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a b s t r a c t

Understanding the geographic and temporal spread of food-borne diseases associated with fresh

produce is crucial for informing adequate surveillance and control. As a first step towards this goal, we

develop and analyze a novel three stage model at the processing/sanitization juncture in the fresh

produce supply chain. The key feature of our model is its ability to describe the dynamics of cross-

contamination during commercial wash procedures. In general, we quantify the degree of cross-

contamination in terms of model parameters. Applying these results in the case of Escherichia coli

O157:H7 contamination of fresh-cut romaine lettuce, we identify the mean wash time and free chlorine

concentration as critical parameters. In addition to showing how these parameters affect contamination

levels, we recommend that in order to prevent potential source misidentification, at least 2.2 mg/L of

free chlorine should be used during a wash lasting at least 30 s.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Food-borne diseases associated with the consumption of fresh
produce continue to cause serious difficulties for public health.
Recently, there have been a number of significant outbreaks both
in North America and Europe. For instance, the 2006 Escherichia

coli contamination of bagged spinach resulted in many hospita-
lizations in the US (and Canada) and three deaths (Sander, 2006).
In 2008, an uncommon serotype of Salmonella enterica, known as
Saintpaul, caused over 1000 cases of food poisoning across the US,
finally being linked to jalapeño and serrano peppers from Mexico
(Taylor et al., 2010). The year 2011 was particularly tough as the
US suffered from at least six outbreaks associated to fresh
produce, one of which involved cantaloupes contaminated with
listeriosis, resulting in the second most deadly outbreak ever to
occur in the US (CDC, 2011). Furthermore, in the summer of 2011,
ll rights reserved.
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Europe was hit with the deadliest outbreak in recent history
linked to sprouts grown from imported fenugreek seeds con-
taminated with E. coli O104:H4. Germany, being the epicenter,
reported 45 deaths as of July 27 of that year (ECDC).

Clearly outbreaks in these countries have had tremendous
socio-economic impact. In order to mitigate these effects, disease
surveillance must be able to quickly detect both geographic and
temporal occurrence of such contamination. As many studies
highlight disinfection as a crucial juncture in the supply chain,
we look to examine the contamination dynamics of fresh produce
that can occur in commercial wash procedures (Gil et al., 2009).
While washing is designed to ensure the safety of a product, wash
water may provide a secondary source of contamination or
promote cross-contamination (Tomás-Callejas et al., 2012). In
line with this, we build and analyze a novel three stage model
of a typical wash procedure in a fresh produce processing facility.

In terms of mathematics, we show that contamination levels
converge rapidly to an equilibrium, which we can describe via
closed form expressions involving only model parameters, in
each of the three stages. For biological implications, we identify
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parameters to which this equilibrium is sensitive. In particular,
we show how the mean wash time and sanitizer concentration
crucially affect the degree of produce contamination and further
we provide guidelines on how these parameters can be practically
controlled to avoid misidentification of the source of contamina-
tion during a potential disease outbreak.

The paper is organized as follows: in Section 2 we describe the
basic assumptions, parameters and the three stage model. Next, in
Section 3, we show that the model converges to a unique,
component-wise positive equilibrium. Using these dynamics, in
Section 4 we apply the model to a wash procedure involving
fresh-cut romaine lettuce (or similar leafy greens) contaminated
with E. coli O157:H7. Also in Section 4, we justify ranges for model
parameters and perform sensitivity analysis. Determining the
mean wash time and free chlorine concentration to be key
parameters with regards to produce contamination, we explore
how these can be constrained to prevent misidentifying the initial
food vehicle associated to an outbreak. Finally, we discuss how
our model can be augmented to be more realistic as well as its
link-ability to global supply chain models. Note that in light of
recent outbreaks in North America, a model framework similar to
the one we adopt in this paper (for studying the contamination of
fresh produce during processing) can be applied to contamination
dynamics of meat (especially ready-to-eat products) at the
processing juncture. For more details concerning meat hygiene
and safety risks see Sofos and Geornaras (2010).
2. Three stage wash model

Suppose two farms produce either the same type of fresh
produce or two different types (denoted by P1 and P2, respec-
tively), which are transported to a processing center to be
washed, packaged and then shipped along various routes in the
supply chain. Suppose also that farm 1 has a source of contam-
ination (possibly via compost or irrigation water) causing a
portion of P1 to be contaminated before coming into the center
(here we assume that contamination levels are sufficient to lead
to a possible outbreak) (Beuchat, 2006). We want to study the
dynamics of pathogen spread among P1 and the possible cross-
contamination of P2 during the wash processing procedure. To do
so, we propose the following three stage model: Before, Washing
and After. The B stage includes the pre-washing of the produce,
the W stage concerns the principle wash (with sanitizer) and the
A stage reflects the dewatering step.
Fig. 1. I1B is the contaminated amount of P1 in stage B. It increases via direct

inflow from Farm 1 and via direct contact at rate b1B . The average pre-wash time

