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TRAVELING WAVES OF THE SPREAD OF AVIAN INFLUENZA

ZHI-CHENG WANG, JIANHONG WU, AND RONGSONG LIU

(Communicated by Yingfei Yi)

Abstract. This paper gives a proof for the existence and nonexistence of
traveling wave solutions of a reaction-convection epidemic model for the spatial
spread of H5N1 avian influenza involving a wide range of bird species and
environmental contamination. The threshold condition for the existence of
traveling waves coincides with the basic reproduction number exceeding one.
The existence of wave solutions is obtained by constructing an invariant cone
of initial functions defined on a large spatial domain, applying a fixed point
theorem on this cone and then a limiting argument. The invariant cone is

based on the information of initial growth pattern of the epidemic and the
final size estimation during the entire course of the outbreak.

1. Introduction

We consider the system of reaction diffusion equations
(1.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sc

∂t
= −βcScV − αc

ScIc
Nc

− vc
∂Sc

∂x
+Dc

∂2Sc

∂x2
,

∂Sw

∂t
= −βwSwV − αew

SwEw

Nw
− αiw

SwIw
Nw

− vw
∂Sw

∂x
+Dw

∂2Sw

∂x2
,

∂Ic
∂t

= βcScV + αc
ScIc
Nc

− dicIc − vc
∂Sc

∂x
,

∂Ew

∂t
= βwSwV + αew

SwEw

Nw
+ αiw

SwIw
Nw

− μwEw − vw
∂Ew

∂x
+Dw

∂2Ew

∂x2
,

∂Iw
∂t

= μwEw − diwIw,

∂Id
∂t

= βd (Nd − Id)V + αd (Nd − Id) Id/Nd − γdId − vd
∂Id
∂x

+Dd
∂2Id
∂x2

,

∂V

∂t
= rcIc + rewEw + riwIw + rdId − (dv + dn)V − vv

∂V

∂x
+Dv

∂2V

∂x2
,

which was introduced in [9] to describe the spatio-temporal spread of H5N1 avian
influenza in an ecosystem involving a wide range of bird species: poultry (c), wild
birds (w) which are susceptible to and die after H5N1 infection, and wild birds (d)
which are susceptible to but can survive after H5N1 infection. Birds are further
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stratified by their disease status as susceptible (Sc, Sw and Sd), expected (Ew), and
infected (Ic, Iw and Id). Note that the w class wild birds can fly some distances even
after exposure to the virus, and hence we have included the expected class Ew. Note
also that the total number, Nd, of d class birds is assumed to be a constant. The
model also involves the virus (v) in the environment, and exposed/infected birds
may contribute to environmental contamination. In the model, Dj and vj , with
j = w, d, c, v, the diffusion and convection coefficients of the category j bird/virus,
mass action is used to describe the transmission from the virus in the environment
to birds, while the standard incidence is used to describe the transmission between
birds (Nc = Sc + Ic, Nw = Sw + Ew + Iw). Finally, the virus production is
proportional to the number of infected birds.

The basic reproduction number of the corresponding ODE system is given by
R0 = ρ

(
FV−1

)
, where ρ is the spectral radius of a matrix. The matrices F and

V are relevant to the linearization of the corresponding ODE system of (1.1) at
the disease free state E0 (Sc, Sw, Ic, Ew, Iw, Id, V ) = (Sc0, Sw0, 0, 0, 0, 0, 0) and are
given by

F =

⎛⎜⎜⎜⎜⎝
αc 0 0 0 βcSc0

0 αew αiw 0 βwSw0

0 0 0 0 0
0 0 0 αd βdNd

rc rew riw rd 0

⎞⎟⎟⎟⎟⎠ ,V =

⎛⎜⎜⎜⎜⎝
dic 0 0 0 0
0 μw 0 0 0
0 −μw diw 0 0
0 0 0 γd 0
0 0 0 0 dv + dn

⎞⎟⎟⎟⎟⎠.

The matrices F and V and the reproduction number determine the initial growth
pattern of the corresponding ODE system. A preliminary analysis of the model
was conducted in [9], where the existence of traveling waves was formally studied
and the linkage between the minimal wave speed and the disease propagation rate
as well as its implication for the effectiveness of different intervention strategies
was described numerically. Here, we provide a rigorous proof for the existence or
nonexistence of nontrivial traveling wave solutions depending on the size of the
basic reproduction number R0. In addition, we show that when R0 > 1, there
exists an s∗ such that (1.1) admits a nontrivial traveling wave solution for every
wave speed s > s∗. We refer to [9] for more detailed discussions of the biological
relevance of these results.

The basic idea to prove the existence of nontrivial traveling wave solutions is
to first construct an appropriately invariant cone of initial functions defined in a
large but bounded domain, then apply a fixed point theorem on this cone for the
relevant solution operators, and finally to pass to the unbounded spatial domain R

by a limiting argument. This method is motivated by [4, 5], where the existence and
nonexistence of traveling wave solutions for some infection-age structured epidemic
models with diffusion are studied. Adaptation of the approach developed in [4, 5] to
our model is highly nontrivial, as the multiple bird species and virus involved make
the construction of an invariant cone very difficult. Here we successfully construct
such a cone by using the initial growth pattern and the final size outbreak which
are encoded by the matrices F and V , the reproduction number, and the spatial
diffusion. Relevant to our work here are [8, 10], and we hope our work provides a
framework for more general diffusive epidemic models with species diversity.
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2. Nonexistence of traveling wave solutions

A traveling wave of (1.1) is a solution with the form (Sc(x + st), Ic(x + st),
Sw(x+ st), Ew(x+ st), Iw(x+ st), Id(x+ st), V (x+ st)). So, with the wave variable
ξ = x+ st, we have

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s+ vc)S
′
c = −βcScV − αcScIc/Nc +DcSc,

(s+ vw)S
′
w = −βwSwV − αewSwEw/Nw − αiwSwIw/Nw +DwS

′′
w,

(s+ vc) I
′
c = βcScV + αcScIc/Nc − dicIc,

(s+ vw)E
′
w = βwSwV + Sw [αewEw + αiwIw]/Nw − μwEw +DwE

′′
w,

sI ′w = μwEw − diwIw,

(s+ vd) I
′
d (ξ) = βd (Nd − Id)V + αd (Nd − Id) Id/Nd − γdId +DdI

′′
d ,

(s+ vv)V
′ = rcIc + rewEw + riwIw + rdId − (dv + dn)V +DvV

′′.

Theorem 2.1. Assume that R0 = ρ
(
FV−1

)
< 1. Then for any c > 0, the trivial

solution (Sc ≡ Sc0, Sw ≡ Sw0, Ic ≡ 0, Ew ≡ 0, Iw ≡ 0, Id ≡ 0, V ≡ 0) is the unique
nonnegative and bounded solution of (2.1) satisfying

Sc (−∞) = Sc0, Sw (−∞) = Sw0,(2.2)

Ic (−∞) = Ew (−∞) = Iw (−∞) = Id (−∞) = V (−∞) = 0.(2.3)

Proof. Note that if (Ic, Ew, Iw, Id, V ) ≡ 0, then Sc ≡ Sc0 and Sw ≡ Sw0. As-
sume that (2.2) and (2.3) hold and (Ic, Ew, Iw, Id, V ) is not identically zero. An
application of the fluctuation lemma ([7]) yields that S′

c (−∞) = S′
w (−∞) = 0.

