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Abstract. We consider a nonlocal delayed reaction–diffusion equation in an unbounded domain that includes some special
cases arising from population dynamics. Due to the non-compactness of the spatial domain, the solution semiflow is not
compact. We first show that, with respect to the compact open topology for the natural phase space, the solutions induce
a compact and continuous semiflow Φ on a bounded and positively invariant set Y in C+ = C([−1, 0], X+) that attracts
every solution of the equation, where X+ is the set of all bounded and uniformly continuous functions from R to [0, ∞).
Then, to overcome the difficulty in describing the global dynamics, we establish a priori estimate for nontrivial solutions
after describing the delicate asymptotic properties of the nonlocal delayed effect and the diffusion operator. The estimate
enables us to show the permanence of the equation with respect to the compact open topology. With the help of the
permanence, we can employ standard dynamical system theoretical arguments to establish the global attractivity of the
nontrivial equilibrium. The main results are illustrated with the diffusive Nicholson’s blowfly equation and the diffusive
Mackey–Glass equation.
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1. Introduction

Consider the following delayed reaction–diffusion equation
⎧
⎨

⎩

∂u

∂t
(t, x) = dΔu(t, x) − δu(t, x) +

∫

R

f(u(t− τ, y))kα(x− y)dy, (t, x) ∈ (0,∞) × R,

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0] × R,
(1.1)

where R = (−∞,∞),Δ is the Laplacian operator on R, ϕ : [−τ, 0] × R → R is a bounded and con-
tinuous function, and kα(x) = 1√

4πα
e− x2

4α . Such an equation arises naturally from the interaction of
intrinsic dynamics (birth and death) and the spatial diffusion in a structured population (Metz and
Diekmann [24]). In particular, u in (1.1) can be regarded as the density of the matured individuals in a
two-stage population (juvenile and adult, with a fixed maturation time τ), f is the birth rate nonlinearity,
δ is the death rate, and the nonlocal integration

∫

R
f(u(t−τ, y))kα(x−y)dy is exactly the maturation rate

of those juvenile individuals born at time τ ago. As juvenile individuals may also move around during the
maturation period, the delayed nonlocal integration is required. The model derivation, detailed biological
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backgrounds, and historical accounts of the development can be found in the paper of So et al. [29] and
in a recent survey by Gourley and Wu [11]. Note that if we let α → 0+ in (1.1), then we obtain the
following (local) delayed reaction–diffusion equation

∂u

∂t
(t, x) = dΔu(t, x) − δu(t, x) + f(u(t− τ, x)).

In the case where the space is a bounded domain, the global dynamics of the semiflow generated by
the model subject to either the Dirichlet or the Neumann boundary condition has been intensively and
successfully studied (see, for example, [2,7,14,17,26,27,35–37]). The order-preserving property when f
is monotone (or when there is an attractive interval where f is monotone) has been explored, in con-
junction with the monotone dynamical systems theory, to establish various threshold dynamics. Roughly
speaking, there exists a quantity depending on the parameters of the system such that if the quantity
is less than 1 then the model has a unique equilibrium (the trivial equilibrium) and every nonnegative
solution converges to this equilibrium, while if this quantity is larger than 1 then the model has an addi-
tional nonnegative equilibrium, which is globally attractive for all nonnegative and nontrivial solutions.
Obtaining such a threshold result when f is non-monotone, even when the domain is bounded, is diffi-
cult (and of course, such a result may not hold as time lag may generate nonlinear oscillation through
the Hopf bifurcation mechanism). Nevertheless, some progress has been made, at least for the diffusive
Nicholson’s equation (a special case where f takes a particular form, see Sect. 4) with homogeneous Neu-
mann boundary condition [40] or Dirichlet boundary condition [38]. See also [41] for some relevant results
for a more general nonlinearity f . Recently, by using the fluctuation method, Zhao [43] established the
global attractivity of the positive steady state for a class of non-monotone time-delayed reaction–diffusion
equations with local/nonlocal effect, subject to the Neumann boundary condition.

However, results about the global dynamics for the local/nonlocal delayed reaction–diffusion equa-
tion in an unbounded spatial domain are scarce, due to the non-compactness of the unbounded spatial
domain and the difficulty in describing the dynamics of the solution semiflow near the trivial equilib-
rium. Until now, the existing results only focus on the global dynamics for the local/nonlocal delayed
reaction–diffusion equation in an unbounded spatial domain when the solution semiflow essentially is
monotone or the initial values enjoy compact supports [1,4,16]. Most studies have been devoted to the
existence and other qualitative properties of traveling wave fronts. See [1,4–6,9–11,23,28,29,32–34] and
the references therein.

This motivates us to investigate the global asymptotic behavior for (1.1). In fact, we shall study the
following more general system,

⎧
⎨

⎩

∂u

∂t
(t, x) = Δu(t, x) − μu(t, x) + μ

∫

R

f(u(t− 1, y))k(x− y)dy, (t, x) ∈ (0,∞) × R,

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−1, 0] × R,
(1.2)

where μ > 0, f : R+ = [0,∞) → R+ is continuous with f(0) = 0, and k : R → (0,∞) is continuous with∫

R
k(y)dy = 1. After rescaling, (1.1) is a special case of (1.2). We emphasize that here k is not necessarily

even. The initial data ϕ belong to C+, where X = UBC(R,R) is the Banach space of all bounded and
uniformly continuous functions from R to R with the usual supremum norm || · ||X ,X+ = {φ ∈ X :
φ(x) ≥ 0 for all x ∈ R}, C = C([−1, 0],X) is the Banach space of continuous functions from [−1, 0] into
X with the supremum norm || · ||C , and C+ = C([−1, 0],X+) ⊂ C.

We will consider the mild solution of system (1.2), which solves the following integral equation with
the given initial function,

{
u(t, ·) = 1

μL
t(ϕ(0, ·)) +

∫ t

0
Lt−s(F (us))ds, t ≥ 0,

u0 = ϕ ∈ C+,
(1.3)
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where L0 and Lt are, respectively, defined by (2.2) and (2.3), and F : C+ → X+ is defined by

F (ϕ)(x) =
∫

R

f(ϕ(−1, y))k(x− y)dy for x ∈ R and ϕ ∈ C+.

The remaining of this paper is organized as follows. In Sect. 2, we first show that there exists a
bounded and positively invariant set Y in C+ such that Y attracts every solution of (1.3). When Y is
endowed with the compact open topology, we then prove that the solution map of (1.3) induces a compact
and continuous semiflow Φ on Y . Due to the non-compactness of the unbounded spatial domain, when
there is a nontrivial equilibrium, it is quite difficult to show that nontrivial solutions are expelled from a
given neighborhood of the trivial equilibrium. In Sect. 3, to overcome this difficulty, through describing
the delicate asymptotic properties of the nonlocal delayed effect and the diffusion operator, we establish
a priori estimate for nontrivial solutions. This estimate enables us first to show the permanence of the
equation with respect to the compact open topology. Then, we employ standard dynamical system theo-
retical arguments to obtain the global attractivity of the nontrivial equilibrium of (1.3). We conclude the
paper with the applications of our general results to the nonlocal delayed reaction–diffusion Nicholson’s
blowfly equation and the nonlocal delayed reaction–diffusion Mackey–Glass equation.

2. Preliminary results

Define X = BUC(R,R) as the Banach space of all bounded and uniformly continuous functions from R

to R equipped with the usual supremum norm ‖ · ‖X . Let X+ = {φ ∈ X : φ(x) ≥ 0 for all x ∈ R},X◦
+ =

{φ ∈ X : φ(x) > 0 for all x ∈ R}. It follows that X+ is a closed cone in X. Note that X◦
+ �= Int(X+),

for example, f(x) = e−|x| ∈ X◦
+ but f �∈ Int(X+). Let C = C([−1, 0],X) be the Banach space of con-

tinuous functions from [−1, 0] into X with the supremum norm || · ||C , and let C+ = C([−1, 0],X+) and
C◦

+ = C([−1, 0],X◦
+). Clearly, C+ is a closed cone of C but C◦

+ �= Int(C+).
For convenience, we shall identify an element ϕ ∈ C as a function from [−1, 0] × R into R. For

a ∈ R, â ∈ X is defined as â(x) = a for all x ∈ R, and ˆ̂a ∈ C is defined as ˆ̂a(θ) = â for all θ ∈ [−1, 0].
For any φ, ψ ∈ X, we write φ ≥X ψ if φ − ψ ∈ X+, φ >X ψ if φ ≥ ψ and φ �= ψ, and φ 	X ψ if

φ−ψ ∈ X◦
+. Similarly, for any ξ, η ∈ C, we write ξ ≥C η if ξ−η ∈ C+, ξ >C η if ξ ≥C η and ξ �= η, ξ 	C η

if ξ − η ∈ C◦
+. For simplicity of notations, when there is no confusion about the spaces, for a ∈ R, we

write a � â or a � ˆ̂a; also, we just write ≥, >,	, and || · || for ≥∗, >∗,	∗, and || · ||∗, respectively, where
∗ stands for X or C.

For a real interval I, let I + [−1, 0] = {t+ θ : t ∈ I and θ ∈ [−1, 0]}. For u : (I + [−1, 0]) × R → R and
t ∈ I, we define ut(·, ·) ∈ C by ut(θ, x) = u(t+ θ, x) for all θ ∈ [−1, 0] and x ∈ R.