is 1=b1.
2.1. B stage

We suppose the pre-wash involves a non-immersion process,
such as a municipal water spray. Because the produce is not
submerged in water, we assume that the spread of contamination
occurs via produce–produce contact. To model such transmission,
we rely simply on the principle of mass action which, when
applied in this context, states that the amount of contaminated
produce grows at a rate proportional to the product of the amount
of clean produce with the amount of contaminated produce.
The underlying assumption here is that the contaminated pro-
duce totally mixes with the clean produce (while incoming
contamination usually is ‘‘patchy’’, due to a lack of commercial
processing data and because we do not want to overcomplicate
the model, we assume uniform mixing). If we let S1B and I1B

denote the susceptible and contaminated densities of P1, then
I01B ¼ b1BS1BI1B, where b1B is the contamination rate. Adjusting this
equation to account for the inflow and outflow of produce into the
pre-wash stage and including the dynamics for S1B, we have

S01B ¼�b1BS1BI1BþrN1�b1S1B,

I01B ¼ b1BS1BI1Bþð1�rÞN1�b1I1B,

where N140 is the incoming rate of P1, 0oro1 and 1=b140 is
the average time the produce spends in pre-wash. Our assump-
tion on r indicates that a portion of P1 comes into the B stage
already contaminated. Finally, for simplicity we assume that P2
comes into the B stage clean and thus ignore any other contam-
ination sources that may be involved (note that before
pre-washing, cross-contamination could occur through cutting
procedures, handling, etc., however, in our paper we do not
consider these possibilities). See Fig. 1 for a schematic of the
contamination dynamics in the B stage.

2.2. W stage

Following the pre-wash stage, both P1 and P2 move separately
into the main wash stage, where the produce types are cleaned by
an immersion produce washer (see Pao et al., 2012 for more
details). While P1 and P2 follow distinct processing lines, we
suppose that the wash water is re-circulated between these lines,
which is a standard practice in the fresh produce industry
(Bhagwat, 2006). Because of this, the wash water may become
contaminated, leading to a cross-contamination event. The main
point here is that contaminated produce can shed pathogens into
the wash water, which can then spread to uncontaminated
produce (thus our system allows for more than one ‘‘transmission
pathway’’, see Tien and Earn, 2010, for a related model). Note that
in the following development, we ignore produce-to-produce
contact in the wash stage as well as the possibility that pathogens
may be able to grow in the wash water.

Let W represent the pathogen concentration in the wash water
which is shed from contaminated P1 at a rate a40. Let 1=m be the
mean pathogen lifetime in the water. This is regulated by the
addition of a sanitizing agent to the water as we assume that
m40 (a constant) depends on the concentration of sanitizer used
to treat the wash water. If we define I1W and S1W as the
contaminated and uncontaminated amounts of P1 in the produce
washer, then the change of pathogen concentration in the wash
water is given by the following equation:

W 0
¼ aI1W�mW :

Furthermore, as contaminated water can potentially spread
pathogens to clean P1, we model the growth rate of contaminated
P1 at this stage by I01W ¼ b1W S1W W , where b1W 40 is the trans-
mission rate from water to produce. Again, our incidence rate is
based on the notion of mass action (which will be discussed in
more detail when we derive a range for b1W in Section 4).
Including the flow of produce through the washer (i.e. let 1=c1

be the mean duration of the wash phase for P1, which will be



Fig. 3. Subscripts 1 and 2 indicate contamination routes for P1 and P2 in the

‘‘After’’ stage, respectively. The produce moves from the wash stage to be

dewatered. The respective contamination rates are b1A and b2A .
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referred to as the ‘‘mean wash time’’ for the sake of brevity) and
the dynamics of S1W, we obtain

S01W ¼�b1W S1W Wþb1S1B�c1S1W ,

I01W ¼ b1W S1W Wþb1I1B�c1I1W :

Not only can clean P1 be contaminated by pathogens in the wash
water, but if the sanitizer is limited in its efficacy, pathogens not
killed by the treatment can contaminate P2 via re-circulation.
Therefore, following the same incidence rate assumptions as
above, the cross-contamination dynamics are given as follows:

S02W ¼�b2W S2W WþN2�c2S2W ,

I02W ¼ b2W S2W W�c2I2W ,

where S2W and I2W are the uncontaminated and contaminated
amounts of P2, respectively, in the wash stage, b2W 40 is the
cross-contamination rate, N240 in-flow rate of P2, and 1=c2 is
the mean wash time for the produce. It is important to mention
here that we assume that contaminated P2 does not shed
pathogens back into the wash water, and therefore, the equation
for W 0 above does not depend on I2W. Fig. 2 illustrates the wash
stage for both P1 and P2.

