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TRAVELING WAVES OF THE SPREAD OF AVIAN INFLUENZA

ZHI-CHENG WANG, JIANHONG WU, AND RONGSONG LIU

(Communicated by Yingfei Yi)

ABSTRACT. This paper gives a proof for the existence and nonexistence of
traveling wave solutions of a reaction-convection epidemic model for the spatial
spread of H5N1 avian influenza involving a wide range of bird species and
environmental contamination. The threshold condition for the existence of
traveling waves coincides with the basic reproduction number exceeding one.
The existence of wave solutions is obtained by constructing an invariant cone
of initial functions defined on a large spatial domain, applying a fixed point
theorem on this cone and then a limiting argument. The invariant cone is
based on the information of initial growth pattern of the epidemic and the
final size estimation during the entire course of the outbreak.

1. INTRODUCTION

We consider the system of reaction diffusion equations

(1.1)

w o L ’ )
8_: = LSV + ac ];cc —d; I, — %8_3;, 2
5 = Hwbuw = diwlw, 2
% =Ba(Ng—I3)V + aq (Ng —Id)Id/Nd_fyd]d_vd% +Dd%,
88—‘; =71cde + TewEw + Tiwlw + raly — (dy + dp) V —UU?)—‘; +Dv227‘2/,

which was introduced in [9] to describe the spatio-temporal spread of H5N1 avian
influenza in an ecosystem involving a wide range of bird species: poultry (c), wild
birds (w) which are susceptible to and die after H5N1 infection, and wild birds (d)
which are susceptible to but can survive after H5N1 infection. Birds are further
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3932 ZHI-CHENG WANG, JIANHONG WU, AND RONGSONG LIU

stratified by their disease status as susceptible (S, S,, and Sg), expected (E,,), and
infected (I, I,, and I;). Note that the w class wild birds can fly some distances even
after exposure to the virus, and hence we have included the expected class F,,. Note
also that the total number, Ny, of d class birds is assumed to be a constant. The
model also involves the virus (v) in the environment, and exposed/infected birds
may contribute to environmental contamination. In the model, D; and v;, with
j =w,d,c,v, the diffusion and convection coefficients of the category j bird/virus,
mass action is used to describe the transmission from the virus in the environment
to birds, while the standard incidence is used to describe the transmission between
birds (N, = S. + I, Ny, = Sw + By + I,). Finally, the virus production is
proportional to the number of infected birds.

The basic reproduction number of the corresponding ODE system is given by
Ro=p (]-"Vfl) , where p is the spectral radius of a matrix. The matrices F and
V are relevant to the linearization of the corresponding ODE system of (L)) at
the disease free state Eg (S¢, Sw, e, Bw, Tw, 1a, V) = (Seo, Swo,0,0,0,0,0) and are
given by

a. 0 0 0 BeSeo dic 0 0 0 0
0 Qew Ay 0 ﬁwaO 0 Hw 0 0 0
F=]1 0 0O 0 0 O V=120 —ly diy 00
0 0 0 (6% Bde 0 0 0 Yd 0
Te Tew Tiw Td 0O 0 0 0 0 d,+d,

The matrices F and V and the reproduction number determine the initial growth
pattern of the corresponding ODE system. A preliminary analysis of the model
was conducted in [9], where the existence of traveling waves was formally studied
and the linkage between the minimal wave speed and the disease propagation rate
as well as its implication for the effectiveness of different intervention strategies
was described numerically. Here, we provide a rigorous proof for the existence or
nonexistence of nontrivial traveling wave solutions depending on the size of the
basic reproduction number Ry. In addition, we show that when Rg > 1, there
exists an s* such that (1) admits a nontrivial traveling wave solution for every
wave speed s > s*. We refer to [9] for more detailed discussions of the biological
relevance of these results.

The basic idea to prove the existence of nontrivial traveling wave solutions is
to first construct an appropriately invariant cone of initial functions defined in a
large but bounded domain, then apply a fixed point theorem on this cone for the
relevant solution operators, and finally to pass to the unbounded spatial domain R
by a limiting argument. This method is motivated by [4, 5], where the existence and
nonexistence of traveling wave solutions for some infection-age structured epidemic
models with diffusion are studied. Adaptation of the approach developed in [4, 5] to
our model is highly nontrivial, as the multiple bird species and virus involved make
the construction of an invariant cone very difficult. Here we successfully construct
such a cone by using the initial growth pattern and the final size outbreak which
are encoded by the matrices F and V), the reproduction number, and the spatial
diffusion. Relevant to our work here are [§, [10], and we hope our work provides a
framework for more general diffusive epidemic models with species diversity.
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TRAVELING WAVES OF THE SPREAD OF AVIAN INFLUENZA 3933

2. NONEXISTENCE OF TRAVELING WAVE SOLUTIONS

A traveling wave of (L)) is a solution with the form (S.(z + st),I.(x + st),
Sw(x+st), Ey(x+st), Ly(z+ st), Ig(z + st), V(z+st)). So, with the wave variable
& = x + st, we have
(5 + vc) Sé = _BCSCV - acScIc/ Nc + DcSm
(S + Uw) Sqlv = _ﬁwaV - aewaEw/Nw - ainwIw/ Nw + Dwsql1/)7
(s +ve) I = BSV + aScl./ N. — dicle,

(2.1) (s +vw) El, = BuwSwV + Sw [CewEw + diwlw]/ Nuw — thwFw + Dy ELL,
SI{U = ,LLwEw - diwIw;

(s +wa) 15 (&) = Ba(Ng —1a) V + g (Ng — Ia) Ia/ Na — vala + Dal]],
(s+v,) V' =rcde 4+ rewBw + Tiwle + 74ls — (dy + dp,) V + D, V.