Consequently, we can show that S′
c (x) ≤ 0 and S′

w (x) ≤ 0 for x ∈ R. Thus, we
have Sc (x) ≤ Sc0 and Sw (x) ≤ Sw0 for x ∈ R. In particular, we have Id(x) ≤ Nd

for x ∈ R. Note that the system of equations for (Ic, Ew, Iw, Id, V ) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ic (ξ) =
∫ ξ

−∞
dic

s+vc
e−

dic
s+vc

(ξ−t) 1
dic

[βcSc (t)V (t) + αcSc (t) Ic (t)/Nc (t)] dt,

Ew (ξ) =
∫ ξ

−∞
μw

ρw
eλ

−
w(ξ−t) 1

μw
Hw (t) dt+

∫∞
ξ

μw

ρw
eλ

+
w(ξ−t) 1

μw
Hw (t) dt,

Iw (ξ) =
∫ ξ

−∞
diw

s e−
diw
s (ξ−t) μw

diw
Ew(t)dt,

Id (ξ) =
∫ ξ

−∞
γd

ρd
eλ

−
d (ξ−t) 1

γd
Hd (t) dt+

∫∞
ξ

γd

ρd
eλ

+
d (ξ−t) 1

γd
Hd (t) dt,

V (ξ) =
∫ ξ

−∞
dv+dn

ρv
eλ

−
v (ξ−t) 1

dv+dn
Hv (t) dt+

∫∞
ξ

dv+dn

ρv
eλ

+
v (ξ−t) 1

dv+dn
Hv (t) dt,

where

λ±
w =

(s+ vw)±
√
(s+ vw)

2
+ 4Dwμw

2Dw
, λ±

d =
(s+ vd)±

√
(s+ vd)

2
+ 4Ddγd

2Dd
,

λ±
v =

(s+ vv)±
√
(s+ vv)

2 + 4Dv (dv + dn)

2Dv
,

ρw = λ+
w − λ−

w , ρd = λ+
d − λ−

d , ρv = λ+
v − λ−

v ,

Hw (t) := βwSw (t)V (t) + αewSw (t)Ew (t)/Nw (t) + αiwSw (t) Iw (t)/Nw (t) ,

Hd (t) := βd (Nd − Id (t))V (t) + αd (Nd − Id (t)) Id (t)/Nd,

Hv (t) := rcIc (t) + rewEw (t) + riwIw (t) + rdId (t) .
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Therefore,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ic (ξ) ≤
∫ ξ

−∞
dic

s+vc
e−

dic
s+vc

(ξ−t) 1
dic

[βcSc0V (t) + αcIc (t)] dt,

Ew (ξ) ≤
∫ ξ

−∞
μw

ρw
eλ

−
w(ξ−t) 1

μw
[βwSw0V (t) + αewEw (t) + αiwIw (t)] dt

+
∫∞
ξ

μw

ρw
eλ

+
w(ξ−t) 1

μw
[βwSw0V (t) + αewEw (t) + αiwIw (t)] dt,

Iw (ξ) =
∫ ξ

−∞
diw

s e−
diw
s (ξ−t) μw

diw
Ewdt,

Id (ξ) ≤
∫ ξ

−∞
γd

ρd
eλ

−
d (ξ−t) 1

γd
[βdNdV (t) + αdId (t)] dt

+
∫∞
ξ

γd

ρd
eλ

+
d (ξ−t) 1

γd
[βdNdV (t) + αdId (t)] dt,

V (ξ) =
∫ ξ

−∞
dv+dn

ρv
eλ

−
v (ξ−t) 1

dv+dn
Hv(t)dt+

∫∞
ξ

dv+dn

ρv
eλ

+
v (ξ−t) 1

dv+dn
Hv(t)dt.

Namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ic (ξ) ≤
(
V−1F

)
1

∫ ξ

−∞
dic

s+vc
e−

dic
s+vc

(ξ−t)N(t)dt,

Ew (ξ) ≤
(
V−1F

)
2

[∫ ξ

−∞
μw

ρw
eλ

−
w(ξ−t)N(t)dt+

∫∞
ξ

μw

ρw
eλ

+
w(ξ−t)N(t)dt

]
,

Iw (ξ) ≤
(
V−1F

)
3

[∫ ξ

−∞
diw

s e−
diw
s (ξ−t)

∫ t

−∞
μw

ρw
eλ

−
w(t−s)N(s)dsdt

+
∫ ξ

−∞
diw

s e−
diw
s (ξ−t)

∫∞
t

μw

ρw
eλ

+
w(t−s)N(s)dsdt

]
,

Id (ξ) ≤
(
V−1F

)
4

[∫ ξ

−∞
γd

ρd
eλ

−
d (ξ−t)N(t)dt+

∫∞
ξ

γd

ρd
eλ

+
d (ξ−t)N(t)dt

]
,

V (ξ) ≤
(
V−1F

)
5

[∫ ξ

−∞
dv+dn

ρv
eλ

−
v (ξ−t)N(t)dt+

∫∞
ξ

dv+dn

ρv
eλ

+
v (ξ−t)N(t)dt

]
,

where
(
V−1F

)
i
denotes the i−th row of the matrix V−1F and

V−1F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αc

dic
0 0 0 βcSc0

dic

0 αew

μw

αiw

μw
0 βwSw0

μw

0 αew

diw

αiw

diw
0 βwSw0

diw

0 0 0 αd

γd

βdNd

γd

rc
dv+dn

rew
dv+dn

riw
dv+dn

rd
dv+dn

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, N(t) =

⎛⎜⎜⎜⎜⎝
Ic(t)
Ew(t)
Iw(t)
Id(t)
V (t)

⎞⎟⎟⎟⎟⎠ .

Let supξ∈R
Ic (ξ) = I0c , supξ∈R

Ew (ξ) = E0
w, supξ∈R

Iw (ξ) = I0w, supξ∈R
Iw (ξ) =

I0d and supξ∈R
V (ξ) = V 0. Then N0 := (I0c , E

0
w, I

0
w, I

0
d , V

0)T ≥ 0 and N0 �= 0,
where T is the transpose. Furthermore, we have

(2.4) N0 ≤
(
V−1F

)
N0.

If ρ
(
FV−1

)
:= ρ0 < 1, then there exists a nontrivial vector P := (p1, p2, 0, p4, p5) ≥

0 (page 16, Theorem 3.5 of [3]) such that
(
FV−1

)
P = ρ0P. It is easy to verify that

p1 > 0, p2 > 0, p4 > 0, p5 > 0. Then V−1P > 0 and there holds
(
V−1F

) (
V−1P

)
=

V−1
(
FV−1

)
P = ρ0V−1P, which implies that ρ0 < 1 is a nonnegative engeinvalue

of the matrix V−1F with positive engeinvector V−1P . It is easy to show that V−1F
is irreducible, that is,

(
V−1F + I

)4
> 0. Then the Perron-Frobenius theorem yields

that ρ
(
V−1F

)
= ρ0 < 1. So, iterating (2.4) yields N0 = 0, a contradiction. �
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3. Existence of traveling wave solutions

In the following, we prove the existence of traveling waves of (1.1) when R0 > 1.
Linearizing (2.1) for Ic, Ew, Iw, Id and V in the region ξ → −∞ where Sc → Sc0,
Sw → Sw0, and setting the remaining variables approaching zero, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sI ′c (ξ) = βcSc0V + αcIc − dicIc − vcI
′
c (ξ) ,

sE′
w (ξ) = βwSw0V + αewEw + αiwIw − μwEw − vwE

′
w (ξ) +DwE

′′
w (ξ) ,

sI ′w (ξ) = μwEw − diwIw,

sI ′d (ξ) = βdNdV + αdId − γdId − vdI
′
d (ξ) +DdI

′′
d (ξ) ,

sV ′ (ξ) = rcIc + rewEw + riwIw + rdId − (dv + dn)V − vvV
′ (ξ) +DvV

′′ (ξ) .