2.3. A stage

Immediately after washing, P1 and P2 are dewatered along
their respective lines. While continued cross-contamination
between P1 and P2 can potentially occur through equipment
contact, food handlers working both lines, packaging and even
pests, we assume that contamination spread in the A stage can
only continue within each of the respective produce types. In
particular, if we assume the produce is dewatered via centrifuga-
tion, because of the thorough mixing of produce with respect to
contact with the centrifuge, we assume that the incidence rate
again follows a mass action principle. Setting, S1A, S2A, I1A, and I2A

to be the susceptible and contaminated amounts of P1 and P2,
respectively, and including the in and out-flow of produce, the
contamination dynamics are given by

S01A ¼�b1AS1AI1Aþc1S1W�d1S1A,

I01A ¼ b1AS1AI1Aþc1I1W�d1I1A,

S02A ¼�b2AS2AI2Aþc2S2W�d2S2A,

I02A ¼ b2AS2AI2Aþc2I2W�d2I2A,

where b1A, b2A40 are the transmission rates, and 1=d1 and 1=d2

are the mean dewatering times for P1 and P2, respectively. Fig. 3
provides a schematic of the contamination route in the A stage.
Fig. 2. Subscripts 1 and 2 indicate contamination routes for P1 and P2, respec-

tively, during the wash stage. I1W (the contaminated amount of P1 in the wash

stage) contaminates the wash water at rate a. The W compartment indicates

contaminated wash water with which both S1W and S2W have contact due to

recirculation. I2W gives the level of cross-contamination of S2W which occurs at

rate b2W . Compartments with subscript ‘‘W’’ are outlined in blue indicating

contact with contaminated water. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)
2.4. Complete model

Combining the dynamics in the B, W and A stages, our
contamination model is defined by the following system of
equations:

S01B ¼�b1BS1BI1BþrN1�b1S1B,

I01B ¼ b1BS1BI1Bþð1�rÞN1�b1I1B,

S01W ¼�b1W S1W Wþb1S1B�c1S1W ,

I01W ¼ b1W S1W Wþb1I1B�c1I1W ,

W 0
¼ aI1W�mW ,

S02W ¼�b2W S2W WþN2�c2S2W ,

I02W ¼ b2W S2W W�c2I2W ,

S01A ¼�b1AS1AI1Aþc1S1W�d1S1A,

I01A ¼ b1AS1AI1Aþc1I1W�d1I1A,

S02A ¼�b2AS2AI2Aþc2S2W�d2S2A,

I02A ¼ b2AS2AI2Aþc2I2W�d2I2A, ð2:1Þ

on the phase space O0 ¼ fS1B,S1W ,S1A,I1B,I1W ,I1A,S2W ,I2W ,S2A,I2A,
WZ0 : S1Bþ I1B ¼N1=b1,S1Wþ I1W ¼N1=c1,S1Aþ I1A ¼N1=d1,S2Wþ

I2W ¼N2=c2,S2Aþ I2A ¼N2=d2g. Refer to Tables 1 and 2 for a com-
plete list of model variables and parameters with their respective
units.
3. Analysis of model
Proposition 1. System (2.1) is positively invariant on O0.

Proof. To see this, let n1 ¼ S1Bþ I1B, n2 ¼ S1Wþ I1W , n3 ¼ S1Aþ I1A,
n4 ¼ S2Wþ I2W , and n5 ¼ S2Aþ I2A. Then we have

n01 ¼N1�b1n1,

n02 ¼ b1n1�c1n2,

n03 ¼ c1n2�c2n3,

n04 ¼N2�c2n4,

n05 ¼ c2n4�d2n5, ð3:1Þ

where ðN1=b1,N1=c1,N1=d1,N2=c2,N2=d2Þ is a fixed point for
system (3.1). So for
ðn1ð0Þ,n2ð0Þ,n3ð0Þ,n4ð0Þ,n5ð0ÞÞ ¼ ðN1=b1,N1=c1,N1=d1,N2=c2,N2=d2Þ,
we see that

ðS1Bþ I1B,S1Wþ I1W ,S1Aþ I1A,S2Wþ I2W ,S2Aþ I2AÞ

¼ ðN1=b1,N1=c1,N1=d1,N2=c2,N2=d2Þ

for all tZ0.

Now let yi be one of the phase space variables in O0. If yi¼0,

then by direct computation y0iZ0. Thus we conclude that solution

trajectories starting in O0 remain in O0. Also, because I1W oN1=c1,

we see that from equation of W in Section 2.4, W(t) is decreasing

for any W4aN1=mc1. This means that W(t) is bounded and we

conclude that any solution to the complete system is bounded.



Table 1
Variables with units for the wash model.