For x ∈ R and t > 0, let

l(x) =
√
μ

2
exp (−

√
μx2) and l(t, x) =

μe−μt

√
4πt

exp
(

−x2

4t

)

.

Define L, L0, and Lt : X → X(t > 0), respectively, by

(L(φ))(x) =
∫

R

l(x− y)φ(y)dy, (2.1)

(L0(φ))(x) = μφ(x), (2.2)

and

(Lt(φ))(x) =
∫

R

l(t, x− y)φ(y)dy, (2.3)

where φ ∈ X and x ∈ R. Clearly, { 1
μL

t}t≥0 is an analytic strongly continuous semigroup on X generated
by the X-realization ΔX − μId of Δ − μId (see, for example, Daners and Medina [3]).
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Define F : C+ → X+ by

F (ϕ)(x) =
∫

R

f(ϕ(−1, y))k(x− y)dy for all x ∈ R and ϕ ∈ C+.

Associated with (1.2) is the following integral equation with the given initial function
⎧
⎨

⎩

u(t, ·) = 1
μL

tϕ(0, ·) +
∫ t

0

Lt−sF (us)ds, t ≥ 0,

u0 = ϕ ∈ C+.
(2.4)

For a given ϕ ∈ C+, let uϕ(t, x) represents a solution of (2.4), that is, a mild solution of (1.2) in the sense
of Martin and Smith [21,22].

Throughout the remaining part of this paper, we make the following baseline assumptions for the
nonlinearity f .

(H1). There exists M > 0 such that f(x) ∈ (0,M ] for all x ∈ (0,∞).
(H2). f is a continuously differentiable function on some right-neighborhood of 0.

By the step argument and the definition of F , it is easy to see that, for ϕ ∈ C+, the solution of (2.4)
is unique and exists on R+, denoted by uϕ; moreover, (uϕ)t ∈ C+ for all t ∈ R+. Thus, the solutions
of (2.4) induce a continuous semiflow in C+. Since the semigroup { 1

μL
t}t≥0 is analytic, by Corollary

2.2.5 [33], we know that a mild solution of (1.2) is also a classical solution of (1.2) for all t > 1 (for
instance, see [21,22,31,33]). Therefore, as far as asymptotic behaviors are concerned, it is sufficient to
consider only mild solutions.

Lemma 2.1. Let L,L0, and Lt be defined by (2.1)–(2.3), respectively. Then, the following statements are
true.

(i) (L(1))(x) = 1 for all x ∈ R.
(ii) (Lt(a))(x) = aμe−μt for all t ∈ R+, a ∈ R, and x ∈ R.
(iii) Lt(X+) ⊆ X+ for t ∈ R+ and Lt(X+\{0}) ⊆ X◦

+ for t > 0.
(iv)

∫

R+
l(t, x)dt = l(x) for all x ∈ R. Hence, (L(φ))(x) =

∫

R+
(Lt(φ))(x)dt for all φ ∈ X and x ∈ R.

Proof. Obviously, statements (i–iii) follow directly from the explicit expressions of L and Lt.

Now, we show statement (iv). Letting s =
√
μt and using the formula that

∫∞
0

e−(s2+ c2

s2
)ds =

√
π

2 e−2c

(see Example 2 of Chapter 9.5 in [42]), we obtain that

∫ ∞

0

μe−μt

√
4πt

exp
(

−x2

4t

)

dt =
√
μ

π

∫ ∞

0

exp
(

−
(

s2 +
μx2

4s2

))

ds

=
√
μ

π
×

√
π

2
e−2

√
μx2
4 = l(x).

This, combined with Fubini’s theorem, implies that
∫

R+

∫

R
l(t, x−y)φ(y)dydt =

∫

R
l(x−y)φ(y)dy for any

φ ∈ X and hence statement (iv) holds. �

Remark 2.2. If t > 0 and φ is a bounded and continuous function from R to R, then |(Lt(φ))(x) −
(Lt(φ))(z)| ≤ μ||φ||X√

πt
|x − z| for all x, z ∈ R. Here, we have extended the operator Lt to the set of all

bounded and continuous functions. Indeed, for any x, z ∈ R,
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|(Lt(φ))(x) − (Lt(φ))(z)|
≤
∫

R

|l(t, x− y) − l(t, z − y)||φ(y)|dy

≤ ||φ||X
∫

R

|l(t, x− y) − l(t, z − y)|dy

=
μe−μt||φ||X√

4πt

∫

R

∣
∣
∣
∣exp

(

− (x− y)2

4t

)

− exp
(

− (z − y)2

4t

)∣
∣
∣
∣ dy

≤ μe−μt||φ||X√
4πt

∫

R

∫ 1

0

∣
∣
∣
∣
(x− z)(z − y + θ(x− z))

2t
exp

(

− (z − y + θ(x− z))2

4t

)∣
∣
∣
∣dθdy

≤ μ||φ||X√
4πt

|x− z|
∫

R

|y|
2t

exp
(

−y2

4t

)

dy

=
μ||φ||X√

πt
|x− z|.

However, due to the non-compactness of the spatial domain, it is generally difficult and inconvenient
to describe the global asymptotic behaviors with respect to the supremum norm. To overcome this dif-
ficulty, we shall introduce a coarser topology such as the compact open topology. We now define some
new norms ‖ · ‖X

co on X and ‖ · ‖C
co on C by ||φ||Xco �

∑
n∈N

2−n sup{|φ(x)| : x ∈ [−n, n]} for φ ∈ X

and ||ϕ||Cco = sup{||ϕ(θ)||Xco : θ ∈ [−1, 0]} for ϕ ∈ C, respectively, where N = {1, 2, . . .}. Again, for the
simplicity of notation, when there is no confusion about the spaces involved, we just write || · ||co for one of
the two norms we just defined. Moreover, we denote the normed vector spaces (X, || · ||co) and (C, || · ||co)
by Xco and Cco, respectively.

Lemma 2.3. Given r > 0, let Br = {φ ∈ X : ||φ|| ≤ r} and dr(φ, ψ) = ||φ − ψ||co for φ, ψ ∈ Br. Then,
for any φ ∈ Br and {φn}n∈N ⊂ Br, limn→∞ dr(φn, φ) = 0 if and only if limn→∞(sup{|φn(x) − φ(x)| :
x ∈ I}) = 0 for any bounded and closed interval I ⊆ R.

Lemma 2.4. Define K1 : X → X by

K1(φ)(x) =
∫

R

φ(y)k(x− y)dy for all x ∈ R and φ ∈ X.

Then, the following statements are true:
(i) K1(X+) ⊆ X+ and K1(X+\{0}) ⊆ X◦

+.
(ii) For any r > 0, K1(Br) ⊆ Br and K1|Br

: Br → Br is continuous, where Br is equipped with the
topology induced by dr.

Proof. (i) follows from the definition of K1 and the fact that k : R → (0,∞).
Clearly, we know that K1(Br) ⊆ Br. We next prove that K1|Br

is continuous. Take {φn}n∈N ⊂
Br and φ ∈ Br such that limn→∞ dr(φn, φ) = 0. By Lemma 2.3, we only need to show that
limn→∞(sup{|K1(φn)(x) − K1(φ)(x)| : x ∈ I}) = 0 for any bounded and closed interval I ≡ [a, b] ⊆ R.
Indeed, for any ε > 0, there exists T > 0 such that

∫

|y|≥T
k(y)dy < ε

3r+1 . Let I∗ = [a − T, b + T ]. By
Lemma 2.3, there exists n0 > 1 such that |φn(x) − φ(x)| < ε

3 for all x ∈ I∗ and n ≥ n0. It follows from
the definition of K1 that, for any x ∈ I and n ≥ n0,

|K1(φn)(x) −K1(φ)(x)| = |K1(φn − φ)(x)|
≤
∫

R

|φn(x+ y) − φ(x+ y)|k(−y)dy

=
∫

y∈[−T,T ]

|φn(x+ y) − φ(x+ y)|k(−y)dy
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+
∫

y/∈[−T,T ]

|φn(x+ y) − φ(x+ y)|k(−y)dy

≤ ε

3
+ 2r · ε

3r + 1
< ε.

This means that K1|Br
is continuous and hence statement (ii) is proved. �

Lemma 2.5. Assume that Lt(·) is defined by (2.3). Then, the following statements are true:
(i) For any r > 0 and t ∈ R+, Lt(Br) ⊆ Bμr.
(ii) Let r > 0 and define L : R+ ×Br → Bμr by L(t, φ) = Lt(φ) for all (t, φ) ∈ R+ ×Br. Let Br and Bμr

be equipped with the topologies induced by dr and dμr, respectively. Then, L is a continuous map.