Looking for the solutions of the form (Ic, Ew, Iw, Id, V ) = (q1, q2, q3, q4, q5) e
λξ,

where qi > 0 and λ > 0, we have

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sλq1 = βcSc0q5 + αcq1 − dicq1 − vcλq1,

sλq2 = βwSw0q5 + αewq2 + αiwq3 − μwq2 − vwλq2 +Dwλ
2q2,

sλq3 = μwq2 − diwq3,

sλq4 = βdNdq5 + αdq4 − γdq4 − vdλq4 +Ddλ
2q4,

sλq5 = rcq1 + rewq2 + riwq3 + rdq4 − (dv + dn) q5 − vvλq5 +Dvλ
2q5.

Let

Ã =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 Dw 0 0 0
0 0 0 0 0
0 0 0 Dd 0
0 0 0 0 Dv

⎞⎟⎟⎟⎟⎠ , B̃ =

⎛⎜⎜⎜⎜⎝
s+ vc 0 0 0 0
0 s+ vw 0 0 0
0 0 s 0 0
0 0 0 s+ vd 0
0 0 0 0 s+ vv

⎞⎟⎟⎟⎟⎠
and M (λ, c) := Ãλ2 − B̃λ + F − V . Then (3.1) can be rewritten as MQT = 0,

where Q = (q1, q2, q3, q4, q5). Let A = V−1Ã and B = V−1B̃. Consider the equation(
−Aλ2 +Bλ+ I

)−1 (V−1F
)
Q = Q. A direct calculation yields

M (λ, c) : =
(
−Aλ2 +Bλ+ I

)−1 (V−1F
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αc

Θ1(λ,s)
0 0 0 βcSc0

Θ1(λ,s)

0 αew

Θ2(λ,s)
αiw

Θ2(λ,s)
0 βwSw0

Θ2(λ,s)

0 αewμw

Θ3(λ,s)
αiwμw

Θ3(λ,s)
0 βwSw0μw

Θ3(λ,s)

0 0 0 αd

Θ4(λ,s)
βdNd

Θ4(λ,s)

rc
Θ5(λ,s)

rew
Θ5(λ,s)

riw
Θ5(λ,s)

rd
Θ5(λ,s)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Θ1(λ, s) = λ (s+ vc) + dic, Θ2(λ, s) = λ (s+ vw) −Dwλ
2 + μw, Θ3(λ, s) =

(λs+ diw)
[
λ (s+ vw)−Dwλ

2 + μw

]
, Θ4(λ, s) = λ (s+ vd)−Ddλ

2+γd, Θ5(λ, s) =

λ (s+ vv)−Dvλ
2 + (dv + dn). Take

D = max{Dw, Dd, Dv} and vmin = min{0, vc, vw, vd, vv}.

Then for s ≥ −vmin, we have s+ vj ≥ s+ vmin with j = c, w, d, v.
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As Θi

(
s+vmin

2D , s
)
is increasing and nonnegative for s ∈ [−vmin,∞), we conclude

that the matrix M
(
s+vmin

2D , s
)
is decreasing in s ∈ [−vmin,+∞). In particular, this

matrix becomes V−1F when s = −vmin and approaches zero when s → +∞. Since
ρ(M) is continuous and monotonically increasing with respect to the nonnegative

matrix M , there exists a unique s∗ > −vmin such that ρ
(
M

(
s∗+vmin

2D , s∗
))

= 1 and

ρ
(
M

(
s+vmin

2D , s
))

< 1 for s > s∗. Now we fix s > s∗. Since Θi(λ, s) is increasing in

λ ∈
[
0, s+vmin

2D

]
, we conclude that the matrix M (λ, s) is decreasing and nonnegative

in λ ∈
[
0, s+vmin

2D

]
. Consequently, there exists a λs ∈

(
0, s+vmin

2D

)
such that

ρ
(
M (λ, s)

)⎧⎨⎩
= 1 if λ = λs,
< 1 if λ ∈

(
λs,

s+vmin

2D

]
,

> 1 if λ ∈ [0, λs).

Lemma 3.1. Assume that R0 = ρ
(
FV−1

)
> 1. Then there exists s∗ > −vmin

such that for each s > s∗, there exist λs ∈
(
0, s+vmin

2D

)
and Qs > 0 satisfying

detM (λs, s) = 0 and M (λs, s)Qs = 0.

Proof. Following the above arguments, we know that ρ
(
M (λs, s)

)
= 1. Then the

Perron-Frobenius theorem implies that there exists a Qs ∈ R
5 with positive com-

ponents such that M (λs, s)Qs = Qs. Multiplying the matrix −Aλ2
s + Bλs + I on

the two sides of the last equality, we have
(
Aλ2

s −Bλs + V−1F − I
)
Qs = 0. Mul-

tiplying V to the above equality yields M(λ, s)Qs = 0, completing the proof. �

In the sequel, we let Qs := (q1, q2, q3, q4, q5)
T
as obtained in Lemma 3.1.

Lemma 3.2. The vector valued map Φ (x)=(φ1 (x) , φ2 (x) , φ3 (x) , φ4 (x) , φ5 (x))
T

with φi (x) = qie
λsx satisfies the following system:

sφ′
1 (x) = βcSc0φ5 (x) + αcφ1 (x)− dicφ1 (x)− vcφ

′
1 (x) ,(3.2)

sφ′
2 (x) = βwSw0φ5 (x) + αewφ2 (x) + αiwφ3 (x)(3.3)

−μwφ2 (x)− vwφ
′
2 (x) +Dwφ

′′
2 (x) ,

sφ′
3 (x) = μwφ2 (x)− diwφ3 (x) ,(3.4)

sφ′
4 (x) = βdNdφ5 (x) + αdφ4 (x)− γdφ4 (x)− vdφ

′
4 (x) +Ddφ

′′
4 (x) ,(3.5)

sφ′
5 (x) = rcφ1 (x) + rewφ2 (x) + riwφ3 (x) + rdφ4 (x)(3.6)

− (dv + dn)φ5 (x)− vvφ
′
5 (x) +Dvφ

′′
5 (x) .

Lemma 3.3. For each 
 > 0 sufficiently small and ρ > 1 large enough, the vector

valued map P (x) = (p1(x), p2(x))
T defined by

p1(x) = max {1− ρe�x, 0}Sc0 and p2(x) = max {1− ρe�x, 0}Sw0

satisfies the following system of differential inequalities:

Dcp
′′
1 (x)− (s+ vc)p

′
1 (x)− βcp1 (x)φ5 (x)− αc

p1 (x)φ1 (x)

p1 (x) + φ1 (x)
≥ 0,(3.7)

Dwp
′′
2 (x)− (s+ vw)p

′
2 (x)− βwp2 (x)φ5 (x)(3.8)

−αew
p2 (x)φ2 (x)

p2 (x) + φ2 (x)
− αiw

p2 (x)φ3 (x)

p2 (x) + φ3 (x)
≥ 0

for any x < X ′ := − 1
� ln ρ.
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Proof. When x < X ′, 1− ρe�x > 0 and p1 (x) = Sc0 (1− ρe�x). One has

Dcp
′′
1 (x)− (s+ vc)p

′
1 (x)− βcp1 (x)φ5 (x)− αc

p1 (x)φ1 (x)

p1 (x) + φ1 (x)

≥ −ρ
2DcSc0e
�x + (s+ vc)ρ
Sc0e

�x − q5βcSc0 (1− ρe�x) eλsx − αcq1e
λsx

≥
[
ρ
Sc0 ((s+ vc)−
Dc)− (αcq1 + q5βcSc0) e

−(λs−�) 1
� ln ρ

]
e�x

=
[
ρ
Sc0 ((s+ vc)−
Dc)− (αcq1 + q5βcSc0) ρ

−(λs−�) 1
�

]
e�x.