S1B ,S1W ,S1A Susceptible density of P1 in each stage kg

I1B ,I1W ,I1A Contaminated density of P1 in each stage kg

S2W ,S2A Susceptible density of P2 in each stage kg

I2W ,I2A Contaminated density of P2 in each stage kg

W Pathogen concentration in water CFU mL�1
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Thus, solutions with initial conditions in O0 exist for all t40

(Hirsch and Smale, 1974). &

To simplify our analysis, we restrict our system to involve only
the contaminated variables and consider the following:

I01B ¼ b1BðN1=b1�I1BÞI1Bþð1�rÞN1�b1I1B,

I01W ¼ b1W ðN1=c1�I1W ÞWþb1I1B�c1I1W ,

I01A ¼ b1AðN1=d1�I1AÞI1Aþc1I1W�d1I1A,

I02W ¼ b2W ðN2=c2�I2W ÞW�c2I2W ,

I02A ¼ b2AðN2=d2�I2AÞI2Aþc2I2W�d2I2A,

W 0
¼ aI1W�mW , ð3:2Þ

where the phase space for (3.2) is O¼ fI1B,I1W ,I1A,I2W ,I2A,
WZ0g �O0:

It is not hard to show that (3.2) has a unique positive
equilibrium

En
¼ ðIn1B,In1W ,In1A,In2W ,In2A,Wn

ÞAO

where

In1B ¼
N1b1B�b2

1

2b1b1B

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1b1B�b2

1Þ
2
þ4ð1�rÞN1b2

1b1B

q

2b1b1B

, ð3:3Þ

In1W ¼
N1b1Wa�c2

1m
2c1b1Wa

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1b1Wa�c2

1mÞ
2
þ4b1mc2

1b1WaIn1B

q

2c1b1Wa
, ð3:4Þ

In1A ¼
N1b1A�d2

1

2d1b1A

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1b1A�d2

1Þ
2
þ4c1In1W d2

1b1A

q

2d1b1A

, ð3:5Þ

In2W ¼

b2W

a
mIn1W N2=c2

c2þb2W

a
mIn1W

, ð3:6Þ

In2A ¼
N2b2A�d2

2

2d2b2A

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2b2A�d2

2Þ
2
þ4c2In2W d2

2b2A

q

2d2b2A

, ð3:7Þ

Wn
¼
a
m In1W : ð3:8Þ

Because I1B decouples from the other equations in system
(3.2), and because I1B converges to In1B as t-1, we consider the
following system:

I01W ¼ b1W ðN1=c1�I1W ÞWþb1I1B�c1I1W ,

I01A ¼ b1AðN1=d1�I1AÞI1Aþc1I1W�d1I1A,

I02W ¼ b2W ðN2=c2�I2W ÞW�c2I2W ,

I02A ¼ b2AðN2=d2�I2AÞI2Aþc2I2W�d2I2A,

W 0
¼ aI1W�mW : ð3:9Þ

In light of the fact that our original system is positively invariant
on O0, it is easy to see that the decoupled system (3.9) is positively
invariant on O. It follows by inspection that the off-diagonal
terms of the Jacobian matrix of system (3.9) are non-negative on
O, indicating that system (3.9) is monotone on O (Smith, 1995).

We are interested in the relative long-term dynamics of
system (2.1) in order to understand how contamination occurs
over an extended period of continual washing. Because system
(3.9) is monotone, we can use Theorem C in Jiang (1994) to show
that any solution, with non-negative not identically zero initial
data, of (2.1) converges to En. That is, En is the unique globally
asymptotic positive steady state of (2.1).
4. Application of model to E. coli0157:H7 contamination of
fresh-cut romaine lettuce

In this section, we apply our model to predict the spread of
E. coli O157:H7 among fresh-cut romaine lettuce during a com-
mercial biocidal wash procedure (let P1 represent romaine lettuce
and P2 represent romaine lettuce from a different source or
another type of leafy green). In this instance, we suppose that
chlorine is being used as the sanitizing agent in the wash water.
Using experimental data and estimation techniques, we can
establish a feasible range for each of the parameters in our model.
However, because the actual parameter values are not precisely
known, we make use of uncertainty and sensitivity analysis.
Focusing on the wash procedure, we want to know which
parameters have the most affect on the amount of contaminated
produce. Within the range of these parameters, numerics indicate
that solutions of our model (in Section 2.4) converge quickly to
the steady state En (less than � 0:15 days), allowing us to ignore
the transient dynamics and look at the effects of parameter
variance on In1W and In2W (we justify this in Section 4.2). Our
results show that 1=c1, the mean wash time for P1, and 1=m, the
mean pathogen lifetime (which we link to the free chlorine
concentration below) are key parameters in this respect.

4.1. Parameter ranges

We first establish baseline values for parameters involved with
P1. From Luo et al. (2011), we suppose in the W stage that the
wash water is held at an average of 22 1C and the produce to
water ratio averages at 1:20. Assuming the wash tank is 4800 L
(see Barrera et al., 2012 for comparable tank sizes), we must have
240 kg of P1 present in the tank at any given time. This implies
that N1 ¼ 240 kg. Furthermore, assume that the plant can process
up to 24,000 kg of P1 per day (again, see Barrera et al., 2012 for
comparable processing rates). This means that the average wash
time is 0.01 days, which implies that 1=c1 ¼ 0:01 days (or 30 s, see
Luo et al., 2011). For simplicity, we also set 1=b1 ¼ 0:01 days.
Setting r¼ 0:95, we assume 5% of P1 coming into the pre-wash
stage is contaminated. Because we want to focus on the dynamics
of contamination in the W stage, we set b1B ¼ 0:1 mL
(CFU)�1 (day)�1, which allows the contamination in the pre-
wash stage to stay less than or equal to � 6% of 240 kg (see
Table 1 in Barrera et al., 2012) and we ignore the dewatering
stage. For ranges about these baseline values, see Table 3. Justi-
fication for the ranges of b1W , b2W , a and m in Table 3 are
provided.