Proof. Obviously, statement (i) follows from the explicit expression of Lt.
To prove (ii), we first claim that, for any bounded closed interval I, s > 0 and ε > 0, there exists δ > 0

such that |L(t, φ)(x)| < ε for all φ ∈ Br, x ∈ I, and t ∈ (0, s] with ||φ||co < δ. Indeed, there exists T > 0
such that

∫

|y|≥T
e−y2

dy ≤
√

π
3rμε. Let I ≡ [a, b] ⊆ R and let I∗ = [a − √

4sT, b +
√

4sT ]. Take δ > 0 such
that |φ(x)| < ε

3μ for all x ∈ I∗ and φ ∈ Br with ||φ||co < δ. Then, we easily see that for any φ ∈ Br,
x ∈ I, and t ∈ [0, s] with ||φ||co < δ,

|L(t, φ)(x)| =
∣
∣
∣
∣

∫

R

φ(x− y)l(t, y)dy
∣
∣
∣
∣

≤
∫

y∈[−√
4tT,

√
4tT ]

|φ(x− y)|l(t, y)dy +
∫

y/∈[−√
4tT,

√
4tT ]

|φ(x− y)|l(t, y)dy

=
μe−μt

√
π

[∫

z∈[−T,T ]

|φ(x−
√

4tz)|e−z2
dz +

∫

z/∈[−T,T ]

|φ(x−
√

4tz)|e−z2
dz

]

≤ μ√
π

[
ε

3μ

∫

z∈[−T,T ]

e−z2
dz + r

∫

z/∈[−T,T ]

e−z2
dz

]

< ε.

This proves the claim.
Take {(tn, φn)}n∈N ⊂ R+ × Br and (t, φ) ∈ R+ × Br such that limn→∞ |tn − t| = 0 and

limn→∞ dr(φn, φ) = 0. Given a bounded closed interval I and a positive number ε, then, by the above
claim, there exists a positive integer N0 such that |L(tn, φn − φ)(x)| < ε

3 for all x ∈ I and n > N0.
Because { 1

μL
t}t≥0 is a strongly continuous semigroup on X, there exists a positive integer N1 such that

|L(tn, φ)(x) − L(t, φ)(x)| < ε
3 for all x ∈ I and n > N1. It follows from the linearity of Lt that, for all

x ∈ I and n > max{N0, N1}, we have

|L(tn, φn)(x) − L(t, φ)(x)| = |L(tn, φn − φ)(x)| + |L(tn, φ)(x) − L(t, φ)(x)|
≤ ε

3
+
ε

3
< ε.

So, L is continuous. �

Proposition 2.6. The following statements are true:
(i) If ϕ ∈ C+\{0}, then uϕ(t, x) > 0 for all (t, x) ∈ (0,∞) × R.
(ii) For any ϕ ∈ C+, there exists T = T (ϕ) > 0 such that uϕ(t, x) ≤ M + 1 for all (t, x) ∈ [T,∞) × R.
(iii) If ϕ ∈ C+ and ϕ(θ, x) ≤ M + 1 for all (θ, x) ∈ [−1, 0] × R, then uϕ(t, x) ∈ [0,M + 1] for all

(t, x) ∈ [−1,∞) × R.
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Proof. (i) follows from (2.4) and Lemmas 2.1(iii) and 2.4(i).
Now, suppose ϕ ∈ C+. Then, there exists A = A(ϕ) > 0 such that ||ϕ|| ≤ A. It follows from (2.4),

(H1), Lemmas 2.1(ii–iii) and 2.4(i) that

uϕ(t, x) =
1
μ
Lt(ϕ(0, ·))(x) +

∫ t

0

Lt−s(K1(f(uϕ(s− 1, ·))))(x)ds

≤ 1
μ
Lt(A)(x) +

∫ t

0

Lt−s(K1(M))(x)ds

= Ae−μt +M(1 − e−μt),

which implies that there exists T = T (ϕ) > 0 such that uϕ(t, x) ≤ M + 1 for all (t, x) ∈ [T,∞) × R. This
proves (ii).

The proof of (iii) is similar to that of (ii) and hence is omitted. �

Let

W = {φ ∈ X+ : φ(x) ≤ 1 +M for all x ∈ R}
and

Y = {ϕ ∈ C+ : ϕ(θ, x) ≤ 1 +M for all (θ, x) ∈ [−1, 0] × R}. (2.5)

By Proposition 2.6, we know that Y is a positively invariant set of the solution semiflow and Y attracts
every point in C+ in the sense of Hale [13]. In the following, we shall study the asymptotic behavior of
the solution semiflow in Y . Define dw : W ×W → R+, d : Y × Y → R+ and Φ : R+ × Y → Y as follows,

dw(φ, ψ) = ||φ− ψ||co for all (φ, ψ) ∈ W ×W ,
d(ξ, η) = ||ξ − η||co for all (ξ, η) ∈ Y × Y , (2.6)

Φ(t, ϕ) = (uϕ)t for all (t, ϕ) ∈ R+ × Y .

The following result can be easily shown.

Lemma 2.7. Assume that Y is defined by (2.5). Then, the following results are true:
(i) Y is a bounded subset of Cco.
(ii) Let {ϕn}n∈N ⊂ Y and ϕ ∈ Y . Then limn→∞ d(ϕn, ϕ) = 0 if and only if limt→∞(sup{|ϕn(θ, x) −

ϕ(θ, x)| : (θ, x) ∈ [−1, 0] × I}) = 0 for any bounded and closed interval I ⊆ R.
(iii) Let A ⊆ Y ∩ C1,1([−1, 0] × R,R), where C1,1([−1, 0] × R,R) is the set of all continuously differen-

tiable functions from [−1, 0] × R to R. If there is κ > 0 such that |∂ϕ(θ,x)
∂θ | + |∂ϕ(θ,x)

∂x | ≤ κ for all
(θ, x) ∈ [−1, 0] × R and ϕ ∈ A, then A is pre-compact in Y .

In what follows, we always assume that the topologies of W and Y are induced by dw and d, respec-
tively.

Theorem 2.8. Assume that Y and Φ are defined, respectively, by (2.5) and (2.6). Then, the following
statements are true:

(i) Φ is a continuous semiflow on Y .
(ii) There exists t0 > 1 such that Φ(t, ·) is compact with respect to the compact open topology for t > t0+1.

Proof. It follows easily from the definition of Φ that Φ(0, ϕ) = ϕ and Φ(t + s, ϕ) = Φ(t,Φ(s, ϕ)) for all
ϕ ∈ Y and s, t ∈ R+, that is, Φ is a semigroup on Y .

Define g : R+ × Y → W by g(t, ϕ) = Φ(t, ϕ)(0, ·) for all (t, ϕ) ∈ R+ × Y . To prove the continuity of
Φ, it suffices to prove the continuity of g. Clearly, by (2.4), Lemmas 2.3(i), 2.4(ii), 2.5(ii), and 2.7(ii),
some standard arguments easily yield that g(t, ϕ) is continuous in (t, ϕ) ∈ [0, 1] × Y . Then, this and the
semigroup property of Φ imply the continuity of g and hence Φ is continuous. This proves (i).
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Now, we prove (ii). Since the semigroup { 1
μL

t}t≥0 is analytic, by Corollary 2.2.5 [33], we know that a
mild solution of (1.2) is also a classical solution of (1.2) for all t > 1. In particular, uϕ(·, ·) ∈ C1,2((1,∞)×
R,R), where C1,2((1,∞) × R) is the set of all functions from (1,∞) × R to R, which are continuously
differentiable with respect to the first variable and twice continuously differentiable with respect to the
second variable. By applying the standard parabolic estimates (see the proof of Proposition 4.3 in [32]),
there exists t0 > 1 and M∗ > 0 such that |∂uϕ(t,x)

∂t |+|∂uϕ(t,x)
∂x | < M∗ for all (t, x) ∈ [t0,∞)×R and ϕ ∈ Y .

Thus, by Lemma 2.7(iii), we know that Φ(t, ·) is compact with respect to the compact open topology for
t > t0 + 1. �
Remark 2.9. We point out that the same asymptotic behaviors of the integral equation (2.4) hold when
the initial value ϕ is a bounded and continuous function from [−1, 0] × R to R+. By the step argument
and the definition of F , it is easy to see that the solution (uϕ)t of the integral equation (2.4) is well
defined for all t ∈ R+. We easily see that all the conclusions of Proposition 2.6 hold when the initial value
ϕ is a bounded and continuous function from [−1, 0] × R to R+. We only show that (uϕ)t ∈ C+ for all
(t, ϕ) ∈ [2,∞) ×C([−1, 0] × R, [0, 1 +M ]). Indeed, for any (t, ϕ) ∈ [1, 2] ×C([−1, 0] × R, [0, 1 +M ]), and
x, z ∈ R, it follows from (2.4) and Remark 2.2 that

|uϕ(t, x) − uϕ(t, z)| ≤ 1
μ

|Lt(ϕ(0, ·))(x) − Lt(ϕ(0, ·))(z)|

+
∫ t

0

|Lt−s(F (uϕ
s ))(x) − Lt−s(F (uϕ

s ))(z)|ds

≤ ||ϕ(0, ·)||X√
πt

|x− z| +
∫ t

0

μ||F (uϕ
s )||X

√
π(t− s)

|x− z|ds

≤ M + 1√
πt

|x− z| +
∫ t

0

μM
√
π(t− s)

|x− z|ds

=
(
M + 1√

πt
+

2μM
√
t√

π

)

|x− z|

≤
(
M + 1√

π
+

2
√

2μM√
π

)

|x− z|,

which, combined with the semigroup property of Φ, yields the claim.

Definition 2.10. An element ϕ ∈ Y is called an equilibrium of Φ if Φ(t, ϕ) = ϕ for all t ∈ R+. A subset
A of Y is said to be positively invariant under Φ if Φ(t, ϕ) ∈ A for every ϕ ∈ A and t ∈ R+.

