y(t) for t � α. Choose δ > 0
such that (α,α + δ] ⊂ A and R2 > 0 such that for t ∈ (α,α + δ], ‖xt‖, ‖yt‖ < R2 for some R2 < R0.
By (H2) we have that

∣∣a(t) − b(t)
∣∣ � LR2‖xt − yt‖ + f (R2)‖at − bt‖ for t ∈ (α,α + δ]. (18)

Now we are in a position to repeat the arguments for (17) and conclude by (18) and Gronwall’s
inequality, that x(t) = y(t) for t ∈ (α,α + δ], violating the minimality of α. This shows that x = y
on A. Using (H2) it is easily seen that a = b on A.

This completes the proof of Theorem 1. �
4. Maximal solutions and a semiflow on M0

Given Ψ = ( ψ

ϕ

) ∈ M0, the local solution granted in the previous section can be extended to a

unique maximal solution
(

xΨ

aΨ

)
of (6) in M0 defined for t ∈ I ∪ [0, te) for some 0 < te � ∞ which

depends on Ψ . Namely, te = sup
{
τ ∈ (0,∞) | (6) has a solution

( x
a

)
on I ∪ [0, τ ] in M0, with

( x0
a0

) =( ψ

ϕ

)}
. In this section we discuss the semiflow on M0 formed by these maximal solutions of (6) in M0.

We first introduce some notations. Let Ω = {(t,Ψ ) ∈ [0,∞) × M0 | t ∈ [0, te(Ψ ))}. For t � 0, let
Ωt = {Ψ ∈ M0 | t < te(Ψ )} ⊂ M0. Then Ω ⊂ R × C(I, X0 × R) and Ωt ⊂ C(I, X0 × R). Both Ω and Ωt
are equipped with the relative topology. Define S :Ω → M0 as

S(t,Ψ ) =
(

xΨ
t

aΨ
t

)
for (t,Ψ ) ∈ Ω.

Theorem 2. The map S is a continuous semiflow on M0 . That is, S is continuous and satisfies the following
two properties:

(i) S(0,Ψ ) = Ψ for Ψ ∈ M0 .
(ii) For each s, t � 0 with s < te(Ψ ) and t < te(S(s,Ψ )), we have t + s < te(Ψ ) and S(t, S(s,Ψ )) =

S(t + s,Ψ ) ∈ M0 .

Proof. Properties (i) and (ii) are straightforward. It suffices to show that S is continuous. This is done
in three steps, where Step 2 and Step 3 are merely adapting the corresponding proofs in [17] to our
framework.

Step 1: Let Ψ ∈ M0. We show that there is τ > 0 and a neighborhood U of Ψ in M0 such that
[0, τ ] × U ⊂ Ω and the restriction S|[0,τ ]×U is continuous.

We take 0 < R2 < R1 < R0 such that ‖Ψ ‖ < R2. Denote R = (R1 − R2)/M , where M � 1 is as in

(H1). Let Φ = ( φ1

φ2

) ∈ M0 such that ‖Φ − Ψ ‖ < R . Denote the corresponding mild solution of Φ in M0

as
( x(t)

a(t)

)
. Then, for t ∈ [0, te(Φ)),

x(t) = T (t)φ1(0) + lim
μ→∞

t∫
0

T (t − s)μRμF
(
x(s),a(s)

)
ds.

It follows that

∣∣x(t)∣∣� ∣∣T (t)
(
φ1(0) − ψ1(0)

)∣∣ + ∣∣T (t)ψ1(0)
∣∣ +

t∫
M2eω(t−s)

∣∣F
(
x(s),a(s)

)∣∣ds.
0
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Observing that

∣∣F
(
x(s),a(s)

)∣∣ �
∣∣F

(
x(s),a(s)

) − F
(
ψ1(0),ψ2(0)

)∣∣ + ∣∣F
(
ψ1(0),ψ2(0)

)∣∣
� 2D(R0 + h) + ∣∣F

(
ψ1(0),ψ2(0)

)∣∣
and setting C(Ψ ) = 2D(R0 + h) + |F (ψ1(0),ψ2(0))|, we get

∣∣x(t)∣∣ � (R1 − R2)eωt + ∣∣T (t)ψ1(0)
∣∣ + tM2eωt C(Ψ ).