4.1.1. Mean pathogen lifetime in wash water 1=m
Using data from Zhao and et al. (2001) we can model the kill

rate of E. coli O157:H7 in solution relative to the concentration of
free chlorine via exponential decay. While Zhao and et al. (2001)
considered only concentrations of free chlorine up to 2 mg/L,
using MATLAB’s curve fit tool (cftool), we fit a function for m in
terms of the free chlorine concentration c, given by

mðcÞ ¼ 957:9c0:172:
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Using this function and allowing the free chlorine concentration
to vary on [0.02, 126] mg/L, we build an allowable range for m as
500rmr2200. Thus 1=m stays in the range ½0:00045,0:002� day.

4.1.2. Pathogen shed rate a
Luo et al. (2011) found that the reduction of E. coli O157:H7

populations on romaine lettuce was significantly linked to the
free chlorine concentration used. Based on their data and the
aforementioned curve fit tools, we describe the connection
between a and c as follows:

aðcÞ ¼�12:77c�0:6129þ207:8:

Again, allowing the free chlorine concentration to vary on [0.02,
126] mg/L, the corresponding range for a is [67, 207] (CFU)
kg�1 day�1 mL�1.

4.1.3. Water–produce transmission rate b1W

The usual definition of transmission in epidemic models,
derived originally from collision theory for chemical reactions,
states that the transmission rate¼the average number of contacts
per unit time between susceptible and infected individuals� the
probability of ‘‘successful contact’’ (Brauer, 2008). In terms of our
model, we want to determine both the average number of
contacts a cut piece of lettuce makes with E. coli in solution and
the probability of attachment.

The number of contacts relies critically on the produce to
water ratio and we fix this to be 1:20 as above. Assuming that this
concentration is maintained throughout the wash tank, we
suppose that ð1=20,000Þ kg of produce can be present in 1 mL of
water. Also, the lettuce are cut into pieces with dimensions:
25:4 mm� 25:4 mm� 0:03 mm (Luo et al., 2011; Thomas, 2010),
which translates into 0.08 pieces/mL. To calculate the average
number of contacts, we want to calculate the number of ‘‘mL’’ of
solution ‘‘0.08 pieces’’ of lettuce hits along its path through the
wash tank. Currently we have no data for the average path length
of a piece, but we estimate the distance traveled to range
anywhere from 2 to 10 m during one wash period. Simplifying
this further, we assume that our ‘‘mL’’ pieces of water are cubes
and once a piece of lettuce hits a ‘‘face’’ of the mL cube, it travels
Table 2
Parameters with units for the wash model.

b1B Direct cont. rate for P1 in stage B kg�1 day�1

N1 ,N2 Arrival rate of P1 and P2, resp. kg day�1

1=b1 Mean period of P1 in stage B Day

b1W ,b2W Water–produce transmission rate mL (CFU)�1 day�1

1=c1 Mean wash time for P1 Day

1=c2 Mean wash time for P2 Day

a Pathogen shed rate CFU kg�1 day�1 mL�1

1=m Pathogen lifetime in wash water Day

b1A ,b2A Direct cont. rate for P1 and P2 in stage A kg�1 day�1

1=d1 Dewatering period for P1 Day�1

1=d2 Dewatering period for P2 Day�1

Table 3
Parameter ranges and units with references.

Parameter Description Range

b1B Cont. rate for P1 in B [0.05, 0.3] kg�1 day�1

1�r % Incoming contaminated P1 [0.01, 0.15]

N1 ,N2 Arrival rate of P1 and P2 [18,000, 30,000] kg day�1

1=b1 Pre-wash period of P1 [0.007, 0.02] day

b1W ,b2W Water–produce transmission rate [2, 10] mL (CFU)�1 day�1

1=c1 Mean wash time for P1 [0.007, 0.02] day

1=c2 Mean wash time for P2 [0.007, 0.02] day

a Pathogen shed rate [67, 207] CFU kg�1 day�1 mL

1=m Pathogen lifetime in wash water [0.00045, 0.002] day
normal to that face through the mL. This means then the number
of mL hit is the distance traveled by the lettuce divided by the
cross-sectional length of the mL. Applying this reasoning, and the
fact that 0.08 of a piece of lettuce has volume 0.0015 mL, we see
that 0.08 of a lettuce piece hits on average 1.97–9.84 mL per wash
period.

To estimate the probability of attachment, we extrapolate
from an experiment in Luo et al. (2011). Using their data, we
calculate that the number amount of bacteria found on 120 g of
initially clean lettuce (when washed with 30 g of inoculated
lettuce, see Luo et al., 2011 for details) divided by the average
number of pathogen shed during one wash period is 0.0095. That
is, 0.95% of E. coli in solution successfully attached to the clean
lettuce pieces.