We write O(ϕ) = {Φ(t, ϕ) : t ∈ R+} for the positive semi-orbit through the point ϕ. The ω-limit set of
O(ϕ) is defined by ω(ϕ) =

⋂
t∈R+

O(Φ(t, ϕ)), where O(Φ(t, ϕ)) represents the closure of O(Φ(t, ϕ)) with
respect to the compact open topology.

Definition 2.11. We say that the Eq. (2.4) is permanent with respect to the compact open topology if
there exists 0 < a < b such that

lim
t→∞(inf{||(uϕ)t − ψ||co : ψ ∈ C+ with a ≤ ψ ≤ b}) = 0 for all ϕ ∈ C+\{0}.

The following result follows from Proposition 2.6 (i–ii) and the above definition.

Corollary 2.12. If there exists a > 0 such that ξ ≥ a for any ϕ ∈ Y \{0} and ξ ∈ ω(ϕ), then the Eq. (2.4)
is permanent with respect to the compact open topology.

Definition 2.13. Let u∗ be an equilibrium and A be a positively invariant set of the semiflow Φ. We say
that u∗ is globally attractive in A if ω(ϕ) = {u∗} for all ϕ ∈ A.
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Definition 2.14. We say that 0 is globally attractive in C+ with respect to the usual supremum norm if
lim

t→∞ ||(uϕ)t||C = 0 for all ϕ ∈ C+.

Definition 2.15. Let u∗ be an equilibrium. We say that u∗ is globally attractive in C+\{0} with respect
to the compact open topology if limt→∞ ||(uϕ)t − u∗||co = 0 for all ϕ ∈ C+\{0}.

In the sequel, we shall omit the term “with respect to the compact open topology” in Definition 2.15.
The following result follows from Proposition 2.6 and the above definitions.

Corollary 2.16. If u∗ is a globally attractive equilibrium in Y \{0}, then u∗ is a globally attractive equi-
librium in C+\{0}.

It is not difficult to establish the following result. For the sake of completeness, the proof is provided.

Theorem 2.17. If f(x) < x for all x > 0, then 0 is a globally attractive equilibrium of (2.4) in C+ with
respect to the usual supremum norm.

Proof. Suppose that ϕ ∈ C+. By Proposition 2.6(ii–iii), without loss of generality, we may assume that
ϕ ∈ Y . Let u+ = lim supt→∞ ||uϕ(t, ·)||X . It suffices to show that u+ = 0. By the way of contra-
diction, suppose u+ > 0. It follows from the assumption that there exists u++ > u+ such that f+
� max f([0, u++]) < u+. Then, by the definition of u+, there exists T ∗ > 0 such that uϕ(t, x) < u++ for
all (t, x) ∈ [T ∗,∞) × R. For any t ≥ T ∗ + 1 and x ∈ R+, it follows from (2.4), the semigroup property of
Φ and the choices of u+, u++, and T ∗ that

uϕ(t, x) = u(uϕ)1+T ∗ (t− 1 − T ∗, x)

= 1
μL

t−1−T ∗
(uϕ(1 + T ∗, ·))(x)+

∫ t−1−T ∗

0

Lt−1−T ∗−s(K1(f(uξ(s+ T ∗, ·))))(x)ds

≤ 1
μL

t−1−T ∗
(u++)(x)+

∫ t−1−T ∗

0

Lt−1−T ∗−sK1(f+)(x)ds

= e−μ(t−1−T ∗)u++ + f+(1 − e−μ(t−1−T ∗)).

This implies that u+ ≤ f+, a contradiction to the choices of u+ and f+. Therefore, u+ = 0 and the proof
is complete. �

Clearly, it follows from the assumption of Theorem 2.17 that f ′(0) ≤ 1. If f ′(0) > 1, then 0 is not
a locally attractive equilibrium. In the coming section, we tackle the global dynamics of (2.4) when
f ′(0) > 1.

3. Permanence and global attractivity

In this section, we always assume that f ′(0) > 1. In this case, to overcome the difficulty in showing that
the trivial equilibrium expels nontrivial solutions due to the lack of compactness of the spatial domain, we
establish a priori estimate for nontrivial solutions after describing the delicate asymptotic properties of
the nonlocal delayed effect and the diffusion operator. The estimate enables us to show the permanence of
the system. Then, we obtain the global attractivity of the nontrivial equilibrium by employing standard
dynamical system theoretical arguments.

For t ≥ 0, we define K and K(t, ·) : X → X, respectively, by

K(φ)(x) =
∫

R2
φ(y)k(z − y)l(x− z)dydz

and

K(t, φ)(x) =
∫

R2
φ(y)k(z − y)

∫ t

0

l(t, x− z)dtdydz
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for all φ ∈ X and x ∈ R. Obviously, K and K(t, ·) are linear on X. It is easy to see that all the operators
L0, Lt,K1,K, and K(t, ·) can be extended to the linear space of all measurable and bounded functions
from R to R into itself. Moreover, the extended operators are order preserving in the sense of the pointwise
order. In the sequel, the operators are the extended ones.

For given positive numbers δ and T , define the function hT
δ : R → R+ by hT

δ (x) = δ for all x ∈ [−T, T ]
and hT

δ (x) = 0 for all x /∈ [−T, T ]. Define the functions h± : R → R by h±(x) = 1 for all x ∈ I±
and h±(x) = 0 for all x /∈ I±, where I− = (−∞, 0] and I+ = R+. Let a±

n = (Kn(h±)(0))
1
n and

an = min{a−
n , a

+
n } for all n ∈ N, where Kn represents the nth-composition of K.

Lemma 3.1. The following statements are true:

(i) a±
n ∈ (0, 1] for all n ∈ N.

(ii) a±
mn ≥ a±

m for all m, n ∈ N.
(iii) lim supn→∞ a±

n ≥ a±
m for all m ∈ N.

(iv) For any n ∈ N and δ > 0, there exists Tn,δ > 0 such that Kn(hT
1 ) ≥ hT

(an)n−δ for all T ≥ Tn,δ.

Proof. (i) follows directly from the definitions of a±
n .

To prove (ii), let Dn
± = {y = (y1, z1, y2, z2, . . . , yn, zn) ∈ R

2n :
∑n

i=1(yi + zi) ∈ I±}, where n ∈ N.
Define gn : R

2n → R by gn(y) =
∏n

i=1(k1(−yi)l(−zi)) for all y ∈ R
2n. We claim that Kn(h±)(0) =∫

Dn
±
gn(y)dy for all n ∈ N. Actually, by Fubini’s Theorem, for any x ∈ R and any measurable and

bounded function ζ from R to R,

Kn(ζ)(x) =
∫

R2n

ζ(y1)k(zn − yn)l(x− zn)
n−1∏

i=1

(k(zi − yi)l(yi+1 − zi))
n∏

i=1

dyidzi.

It follows from the linear transformations of variables that

Kn(ζ)(x) =
∫

R2n

ζ

(

x+
n∑

i=1

(yi + zi)

)
n∏

i=1

(k(−yi)l(−zi))
n∏

i=1

dyidzi.

Then, Kn(ζ)(x) =
∫

R2n ζ(x+
∑n

i=1(yi + zi))gn(y)dy. Letting ζ = h±, we have proved the claim.
For any m,n ∈ N, the above claim, combined with the definitions of gm, gmn,D

m
± , and Dmn

± , gives us

(a±
mn)mn = Kmn(h±)(0)

=
∫

Dmn
±

gmn(y)dy

≥
(∫

Dm
±

gm(y)dy

)n

= (a±
m)mn.

This gives a±
mn ≥ a±

m and hence (ii) is proved.
For any m ∈ N, statement (ii) implies that {a±

nm}n∈N is a subsequence such that a±
nm ≥ a±

m for all
n ∈ N. It follows immediately that lim supn→∞ a±

n ≥ lim supn→∞ a±
nm ≥ a±

m, that is, (iii) holds.
Finally, suppose that n ∈ N and δ > 0. Let IT

− = [−T, 0], IT
+ = [0, T ], and DT

± = {y =
(y1, z1, y2, z2, . . . , yn, zn) ∈ R

2n :
∑n

i=1(yi + zi) ∈ IT
±} for all T ∈ R+. Define η± : R+ → R by

η±(T ) =
∫

DT
±
gn(y)dy for all T ∈ R+. Obviously, both η− and η+ are continuous and increasing on

R+ with limT→∞ η±(T ) = (a±
n )n. Therefore, there exists Tn,δ > 0 such that η±(T ) ≥ (a±

n )n − δ for
all T ≥ Tn,δ. Since DT

− ⊆ B(x, T ) � {(y1, z1, y2, z2, . . . , yn, zn) ∈ R
2n :

∑n
i=1 x + (yi + zi) ∈ [−T, T ]}

for all x ∈ [0, T ], we know that if T ≥ Tn,δ, then Kn(hT
1 )(x) =

∫

R2n h
T
1 (x +

∑n
i=1(yi + zi))gn(y)dy =

∫

y∈B(x,T )
gn(y)dy ≥ η−(T ) ≥ (a−

n )n − δ for all x ∈ [0, T ]. Similarly, Kn(hT
1 )(x) ≥ η+(T ) ≥ (a+

n )n − δ
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for all x ∈ [−T, 0]. Thus, Kn(hT
1 ) ≥ hT

(an)n−δ for all T ≥ Tn,δ. This proves (iv) and hence the proof is
complete. �

Lemma 3.2. Suppose that n ∈ N. Then, limt→∞(sup{|(K(t, ·))n(hT
1 )(x) − Kn(hT

1 )(x)| : x ∈ R and T ∈
R+}) = 0.