Theorem 2.1. Assume that Rg = p (.FV*I) < 1. Then for any ¢ > 0, the trivial
solution (S. = Sco, Sw = Swo, . =0,E,=0,1, =0, =0,V =0) is the unique
nonnegative and bounded solution of (1)) satisfying

(2.2) Sc (—OO) = Sco, Sw (—OO) = Swo,

(2.3) I.(—0) = Ey (—00) = I, (—00) = I (—0) =V (—o0) = 0.

Proof. Note that if (I., Ey, Ly, I5,V) = 0, then S. = S and Sy, = Syo. As-
sume that [22) and 23] hold and (I., Fy, Iy, 14, V) is not identically zero. An
application of the fluctuation lemma ([7]) yields that S. (—oc0) = S, (—o0) = 0.
Consequently, we can show that S/ (z) < 0 and S}, (x) < 0 for z € R. Thus, we

have S, () < S, and Sy, (x) < Syo for z € R. In particular, we have Iy(z) < Ny
for z € R. Note that the system of equations for (1., Ey, Iy, I4, V) is equivalent to

- f o e O L (85, () V(1) + 0. (1) 1 (1)) N (1) db,
6 B (1)t [ MO (1) db,
(5 Jo ., Gmem T E0 b B (1) d,
I; (&) = ff %e/\d (é—t)LHd t) dt+f£°° %eAJ(E—t)LHd( ) dt,
V(§)=ffwd;d"ev o Hy () dt + [ detdaeh (€0

L H, (t) dt,

(s+vw) = \/(s+vw)2+4Dw,uw (s+wvq) £ \/(s+vd)2 + 4Dgvq

A = 2D, M= 2D, ’
A (s+wvy) £ \/(s+vv)2+4Dv(dv+dn)
v 2D, ’
pw:>‘1—;_)\w7 Pd:Aj—)\;a pv:)‘v—i__)‘;a
w (1) = BuSw () V (1) + qewSuw () Bw (£)/ Nu (t) + @i Sw (t) Ly (1)/ N (1),
Hq (t) = Ba (Nd —1a (1) V () + aq (Na — La(t)) La (t)/ Na,
H, (t) = ( ) + Tew By (t) + Tiwdw (t) +rqlg (t) .
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3934 ZHI-CHENG WANG, JIANHONG WU, AND RONGSONG LIU
Therefore,

I, (6) < [f e ED L[5S0V () + acl (1)] dt,
E, gf B ghyy (61) L [gw SwoV (t) + Qew By () + iy (1)) dt
+ fg’" ’;ﬁeWﬁ*“ = [BuSuwoV (1) + Cew By () + i Ly (1)) dt,

o — Liw g
Ly (§) = [*, Gwe 0 e g1,

Ig (&) < [ 2 a E D L3NGV (t) + aaly (t)] dt
+ o pie f) wdzvdV( )+ aala (1)) dt,
Vi = %6 o t’dﬁd ()t + [ AN €0 o H (1)
Namely,
Ie(€) < (V7UF), JE o e R ON Dt
Bu(€) < (VIF), [, teee EON (1t + [ b EON (1|
L (&) < (V71F), [ b 560 1 NS00 N sl
+f€ i =€) [ b AL N (s) dsdt
10(§) < (VTIF), | [E A CON ()t + [ 2N EON (1)t
V() < (v, [ ; SN+ [ Lt X EON (ar]

where (V‘l]:)i denotes the i—th row of the matrix V~'F and

65500

ac 0 0 0 e
0 Qew Qi 0 BwSwo (1)
P o P E,(t)
VIiF=1| 0 GG 0 Bfe L N =| L)
0 0 0 ag BaNg I4(t)
Yd Yd V(t)
d Crcd driufi driuél d 1:rdd 0

Let supgcp Ic & =1, Supeep Eu (&) = Ey, Supeer fw (&) =17, Supeer fw &) =
I3 and supgcp V () = VO Then N° := (12, EQ, ID,13,V°)" > 0 and N° # 0,

where T is the transpose. Furthermore, we have
(2.4) N° < (V7'F) N

If p (]—'Vﬁl) := pp < 1, then there exists a nontrivial vector P := (p1, p2, 0, p4, ps5) >
0 (page 16, Theorem 3.5 of [3]) such that (fV_l) P = poP. 1t is easy to verify that
p1 > 0,p2 > 0,p4 > 0,p5 > 0. Then V™'P > 0 and there holds (V_lf) (V_IP) =
y-t (]-" Vﬁl) P = poV~1 P, which implies that pg < 1 is a nonnegative engeinvalue
of the matrix V! F with positive engeinvector V=1 P. It is easy to show that V~'F
is irreducible, that is, (V‘l]: + 1)4 > 0. Then the Perron-Frobenius theorem yields
that p (V‘l}') = po < 1. So, iterating (2.4) yields N = 0, a contradiction. O

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



TRAVELING WAVES OF THE SPREAD OF AVIAN INFLUENZA 3935

3. EXISTENCE OF TRAVELING WAVE SOLUTIONS

In the following, we prove the existence of traveling waves of ([T]) when Ry > 1.
Linearizing 1) for I., E,, I,,, 4 and V in the region £ — —oo where S. — Sco,
Sw — Swo, and setting the remaining variables approaching zero, we have

s1}. (&) = BeSeoV + acle — dicle — v I7 (),

SEiu (f) = BuwSwoV + QewBEw + Qiwly — pow By — UwE{u (f) + D'LUE’IIL (f) )

sly, (&) = pwBw — diwlw,

sl (&) = BalNaV + aalq — vala — valy (§) + Dalfj (£),

sV (&) =rede + TewFw + Tiwly +1alg — (dy + dp) V — 0,V (€) + D, V" (€) .