As we assumed above, the plant processes 24,000 kg/day of
lettuce, meaning that there are 100 wash periods per day. In light
of this, our range for the number of contacts is 197–984 mL/day.
Combining this with the probability of attachment, we see that
b1W A ½2,10� mL (CFU)�1 (day)�1.
4.2. Sensitivity analysis

To find which parameters most affect In1W and In2W , we use Latin
hypercube sampling (LHS) to build a sample matrix of parameter
input values. Here we suppose that each parameter is sampled
randomly from a uniform distribution across its respective range.
Using a sample size of n¼500, and then rank transforming the
sample matrix and corresponding outputs for In1W and In2W , we
calculate the partial rank correlation coefficients (PRCCs) asso-
ciated to each parameter (see Marino et al., 2008). In general, the
PRCCs, valued between �1 and þ1, provide a measure of
monotonicity between each parameter and a selected output.

Before discussing the PRCCs that link each parameter to In1W

and In2W , we substantiate why we can ignore transient dynamics
and focus solely on the steady state amounts of contamination in
the wash stage. Using LHS as described above, with n¼500, we
perform Monte Carlo simulations to calculate the corresponding
outputs for I1W ðtÞ and I2W ðtÞ for tA ½0,0:3� days. For visual clarity,
after fitting a normal distribution to the respective outputs for
I1W ðtÞ and I2W ðtÞ, we calculate the 95% confidence intervals. In
order to avoid redundancy, we illustrate the confidence interval
vs time for P1 only, see Fig. 4. Referring to Fig. 4, notice that the
transient dynamics are relatively fast as the solution I1W ðtÞ is very
close to steady state within � 0:1 days (the behavior is similar for
I2W ðtÞ and is on the order of 0.15 days).

Now making use of the steady-state outputs In1W and In2W , Fig. 5
illustrates the PRCCs and the corresponding parameters which
have the most influence on the contamination amounts of P1 and
P2 in the wash stage. c1 and c2 have the highest magnitude among
all PRCCs which make sense as 1=c1 and 1=c2 reflect the mean
wash times for P1 and P2, respectively. However, it is noteworthy
that In2W is also highly sensitive to c1. This means that the average
Reference
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Fig. 4. Dynamics of amount of contaminated P1 (kg) vs time (days) in the Wash

stage. The blue region indicates 95% confidence interval for I1W ðtÞ. Notice the

transient dynamics are relatively short, on the order of � 0:1 days. (For inter-

pretation of the references to color in this figure caption, the reader is referred to

the web version of this article.)
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wash time for P1 has a significant affect on the contamination
amount of P2. Furthermore, both outputs are quite sensitive to m
which again is reasonable as m is directly connected to the free
chlorine concentration used. While it is clear in Fig. 5 that
other parameters play a significant role, we want to focus on c1

and m as these parameters are the most influential on In1W and In2W

simultaneously and because these parameters are subject to
processing control.

4.3. Implications for disease surveillance due to wash time and

sanitizer concentration

In Section 4.2, we showed that 1=c1 (mean wash time) and 1=m
(mean pathogen lifetime in wash water) have significant influ-
ence on the amount of contaminated produce, both P1 and P2, in
the wash tanks. Fortunately, both these parameters can be
practically controlled during processing. By fixing either c1 or m
at various points along their respective ranges and letting all
other parameters vary, we gain predictive information towards
the amount of contamination of P1 and P2 as well as insight into
potential source misidentification. In particular, we build sample
matrices (as in Section 4.2), as c1 and m vary along their respective
ranges, generating a range of outputs (In1W and In2W ) for each fixed
c1 and m. We then fit a normal distribution to the range of values
of In1W and In2W (for each fixed c1 and m) and compute the 95%
confidence intervals for both outputs. See Figs. 6 and 7 for the
display of these results.

Examining Fig. 6, we draw two conclusions. First we see that
even with short mean wash times (less than 24 s), the chlorine
sanitizer is not able to eliminate the E. coli as contaminated P1 in the
wash stage stabilizes at around 75 kg and cross-contamination of P2
stabilizes at around 100 kg. Furthermore, in terms of the proportion
of contaminated P1, if we let N1 ¼ 24,000 kg=day (the average value
of N1 on its range), using the data in Fig. 6, we see that this
proportion on average ranges from about 30 to 80% as the mean
wash time varies from about 20 to 60 s. So we see that decreasing
the average wash time for P1 decreases the proportion of contam-
ination among P1, but because the wash process is continuous, the
build up of E. coli in the wash water seems to only be marginally
controlled by the sanitizer, despite the wash time.