Keeping ρ
 = 1 and letting ρ → +∞, there exists ρ > 0 and 
 > 0 such that

ρ
Sc0 ((s+ vc)−
Dc)−(αcq1 + q5βcSc0) ρ
−(λs−�) 1

� > 0, which implies that (3.7)
holds. Similarly, we can prove (3.8). This completes the proof. �

Lemma 3.4. Let ε > 0 be small enough with ε < �
2 , ε <

λs

2 and λs + ε < s+vmin

2D .
Then the function

Ψ(x) = (ψ1 (x) , ψ2 (x) , ψ3 (x) , ψ4 (x) , ψ5 (x))
T
= Qse

λsx max {1−Meεx, 0}

satisfies the following inequalities:

(s+ vc)ψ
′
1 (x) ≤ βcp1 (x)ψ5 (x) + αc

p1 (x)ψ1 (x)

p1 (x) + ψ1 (x)
− dicψ1 (x) ,(3.9)

(s+ vw)ψ
′
2 (x) ≤ βwp2 (x)ψ5 (x) + αew

p2 (x)ψ2 (x)

p2 (x) + ψ2 (x) + φ3 (x)
(3.10)

+ αiw
p2 (x)ψ3 (x)

p2 (x) + φ2 (x) + ψ3 (x)
− μwψ2 (x) +Dwψ

′′
2 ,

sψ′
3 (x) ≤ μwψ2 (x)− diwψ3 (x) ,(3.11)

(s+ vd)ψ
′
4 (x) ≤ βdNdψ5 (x)− βdψ4 (x)φ5 (x)(3.12)

+ αd
(Nd − ψ4 (x))ψ4 (x)

Nd
− γdψ4 (x) +Ddψ

′′
4 ,

(s+ vv)ψ
′
5 (x) ≤ rcψ1 (x) + rewψ2 (x) + riwψ3 (x) + rdψ4 (x)(3.13)

− (dv + dn)ψ5 (x) +Dvψ
′′
5

for x < X ′′ := − 1
ε lnM , where M > 0 is sufficiently large so that X ′′ < X ′.
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Proof. When x < X ′′ < X ′, ψi (x) = qie
λsx (1−Meεx), p1 (x) = Sc0 (1− ρe�x)

and p2 (x) = Sw0 (1− ρe�x), where i = 1, 2, 3, 4, 5. Consequently, we have

sψ′
1 (x)− βcp1 (x)ψ5 (x)− αc

p1 (x)ψ1 (x)

p1 (x) + ψ1 (x)
+ dicψ1 (x) + vcψ

′
1 (x)

= − (s+ vc) q1 (λs + ε)Me(λs+ε)x + q5βcSc0e
λsx

(
Meεx + ρe�x − ρMe(�+ε)x

)
+ αcq1Me(λs+ε)x +

q21αce
2λsx (1−Meεx)2

Sc0 (1− ρe�x) + q1eλsx (1−Meεx)
− q1dicMe(λs+ε)x

≤ M [− (s+ vc) (λs + ε) q1 + αcq1 − dicq1 + q5βcSc0] e
(λs+ε)x

+
q21αce

2λsx

Sc0 (1− ρe�x)
+ ρq5βcSc0e

(λs+�)x

≤

⎧⎨⎩−εq1M +
q21αc

Sc0

(
1− ρe−� 1

ε lnM
) + ρq5βcSc0e

−(�−ε) 1
ε lnM

⎫⎬⎭ e(λs+ε)x.

Then for sufficiently large M > 0, we have that (3.9) holds.
The proofs for (3.10)-(3.13) are similar and thus are omitted. �

Let X∗ := − 1
ε ln

M(λs+ε)
λs

< X ′′. It is obvious that ϕi(·) is increasing on

(−∞, X∗]. For X > −X∗, we define

Γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ1 (·)
χ2 (·)
ϕ1 (·)
ϕ2 (·)
ϕ3 (·)
ϕ4 (·)
ϕ5 (·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C

(
Ω̄,R7

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 (x) ≤ χ1 (x) ≤ Sc0, p2 (x) ≤ χ2 (x) ≤ Sw0

for x ∈ [−X,X] , χi (±X) = pi (±X) ,
ψj (x) ≤ ϕj (x) ≤ φj (x) for x ∈ [−X,X] ,
i = 1, 2 and j = 1, 2, 3, 4, 5;
ϕ1 (−X) = ψ1 (−X) , ϕ2 (±X) = ψ2 (±X) ,
ϕ3 (−X) = ψ3 (−X) , ϕ4 (±X) = ψ4 (±X) ,
ϕ5 (±X) = ψ5 (±X) .
Furthermore, ϕ4 (x) ≤ Nd for x ∈ [−X,X] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where Ω̄ = [−X,X]. For any given (χ1 (·) , χ2 (·) , ϕ1 (·) , ϕ2 (·) , ϕ3 (·) , ϕ4 (·) , ϕ5 (·))
∈ Γ, we consider the following boundary value problems:

−DcS
′′
c (x) + (s+ vc)S

′
c (x) + (βcϕ5 (x) + αc)Sc(x) = αcg1 (x) ,(3.14)

−DwS
′′
w (x) + (s+ vw)S

′
w (x) + (βwϕ5 (x) + αew + αiw)Sw(x)(3.15)

= αewg21 (x) + αiwg22 (x) ,

(s+ vc) I
′
c (x) + dicIc(x) = βcχ1 (x)ϕ5 (x) + αcf1 (x) ,(3.16)

−DwE
′′
w (x) + (s+ vw)E

′
w (x) + μwEw(x)(3.17)

= βcχ2 (x)ϕ5 (x) + αewf21 (x) + αiwf22 (x) ,

sI ′w (x) + diwIw (x) = μwϕ2 (x) ,(3.18)

−DdI
′′
d (x) + (s+ vd) I

′
d (x) + (γd + αd + βdϕ5 (x)) Id(x)(3.19)

= βdNdϕ5 (x) +
αd

Nd
(2Nd − ϕ4 (x))ϕ4 (x) ,

−DvV
′′ (x) + (s+ vv)V

′ (x) + (dv + dn)V (x)(3.20)

= rcϕ1 (x) + rewϕ2 (x) + riwϕ3 (x) + rdϕ4 (x) ,
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with

Sc(±X) = p1 (±X) , Sw(±X) = p2 (±X) , Ic(−X) = ψ1 (−X) ,

Ew(±X) = ψ2 (±X) , Iw(−X) = ψ3 (−X) ,(3.21)

Id(±X) = ψ4 (±X) , V (±X) = ψ5 (±X) ,

where

f1 [χ1, ϕ1] (x) =

{
αcχ1(x)ϕ1(x)
χ1(x)+ϕ1(x)

, χ1 (x)ϕ1 (x) �= 0,

0, χ1 (x)ϕ1 (x) = 0,

g1 [χ1, ϕ1] (x) =

{
αcχ

2
1(x)