Looking for the solutions of the form (I, By, Ly, 14, V) = (q1,q2,q3,4,G5) €5,
where ¢; > 0 and A > 0, we have

sAq1 = BeScoqs + aeqi — dieqr — VA,

5AG2 = BuSwods + Qewl2 + QiwGs — fwqz — VwAg2 + DuA®qa,

(3.1) $AGs = pwq2 — diwgs,

sAqa = BalNags + @aga — Yaqa — vargs + DaX’qu,

5AGs = Teq1 + Tew(2 + Tiwgs + raqs — (dy + dn) g5 — VXG5 + DyA?gs.

Let
0 0 0 0 0 s+v. O 0 0 0
~ 0 D, 0 O 0 B 0 s+uv, 0 O 0
A=1 0 0 0 0 0 , B=1] 0 0 s 0 0
0 0 0 Dg O 0 0 0 s+wvg O
00 00 D, 0 0 0 0 S+ vy

and M (\,c) := AX2 — BA+ F — V. Then @BI) can be rewritten as MQT = 0,
where Q = (q1,42,¢3,44,q5). Let A=V~'Aand B = V™1 B. Consider the equation
(AN 4+ BX + 1)71 (V71F) Q = Q. A direct calculation yields

M(\e): = (AN +Brx+1) (V'F)

o BeSe

O:1(\,9) 0 0 0 @1(&2)
AXew X /Bwsw

0 o005 @ne CHewy

— 0 Xew Hw Qi Hw 0 Buw Swottw
O3(\,s)  O3(\,s) O3(\,s) ’

e} BaN,

O 0 0 @4(;75) @4d(>\f5)

8:00 ®0 &0 o0m

where ©1(\,8) = A (s +v¢) + dic, O2(N,8) = A(8+ V) — DA + i, O3(),8) =
(As + diw) [A (5 4 vw) = DuwA? + ], ©4(X,8) = A (s 4+ va) — DaX? +7a, O5(N, s) =
A(5+vy) — DA% + (dy +dy,). Take

D =max{D,,Dg4,D,} and vy = min{0, v, Uy, Vg, Uy}

Then for s > —vmin, we have s +v; > 5 + vUpin With j = c,w, d, v.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3936 ZHI-CHENG WANG, JIANHONG WU, AND RONGSONG LIU

As ©; (3"’2“—5““, s) is increasing and nonnegative for s € [—vmin, 00), we conclude
that the matrix M (Sg'g‘i“ , s) is decreasing in $ € [—Umin, +00). In particular, this
matrix becomes V™1 F when s = —vpmin and approaches zero when s — 400. Since

p(M) is continuous and monotonically increasing with respect to the nonnegative
matrix M, there exists a unique s* > —wvpy;, such that p (M (S*'g%, s*)) =1land

p (M (=g s)) < 1for s> s*. Now we fix s > s*. Since ©;(], s) is increasing in
A€ [0, s"’;’g‘“ ] , we conclude that the matrix M (), s) is decreasing and nonnegative
in\e [O, s*‘;’%] Consequently, there exists a A; € (0, 3"’2“%) such that

=1 if X\ =)\,
p (M (A, s)) <1 ifA€E (A, o],
> 1A e 0, \).

Lemma 3.1. Assume that Rg = p(f)/*l) > 1. Then there exists s* > —vmin
such that for each s > s*, there exist \s € (0, 5*;’%) and Qs > 0 satisfying
det M (Xs,8) =0 and M (X\s,5) Qs = 0.

Proof. Following the above arguments, we know that p (M()\S, s)) = 1. Then the
Perron-Frobenius theorem implies that there exists a @, € R® with positive com-
ponents such that M (g, s) Qs = Q,. Multiplying the matrix —AX2 + B, + I on
the two sides of the last equality, we have (A)\g — B\, +VLF — I) Qs = 0. Mul-
tiplying V to the above equality yields M (), s)Qs = 0, completing the proof. O

In the sequel, we let Qs := (q1, ¢2, 43, 4, qs)T as obtained in Lemma 3.1.

Lemma 3.2. The vector valued map ® (z)=(¢1 (), ¢2 (), b3 (), b (z) , b5 (x))"
with ¢; () = q;e™* satisfies the following system:
(3.2) séy(x) = BeSeods () + actr (z) — dictr (2) — ved) (2),
(3.3) s¢5(2) = BuSwods (T) + Qewda (T) + Qw3 ()
— w2 (T) — ’Uw(bIQ (z) + Dy /2/ (),
(3.4) s¢5(z) = puwd2(z)— diwds (2),
(3.5) s¢} (2) BaNags () + aqga (x) — yaga (v) — vad) (z) + Dagly (),
(3.6) s (¥) = redr (@) +Tewds () + riwds (x) + rads (2)
—(dy + dn) ¢5 (2) — vod5 () + Duds ().