Proof. It follows easily from Lemma 2.1(iv) that Kn(hT
1 )(x) − (K(t, ·))n(hT

1 )(x) ≥ 0 for any T ∈ R+ and
x ∈ R. We claim that Kn(hT

1 )(x) − (K(t, ·))n(hT
1 )(x) ≤ ne−μt for any T ∈ R+ and x ∈ R. We prove the

claim by the mathematical induction. First, suppose n = 1. Then, by Fubini’s theorem and the fact that∫

R+
l(t, x)dt = l(x) for all x ∈ R, for any T ∈ R+ and x ∈ R, we have

K
(
hT

1

)
(x) −K(t, ·) (hT

1

)
(x) =

∫ ∞

t

LsK1

(
hT

1

)
(x)ds

≤
∫ ∞

t

LsK1(1)(x)ds

=
∫ ∞

t

μe−μtds

= e−μt,

namely the claim holds for n = 1. Now, assume that the claim holds for n0. Then, for any T ∈ R+ and
x ∈ R, we have

Kn0+1
(
hT

1

)
(x) − (K(t, ·))n0+1

(
hT

1

)
(x)

= Kn0+1(hT
1 )(x) − (K(K(t, ·))n0)(hT

1 )(x)

+ (K(K(t, ·))n0)
(
hT

1

)
(x) − (K(t, ·))n0+1

(
hT

1

)
(x)

= (K(Kn0 − (K(t, ·))n0))(hT
1 )(x) + ((K −K(t, ·))(K(t, ·))n0)(hT

1 )(x)

= K
(
(Kn0 − (K(t, ·))n0)

(
hT

1

))
(x) + ((K −K(t, ·)) ((K(t, ·))n0)(hT

1 )
)
(x)

≤ K(n0e−μt)(x) + ((K −K(t, ·))(1)(x)
= n0e−μt + e−μt

= (n0 + 1)e−μt,

i.e., the claim holds for n0 + 1. By the induction principle, the claim is proved. It follows that
Kn(hT

1 )(x) − (K(t, ·))n(hT
1 )(x) ∈ [0, ne−μt] for all T ∈ R+ and x ∈ R, which obviously implies that

limt→∞(sup{|(K(t, ·))n(hT
1 )(x) −Kn(hT

1 )(x)| : x ∈ R and T ∈ R+}) = 0. This completes the proof. �

Lemma 3.3. For any n ∈ N and δ > 0, there exists Tn,δ > 0 and sn,δ > 0 such that Kn(hT
1 ) ≥ hT

(an)n−δ

and (K(s, ·))n(hT
1 ) ≥ hT

(an)n−δ for all T ≥ Tn,δ and s ≥ sn,δ, where Kn and (K(s, ·))n represent the
nth-composition of K and K(s, ·), respectively.

Proof. By Lemma 3.1(iv), there exists Tn,δ > 0 such that Kn(hT
1 ) ≥ hT

δ1
for all T ≥ Tn,δ, where

δ1 = (an)n − δ
3 . On the other hand, Lemma 3.2 implies that there exists sn,δ > 0 such that

sup{|(K(s, ·))n(hT
1 )(x) − Kn(hT

1 )(x)| : x ∈ R and T ∈ R+} ≤ δ
3 for all s ≥ sn,δ. It follows that

Kn(hT
1 )(x) −K(s, ·))n(hT

1 )(x) ∈ (0, δ
3 ] for all x ∈ R, T ∈ R+, and s ≥ sn,δ. This, combined with the fact

that Kn(hT
1 ) ≥ hT

δ1
for all T ≥ Tn,δ, implies that (K(s, ·))n(hT

1 )(x) ≥ Kn(hT
1 )(x)− δ

3 ≥ δ1 − δ
3 > (an)n −δ

for all T ≥ Tn,δ, s ≥ sn,δ and x ∈ [−T, T ]. Thus, (K(s, ·))n(hT
1 ) ≥ hT

(an)n−δ for all T ≥ Tn,δ and s ≥ sn,δ.
This completes the proof. �

To continue our discussions, we make the following assumption which links together the nonlocal
reaction and the diffusion.
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(NRD). f ′(0) > 1

lim supn→∞(Kn(h±)(0))
1
n

, where Kn represents the nth-composition of K.

Lemma 3.4. The assumption (NRD) holds if and only if (f ′(0))n∗
Kn∗

(h±)(0) > 1 for some n∗ ∈ N.

Proof. We only need to prove the sufficiency. Suppose that (f ′(0))n∗
Kn∗

(h±)(0) > 1 for some n∗ ∈ N. It
follows from Lemma 3.1(ii) that, for anym ∈ N, a±

mn∗ ≥ a±
n∗ > 1

f ′(0) . This gives f ′(0)a±
mn∗ ≥ f ′(0)a±

n∗ > 1.

It follows easily that lim supn→∞ f ′(0)(Kn(h±)(0))
1
n ≥ f ′(0)a±

n∗ > 1, that is, assumption (NRD) holds.
This completes the proof. �

The following result shows that the assumption (NRD) automatically holds for a wide range of kernel
functions, including those derived from the structured population model in So et al. [29].

Lemma 3.5. If f ′(0) > 1 and k(x) = k(−x) for all x ∈ R, then assumption (NRD) holds.

Proof. Since f ′(0) > 1 and k(x) = k(−x) for all x ∈ R, we have (a+
n )n + (a−

n )n = 1 and (a+
n )n =

(a−
n )n. It follows that (a±

n )n = 1
2 for all n ∈ N. Then, lim supn→∞(Kn(h±)(0))

1
n = lim supn→∞ a±

n =

limn→∞ n

√
1
2 = 1. Immediately, we know that assumption (NRD) holds. This completes the proof. �

The following result gives a priori estimate for nontrivial solutions of (2.4), which plays a key role in
the proof of the permanence and global attractivity of (2.4).

Proposition 3.6. Suppose that f ′(0) > 1 and assumption (NRD) holds. Then, there exists ε0 > 0, T0 > 0
and T ∗ > 0 such that for all ε ∈ [0, ε0], T ∈ [T0,∞), and a solution u : [−1,∞) × R → [0,M + 1] of (2.4)
with u(t, ·) ≥ hT

ε for all t ∈ [−1, T ∗], we have u(t, ·) ≥ hT
ε for all t ∈ [−1,∞) and u(t, ·) 	 hT

ε for all
t ∈ (T ∗,∞).

Proof. Lemma 3.4 implies that (f ′(0))n(an)n = (f ′(0))nKn(h±)(0) > 1 for some n ∈ N. Thus, there
exists δ > 0 and β1 ∈ (1, f ′(0)) such that (β1)n((an)n − δ) > 1.

By the choice of β1 and assumption (H2), there exists a � ∈ (0,M + 1) such that f(u) ≥ β1u for
u ∈ [0, �]. Let η = min{f(u) : u ∈ [�,M + 1]}. Denote ε1 = min{�, η/β1}. Then, one can easily see that
f(u) ≥ β1u for all u ∈ [0, ε1] and f(u) ≥ β1ε1 for all u ∈ [ε1,M + 1].

By applying Lemma 3.3, we know that there exists Tn,δ > 0 and sn,δ > 0, such thatKn(hT
1 ) ≥ hT

(an)n−δ

and (K(s, ·))n(hT
1 ) ≥ hT

(an)n−δ for all T ≥ Tn,δ and s ≥ sn,δ.
Let ε0 = ε1

(β1)n+1 , T0 = Tn,δ, T1 = sn,δ and T ∗ = nsn,δ + n− 1. Suppose that ε ∈ [0, ε0], T ∈ [T0,∞),
u : [−1,∞) × R → [0,M + 1] is a solution of (2.4) such that u(t, ·) ≥ hT

ε for all t ∈ [−1, T ∗]. Let ϕ = u0.
Then, u(t, x) = uϕ(t, x) = Φ(t+ 1, ϕ)(−1, x) for all (t, x) ∈ [−1,∞) × R. Due to the choices of ε and β1,
one can easily obtain βj

1(K(t, ·))j(hT
ε ) < ε1 and f(βj

1(K(t, ·))j(hT
ε )) ≥ βj+1

1 (K(t, ·))j(hT
ε ) for all t ≥ 0

and j = 0, 1, . . ., n.
Now, we claim that if j ∈ {1, 2, . . . , n}, then u(t+ jt∗, ·) ≥ (β1)j(K(t∗, ·))j(hT

ε ) for all t, t∗ ∈ R+ such
that t ≥ j − 1 and t+ jt∗ ∈ [0, T ∗ + 1]. We use mathematical induction to prove the claim. First, for any
t, t∗ ∈ R+ such that t+ t∗ ∈ [0, T ∗ + 1], it follows from (2.4) and Fubini’s theorem that

u(t+ t∗, ·) = Φ(t∗,Φ(t, ϕ))(0, ·)