The second notion concerns potential for misidentification of
the food vehicle which is originally contaminated. For instance,
if an E. coli outbreak is suspected, the identification of the
food vehicle initially connected to the contamination is crucial
for implementing effective disease control. However, cross-
contamination may pose difficulties for such diagnoses. To illus-
trate this, consider that P1 comes into a processing plant with
significant contamination. If the sanitizer is not able to effectively
eliminate the pathogens in the process water, our model shows
that P2 will also become contaminated. Now depending on
various parameters in our model, the amount of contaminated
P2 in the wash stage can eventually surpass that of P1. This means
that the plant could at some point be shipping out a higher
volume of contaminated P2 than P1. While the complexity of the
supply chain and human behavior may lead to a variety of
outcomes, because higher amounts of contaminated P2 than P1
are moving into the supply chain, we consider the potential
situation in which P2 will be associated more strongly to the
outbreak when statistical studies are conducted. The problem
here is that P1 may go unnoticed as the initial food vehicle for
sometime. The lack of control associated to the contamination
source would then cause more illness and economic problems.

In terms of Fig. 6, we see that the 95% confidence interval (CI)
for values of In1W (indicated by the blue region) intersects the 95%
CI for In2W (red region) for 95oc1o125, i.e. for mean wash times
between 30 and 24 s. This overlap (indicated in purple) implies
the likelihood of confusion about which produce is the primary
food vehicle. Furthermore, we see that for c14125 (mean wash
time less than 24 s) the contamination of both P1 and the cross-
contamination of P2 is minimized, but following the above
reasoning, P2 will most likely be misidentified as the initial food
vehicles as the CI for In2W lies completely above the CI for In1W . For
c1o95 (mean wash time 430 s), we see the reverse situation as
the CI for In1W lies completely above the CI for In2W . Therefore, as
contaminated P1 moves down the supply chain in greater
numbers than P2, the original food vehicle will most likely be
identified correctly. In reality, the initially contaminated food
vehicle would be unknown. In light of this fact, we can use the
results in Fig. 6 to avoid misidentification, by setting the mean
wash times for both P1 and P2 to be greater than 30 s.

The other parameter of significance is m as it connects directly
to the free concentration of chlorine sanitizer used to treat the
process water. Our results align clearly with the fact that if the
concentration of sanitizer is increased (i.e. increase in m), then the



Fig. 7. Contamination amounts of P1 and P2 (kg) vs m (1/day). The blue region

indicates 95% confidence interval for In1W and the red region illustrates 95%

confidence interval for In2W . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 6. Contamination amounts of P1 and P2 (kg) vs c1 (1/day). The blue region

indicates 95% confidence interval for In1W and the red region illustrates 95%

confidence interval for In2W . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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contamination amounts of both P1 and P2 will decrease. How-
ever, we want to use our model to again inform control against
misidentification of the contamination source. In this instance,
suppose P1 is cut romaine lettuce and P2 is another type of cut
produce which has a higher degree of surface roughness than P1
(e.g. shredded cabbage). It has been shown that an increase in
surface roughness leads to an increased rate of E. coli attachment
(Wang et al., 2009). Therefore, we assume the range of b2W (the
water–produce transmission rate) is slightly increased, varying in
the range [3, 12] mL (CFU)�1 ðdayÞ�1. Applying our model to this
situation, we perform similar analysis as with c1 except now we
fix m and vary all other parameters. The results are illustrated in
Fig. 7. Here we see that for mo1100 (free chlorine concentration
r2:2 mg=L), the 95% CI for In1W and the 95% CI for In2W intersect or
are quite close (see purple region in Fig. 7). On the other hand, for
m41100 (free chlorine concentration 42:2 mg=L, the CI for In1W

(blue) lies completely above that of In2W (red). These results
suggest that using free chlorine concentration less than 2.2 mg/L
will likely result in, at worst, the misidentification of the con-
tamination source, and at best, confusion about the source.
5. Discussion

Many studies suggest that the disinfection stage of processing
is one of the most important points in the production chain,
affecting the ‘‘quality, safety, and shelf-life of the end product’’
(Gil et al., 2009). One reason for this is that wash water may
become contaminated during the course of processing and serve
as a secondary source of contamination. In order to understand
this phenomenon, researchers typically conduct studies at the lab
scale, discussing the effects that parameters such as free chlorine
concentration, pH, temperature, etc., have on contamination
during a single wash period (Gil et al., 2009). However, on a
commercial scale, the wash process is continual, and therefore,
the effects of this dynamic are important to explore.

Our model is setup to describe a continuous wash process of
fresh produce, allowing us to predict contamination and cross-
contamination amounts over an extended period of time. Notice,
however, that our assumptions in the wash stage, namely, that we
ignore produce-to-produce contact, pathogen growth in the wash
water, and shedding from contaminated P2, suggest that our
results are an underestimation. For example, keeping the signifi-
cance of this underestimation in mind, when applied to the case
of fresh-cut romaine lettuce, our model shows that even when a
small proportion (1–5%) of incoming lettuce is contaminated with
E. coli O157:H7, acceptable levels of free chlorine (we consider
free chlorine concentrations up to � 125 mg=L) are not able to
eliminate the pathogen in solution. In fact after only about 20
wash cycles, the contamination level in solution stabilizes above a
positive threshold, causing substantial amounts of contaminated
lettuce to move into the dewatering stage and eventually into the
supply chain. The underlying reason here is that the pathogen
population is able to sufficiently compound in the wash water as
contaminated produce continuously enters the wash stage.
Furthermore, if another processing line is connected via water
re-circulation, our results predict that produce along this second-
ary line will suffer from cross-contamination. While using sepa-
rate water sources for each line would be ideal for preventing
cross-contamination, recirculation is a standard practice in the
food industry as managing water usage and waste is expensive.
Taking both our model and this practice into account, it would be
interesting to find a strategy that simultaneously minimizes
water consumption and contamination levels.