Lemma 3.3. For each w > 0 sufficiently small and p > 1 large enough, the vector
valued map P (x) = (py(x),p2(x))" defined by

p1(z) = max {1 — pe™*,0} Sep  and po(z) = max {1 — pe™* 0} Syo

satisfies the following system of differential inequalities:

p1(z) g1 (2)

(3.7) Depl () — (s +ve)p () = Bepr (%) d5 (x) — acm 0,
(3.8) Dypy () = (5 + vw)py (2) = Bupz () ¢5 ()
Lo, 2 (@) ¢2(x) _  pa(2)9s(2) > 0

p2(z) +da(x) pa(z) + ¢ (a)
for any x < X' :== —L1Inp.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



TRAVELING WAVES OF THE SPREAD OF AVIAN INFLUENZA 3937

Proof. When x < X', 1 — pe®* > 0 and p; () = Seo (1 — pe®*). One has

p1 (7) ¢1 ()
p1(z) + ¢1 (2)
—p@°DSepe™” + (5 + ve) pSe0e™” — q5BeSe0 (1 — pe®”) e — apqre®

[pwsd) ((S + UC) - w‘DC) - (Oéc(h + QBﬁCSCO) e—(ks—w)é lnp:| ewr

Depy () = (s + ve)ph (2) = Bepr (z) ¢5 () — e

vV

Y%

[0Sc0 (s + v0) = ®De) ~ (e + 38cS20) p~ O~ =)% ] &7,

Keeping pow = 1 and letting p — +o00, there exists p > 0 and @ > 0 such that
pwSeo ((8 + ve) — wDe)—(aeq1 + q558:5¢0) p_(’\s_w)é > 0, which implies that ([B.7))
holds. Similarly, we can prove (3.8). This completes the proof. O

Lemma 3.4. Let € > 0 be small enough with e < 5, e < /\7 and A\s + € < H‘Q”—D
Then the function

U (z) = (Y1 (2), 2 () 93 (), Y (), 5 (JC))T = Q.7 max {1 — Me** 0}

satisfies the following inequalities:

(3.9)  (s+u0) ¥ (@) < fumn (2) s (2) + a% — ditn (),
/ p2 () 2 (7)
(3.10) (s vu) 3 () < Bups () ¥s (x) + aewpz (z) + 2 (z) + ¢3 (2)
) p2 (%) ¢3 () . z "
+azwp2 ($)—|—¢2 ($)+l/13 (:E) ﬂw’@[]Z( )+Dw 29
(3.11) sty (2) < prwthe (x) — diwts (),

(3.12) (s 4+ va) ¥} (z) < BaNas (x) — Bapa (x) ¢5 ()

Wa =0 NV oy (2) + Da,
d

(313)  (s+wvy) Y5 (@) <7t (T) + rewts (2) + riwts (@) + raths (z)
— (dy +dn) s (x) + D, g

+ aq

forz < X" := —% In M, where M > 0 is sufficiently large so that X" < X'.
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Proof. When © < X" < X', ¢; (z) = g;e** (1 — Me®®), py (z) = Seo (1 — pe™®)
and py () = Syo (1 — pe®®), where ¢ = 1,2, 3,4, 5. Consequently, we have

p1(2) ¥ (z)
p1(z) + 41 ()
- _ (S + Uc) T (>\s + E) Me()\s+s)ac + Q5ﬂc5006)‘5m (Mesz + pewz _ pMe(w+s)z)

51/},1 (‘T) — Bep1 (1') s (IE) — Q¢ + dich1 (fE) + Ucwll (‘T)

q%ace2)\sx (1 _ Mesac)2
Seo (1 — pe™®) + qrers® (1 — Me?)

+ aeqr MePeter 4+ — qrdic Mt

< M= (s+v.) (As +€)q1 + acqr — dicq1 + 58S ePste)e
2 2 s
qlace s ()\SJFW)I
o T = S
Seo (1 — pe=®) + pgsBeScoe
< —equ M + q%ac w—e)llnM ePste)a

+ pQ5ﬁcScoe_(
SCO <1 _ pe—w% lnM)

Then for sufficiently large M > 0, we have that (B3] holds.
The proofs for (BI0)-BI3) are similar and thus are omitted. O

Let X* = —%lnw < X". Tt is obvious that ¢;(-) is increasing on
(=00, X*]. For X > —X*, we define

i () p1(2) < xa(x) < Seo,p2 (7) < x2 (2) < Swo
o O for x € [-X, X], xi (£X) = p; (£X),
o1 () 7./}3 (T)2< @é(x)gld;]gpzl f50rx€ [-X, X],
~ .| i=1,2and j =1,2,3,4,5;
PRV 20 OO ol cx) = (X)) = () [

(pi() @3 (=X) =3 (=X), pa (£X) = P4 (£X),
@5() (iX)=1/)5(iX)-

Furthermore, ¢4 (z) < Ng for z € [-X, X].

where Q = [_Xa X] For any given (Xl () » X2 () » P1 () » P2 () » P3 () y P4 () y P5 ())
€ I', we consider the following boundary value problems:

(3.14) — DS (z) + (s +ve) SL () + (Bewps () + ae) Se(x) = aegr (),
(3.15) — DS (2) + (s 4+ vw) Sty () + (Buwps () + Qew + Qi) Sw(T)
= Qewd21 (T) + Xiwga2 (),
(3.16) (s +ve) I (#) + dicle(x) = Bexa (x) 5 (2) + acfi (@),
(3.17) — Dy E! (z) + (s + vw) EL, (%) + py By ()
= Bexz () 5 (7) + Qew f21 (T) + Qiw f22 (7))
(3.19) ST (&) + du T (2) = s (2)
(3.19) = Dyl (z) + (s +va) I3 (z) + (va + aa + Bays (z)) La(z)
= BaNags (@) + 3 (2Na = 01 () 4 (@),
(3.20) —D,V" (z) + (s +v,) V' (z) + (dy + dy,) V()