χ1(x)+ϕ1(x)
, χ1 (x) �= 0,

0, χ1 (x) = 0,

f21 [χ2, ϕ2, ϕ3] (x) =

{
αewχ2(x)ϕ2(x)

χ2(x)+ϕ2(x)+ϕ3(x)
, χ2 (x)ϕ2 (x) �= 0,

0, χ2 (x)ϕ2 (x) = 0,

f22 [χ2, ϕ2, ϕ3] (x) =

{
αiwχ2(x)ϕ3(x)

χ2(x)+ϕ2(x)+ϕ3(x)
, χ2 (x)ϕ3 (x) �= 0,

0, χ2 (x)ϕ3 (x) = 0,

g21 [χ2, ϕ2, ϕ3] (x) =

{
αewχ2(x)(χ2(x)+ϕ3(x))

χ2(x)+ϕ2(x)+ϕ3(x)
, χ2 (x) (χ2 (x) + ϕ3 (x)) �= 0,

0, χ2 (x) (χ2 (x) + ϕ3 (x)) = 0,

g22 [χ2, ϕ2, ϕ3] (x) =

{
αiwχ2(x)(χ2(x)+ϕ2(x))
χ2(x)+ϕ2(x)+ϕ3(x)

, χ2 (x) (χ2 (x) + ϕ2 (x)) �= 0,

0, χ2 (x) (χ2 (x) + ϕ2 (x)) = 0.

It is not difficult to verify that f1 (x) , f21 (x) , f22 (x) , g1 (x) , g21 (x) , g22 (x) are
continuous functions of x ∈ [−X,X] . Then the problems (3.14)-(3.20) and (3.21)
admit a unique solution (Sc (·) , Sw (·) , Ic (·) , Ew (·) , Iw (·) , Id (·) , V (·)) with Ic, Iw
∈ C1 [−X,X], Ew, V ∈ C2 [−X,X] and Sc, Sw, Id ∈ W 2,p (−X,X), where p ≥ 2.
(In fact, (3.14), (3.15) and (3.19) hold for almost everywhere x ∈ (−X,X); see
[1, 2, 6].) This then gives an operator T = (T1, T2, T3, T4, T5, T6, T7) defined on Γ
as

Sc = T1 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) , Sw = T2 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ,

Ic = T3 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) , Ew = T4 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ,

Iw = T5 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) , Id = T6 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ,

V = T7 (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) .

Theorem 3.5. The operator T maps Γ into Γ.

Proof. Let (χ1 (·) , χ2 (·) , ϕ1 (·) , ϕ2 (·) , ϕ3 (·) , ϕ4 (·) , ϕ5 (·)) ∈ Γ and

(Sc (·) , Sw (·) , Ic (·) , Ew (·) , Iw (·) , Id (·) , V (·)) = T (χ1, χ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (·).

By virtue of the embedding theorem, we have Sc (·) , Sw (·) , Id (·) ∈ C ([−X,X] ,R).
Now we show that p2 (x) ≤ Sw (x) ≤ Sw0 for x ∈ [−X,X]. Since 0 is a subsolution
of (3.15), by the maximum principle [6] we have Sw (x) ≥ 0 for x ∈ [−X,X].
Furthermore, since (βwϕ5 (x) + αew + αiw)Sw0 ≥ αewg21 (x) + αiwg22 (x) for x ∈
(−X,X) and Sw (±X) ≤ Sw0, Sw0 is a supersolution of (3.15), and hence we have
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Sw (x) ≤ Sw0 for x ∈ [−X,X]. Note that Sw (−X) = p2 (−X) and Sw (X ′) ≥
p2 (X

′) = 0. Then for x ∈ (−X,X ′), by (3.8) we have

0 ≥ −Dwp
′′
2 (x) + (s+ vw) p

′
2 (x) + βwφ5 (x) p2 (x)

+αew
p2 (x)φ2 (x)

p2 (x) + φ2 (x)
+ αiw

p2 (x)φ3 (x)

p2 (x) + φ3 (x)

≥ −Dwp
′′
2 (x) + (s+ vw) p

′
2 (x) + βwϕ5 (x) p2 (x)

+αew
p2 (x)ϕ2 (x)

p2 (x) + ϕ2 (x) + ϕ3 (x)
+ αiw

p2 (x)ϕ3 (x)

p2 (x) + ϕ2 (x) + ϕ3 (x)

= −Dwp
′′
2 (x) + (s+ vw) p

′
2 (x) + (βwϕ5 (x) + αew + αiw) p2 (x)

−αew
p2 (x) (p2 (x) + ϕ3 (x))

p2 (x) + ϕ2 (x) + ϕ3 (x)
− αiw

p2 (x) (p2 (x) + ϕ2 (x))

p2 (x) + ϕ2 (x) + ϕ3 (x)

≥ −Dwp
′′
2 (x) + (s+ vw) p

′
2 (x) + (βwφ5 (x) + αew + αiw) p2 (x)

−αewg21 (x)− αiwg22 (x) ,

which implies that p2 (·) is a subsolution of (3.15) on [−X,X ′]. Here we used the

fact that the function u(u+a)
u+v+a is nondecreasing on u and nonincreasing on v for

(u, v) ∈ (0,+∞) × [0,+∞), where a ≥ 0. Consequently, the maximum principle
yields that Sw (x) ≥ p2 (x) for x ∈ [−X,X ′]. Combining the above arguments,
we have p2 (x) ≤ Sw (x) ≤ Sw0 for x ∈ [−X,X]. Similarly, we can confirm that
p1 (x) ≤ Sc (x) ≤ Sc0 for x ∈ [−X,X].

We now show that ψ2 (x) ≤ Ew (x) ≤ φ2 (x) for x ∈ [−X,X]. By (3.3), we have

−Dwφ
′′
2 (x) + (s+ vw)φ

′
2 (x) + μwφ2 (x)

= βwSw0φ5 (x) + αewφ2 (x) + αiwφ3 (x)

≥ βcχ2 (x)ϕ5 (x) +
αewχ2 (x)φ2 (x)

φ2 (x) + χ2 (x)
+

αewχ2 (x)φ3 (x)

φ3 (x) + χ2 (x)

≥ βcχ2 (x)ϕ5 (x) + αewf21 (x) + αiwf22 (x) .

This, combined with ψ2 (±X) = Ew (±X) ≤ φ2 (±X), implies that φ2 (·) is a
supersolution of (3.17) on [−X,X]. The maximum principle implies that Ew (x) ≤
φ2 (x) for x ∈ [−X,X]. Furthermore, since 0 is a subsolution of (3.17), we have
that Ew (x) ≥ 0 for x ∈ [−X,X]. Then for x ∈ (−X,X ′′), by (3.10) we have

−Dwψ
′′
2 + (s+ vw)ψ

′
2 (x) + μwψ2 (x)

≤ βwp2 (x)ψ5 (x) + αew
p2 (x)ψ2 (x)

p2 (x) + ψ2 (x) + φ3 (x)
+ αiw

p2 (x)ψ3 (x)

p2 (x) + φ2 (x) + ψ3 (x)

≤ βwχ2 (x)ϕ5 (x) + αew
χ2 (x)ϕ2 (x)

χ2 (x) + ϕ2 (x) + ϕ3 (x)
+ αiw

χ2 (x)ϕ3 (x)

χ2 (x) + ϕ2 (x) + ϕ3 (x)

= βcχ2 (x)ϕ5 (x) + αewf21 (x) + αiwf22 (x) .