By continuity, there is some τ > 0 such that, for any Φ ∈ M0 with ‖Φ − Ψ ‖ < R , we have |x(t)| < R1
for each t ∈ [0, τ ] ∩ [0, te(Φ)). Thus if t ∈ [0, τ ] ∩ [0, te(Φ)) then ‖xt‖ < R1. In particular, this shows
that τ < te(Φ). Let U be the open ball of radius R > 0 about Ψ in M0. We have shown [0, τ ]×U ⊂ Ω .

Now suppose we are given (t0,Φ0) ∈ [0, τ ] × U . Then for each (t,Φ) ∈ [0, τ ] × U , ‖S(t,Φ) −
S(t0,Φ0)‖ � ‖S(t,Φ) − S(t,Φ0)‖ + ‖S(t,Φ0) − S(t0,Φ0)‖. To complete the proof of Step 1, it is now
clear that it suffices to show that the first term on the right-hand side of the latter inequality is
bounded by c‖Φ − Φ0‖ for some constant c > 0 uniformly for t ∈ [0, τ ].

Let x(t),a(t) correspond to Φ0 and y(t),b(t) correspond to Φ . Then we have that for each t ∈ [0, τ ]

∣∣x(t) − y(t)
∣∣ � Meωτ ‖Φ − Φ0‖ +

t∫
0

M2eω(t−s)D
(∣∣x(s) − y(s)

∣∣ + ∣∣a(s) − b(s)
∣∣)ds

and |a(t) − b(t)| � LR1‖xt − yt‖ + f (R1)‖at − bt‖. It is not difficult to see that the latter inequality
implies

sup
−h�t+θ�t

∣∣a(t + θ) − b(t + θ)
∣∣ � c

(
sup

−h�t+θ�t

∣∣x(t + θ) − y(t + θ)
∣∣ + ‖Φ − Φ0‖

)

for some constant c > 0 depending on R1. This information combined with a Gronwall’s inequality
argument completes the proof of Step 1.

Step 2: Let Ψ ∈ M0 and t ∈ [0, te(Ψ )). We show that Ωt ⊂ M0 is open and the map Ωt � Φ �→ S(t,Φ)

is continuous at Ψ .

By continuity, we see that the set K1 = {S(s,Ψ ) | s ∈ [0, t]} ⊂ M0 is compact. Therefore, applying
Step 1, we find some u > 0 and some open subset N in M0 containing K1 such that [0, u] × N ⊂
Ω and S|[0,u]×N is continuous. Let J be the smallest positive integer such that t/ J < u. Obviously,
( J − 1)u � t < J u. Given ε > 0, we find δ1 > 0 such that

if
∥∥γ − S

(
( J − 1)u,Ψ

)∥∥ < δ1 then γ ∈ N and∥∥S
(
t − ( J − 1)u, S

(
( J − 1)u,Ψ

)) − S
(
t − ( J − 1)u, γ

)∥∥ < ε. (19)

Recursively we can find δ j > 0 for j = 2, . . . , J such that

if
∥∥γ − S

(
( J − j)u,Ψ

)∥∥ < δ j then γ ∈ N and∥∥S(u, γ ) − S
(
u, S

(
( J − j)u,Ψ

))∥∥ < δ j−1. (20)

Using (19), (20), the semigroup property, and induction, we see that if Φ ∈ M0 with ‖Φ − Ψ ‖ < δ J

then Φ ∈ Ωt and ‖S(t,Φ) − S(t,Ψ )‖ < ε . This completes the proof of Step 2.



606 N. Kosovalić et al. / J. Differential Equations 255 (2013) 593–609
Step 3: We prove that the map S :Ω → M0 is continuous.

For (t0,Ψ0) ∈ Ω , let U be a neighborhood of S(t0,Ψ0) in M0. We want to find a neighborhood W ⊂
Ω of (t0,Ψ0) such that S(W ) ⊂ U . If t0 = 0, by Step 1, we are done. Otherwise, t0 > 0. By Step 1, we
find some 0 < u < t0 and a neighborhood W1 of Ψ0 in M0 such that [0, u] × W1 ⊂ Ω and S|[0,u]×W1

is continuous. Let 0 < u1 < u. It follows from S(t0,Ψ0) = S(t0 −u1, S(u1,Ψ0)) that S(u1,Ψ0) ∈ Ωt0−u1 .
By Step 2, we can find a neighborhood W2 of S(u1,Ψ0) in M0 such that S(t0 − u1, W2) ⊂ U . Take
0 < δ < u1 such that (u1 − δ, u1 + δ) ⊂ (0, u) and choose a neighborhood W3 of Ψ0 in M0 with
S((u1 − δ, u1 + δ) × W3) ⊂ W2. If s ∈ (t0 − δ, t0 + δ) then s = (t0 − u1) + (s − t0 + u1) and therefore
the semigroup property gives S((t0 − δ, t0 + δ) × W3) ⊂ U , which completes the proof. �
5. An application

In this section we present an application of the general theory. We will see that in practice, it is
nontrivial to check that all of the relevant hypotheses are satisfied.