= 1cp1 (T) + Tewp2 () + Tiwps () + raps (),
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with
SC(:l:X = D1 (Zl:X),Sw(:IZX) = D2 (iX)vjc(_X) —d)l (_X)v
(321) Eu(xX) = o (£X),L,(—X)=v3(-X),
Ii(£X Yy (£X),V(£X) =95 (£X),
where
A 0, X1 (@) 1 () = 0,
ochQ(x)
a1 [x1, 1] (2) = Geitem Xi(@) #0,
0, X1 (‘T =Y
aeu}XQ(m)W2(m)
for i pn ) (2) = | B FeaGirenr X2 (092 (2) 20
0, X2 (z) 2 (z) =0,
aiwx2 (%) ps ()
Fa [X27 02, L,Dg] (.’L‘) _ xz(m)-i-;z(w)-isas(w)’ X2 (l‘) ®3 (x) # 0,
0, X2 ({E) ©3 (.’E) = 0;
dewX2(®) (X2(2)+93(2))
921 [X2, p2, @3] (z) = X2(52”)+<P2?$)+%03?1) o x2 () (x2 () + 93 () ?j 0,
0, x2 () (x2 (z) + ¢3 (z)) =0,
QiwX2 () (X2 (2)+p2(x))
922 [X2, 2, @3] () = X2(i)+¢2?1)+¢>3?1’) o x2 () (x2 () + 2 () ?j 0,
0, x2 () (x2 (z) + ¢2 (z)) = 0.

It is not difficult to verify that fi (z), fa1 (z), foo (z), 91 (2), go1 (z), goo (x) are
continuous functions of € [—X, X|. Then the problems [BI14)-B20) and B21)
admit a unique solution (Se (), Sw (*) , Ie (), Bow () s Ly (+) , 1a (-) , V () with I, I,
€ C'[-X,X], E,,V € C?[-X, X] and S, Sy, [4 € W?P (=X, X), where p > 2.
(In fact, BI4), BI3) and BI9) hold for almost everywhere z € (—X,X); see
[, 2, [6].) This then gives an operator T = (11, 1%, 15,1y, T5, T, T7) defined on T’
as

Se = Ti(x1,x2, 91,92, 93, 04,95) , Sw = T2 (X1, X2, P1, P2, 93, P1,5) ,
I. = T5(x1, X2, 901,902,903, 04,95) s Ew = Ty (X1, X2, 01, P2, ¥3, P4, P5)
I, = T5(X1:X2,901, 92,93, 04,95) s La = Te (X1, X2, P15 P2, 93, P4, P5) 5
4 T7 (X1, X2: P15 P25 93, P4, P5) -

Theorem 3.5. The operator T maps T into T.
Proof. Let (x1(-),x2 ()91 ()2 () 3 () pa (1) 5 (1)) € T and

(Se (1) 58w () Le () Bw () s Lw (-) s La (), V() = T (X1, X2, 1, 92, 93, 04, 5) ()

By virtue of the embedding theorem, we have S, (-), Sy (+) , Ia (-) € C ([-X, X],R).
Now we show that ps (z) < Sy, (z) < Syo for x € [-X, X]. Since 0 is a subsolution
of (BI5), by the maximum principle [6] we have S, (z) > 0 for x € [-X, X].
Furthermore, since (8,95 () + Qew + Qiw) Swo = Qewg21 () + Qiwgoe (z) for x €
(=X, X) and Sy, (£X) < Swo, Swo is a supersolution of (3I5), and hence we have
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Sw () < Syo for z € [-X, X]. Note that S, (=X) = p2(—=X) and S, (X') >
p2 (X’) = 0. Then for z € (—X, X’), by [B.8) we have

0 > —Dyps () + (s +vy) Ph () + Buds (x) p2 (2)
p (iﬂ) $2 (2) tan P2 (z) ¢3 (2)
da(x)  pa(x) + g3 (x)
(8 4+ vw) Py () + Buwps (x) p2 (2)
p2 (%) p2 () ‘o p2 (%) ¢3 ()
pa () + o (@) + @3 () U p2(x) + w2 () + 3 ()
= —Dyupy (z) + (s +vw) P () + (Buwps () + Qew + Qi) P2 (T)
p2(2) (p2(2) + 3 (2)) _  p2(2)(p2(2) + 92 (x))

Y
|
o

g

3
OIS
€

+Cew

p2(x) + @2 (x) +@3(x)  p2(x) + 2 (@) + 03 (2)
_pr/2/ (x) + (3 + 'Uw)p/2 (x) + (/Bw¢5 (l‘) + Qew + aiw)p2 (x)

—Qewd21 (!E) — Qi G22 (CU) )

Y

which implies that py (+) is a subsolution of BI3]) on [—X, X’]. Here we used the
fact that the function u( :_Hz is nondecreasing on w and nonincreasing on v for
(u,v) € (0,400) x [0,400), where a > 0. Consequently, the maximum principle
yields that Sy (z) > ps () for z € [-X, X’]. Combining the above arguments,
we have py (z) < Sy (z) < SwO for x € [-X, X]. Similarly, we can confirm that
p1(z) < Sc(x) < Sep for z € [-X, X].

We now show that ¢ (z) < E ( ) < ¢2 (x) for z € [-X, X]|. By B3)), we have

D@y () + (5 + vw) ¢ (2) + pruwd2 ()
= ﬁw w0¢5 (x)+aew¢2( )+ai’w¢3 (.T)
aewX2 (@) p2 (z)  ewxz (x) d3 ()
Bexa (@) s (2) = e ) T 6a (@) + %2 (@)
> /80X2() (

T) + Qew f21 (T) + Qo fo2 (@) -
This, combined with 5 (£X) = E,, (£X) < ¢2 (£X), implies that ¢ () is a
supersolution of (3IT) on [-X, X]. The maximum principle implies that E,, (z) <
¢2 (z) for x € [-X, X]. Furthermore, since 0 is a subsolution of [BI7), we have
that B, (x) > 0 for z € [-X, X]. Then for z € (—=X, X"), by BI0) we have

v

—Dytpy 4 (5 + vu) 1y () + pwt2 (x)

p2 () ¥2 (2) ‘ p2 (%) ¢3 ()
S /Bwp2 (x) '(/)5 (l‘) + aepr (ZL’) T 1)[12 (.’E) T ¢3 (.’E) + azwp2 ({E) + ¢2 ({E) n 1/}3 (ZL’)
< Buxs (2) 05 (2) + e X2 (z) 2 (%) + s X2 () g3 (2)

X2 (%) + 2 (2) + 3 (2) X2 () + @2 (2) + 3 (7)

= fexz (%) @5 () + dew for (T) 4+ i foo () .