In view of ψ2 (−X) = Ew (−X) and 0 ≤ ψ2 (X
′′) ≤ Ew (X ′′), an application of

the maximum principle yields Ew (x) ≥ ψ2 (x) for x ∈ [−X,X ′′]. Thus, we have
proved that ψ2 (x) ≤ Ew (x) ≤ φ2 (x) for x ∈ [−X,X]. Similarly, we can prove that
ψ1 (x) ≤ Ic (x) ≤ φ1 (x), ψ3 (x) ≤ Iw (x) ≤ φ3 (x) and ψ5 (x) ≤ V (x) ≤ φ5 (x) for
x ∈ [−X,X].
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Finally, we prove that ψ4 (x) ≤ Id (x) ≤ min {φ4 (x) , Nd} for any x ∈ [−X,X].
Note that 2Ndx− x2 is increasing on x ∈ (0, Nd). Then we have

(γd + αd + βdϕ5 (x))Nd > βdNdϕ5 (x) +
αd

Nd
(2Nd − ϕ4 (x))ϕ4 (x) ,

which implies that Nd is a supersolution of (3.19) on x ∈ [−X,X]. Consequently,
we have Id (x) ≤ Nd for x ∈ [−X,X]. Similarly, we have Id (x) ≥ 0 for x ∈ [−X,X].
Furthermore, by (3.12) we have

−Ddψ
′′
4 + (s+ vd)ψ

′
4 (x) + (γd + αd + βdϕ5 (x))ψ4 (x)

≤ −Ddψ
′′
4 + (s+ vd)ψ

′
4 (x) + (γd + αd + βdφ5 (x))ψ4 (x)

≤ βdNdψ5 (x) + αd
(2Nd − ψ4 (x))ψ4 (x)

Nd

≤ βdNdϕ5 (x) + αd
(2Nd − ϕ4 (x))ϕ4 (x)

Nd
,

which implies that ψ4 (x) is a subsolution of (3.19) on [−X,X ′′]. Therefore, we
have Id (x) ≥ ψ4 (x) for x ∈ [−X,X ′′]. On the other hand, inequality (3.5) implies
that φ4 is a supersolution of (3.19), and hence Id (x) ≤ φ4 (x) for x ∈ [−X,X]. �

By the classical embedding theorems, we have that T is a compact operator
from Γ into Γ. Now we show that T : Γ → Γ is continuous. First, we show that
f1, f21, f22, g1, g21, g22 are continuous operators from Γ to C ([−X,X],R+). Con-
sider f1 first. Let χ1

1, χ
2
1, ϕ

1
1, ϕ

2
1 ∈ C[−X,X] with p1(x) ≤ χ1

1(x), χ
2
1(x) ≤ Sc0 and

ψ1(x) ≤ ϕ1
1(x), ϕ

2
1(x) ≤ φ1(x) for x ∈ [−X,X]. When χ1

1 (x)ϕ
1
1 (x)χ

2
1 (x)ϕ

2
1 (x) �=

0, we have∣∣f1 [χ1
1, ϕ

1
1

]
(x)− f1

[
χ2
1, ϕ

2
1

]
(x)

∣∣
≤

αcχ
1
1 (x)χ

2
1 (x)

∣∣ϕ1
1 (x)− ϕ2

1 (x)
∣∣

[χ1
1 (x) + ϕ1

1 (x)] [χ
2
1 (x) + ϕ2

1 (x)]
+

αcϕ
1
1 (x)ϕ

2
1 (x)

∣∣χ1
1 (x)− χ2

1 (x)
∣∣

[χ1
1 (x) + ϕ1

1 (x)] [χ
2
1 (x) + ϕ2

1 (x)]

≤ αc

∣∣ϕ1
1 (x)− ϕ2

1 (x)
∣∣+ αc

∣∣χ1
1 (x)− χ2

1 (x)
∣∣ .

When χ1
1 (x)ϕ

1
1 (x)χ

2
1 (x)ϕ

2
1 (x) = 0 and χ1

1 (x)ϕ
1
1 (x) + χ2

1 (x)ϕ
2
1 (x) �= 0, for ex-

ample, χ1
1 (x) = 0 and χ2

1 (x)ϕ
2
1 (x) �= 0, we have∣∣f1 [χ1

1, ϕ
1
1

]
(x)− f1

[
χ2
1, ϕ

2
1

]
(x)

∣∣ =

∣∣∣∣ αcϕ
2
1 (x)

χ2
1 (x) + ϕ2

1 (x)

∣∣∣∣ ∣∣χ1
1 (x)− χ2

1 (x)
∣∣

≤ αc

∣∣χ1
1 (x)− χ2

1 (x)
∣∣ .

Therefore, f1 is continuous. Similarly, we can prove that f21, f22, g1, g21, g22 are
continuous. Consequently, using the continuous dependence of solutions of ODEs on
initial values and the standard elliptic estimates [1, 2, 6], we have that T3, T4, T5, T7

are continuous operators on Γ. Furthermore, let Si
c = T1

(
χi
1, χ

i
2, ϕ

i
1, ϕ

i
2, ϕ

i
3, ϕ

i
4, ϕ

i
5

)
,

i = 1, 2, where
(
χi
1, χ

i
2, ϕ

i
1, ϕ

i
2, ϕ

i
3, ϕ

i
4, ϕ

i
5

)
∈ Γ. Then, we have

−Dc

(
S1
c − S2

c

)′′
(x) + (s+ vc)

(
S1
c − S2

c

)′
(x) +

(
αc + βcϕ

1
5(x)

) (
S1
c − S2

c

)
(x)

= αc

[
g1

[
χ1
1, ϕ

1
1

]
(x)− g1

[
χ2
1, ϕ

2
1

]
(x)

]
+ βcS

2
c (x)

[
ϕ1
5(x)− ϕ2

5(x)
]
.

Note that 0 ≤ S2
c (x) ≤ Sc0 for x ∈ [−X,X]. Applying the standard elliptic

estimates to the last equality yields that T1 is a continuous operator on Γ. Similarly,
T2 and T6 are also continuous operators on Γ.
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Combining the above arguments, we know that T : Γ → Γ is a completely
continuous operator. Hence, Schauder’s fixed point theorem implies that there
exists (Sc,X , Sw,X , Ic,X , Ew,X , Iw,X , Id,X VX) ∈ Γ such that

(Sc,X (x) , Sw,X (x) , Ic,X (x) , Ew,X (x) , Iw,X (x) , Id,X (x) , VX (x))

= T (Sc,X , Sw,X , Ic,X , Ew,X , Iw,X , Id,X , VX) (x)

for x ∈ [−X,X].

Theorem 3.6. (i) Ic,X, Iw,X∈C2 [−X,X], Sc,X , Sw,X , Ew,X , Id,X, VX∈ C3 [−X,X].
(ii) There exists M0 > 0 such that for any X > −X∗, ‖Ic,X‖C1(Ω̄), ‖Iw,X‖C2(Ω̄),

‖VX‖C(Ω̄), ‖Sc,X‖C2(Ω̄), ‖Sw,X‖C2(Ω̄), ‖Ew,X‖C2(Ω̄) ≤ M0, where Ω̄ = [−X,X].

(iii) For each Y > −X∗, there exists C0 = C0 (Y ) > 0 such that
(3.22)∥∥I ′′c,X∥∥

C(Ū)
,
∥∥S′′′

c,X

∥∥
C(Ū)

,
∥∥S′′′

w,X

∥∥
C(Ū)

,
∥∥E′′′

w,X

∥∥
C(Ū)

, ‖Id,X‖C3(Ū) , ‖VX‖C3(Ū)≤C0

for any X > Y , where Ū = [−Y, Y ].