Consider the following class of scalar age structured models with threshold dependent age of
maturity,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u(t,a) + ∂au(t,a) = −d(a)u(t,a),

u(t,0) = b

( m∫
τ (t)

β(ξ)u(t, ξ)dξ

)
,

t∫
t−τ (t)

[ τ (σ )∫
0

u(σ ,a)da + C

]−1

dσ = T ,

(
u0
τ0

)
=

(
ψ̂

ϕ̂

)
∈ C

([−am,0], (L1+[0,m)
) × R+)

,

(21)

where t � 0, 0 � a < m, and am < m � ∞. Here m represents the maximum age and am stands for the
maximum juvenile age. We make the following assumptions:

(A1) d : [0,m) → R+ and β : [0,m) → R+ are essentially bounded.
(A2) b : R+ → R+ is bounded, globally Lipschitz, and 0 < maxx∈R+ b(x) � θ for some θ > 0.
(A3) am = (R0 + C)T < m � ∞, where R0 = C( 1√

T θ
− 1) > 0.

In order to apply Theorem 1, we rewrite (21) as follows. Let X = R × L1([0,m),R) and define
A : D(A) → X by

A

(
0
x

)
=

(−x(0)

−x′
)

for

(
0
x

)
∈ D(A) = {0} × W 1,1([0,m),R

)
.

Note that X0 = D(A) = {0} × L1[0,m). It is well known that A satisfies (H1) (see, for instance, [15,5]).
Denote

C0 =
{(

0
γ

)
∈ 0 × L1[0,m)

∣∣∣ 0 � γ (a) � θ a.e. a ∈ [0,m)

}

and

D(H) =
{(

ψ

ϕ

)
∈ C

([−am,0], C0 × K
) ∣∣∣ ‖ψ‖ � R0

}
,
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where K = [0,am] ⊂ R. We prove that our “age of maturity function” is well defined in the following
result.

Lemma 1. The relation H : D(H) → K , which is given by (ψ,ϕ,α) ∈ H if and only if
∫ 0
−α[∫ ϕ(σ )

0 ψ(σ , ξ)dξ +
C]−1 dσ = T , is a function.

Proof. Given
( ψ

ϕ

) ∈ D(H), it suffices to show that there exists a unique α ∈ K such that (ψ,φ,α) ∈ H .

In fact, note that the map α �→ ∫ 0
−α[∫ ϕ(σ )

0 ψ(σ , ξ)dξ + C]−1 dσ defined for α ∈ [0,am] is strictly

increasing and continuous. Moreover,
∫ 0
−am

[∫ ϕ(σ )

0 ψ(σ , ξ)dξ + C]−1 dσ � am/(R0 + C) = T . Now the
result follows immediately. �

Define f : R+ → R+ by f (Q ) = (Q +C)2 T
C2 θ . The coming result tells us that H satisfies an appropriate

Lipschitz condition.

Lemma 2. For any Q > 0 there is some L Q > 0 such that, for
( ψ1

ϕ1

)
,
( ψ2

ϕ2

) ∈ D(H) with ‖ψi‖ � Q (i = 1,2),

we have

∣∣H(ψ1,ϕ1) − H(ψ2,ϕ2)
∣∣ � f (Q )‖ϕ1 − ϕ2‖ + L Q ‖ψ1 − ψ2‖.

Proof. Let t1 = H(ψ1,ϕ1) and t2 = H(ψ2,ϕ2). Without loss of generality, assume that t1 � t2. Then
we have

0∫
−t1

[ ϕ1(σ )∫
0

ψ1(σ , ξ)dξ + C

]−1

dσ −
0∫

−t2

[ ϕ2(σ )∫
0

ψ2(σ , ξ)dξ + C

]−1

dσ = 0

or

−t1∫
−t2

[ ϕ2(σ )∫
0

ψ2(σ , ξ)dξ + C

]−1

dσ

=
0∫

−t1

[( ϕ1(σ )∫
0

ψ1(σ , ξ)dξ + C

)−1

−
( ϕ2(σ )∫

0

ψ2(σ , ξ)dξ + C

)−1]
dσ .