=
1
μ
Lt∗

(u(t, ·)) +
∫ t∗

0

Lt∗−s(F (us+t))ds

=
1
μ
Lt∗

(u(t, ·)) +
∫ t∗

0

Lt∗−s(K1(f(u(s+ t− 1, ·))))ds

≥ β1

∫ t∗

0

Lt∗−s(K1(hT
ε ))ds

= β1K(t∗, hT
ε ),
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that is, the claim holds for j = 1. Next, assume that the claim holds for j0 ∈ {1, 2, . . . , n − 1}. Suppose
that t, t∗ ∈ R+ such that t ≥ j0 and t+ (j0 + 1)t∗ ∈ [0, T ∗ + 1]. Then, by the induction assumption, we
have u(s + t + j0t

∗ − 1, ·) ≥ (β1)j0(K(t∗, ·))j0(hT
ε ) for all s ∈ [0, t∗]. It follows from (2.4) and Fubini’s

theorem that

u(t+ (j0 + 1)t∗, ·) = u(t∗ + (t+ j0t
∗), ·)

= Φ(t∗,Φ(t+ j0t
∗, ϕ))(0, ·)

=
1
μ
Lt∗

(u(t+ j0t
∗, ·)) +

∫ t∗

0

Lt∗−s(F (us+t+j0t∗))ds

≥
∫ t∗

0

Lt∗−s(F (us+t+j0t∗))ds

=
∫ t∗

0

Lt∗−s(K1(f(u(s+ t+ j0t
∗ − 1, ·))))ds

≥
∫ t∗

0

Lt∗−s
(
K1((β1)j0+1(K(t∗, ·))j0

(
hT

ε

)
)
)
ds

= (β1)j0+1(K(t∗, ·))j0+1(hT
ε ),

which means that the claim holds for j0 + 1. By the induction principle, we have proved the claim.
For any t ∈ [T ∗, T ∗+1], applying the above claim with j = n and t∗ = T1, we obtain that t−nT1 ≥ n−1

and

u(t, ·) = u((t− nT1) + nT1, ·) ≥ (β1)n(K(T1, ·))n
(
hT

ε

) ≥ (β1)n((an)n − δ)(hT
ε ),

where (K(T1, ·))n represents the nth-composition of the map K(T1, ·). This, combined with the fact
that (β1)n((an)n − δ) > 1, implies that u(t, ·) ≥ hT

ε for all t ∈ [−1, T ∗ + 1] and u(t, ·) 	 hT
ε for all

t ∈ [T ∗, T ∗ + 1]. Now, the results easily follow from Proposition 2.6 and the semigroup property of the
semiflow Φ. �

Theorem 3.7. Suppose that f ′(0) > 1 and assumption (NRD) holds. If ϕ ∈ Y \{0}, then there exists a > 0
such that ξ ≥ a for all ξ ∈ ω(ϕ).

Proof. By Proposition 2.6(i), we may assume that ϕ ∈ C◦
+ and hence uϕ(t, x) > 0 for all (t, x) ∈

[−1,∞)×R. Choose T0, T ∗, and ε0 as in Proposition 3.6. Let ε1 = inf{u(t, x) : (t, x) ∈ [−1, T ∗]×[−T0, T0]}
and ε = min{ε0, ε1}. Then, ε1 > 0 and ε > 0. By Proposition 3.6 and the choices of T0, T

∗, and ε0, we get
uϕ(t, ·) ≥ hT0

ε for all t ≥ −1. This, combined with the definition of ω(ϕ), implies ξ ≥ hT0
ε for all ξ ∈ ω(ϕ).

For any ξ ∈ ω(ϕ), let aξ = sup{a ∈ R+ : ξ(θ, x) ≥ ε for all (t, x) ∈ [−1, 0] × [−a, 0]} and bξ = sup{b ∈
R+ : ξ(θ, x) ≥ ε for all (t, x) ∈ [−1, 0] × [0, b]}. Then, aξ, bξ ≥ T0. Let Iξ = [−aξ, bξ] if aξ, bξ ∈ R+;
Iξ = [−aξ,∞) if aξ ∈ R+ and bξ = ∞; Iξ = (−∞, bξ] if aξ = ∞ and bξ ∈ R+; and otherwise Iξ = R.
Denote I =

⋂
ξ∈ω(ϕ) Iξ. Then, I ⊇ [−T0, T0] and thus there exists c1, c2 ≥ T0 such that I = [−c1, c2] or

[c1,∞) or (−∞, c2] or R.
We claim that I = R. To prove the claim, we just show that I = [−c1, c2] cannot hold as the proofs

for the other two cases are similar. By the way of contradiction, suppose that I = [−c1, c2]. Without loss
of generality, we may also assume that c1 ≥ c2. Taking ξ ∈ ω(ϕ), we obtain by the invariance of ω(ϕ)
that uξ(t, ·) ≥ hc2

ε for all t ∈ [−1, T ∗]. Again, by Proposition 3.6 and the choices of T0, T
∗, and ε0, we

have uξ(t, ·) 	 hc2
ε for all (t, x) ∈ (T ∗,∞) × R. In particular, there exists T > c2 such that uξ(t, ·) 	 hT

ε

for all t ∈ [1 + T ∗, 2 + 2T ∗]. On the other hand, by the definition of ω(ϕ), there exists a sequence
{sn}n∈N such that limn→∞ ||(uϕ)sn

− ξ||co = 0. It follows that limn→∞(sup{|uϕ(sn + t, x) − uξ(t, x)| :
(t, x) ∈ [1 + T ∗, 1 + 2T ∗] × [−T, T ]}) = 0. Thus, there exists n∗ > 1 such that uϕ(sn∗ + t, ·) ≥ hT

ε for all
t ∈ [1 + T ∗, 1 + 2T ∗]. It follows from Proposition 3.6 that uϕ(sn∗ + t, ·) ≥ hT

ε for all t ∈ [1 + T ∗,∞). This
and the definition of ω(ϕ) produce ξ ≥ hT

ε for all ξ ∈ ω(ϕ). Since T > c2, we have bξ ≥ T > c2 for all
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ξ ∈ ω(ϕ). Then, c2 = inf{bξ : ξ ∈ ω(ϕ)} ≥ T > c2, a contradiction. This proves the claim, that is, I = R.
Hence, this claim and the choice of I imply that we can take a = ε to complete the proof. �

The following remark and Corollary 2.12 combined tell us that that (2.4) is permanent with respect
to the compact open topology.

Remark 3.8. Suppose that f ′(0) > 1 and assumption (NRD) holds. Then, there exists a∗ > 0 such that
a∗ ≤ aϕ � inf{ξ(θ, x) : (θ, x) ∈ [−1, 0]×R and ξ ∈ ω(ϕ)} for all ϕ ∈ Y \{0}. Clearly, Theorem 3.7 implies
that aϕ ∈ (0, 1 +M ] for all ϕ ∈ Y \{0}. By the assumptions (H1) and (H2), we choose a∗ > 0 such that
f(x) > x for all x ∈ (0, a∗] and f(x) > a∗ for all x ∈ [a∗, 1+M ]. Take ϕ ∈ Y \{0}. We shall show a∗ ≤ aϕ;
otherwise, a∗ > aϕ. Let a∗∗ = inf{f(x) : x ∈ [aϕ, 1 +M ]}. Then, a∗∗ > aϕ. It follows from (2.4) that for
any (t, x) ∈ [0,∞) × R,

uξ(t, x) =
1
μ
Lt(ξ(0, ·))(x) +

∫ t

0

Lt−s(K1(f(uξ(s− 1, ·))))(x)ds

≥ e−μtaϕ +
∫ t

0

μe−μta∗∗ds

= aϕ + (1 − e−μt)(a∗∗ − aϕ).

Thus, by the invariance of ω(ϕ), we have ξ ≥ aϕ+(1−e−μ)(a∗∗−aϕ) > aϕ for all ξ ∈ ω(ϕ), a contradiction
with the definition of aϕ. This shows that aϕ ≥ a∗ for all ϕ ∈ Y \{0}.

Under assumption (H1), if f ′(0) > 1, then f has a positive fixed point, which is also a fixed point of
f2. Below, to further study the global attractivity for (2.4), we formulate the following non-monotone
assumption on the nonlinearity f .

(H3). f2 has a unique positive fixed point u∗.

Lemma 3.9. Suppose f ′(0) > 1. Then, assumption (H3) holds if and only if, for any interval [a, b] ⊆ (0,∞)
with a < b, either a < min{f(u) : u ∈ [a, b]} or b > max{f(u) : u ∈ [a, b]}.
Proof. By the remark just before assumption (H3), we know that f2 has at least one positive fixed point,
which is also a fixed point of f . Let us fix one of them, say û.

We first prove the sufficiency by the way of contradiction. Suppose there exists a ũ ∈ (0,∞)
such that ũ �= û and f2(ũ) = ũ. Let [a, b] = [min{û, ũ},max{û, ũ}] if f(ũ) = ũ while [a, b] =
[min{ũ, f(ũ)},max{ũ, f(ũ)}] if f(ũ) �= ũ. Then, we can easily see that [a, b] ⊆ f([a, b]), a contradic-
tion.