Proof. (i) First, we have Ic,X , Iw,X ∈ C1 [−X,X], Ew,X , VX ∈ C2 [−X,X] and
Sc,X , Sw,X , Id,X ∈ W 2,p (−X,X), p ≥ 2. Then by the embedding theorem, we have
Sc,X , Sw,X , Id,X ∈ W 2,p (−X,X) ↪→ C1+α [−X,X] for some α ∈ (0, 1). Further-
more, it is not difficult to prove that g1 [Sc,X , Ic,X ] (·), g21 [Sw,X , Ew,X , Iw,X ] (·),
g22 [Sw,X , Ew,X , Iw,X ] (·) ∈ Cα [−X,X], which further yields Sc,X , Sw,X , Id,X ∈
C2,α [−X,X]. Then, we can verify that the operators f1, f21, f22, g1, g21 and g22
map the solutions (Sc,X , Sw,X , Ic,X , Ew,X , Iw,X , Id,X , VX) into C1 [−X,X]. There-
fore, Ic,X , Iw,X ∈ C2 [−X,X], Sc,X , Sw,X , Ew,X , Id,X , VX ∈ C3 [−X,X].

(ii) It is obvious that (Sc,X , Sw,X , Ic,X , Ew,X , Iw,X , Id,X , VX) ∈ Γ satisfies

(s+ vc)S
′
c,X = −βcSc,XVX − αcSc,XIc,X/Nc,X +DcS

′′
c,X ,(3.23)

(s+ vw)S
′
w,X = −βwSw,XVX − αewSw,XEw,X/Nw,X(3.24)

− αiwSw,XIw,X/Nw,X +DwS
′′
w,X ,

(s+ vc) I
′
c,X = βcSc,XVX + αcSc,XIc,X/Nc,X − dicIc,X ,(3.25)

(s+ vw)E
′
w,X = βwSw,XVX + Sw,X [αewEw,X + αiwIw,X ]/Nw,X(3.26)

−μwEw,X +DwE
′′
w,X ,

sI ′w,X = μwEw,X − diwIw,X ,(3.27)

(s+ vd) I
′
d,X = βd (Nd − Id,X)VX + αd (Nd − Id,X) Id,X/Nd(3.28)

−γdId,X +DdI
′′
d,X ,

(s+ vv)V
′
X = rcIc,X + rewEw,X + riwIw,X + rdId,X(3.29)

− (dv + dn)VX +DvV
′′
X ,

where Nc,X = Sc,X + Ic,X and Nw,X = Sw,X + Ew,X + Iw,X .
Following (3.23), we have

[
e−

s+vc
Dc

xS′
c,X (x)

]′
=

1

Dc
e−

s+vc
Dc

x

[
βcSc,X (x)VX (x) + αc

Sc,X (x) Ic,X (x)

Nc,X (x)

]
.
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Therefore, for x ∈ [−X,X) we have

S′
c,X (x)− e

s+vc
Dc

(x−X)S′
c,X (X)

= − 1

Dc

∫ X

x

e
s+vc
Dc

(x−z) [βcSc,X (z)VX (z) + αcSc,X (z) Ic,X (z)/Nc,X (z)] dz.

Since S′
c,X (X) ≤ 0, we have S′

c,X (x) ≤ 0 for any x ∈ [−X,X]. From (3.23) and

(3.25), we further have (s+ vc)
[
S′
c,X (x) + I ′c,X (x)

]
+ dicIc,X (x) = DcS

′′
c,X (x).

Integrating two sides of the above equality from −X to X, we have

Dc

[
S′
c,X (X)− S′

c,X (−X)
]
− (s+ vc) [Sc,X (X)− Sc,X (−X)]

= (s+ vc) [Ic,X (X)− Ic,X (−X)] + dic

∫ X

−X

Ic,X (x) dx.

Since Sc,X (X) = 0, Ic,X (−X) = ψ1 (−X) and S′
c,X (−X) ≥ p′1 (−X), we have∫ X

−X

Ic,X (x) dx ≤ 1

dic
[−Dcp

′
1 (−X) + (s+ vc)ψ1 (−X) + (s+ vc)Sc0] ≤ M0

and Ic,X (X) ≤ M0 for some M0 > 0, which is independent of X > −X∗. Conse-
quently, from (3.25) we get∫ X

−X

[βcSc,X (z)VX (z) + αcSc,X (z) Ic,X (z)/Nc,X (z)] dz

≤ (s+ vc) [Ic,X (X)− ψ1 (−X)] + dic

∫ X

−X

Ic,X (x) dx ≤ M0

for some M0 > 0, which is independent of X > −X∗. Integrating two sides of (3.23)
from −X to x, we then have

DcS
′
c,X (x) = DcS

′
c,X (−X) + (s+ vc) [Sc,X (x)− Sc,X (−X)]

+

∫ X

−X

[βcSc,X (z)VX (z) + αcSc,X (z) Ic,X (z)/Nc,X (z)] dz

≥ Dcp
′
1 (−X)− (s+ vc)Sc0.

Therefore, there exists M0 > 0 independent of X > −X∗ such that
∣∣S′

c,X (x)
∣∣ ≤ M0

for x ∈ [−X,X]. Similarly, integrating two sides of (3.25) from −X to x, we can find
an M0 > 0 independent of X > −X∗ such that |Ic,X (x)| ≤ M0 for x ∈ [−X,X].

Consider Sw,X , Ew,X and Iw,X . From (3.24) and (3.26) we have
(3.30)

Dw [Sw,X (x) + Ew,X (x)]
′′ − (s+ vw) [Sw,X (x) + Ew,X (x)]

′
= μwEw,X (x) .

Since S′
w,X (X) ≤ 0 and E′

w,X (X) ≤ 0, we can obtain that S′
w,X (x)+E′

w,X (x) ≤ 0

for x ∈ [−X,X], and hence there exists an M0 > 0 independent of X > −X∗ such
that Sw,X (x) + Ew,X (x) ≤ M0 for x ∈ [−X,X]. Therefore, Ew,X (x) ≤ M0 for
x ∈ [−X,X]. Integrating (3.30) from −X to X, we get∫ X

−X

Ew,X (x) dx ≤ −DwS
′
w,X (−X) + (s+ vw) [Sw,X (−X) + Ew,X (−X)]

≤ −Dwp
′
2 (−X) + (s+ vw) [p2 (−X) + ψ2 (−X)] ≤ M0

for some M0 > 0 independent of X > −X∗. In the last inequalities, we used the
fact that S′

w,X(X) ≤ 0, E′
w,X(−X) ≥ 0 and E′

w,X(X) ≤ 0. Consequently, by some
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arguments as done for Sc,X and Ic,X , it follows from (3.24), (3.26) and (3.27) that
there exists an M0 > 0, which is independent of X > −X∗, such that

‖Sw,X‖C1[−X,X] ≤ M0, ‖Ew,X‖C1[−X,X] ≤ M0, ‖Iw,X‖C2[−X,X] ≤ M0.