As a result of quantifying the dynamics of produce contamina-
tion, our system can also give insight towards potential source
misidentification. In particular, we apply the model to washing
fresh-cut romaine lettuce together with the same type of lettuce
from a different farm or another type of leafy green with greater
surface roughness. Considering E:coli 0157:H7 as the contami-
nant, our results indicate that keeping the free chlorine concen-
tration above 2.2 mg/L and washing all produce for at least 30 s
will with strong likelihood prevent misidentification of the initial
food vehicle. With sufficient data, we can use our model to make
similar conclusions about the free chlorine level and length of
wash time associated to other types of produce.

For a more realistic approach, certain model parameters
should include time dependence. For instance, sanitizer concen-
trations usually change due to periodic dosing and the presence of
organic matter in the wash water (Gil et al., 2009). By allowing m
to be an appropriate periodic function of time, we could more
closely approximate this phenomenon. Also, as the sanitizer is not
instantly effective when added, incorporating a delay in m would
be significant.

Another important step involves adding processing para-
meters to the equation for W in (Section 2.4) such as temperature,
turbidity, organic load, pH, agitation/mixing, etc. Not only are
these details important for optimizing specific wash conditions,
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but the results from our augmented model would be able to
provide a benchmark against which various wash and sanitization
procedures can be compared. This is currently an unresolved issue
in the food industry as ‘‘the lack of a standardized methodology
and validation procedure makes it difficult to select the most
adequate sanitizing strategies for the disinfection of fresh-cut
produce’’ (Gil et al., 2009). In order to fit our model to address this
dilemma, relevant processing data are needed.

Finally, in terms of the big picture, our three stage model can
connect to a multi-scale model that includes supply chain net-
work and shipping dynamics. This larger scale model can then be
used to simulate outbreak events on a global level, providing
spatial and temporal maps of contamination ‘‘hubs’’ or ‘‘hot-
spots’’. Such information would be vital for effective food-borne
disease control and prevention.
Acknowledgments

The authors would like to thank the two anonymous reviewers
for their insight and recommendations to improve the manu-
script. This work was partially supported by The Fields Institute
for Research in Mathematical Sciences, the Natural Sciences and
Engineering Research Council of Canada, the Canada Research
Chairs Program, Mitacs and the Mprime Centre for Disease
Modelling. The authors would like to especially thank Yaguang
Luo for important data and discussions. The authors would like to
thank the following people from CFIA for helpful suggestions and
comments: David Sturrock, Rose Medaglia, Andrea Ellis, Anne-
Marie St-Laurent, and Ashwani Tiwari. The authors thank Venkata
Duvvuri for insightful comments. The authors also thank Denise
Kirschner for helpful sensitivity analysis MATLAB code posted on
her website. Finally, the authors thank Peter Munther and
Timothy Munther for their help concerning the use of MATLAB.
This work was presented at the Mathematical Biosciences Insti-
tute during the August 2012 Workshop for Young Researchers in
Mathematical Biology.
References

Barrera, M.J., Blenkinsop, R., Warriner, K., 2012. The effect of different processing
parameters on the efficacy of commercial post-harvest washing of minimally
processed spinach and shredded lettuce. Food Control 25, 745–751.
Beuchat, L.R., 2006. Vectors and conditions for pre harvest contamination of fruits
and vegetables with pathogens capable of causing enteric diseases. Br. Food J.
1, 38–53, http://dx.doi.org/10.1108/00070700610637625.

Bhagwat, A.A., 2006. Microbiological safety of fresh-cut produce: where are we
now?, in: K.R. Matthews (Ed.), Microbiology of Fresh Produce. ASM Press,
Washington, DC, pp. 121–156.

Brauer, F., 2008. Compartmental models in epidemiology, in: Brauer, F., van den
Driessche, P., Wu, J. (Eds.), Mathematical Epidemiology. Springer-Verlag,
Berlin.

CDC, 2011. Mulitstate Outbreak of Listeriosis Linked to Whole Cantaloupes from
Jensen Farms, Colorado. 8 December. Retrieved 12 January 2012 from /http://
www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.htmlS.

ECDC. Shiga Toxin-Producing E. coli (STEC): Update on Outbreak in the EU for 27
July 2011. Retrieved 29 February 2012 from /http://ecdc.europa.eu/en/activ
ities/sciadvice/Lists/ECDC%20ReviewsS.
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