Using the fact that the function u �→ 1/(u + C) is globally Lipschitz on (0,∞) with Lipschitz constant
1/C2, we get

|t1 − t2|
Q + C

� 1

C2

0∫
−t1

∣∣∣∣∣
ϕ1(σ )∫
0

ψ1(σ , ξ)dξ −
ϕ2(σ )∫
0

ψ2(σ , ξ)dξ

∣∣∣∣∣dσ .

It follows that |t1 − t2| � (Q + C)t1(‖ψ1 − ψ2‖ + θ‖ϕ1 − ϕ2‖)/C2. Since t1 � (Q + C)T , we obtain

∣∣H(ψ1,ϕ1) − H(ψ2,ϕ2)
∣∣ � (Q + C)2T

C2
‖ψ1 − ψ2‖ + (Q + C)2T

C2
θ‖ϕ1 − ϕ2‖.

This completes the proof. �
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Define F : C0 × K → X by F (x,a) = ( b(
∫ m

a β(ξ)x(ξ) dξ)

−d(·)x(·)
)
. By (A1) and (A2) it is clear that F is Lipschitz

on C0 × K . The verification of the subtangential condition (H6) with respect to C0, K , and F follows
exactly as on pp. 12–14 of the examples in [15]. Therefore, by Proposition 1, we have the following
result.

Proposition 3. In addition to (A1)–(A3), assume that
(

ψ̂

ϕ̂

) ∈ C([−am,0], L1+[0,m)× R+) satisfies the follow-

ing two conditions:

(i) For each σ ∈ [−am,0], 0 � ψ̂(σ )(a) � θ a.e. a ∈ [0,m) and ϕ̂(σ ) ∈ [0,am].
(ii) For each σ ∈ [−am,0], ∫ m

0 ψ̂(σ )(a)da < C( 1√
T θ

− 1) and
∫ 0
−ϕ̂(0)

[∫ ϕ̂(σ )

0 ψ̂(σ , ξ)dξ + C]−1 dσ = T .

Then the initial value problem (21) has a unique maximal solution
( u
τ

) ∈ C([−am, te), L1+[0,m) × [0,am]) on

[−am, te) (te > 0) with
( u0

τ0

) = (
ψ̂

ϕ̂

)
in the following sense:

(i) For 0 � t < te , a �→ ∫ t
0 u(s,a)ds is absolutely continuous, and for a.e. a ∈ [0,m),

u(t,a) = u(0,a) − ∂a

t∫
0

u(s,a)ds −
t∫

0

d(a)u(s,a)ds,

t∫
0

u(s,0)ds =
t∫

0

b

( m∫
τ (s)

β(a)u(s,a)da

)
ds.

(ii) For 0 � t < te ,
∫ t

t−τ (t)[
∫ τ (σ )

0 u(σ ,a)da + C]−1 dσ = T .

(iii) For t ∈ [0, te) the “total population” satisfies
∫ m

0 u(t,a)da < C( 1√
T θ

− 1) and 0 � u(t,a) � θ for a.e.

a ∈ [0,m).

Finally we note that, by Theorem 2, the corresponding semiflow is continuous.

6. Future work

To summarize, in Section 1 we have motivated an abstract algebraic-delay differential system
arising from threshold phenomena in age structured population dynamics, with emphasis on the
immature population. In Section 2 we gave the relevant technical preliminaries and hypotheses. In
Sections 3 and 4 we obtained the existence of a continuous semiflow formed by maximal solutions
of the system, and in Section 5 we applied the results to the model motivated in the introduction.

There are two issues which require further study. First of all, in the upcoming sequel of this work,
we will investigate appropriate sufficient conditions for the differentiability with respect to time of
mild solutions of (6) in M0. Our abstract results will be used to infer about some specific examples
studied in the work by Magpantay et al. [7].

Secondly, we note that the results of the present work require strong hypotheses which imply
uniform boundedness of the age of maturity, and the total population in the model discussed in
Section 5. This is because in our hypotheses in Section 2, we never made any assumptions on the
differentiability of the function H from (H2). In the future work, we will investigate to what extent a
special property of the derivative of H enables us to set up the problem motivated in the introduction,
as a locally bounded adaptive state dependent delay initial value problem (see [1, p. 450] and [18]), on a
submanifold of the space of continuously differentiable functions. We eventually plan to address some
dynamical properties of the corresponding global semiflow.
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