It is easy to see that there exists an M0 > supx∈R
ψ5 (x) such that M0 is a

supersolution of (3.29). Then we have VX (x) ≤ M0 for x ∈ [−X,X], proving (ii).
(iii) For Y ∈ (−X ′′, X), applying the Lp (p ≥ 2) estimates of linear elliptic dif-

ferential equations to VX and (3.29), we have

‖VX‖W 2,p(U) ≤ C
(
rc ‖Ic,X‖Lp(U) + rew ‖Ew,X‖Lp(U) + riw ‖Iw,X‖Lp(U)

+rd ‖Id,X‖Lp(U) + ‖ϕ‖W 2,p(U) + ‖VX‖Lp(U)

)
,

where U = (−Y, Y ), C = C(Y ) > 0 is a constant and ϕ is taken to be a linear func-
tion connecting the points (−Y, VX (−Y )) and (Y, VX (Y )). Consequently, we can
find a constant C0 > 0 which is only dependent of Y such that ‖VX‖W 2,p(−Y,Y ) ≤ C0

for any X ≥ Y . Since W 2,p (−Y, Y ) ↪→ C1,α[−Y, Y ] for α = 1− 1
p , the embedding

theorem further implies that there exists a constant C > 0 only dependent on Y
such that ‖VX‖C1,α[−Y,Y ] ≤ C ‖VX‖W 2,p(−Y,Y ) . Therefore, ‖VX‖C1,α[−Y,Y ] ≤ C0

for some C0 > 0, which is only dependent on Y . From (3.29), we further have
‖VX‖C2[−Y,Y ] ≤ C0 for some C0 = C0 (Y ) > 0. By a similar argument, we have

‖Id,X‖C2[−Y,Y ] ≤ C0 for some C0 = C0 (Y ) > 0.

Finally, differentiating two sides of (3.23)-(3.29) gives (3.22) for some C0 (Y ). �

We now establish our main results. Let {Xn} be an increasing sequence with
Xn > X∗ and limn→∞ Xn = +∞. Then the solutions

(Sc,Xn
, Sw,Xn

, Ic,Xn
, Ew,Xn

, Iw,Xn
, Id,Xn

, VXn
) ∈ ΓXn

satisfy Theorem 3.6 as well as (3.23)-(3.29). We can assume (if necessary, taking
a subsequence) they converge to some functions (Sc,∗, Sw,∗, Ic,∗, Ew,∗, Iw,∗, Id,∗, V∗)
as n → ∞ in the following topologies:

Ic,Xn
→ Ic,∗, Iw,Xn

→ Iw,∗ in C1
loc (R) ,

Sc,Xn
→ Sc,∗, Sw,Xn

→ Sw,∗, Ew,Xn
→ Ew,∗, Id,Xn

→ Id,∗, VXn
→ V∗ in C2

loc (R) .

Furthermore, (Sc,∗, Sw,∗, Ic,∗, Ew,∗, Iw,∗, Id,∗, V∗) satisfy system (2.1) and

p1 (x) ≤ Sc,∗ (x) ≤ Sc0, p2 (x) ≤ Sw,∗ (x) ≤ Sw0,

ψ1 (x) ≤ Ic,∗ (x) ≤ min {M0, φ1 (x)} ,
ψ2 (x) ≤ Ew,∗ (x) ≤ min {M0, φ2 (x)} , ψ3 (x) ≤ Iw,∗ (x) ≤ min {M0, φ3 (x)} ,
ψ4 (x) ≤ Id,∗ (x) ≤ min {Nd, φ4 (x)} , ψ5 (x) ≤ V∗ (x) ≤ min {M0, φ5 (x)}

for x ∈ R. In addition, since S′
c,Xn

(x) ≤ 0 and S′
w,Xn

(x) + E′
w,Xn

(x) ≤ 0 for

x ∈ [−Xn, Xn], we have S′
c,∗ (x) ≤ 0 and S′

w,∗ (x) + E′
w,∗ (x) ≤ 0 for x ∈ R.

Let Sc,∗ (+∞) = S∞
c and Sw,∗ (+∞) + Ew,∗ (+∞) = S∞

w . Then there must be
S∞
c < Sc0 and S∞

w < Sw0. In fact, if S∞
c = Sc0, it follows that Sc,∗ (x) = Sc0 for

all x ∈ R, and hence Ic,∗ (x) ≡ 0, a contradiction. Since ‖Sc,∗‖C2(R) < +∞, the

fluctuation lemma implies that S′
c,∗ (±∞) = 0. Hence, we have∫ +∞

−∞
[βcSc,∗ (x)V∗ (x) + αcSc,∗ (x) Ic,∗ (x)/Nc,∗ (x)] dx = (s+ vc) (Sc0 − S∞

c ) > 0.
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It follows that
∫∞
−∞ Ic,∗ (x) dx < ∞. By virtue of ‖Ic,∗‖C1(R) < +∞, we have

Ic,∗ (±∞) = 0, and it turns out that

(3.31)

∫ ∞

−∞
Ic,∗ (x) dx =

1

dic
(s+ vc) (Sc0 − S∞

c ) and Ic,∗ (x) ≤ Sc0 − S∞
c ∀x ∈ R.

Similarly, we can prove that∫∞
−∞ Ew,∗ (x) dx = 1

μw
(s+ vw) (Sw0 − S∞

w ) , Ew,∗ (±∞) = 0,(3.32) ∫∞
−∞ Iw,∗ (x) dx = s+vw

diw
(Sw0 − S∞

w ) ,(3.33)

Iw,∗ (±∞) = 0, Iw,∗ (x) ≤ s+vw
s (Sw0 − S∞

w ) ∀x ∈ R.(3.34)

In conclusion, we have established the following

Theorem 3.7. Assume that R0 = ρ
(
FV−1

)
> 1. Then for any s > s∗, where

s∗ is determined by Lemma 3.1, system (1.1) admits a nonnegative traveling wave
solution (Sc,∗(ξ), Sw,∗(ξ), Ic,∗(ξ), Ew,∗(ξ), Iw,∗(ξ), Id,∗(ξ), V∗(ξ)) with ξ = x+st sat-
isfying S′

c,∗(ξ) ≤ 0, Sc,∗(−∞) = Sc0, Sc,∗(+∞) = S∞
c < Sc0, S′

w,∗(ξ) ≤ 0,
Sw,∗(−∞) = Sw0, Sw,∗(+∞) = S∞

w < Sw0, Ic,∗(±∞) = 0, Id,∗(−∞) = 0,
supx∈R

Id,∗(x) < Nd, V∗(−∞) = 0, supx∈R
V∗(x) < +∞ and (3.31)-(3.34).

Note that if (S∞
c )

2
+(S∞

w )
2
> 0, then by the third and fourth equations of (2.1)

we have V∗(+∞) = 0, which yields V ′
∗(±∞) = 0 and V ′′

∗ (±∞) = 0. Hence, by the
last equation of (2.1) we have Id,∗(+∞) = 0. Unfortunately, we cannot rule out
the case where S∞

c = S∞
w = 0. In such a case, the traveling wave system can be

reduced to the following:{
(s+ vd) I

′
d = βd (Nd − Id)V + αd (Nd − Id) Id/Nd − γdId +DdI

′′
d ,

(s+ vv)V
′ = rdId − (dv + dn)V +DvV

′′.

Such a system can admit a positive equilibrium

Id =

βdrdNd

dv+dn
+ αd − γd

βdrdNd

dv+dn
+ αd

Nd

, V =
rd

dv + dn
Id.

Therefore, it is possible to have Id,∗(+∞) > 0 and V∗(+∞) > 0. It remains an
interesting problem for future studies when Id,∗(+∞) = V∗(+∞) = 0.

We also remark that s∗ is obtained from the stability analysis of the traveling
system in the region χ → −∞ and hence is expected to be the minimal wave speed.
As the system involves multiple bird species and a component for environmental
contamination (acting like a vector), detailed analysis about the minimal wave
speed, its connection with the propagation speed, and the stability of wave solutions
is not available at this stage.
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