Now, we prove the necessity. Assume that (H3) holds. Then, f has a unique positive fixed point and
it is also u∗. This, combined with assumption (H1) and the fact that f ′(0) > 1, implies that f(u) > u
for all u ∈ (0, u∗) and f(u) < u for all u ∈ (u∗,∞). Let [a, b] ⊆ (0,∞). If a ≥ u∗, then obviously
b > max{f(u) : u ∈ [a, b]}, while if b ≤ u∗ then obviously a < min{f(u) : u ∈ [a, b]}. Hence, with-
out loss of generality, we assume that u∗ ∈ (a, b). By the way of contradiction, suppose that there
exists a∗, b∗ ∈ [a, b] such that f(a∗) ≤ a and f(b∗) ≥ b. Clearly, a∗ ∈ (u∗, b] and b∗ ∈ [a, u∗). Then,
a∗ ∈ [u∗, b] ⊆ [u∗, f(b∗)] ⊆ f([b∗, u∗]) ⊆ f([a, u∗]). It follows that there exists a∗∗ ∈ [a, u∗) such that
a∗ = f(a∗∗) and hence f2(a∗∗) = f(a∗) ≤ a ≤ a∗∗. On the other hand, pick v∗ ∈ (0, a∗∗) such that
f(v∗) < u∗. Then, f2(v∗) > f(v∗) > v∗. By the mean value theorem, there exists u∗∗ ∈ (v∗, a∗∗] such
that f2(u∗∗) = u∗∗, that is, u∗∗ (�= u∗) is also a fixed point of f2, a contradiction. This completes the
proof. �

Theorem 3.10. Suppose that f ′(0) > 1 and assumptions (NRD) and (H3) hold. Then, u∗ is a globally
attractive equilibrium of (2.4) in Y \{0} and hence it is also a globally attractive equilibrium in C+\{0}.
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Proof. By Corollary 2.16, it suffices to prove that u∗ is a globally attractive equilibrium in Y \{0}. Sup-
pose that ϕ ∈ Y \{0}. By Theorem 3.7 or Remark 3.8, there exists a > 0 such that ξ ≥ a for all ξ ∈ ω(ϕ).
Let A = {ξ(θ, x) : ξ ∈ ω(ϕ), θ ∈ [−1, 0] and x ∈ R}, u+ = supA, u− = inf A.

We claim that u+ = u−. Otherwise, suppose u+ �= u− and hence u+ > u− ≥ a > 0. Then, it follows
from (H3) and Lemma 3.9 that either u− < min{f(u) : u ∈ [u−, u+]} or u+ > max{f(u) : u ∈ [u−, u+]}.
Without loss of generality, we may assume that u− < min{f(u) : u ∈ [u−, u+]}. Let u− = min{f(u) : u ∈
[u−, u+]}. Then, f(u) ≥ u− > u− for all u ∈ [u−, u+]. Hence, for any ξ ∈ ω(ϕ), it follows from (2.4) that

uξ(t, x) =
1
μ
Lt(ξ(0, ·))(x) +

∫ t

0

Lt−s(K1(f(uξ(s− 1, ·))))(x)ds

≥ 1
μ
Lt(u−)(x) +

∫ t

0

Lt−s(K1(u−))(x)ds

= e−μtu− + (1 − e−μt)u−

= u− + e−μt(u− − u−),

which implies that uξ(t, x) ≥ u− + e−μ(u− − u−) > u− for all ξ ∈ ω(ϕ), t ∈ [1,∞), and x ∈ R. This,
combined with the invariance of ω(ϕ), shows that ξ ≥ u− +e−μ(u− −u−) for all ξ ∈ ω(ξ), a contradiction
to the choices of u− and u−. This proves the claim.

It follows from the claim that u− is a fixed point of f . Since f has the only fixed point u∗, we have
ω(ϕ) = {u∗}. This completes the proof. �

Under conditions similar to (H3), by applying a quite different method, Yi and Zou [41] studied the
global stability of a class of delayed reaction–diffusion equations in bounded domains.

We now formulate a geometric condition on the nonlinearity f .
(H4). There is a u∗ > 0 such that f(u∗) = u∗, and |f(b) − f(u∗)| ≤ |b − u∗| for all b ≥ 0; and the
equality |f(b) − f(u∗)| = |b− u∗| holds for some b ≥ 0 if and only if either b = 0 or b = u∗.

(H4) implies that f is a contraction map about the fixed point u∗.

Theorem 3.11. Suppose that f ′(0) > 1 and assumptions (NRD) and (H4) hold. Then, u∗ is a globally
attractive equilibrium of (2.4) in Y \{0} and hence it is also a globally attractive equilibrium in C+\{0}.
Proof. To apply Theorem 3.10, it suffices to verify assumption (H3). Note that u∗ is also a fixed point of
f2. Suppose that u∗∗ ∈ (0,∞) such that f2(u∗∗) = u∗∗. Then, by (H4), |u∗∗ −u∗| = |f2(u∗∗) − f2(u∗)| ≤
|f(u∗∗)−f(u∗)| ≤ |u∗∗ −u∗|, which gives |f(u∗∗)−f(u∗)| = |u∗∗ −u∗|. This, combined with (H4), implies
that u∗∗ = u∗. Therefore, (H3) is verified. �

If f is continuously differentiable on (0,∞) and f ′(0) > 1, then the conclusions of Theorem 3.11
remain true when (H4) is replaced with the following assumption which, as illustrated in the next sec-
tion, is complementary to (H4).

(H5). f is continuously differentiable on R+ and has a unique critical point uc and a unique fixed
point u∗ such that either uc ≥ u∗ or (uc < u∗ and f(f(u)) > u for all u ∈ [uc, u∗)).

Theorem 3.12. Suppose that f ′(0) > 1 and assumptions (NRD) and (H5) hold. Then, u∗ is a globally
attractive equilibrium of (2.4) in Y \{0} and hence it is also a globally attractive equilibrium in C+\{0}.
Proof. Again, the results follow from Theorem 3.10 after verifying (H3). To verify (H3), we suppose by
the way of contradiction that there exists u∗∗ ∈ (0,∞)\{u∗} such that f2(u∗∗) = u∗∗. We discuss case
by case.

Case 1: u∗ ≤ uc. In this case, u∗ > f(u) > u for all u ∈ (0, u∗) and f(u) < u for all u ∈ (u∗,∞).
First, assume u∗∗ ∈ (0, u∗). Then u∗ > f(u∗∗) > u∗∗. It follows that u∗∗ = f2(u∗∗) > f(u∗∗) > u∗∗, a
contradiction. Next assume u∗∗ ∈ (u∗,∞). If f(u∗∗) ≤ u∗ then u∗∗ = f2(u∗∗) ≤ u∗, a contradiction;
while if f(u∗∗) > u∗ then u∗∗ = f2(u∗∗) < f(u∗∗) < u∗∗, a contradiction.
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Case 2: u∗ > uc. In this case, f(u) > u for all u ∈ (0, u∗) and f(u) < u∗ for all u ∈ (u∗,∞). Clearly,
min{u∗∗, f(u∗∗)} < u∗. Since f(u∗∗) is also a fixed point of f2, without loss of generality, we may
assume that u∗∗ < u∗, and thus f(u∗∗) > u∗.

We claim that u∗∗ ∈ [uc, u∗). Otherwise, u∗∗ < uc. Since f(u∗∗) ∈ [u∗, f(uc)] ⊆ f([uc, u∗]), there exists
ucc ∈ [uc, u∗) such that f(ucc) = f(u∗∗). Then, f2(ucc) = f2(u∗∗) = u∗∗ < uc ≤ ucc, a contradiction to
assumption (H5). This proves the claim.

If u∗∗ ∈ [uc, u∗) then u∗∗ = f(f(u∗∗)) > u∗∗ by (H5), a contradiction; while if f(u∗∗) ∈ [uc, u∗), then
f(u∗∗) = f(f2(u∗∗)) = f(f(f(u∗∗))) > f(u∗∗) by (H5), a contradiction. �

Remark 3.13. Theorems 2.17, 3.7, 3.10, 3.11, and 3.12 still hold if we replace (H1) with

(H1∗). There exists a sequence {un}n≥1 such that limn→∞ un = ∞ and f([0, un]) ⊆ [0, un].

We emphasize that assumption (NRD) is crucial for the above results to be true. If (NRD) does not
hold then, for example, nonconstant steady-state solutions exist [39].

Finally, for simplicity of exposition, we only consider Eq. (1.1) on R. We mention that our approach
can be slightly modified to study the global asymptotic behavior for the higher-dimensional case.

4. Applications

In this section, we illustrate our main results with two important examples.
First, we consider the following diffusive Nicholson’s blowfly equation with nonlocal effect

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t (t, x) = dΔu(t, x) − δu(t, x) + β

∫

R

k(x− y)u(t− τ, y)e−au(t−τ,y)dy,

(t, x) ∈ (0,∞) × R,
u(θ, x) = ϕ(θ, x) for (θ, x) ∈ [−τ, 0] × R,

(4.1)

where a, d, β, δ, τ ∈ (0,∞), and ϕ ∈ C+. System (4.1) arises from population biology. See [5,6,9,12,18,
19,25–29,37,38,40,41,43] and the references therein. After scaling in (4.1), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t (t, x) = Δu(t, x) − μu(t, x) + μ

[

(β/δ)
∫

R

k(x− y)u(t− 1, y)e−u(t−1,y)dy
]

,

(t, x) ∈ (0,∞) × R,
u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−1, 0] × R,

(4.2)

where μ, δ, β > 0, and k : R → (0,∞) are continuous with
∫

R
k(y)dy = 1.

The following threshold dynamics of (4.2) follows from Theorems 2.17 and 3.11.