In view of 92 (—=X) = E, (—X) and 0 < 9o (X") < E,, (X"), an application of

the maximum principle yields E,, () > 2 (z) for € [-X, X”]. Thus, we have

proved that ¢s (z) < Ey, (z) < ¢2 (z) for € [-X, X]. Similarly, we can prove that

U1 (9[6) < Ic}(x) < 61 (2), ¢3(2) < Ly () < ¢3(2) and ¢5 (2) <V (2) < ¢5 (z) for
€ |-X, X]|.
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Finally, we prove that ¢4 (z) < I;(x) < min{¢4 (z), Ny} for any z € [-X, X].
Note that 2Nyx — 22 is increasing on = € (0, Ny). Then we have

(va + aa + Baws (x)) Na > BaNags (z) + ;—j (2Ny — 04 (2)) ¢a (),

which implies that Ny is a supersolution of BI9) on = € [—X, X]. Consequently,
we have I (z) < Ny for z € [-X, X]. Similarly, we have I (z) > 0 for x € [- X, X].
Furthermore, by (3.12) we have

—Dai + (s +va) V) (2) + (Va + a + Baps (z)) ¥y (x

)
< —Daf + (s +va) ¥ (2) + (va + aq + Bags (x)) va (2)
2Ng —
< Baats (z) + 0y EL = 0D 0 ()
d

(2Na — ¢4 (2)) ¢4 ()

Ny ’
which implies that 4 (z) is a subsolution of BI9) on [—X, X"]. Therefore, we
have I (z) > 14 (x) for x € [-X, X”]. On the other hand, inequality (8] implies
that ¢4 is a supersolution of ([B19), and hence I (z) < ¢4 (x) for x € [-X, X]. O

< BaNaps (x) + aq

By the classical embedding theorems, we have that T' is a compact operator
from I" into I'. Now we show that T': I' — I" is continuous. First, we show that
fl,fgl,fgg,gl,ggl,ggg are contlnuous operators from I" to C([ X, X} Ry). Con-
sider fi first. Let x1,x%, o1, 9% € C[—X, X] with pi(z) < xi(2), x3(z) < S, and

xi(
P1(x) < p1(x), 91 (x) < da1(x) for x € [-X, X]. When x7 (z )w%( )X1 (z) @1 (z) #
0, we have
|f1 [X%vspﬂ (‘T) fl [lespl] :E |
(2)] oacsol (z) ¢} (@) |x1 (z) — X3 (z)]
(X1 () + i ()] [x3 ( )+<p1 (@)]  Ixi @)+ o1 @] DG (@) + ¢ (2)]

< acler (@) = i (@) + ac[xd (@) = X3 (2)] -

When xj (z) 1 () X1 (z) @1 (x) = 0 and xj (z) @1 (x) + x7F (2) 7 (2) # 0, for ex-
ample, x1 (z) = 0 and x? (z) ¢? () # 0, we have

acpi (z) L) —+2 (
)+t M )
ac|xi (@) = Xt ()]

Therefore, f; is continuous. Similarly, we can prove that fo1, fo2, 91,921,922 are
continuous. Consequently, using the continuous dependence of solutions of ODEs on
initial values and the standard elliptic estimates [I} 2] [6], we have that T5, Ty, T5, T;
are continuous operators on I'. Furthermore, let SL = Ty (x4, x5, ¢1, 0%, ©%, 0k, k),
1 =1,2, where (Xil,xé,w’i,goé, gaé,gpfl,wé) € I'. Then, we have

—De (S = 82)" (x) + (s +vc) (2 = 82) (2) + (e + Beph()) (SE — S2) ()
= ac [g1 [x1, ¢1] () — g1 [xT, 1] (2)] + BeS2 () [p5(x) — 3 ()] .

Note that 0 < S2(x) < Se for 2 € [-X,X]. Applying the standard elliptic
estimates to the last equality yields that T} is a continuous operator on I'. Similarly,
T, and Ty are also continuous operators on I'.

|f1 [xaset] (@) = £ [T, ¢3] (@)

IN
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Combining the above arguments, we know that T : I' — T' is a completely
continuous operator. Hence, Schauder’s fixed point theorem implies that there
exists (chx, S'w,X7IC7X7Ew7X7 Iw,led,X Vx) € I' such that

(Se,x (z), Sw,x (x),Ie.x (), Bw x (x), Lux (z), Iax (z), Vx (2))
=T (Se,x,S,x,Le.x, Bw x, Lwx,1ax,Vx) ()

for z € [-X, X].

Theorem 3.6. (1) IC,X) Iw,Xe C? [—X, X], Sc,Xa Sw,X; Ew,led,Xa Vxe c3 [—X, X]
(i) There exists My > 0 such that for any X > —X*, || I, XHCI(Q) 1T, X||02(Q),

Vxllogay 1Sexllca(ay 1Sw.xllo2(a) 1Bwxlle2q) < Mo, where @ = [=X, X].
(iii) For each Y > —X*, there exists Co = Co (Y') > 0 such that
(3.22)

||I”XHC NS¢ lloqoy 19w x ooy 1B x ooy Haxlles @y 1Vxlles 0y < Co

for any X >Y, where U = [-Y,Y].