Theorem 4.1. If β/δ ∈ (0, e2], then the following statements are true:

(i) If β/δ ≤ 1, then 0 is a globally attractive equilibrium of (4.2) in C+ with respect to the usual
supremum norm.

(ii) If β/δ > 1 and assumption (NRD) holds, then ln(β/δ) is a globally attractive equilibrium of (4.2)
in C+\{0}.

Proof. Let f : R+ → R+ be defined by f(u) = (β/δ)ue−u for all u ∈ R+. If β/δ ≤ 1, then f ′(0) = β/δ ∈
(0, 1] and f(u) < u for all u > 0. By Theorem 2.17, we conclude that 0 is a globally attractive equilibrium
in C+ with respect to the usual supremum norm. This proves (i).

Now, suppose β/δ > 1. Then, obviously, assumption (H4) follows from Lemma 2.3 of Yi and Zou [40].
The other conditions of Theorem 3.11 can be easily verified and hence (ii) follows from Theorem 3.11.
This completes the proof. �
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Note that for the case where the space is a bounded domain, the threshold dynamics of the diffusive
delay Nicholson blowfly equation with the local/nonlocal effect and the Dirichlet/Neumann boundary
condition has been obtained in [27,37,38,40,41,43]. As for the case of unbounded domain, to the best of
our knowledge, existing results on the global asymptotic behavior of (4.1) are obtained only when the
solution semiflow essentially is monotone or the initial values enjoy compact supports [1,4,16].

Next, we consider the following scalar diffusive Mackey–Glass equation
⎧
⎨

⎩

∂u
∂t (t, x) = Δu(t, x) − μu(t, x) + μ

∫

R

k(x− y)
pu(t− 1, y)

1 + (u(t− 1, y))n
dy, (t, x) ∈ (0,∞) × R,

u(θ, x) = ϕ(θ, x) for (θ, x) ∈ [−1, 0] × R,
(4.3)

where p, μ, and n are all positive constants and k : R → (0,∞) is continuous with
∫

R
k(y)dy = 1. By

rescaling the diffusive version of the original model system proposed by Mackey and Glass [20] to model
the blood cell production, we easily get (4.3). The non-diffusive version of (4.3) has been studied by
many researchers. See [8,15,18,19,30] and the references therein. We mention that for the case where the
space is a bounded domain, the threshold dynamics of the diffusive delay Mackey–Glass equation with
the local/nonlocal effect and the Dirichlet/Neumann boundary condition has been obtained in [38,41,43].
However, for the case where the space is an unbounded domain, to the best of our knowledge, there exists
no result comparable to Theorem 4.5 to be shown soon.

Lemma 4.2. Assume that p > 1. Let u∗ = (p− 1)
1
n , f(b) = pb

1+bn and h±(b) = −u∗ ± |b− u∗| + f(b) for
all b ∈ R+. If 0 < n ≤ 2, then the following results are true:

(i) h+(0) = h+(u∗) = 0.
(ii) h+(b) > 0 for all b > u∗.
(iii) h+(b) > 0 for all b ∈ (0, u∗).
(iv) h−(u∗) = 0.
(v) h−(b) < 0 for all b > u∗.
(vi) h−(b) < 0 for all b ∈ (0, u∗).
Hence, f satisfies assumption (H4).

Proof. By the definitions of h+ and h−, we know that statements (i), (iii), (iv), and (v) hold. It suffices
to prove statement (ii) since the proof of statement (vi) is similar.

Clearly,

h+(b) = b− 2u∗ + f(b) =
(1 + p)b− 2u∗bn + b1+n − 2u∗

1 + bn
.

Let g(b) = (1 + p)b − 2u∗bn + b1+n − 2u∗ for all b ∈ R+. Then, for any b ∈ R+, we have g′(b) =
1 + p− 2nu∗bn−1 + (n+ 1)bn and g′′(b) = −2n(n− 1)u∗bn−2 + (n+ 1)nbn−1. We will finish the proof by
distinguishing two cases.

Case 1: n ∈ (0, 1]. If b > u∗, then g′(b) = 1+p+bn−1((n+1)b−2nu∗) > 1+p+bn−1((n+1)−2n)u∗ > 0.
This and g(u∗) = 0 imply g(b) > 0, and hence h+(b) > 0 for all b > u∗.
Case 2: n ∈ (1, 2]. In this case, g′(u∗) = (2−n)p+n > 0 and g′′(b) = nbn−2(−2(n−1)u∗+(n+1)b) ≥
nbn−2(−2(n − 1)u∗ + (n + 1)u∗) = (3 − n)nbn−2u∗ > 0 for all b > u∗. It follows that g′(b) > 0 for
all b > u∗. This, combined with g(u∗) = 0, implies g(b) > 0 for b > u∗. Again, we have h+(b) > 0
for all b > u∗.

This completes the proof. �
Lemma 4.3. Let n > 2. If p > n

n−2 , then f(u) = pu
1+un for u ∈ R+ does not satisfy (H4).

Proof. Let u∗ = (p − 1)
1
n , the unique positive fixed point of f ; uc = ( 1

n−1 )
1
n , the unique nonnega-

tive critical point. Moreover, uc < u∗. Then, f ′(u) < 0 for u > uc as f ′(0) = p > 0. It follows that
f(u) > f(u∗) = u∗ for u ∈ [uc, u∗). Let g(u) = f(u) + u for u ∈ R+. Then, g′(u∗) = n−(n−2)p

p < 0. This
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tells us that there exists û ∈ [uc, u∗) such that g(û) = f(û) + û > g(u∗) = 2u∗. Thus, |f(û) − u∗| =
f(û) − u∗ > u∗ − û = |û− u∗|, which means that (H4) is not satisfied. This completes the proof. �

Does f(u) = pu
1+un satisfy (H4) when n > 2 and 1 < p ≤ n

n−2? The answer may not always be
affirmative. Indeed, let n = 2 + 10−4 and p = 10001. Then, 1 < p ≤ n

n−2 and f have a unique positive
fixed point u∗ = 10

4
n . With b = 10, we have |b − u∗| ≈ 89.98 < 889.995 ≈ |f(b) − u∗|, which indicates

that assumption (H4) does not hold. However, the following result tells us that, in this case, f satisfies
(H5). Therefore, (H5) is complementary to (H4).

Lemma 4.4. Assume that p > 1. Let u∗ = (p− 1)
1
n , uc = ( 1

n−1 )
1
n , f(u) = pu

1+un for all u ∈ R+. If n > 2
and 1 < p ≤ n

n−2 , then f satisfies assumption (H5).

Proof. Obviously, f is continuously differentiable on R+. Moreover, uc and u∗ are the unique critical
point and unique fixed point of f , respectively. We distinguish two cases to finish the proof.

Case 1: 1 < p ≤ n
n−1 . In this case, one can check that uc ≥ u∗ and hence (H5) holds.

Case 2: n
n−1 < p ≤ n

(n−2) . In this case, uc < u∗. To prove (H5), it suffices to prove f(f(u)) > u for
all u ∈ [uc, u∗), which, after a simple computation, is equivalent to prove (1 + un)n − p2(1 +
un)n−1 + pn(1 + un) − pn < 0 for all u ∈ [uc, u∗), that is, h(y) < 0 for all y ∈ [ n

n−1 , p),
where h(y) = yn − p2yn−1 + pny − pn. Note that h′(y) = nyn−1 − (n − 1)p2yn−2 + pn and
h′′(y) = (n − 1)(n − 2)yn−3( n

n−2y − p2). Then h′′(y) < 0 if 0 < y < (n−2)p2

n and h′′(y) > 0 if

y > (n−2)p2

n . It follows that h′(y) > h′( (n−2)p2

n ) = (1 − [n−2
n p]n−2)pn ≥ 0 for y ∈ R+\{ (n−2)p2

n }.
Therefore, h(y) < h(p) = 0 for y ∈ [ n

n−1 , p). This completes the proof. �
From the proof of Lemma 4.4, we see that if n > 2 and p > n

n−2 , then h(p) = 0 and h′(p) < 0. It
follows that h(y) > 0 for y less than p but close enough to p. Therefore, f does not satisfy assumption
(H5) in the case where n > 2 and p > n

n−2 .

Theorem 4.5. The following statements are true for (4.3).
(i) If p ≤ 1, then 0 is a globally attractive equilibrium in C+ for all μ > 0 with respect to the usual

supremum norm.
(ii) Assume that assumption (NRD) holds. If either (p > 1 and 0 < n ≤ 2) or (1 < p ≤ n

n−2 and n > 2),
then (p − 1)

1
n is a globally attractive equilibrium in C+\{0} for all μ > 0.

Proof. Define f : R+ → R+ by f(u) = pu
1+un for all u ∈ R+.

Under the assumption in (i), one can easily see that f(u) < u when u > 0. By Theorem 2.17, we
conclude that 0 is a globally attractive equilibrium in C+ with respect to the usual supremum norm.

Now, we prove (ii). First, suppose that p > 1 and 0 < n ≤ 2. Then, assumption (H4) holds by
Lemma 4.2. It follows from Theorem 3.11 that (p − 1)

1
n is a globally attractive equilibrium in C+\{0}.

Second, suppose 1 < p ≤ n
n−2 and n > 2. Then, by Lemma 4.4, assumption (H5) holds. Therefore,

Theorem 3.12 implies that (p − 1)
1
n is a globally attractive equilibrium in C+\{0}. This completes the

proof. �
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