Proof. (i) First, we have I. x,I, x € C'[-X,X], B, x,Vx € C?*[-X,X] and
Sex, Swx, lix € WP (=X, X), p> 2. Then by the embedding theorem, we have
Sex, Swx, lax € W?P (=X, X) — C*[-X, X] for some a € (0,1). Further-
more, it is not difficult to prove that g1 [Se.x,Ic.x](+), 921 [Sw.x, EBw.x, Lw.x] (*),
g22 [Sw,X;Ew,X7[w7X] () e C* [—X, X}, which further yields Sc,X7Sw,X7Id,X €
C?%[—X,X]. Then, we can verify that the operators fi, fo1, fo2, 91,921 and goo
map the solutions (Se,x, Sw.x, Ie.xs Bw, x, Lw x, 1a,x, Vx) into C' [-X, X]. There-
fore, Ic,XaIw,X € C2 [_Xa X]v Sc,Xvsw,Xva,X;Id,XaVX S C3 [—X, X]
(ii) It is obvious that (S¢ x,Sw.xsle.x, Fw.x, Tw x,lax, Vx) € T satisfies

(3.23) (s+wv)Six = —BeSexVx — acSexlex/Nex + DSt x,

(3.24) (54 vy) S{U’X = —BuwSw,xVx — ewSwxFuwx/ Nuw x
— iwSw,xTw,x/ Nwx + DSy x,

(3.25) (s4we)Ilx = PeSexVx + aeSexlex/Nex —diclex,

(3.26) (s+vw)E, x = PBudSwxVx + Sux [CewFuw.x + Qiwlw x]/ Nu,x
—twBw.x + DwEy x

(3.27) STy = pwBuwx — diwly x,

(328) (s4wi)Ijx = Pa(Ng—Iax)Vx+ aa(Na—Iax)Iax/Na
—valax + Dal x,

(329)  (s4vy)Vx = relex +TewBuwx + riwlwx +ralax

—(dy + dy,) Vx + D, VY,

where Nc,X = Sch + L;X and Nw,X = Sw,X + Ew,X + Iw,X-
Following ([3.23]), we have

v 1

S @] = 5o B B8 () Vi () + 00
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Therefore, for x € [-X, X) we have

'y (@) — e DTG (X)

1 X Ve (p— 2
= [ S () Vi () F S () e () N (21

Since S, x (X) < 0, we have S y (v) < 0 for any = € [-X, X]. From ([F.23) and
B23), we further have (s+ v.) [ ;X (z) + Ié,x (:c)] + dicle x () = Dch,X (z).
Integrating two sides of the above equality from —X to X, we have
D, [ é,X (X) - é,X (_X)] - (3 + UC) [Sc,X (X) - Sex (_X)]
X

= (s+ve) Iex (X)—I.x (—X)]+dic/7XIC7X (x) dz.

Since S x (X) =0, I x (—X) =91 (=X) and S| x (—=X) > p} (=X), we have

X
1
[ e (@)dn € o 2Dk () + (54 00) 1 () + (5-+ 00) Sl < M
and I. x (X) < My for some My > 0, which is independent of X > —X*. Conse-

quently, from (B.25) we get

X
/_ 1S (2) Vi () oS (2) Lo (2)/ Nox (2] d:
X

< (s+uwve) [Ie,x (X) =91 (=X)] + dic I, x (x)dx < My

for some My > 0, which is independent of X > —X*. Integrating two sides of (3.23)
from —X to x, we then have

DcSé,X () = DcSé,X (=X) + (s +ve) [Se,x (7) — Se,x (= X)]

X
+ / [BoSux (2) Vi (2) + @eSex (2) Lox (2)/ Nowx (2)] dz

-X
> Dcpi (—X) — (s +ve) Seo.

Therefore, there exists My > 0 independent of X > —X* such that ’Sé,x (z)| < My
for x € [-X, X]. Similarly, integrating two sides of ([3.28]) from —X to x, we can find
an My > 0 independent of X > —X* such that |I. x (z)| < My for z € [-X, X].
Consider S, x, Ey x and I, x. From [8:24) and [B:26) we have
(3.30)
Dy [Sw,x () + Ew,x (33)]” = (s +vw) [Sw,x (2) + Ew,x (z)]/ = ptwEy,x ().

Since S, x (X) < 0and E;, y (X) <0, we can obtain that S}, x (z) +E,, yx (z) <0
for x € [-X, X], and hence there exists an My > 0 independent of X > —X* such
that Sy x () + Ey x () < My for € [-X, X]. Therefore, E, x () < M, for
z € [-X, X]. Integrating (330) from —X to X, we get

X
[ B (@dr £ =DyShx (=X) + (5 0,) Sux (<X) + By x (<)

< —Duph (=X) + (s + vw) [p2 (=X) + 2 (=X)] < My

for some My > 0 independent of X > —X*. In the last inequalities, we used the
fact that S;, x(X) <0, £, v(=X) >0 and £}, +(X) < 0. Consequently, by some
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arguments as done for S, x and I, x, it follows from (B:24)), (3:26) and (B27) that
there exists an My > 0, which is independent of X > —X™, such that

||S’w7XHCl[_X7X] S M07 ||Ew7XHCl[_X7x] S MO; ”Iw,XHCQ[_X’)(] S MO~

It is easy to see that there exists an My > sup,cp 5 (z) such that My is a
supersolution of [B:229)). Then we have Vx (z) < M, for « € [-X, X], proving (ii).

(iii) For Y € (—=X", X), applying the LP (p > 2) estimates of linear elliptic dif-
ferential equations to Vx and ([8:29)), we have

||VX||W2=p(U) < C (rc ([ 1e,x HLp(U) + Tew HEw,X”Lp(U) + Tiw HIw,X”Lp(U)

70 1 x | ooy + 1€y + 1Vx o)

where U = (=Y,Y), C = C(Y) > 0 is a constant and ¢ is taken to be a linear func-
tion connecting the points (=Y, Vx (=Y)) and (Y, Vx (Y)). Consequently, we can
find a constant Co > 0 which is only dependent of ¥ such that [[Vx [lyy2.0(_y.y) < Co
for any X > Y. Since W2P? (-Y,Y) — CH[-Y,Y] fora = 1 — %, the embedding
theorem further implies that there exists a constant C' > 0 only dependent on Y
such that ||[Vx|lcia_yy] < ClVxllwes(—yy)- Therefore, [Vx|lcia_yy) < Co
for some Cy > 0, which is only dependent on Y. From ([B:29), we further have
[Vxllcz—y,y) < Co for some Cp = Co (Y) > 0. By a similar argument, we have
HIde”C?[—Y,Y] < Cp for some Cy = Cy (V) > 0.

Finally, differentiating two sides of (3.23)-([B.29)) gives (8:22)) for some Cy (V). O

We now establish our main results. Let {X,,} be an increasing sequence with
X, > X* and lim,, o, X,, = +00. Then the solutions

(SC,X-,L) Squn s IC7X7L ) Ew,Xnv IIU,Xn’ Id7Xn ) VXn) € FXn

satisfy Theorem as well as (B23)-329). We can assume (if necessary, taking
a subsequence) they converge to some functions (S¢ ., Sw.«s Lexs Buw s Lw s, Ld s Vi)
as n — oo in the following topologies:

IC7Xn - IC7*5 Iw,Xn - Iw7* in C(lloc (R) ’
Sc,Xn — Sc,*7 Sw,Xn — Sw,*a Ew,Xn — Ew,*y Id,Xn — Id,*7 VXTL — Vi in 01205 (R) .
Furthermore, (S¢ «, Sw,«; Loy Buw sy Lw s, Lax, Vi) satisty system ([2.I) and

p1(x) < Sex(x) < Seo,p2(x) < Sy s () < Suo,

Y1 (x) < Ies(x) <min{Mo, ¢y (2)},

Yo (r) < By () <min{Mo, ¢ (2)}, 93 (2) < Ly (v) < min { My, ¢3 ()},
Ya(z) < las(z) <min{Ng, éa (2)}, 95 (2) < Vi (z) < min {Mo, ¢5 ()}

for » € R. In addition, since S x () < 0 and S, x () + E,, y, (z) < 0 for
r € [-Xy, Xp], we have S; , (v) <0 and S, , (v) + E}, , (z) <0 for z € R.

Let Sc (+00) = S and Sy« (+00) + Ey . (+00) = S5°. Then there must be
S < Sep and S < Syo. In fact, if S° = S, it follows that S, . (z) = Seo for
all z € R, and hence I., () = 0, a contradiction. Since ||Sc,*||cz(R) < 400, the
fluctuation lemma implies that S, , (+00) = 0. Hence, we have

+oo
/_ [BeSex () Vi (2) + eSew (@) Io s () New (2)] dz = (s + ve) (Seo — SE°) > 0.
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It follows that [~ I..(z)dx < co. By virtue of [e,sllgrry < 400, we have
I. . (£00) = 0, and it turns out that

* 1
(3.31) / I.. (z)dex = T (s +ve) (Seo — S2°) and I, (z) < Seo — 5° Vo € R.
Similarly, we can prove that

(3.32) ffooo Ey, . (z)de = ;%w (s + vy) (Swo — S°), B« (£00) =0,

(3.33) JZ5 T e () d = 22 (S0 — S2°)
(3.34) Ly (£00) =0, Ly (2) < 22 (S0 — S3°) Vo € R.

In conclusion, we have established the following

Theorem 3.7. Assume that Ry = p(}"vfl) > 1. Then for any s > s*, where
s* is determined by Lemma Bl system ([[LI) admits a nonnegative traveling wave
solution (Sex(€), Sw.« (&), Ie.x (&), Bw (), Iy x(£), L.+ (§), Vi(&)) with & = x+ st sat-
isfying 527*@) < 0, Seu(=00) = Seo, Se(+00) = 5 < Seo, S{u,*(f) <0,

= 0,

Sw,*(_oo) = Sw07 Sw’*(-i-OO) = SSJO < Sw07 IC’*(:EOO) = 07 Id,*(_oo)
sup,er La,«(2) < Ng, Vi(—00) =0, sup,ep Vi(z) < +oo0 and [B3)-334).
Note that if (52°)% + (S5°)® > 0, then by the third and fourth equations of ()
we have V, (4+00) = 0, which yields V/(£o00) = 0 and V' (£o0) = 0. Hence, by the
last equation of (ZI)) we have I .(4+00) = 0. Unfortunately, we cannot rule out

the case where S2° = S° = 0. In such a case, the traveling wave system can be
reduced to the following:

(S + vd) I(Ii = B4 (Nd — Id) V + aq (Nd - Id) Id/ Ng —vyalg + DdIg,
(s4v,) V' =rqly— (dy +d,,) V + D, V".

Such a system can admit a positive equilibrium
BaralNa

I, = -Getdn tad” Y -4 I
d BaraNg aq 3 dv T dn d-
dy+dn, Na

Therefore, it is possible to have I .(+00) > 0 and Vi(4+o0) > 0. It remains an
interesting problem for future studies when Iy . (+00) = Vi(4+00) = 0.

We also remark that s* is obtained from the stability analysis of the traveling
system in the region x — —oo and hence is expected to be the minimal wave speed.
As the system involves multiple bird species and a component for environmental
contamination (acting like a vector), detailed analysis about the minimal wave
speed, its connection with the propagation speed, and the stability of wave solutions
is not available at this stage.
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