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Abstract The purposes of this paper are twofold: to develop a rigorous approach to
analyze the threshold behaviors of nonlinear virus dynamics models with impulsive
drug effects and to examine the feasibility of virus clearance following the Manuals of
National AIDS Free Antiviral Treatment in China. An impulsive system of differential
equations is developed to describe the within-host virus dynamics of both wild-type
and drug-resistant strains when a combination of antiretroviral drugs is used to induce
instantaneous drug effects at a sequence of dosing times equally spaced while drug
concentrations decay exponentially after the dosing time. Threshold parameters are
derived using the basic reproduction number of periodic epidemic models, and are
used to depict virus clearance/persistence scenarios using the theory of asymptotic
periodic systems and the persistence theory of discrete dynamical systems. Numerical
simulations using model systems parametrized in terms of the antiretroviral therapy
recommended in the aforementioned Manuals illustrate the theoretical threshold virus
dynamics, and examine conditions under which the impulsive antiretroviral therapy
leads to treatment success. In particular, our results show that only the drug-resistant
strain can dominate (the first-line treatment program guided by the Manuals) or both
strains may be rapidly eliminated (the second-line treatment program), thus the work
indicates the importance of implementing the second-line treatment program as soon
as possible.
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1 Introduction

Current antiretroviral HIV/AIDS therapy involves the simultaneous administration of
two or more antiviral drugs, typically chosen from two major classes: reverse trans-
criptase inhibitors (RTIs) and protease inhibitors (PIs) (Smith and Wahl 2005; Wahl
and Nowak 2000). RTIs block the translation of viral RNA into DNA for incorpo-
ration into the host genome, thus preventing the infection of new cells. In contrast,
PIs interfere with essential steps of protein cleavage in new virions, thus preventing
infected cells from producing infectious viral particles (Janeway et al. 2001).

The Manuals of National AIDS Free Antiviral Treatment in China (http://
www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf) recommends the treat-
ment should be based on antiviral drugs currently available in the country. The first-
line treatment program includes three antiviral drugs: two kinds of Nucleoside reverse
transcriptase inhibitors (NRTIs) and one Non-nucleoside reverse transcriptase inhibi-
tors (NNRTs). Protease inhibitors, just in the beginning stages of production, are not
expected to be put into widespread use and are expected to be incorporated into the
second-line treatment program only after the appearance of drug resistance to the
first-line drugs (http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf). It
is important to develop appropriate mathematical models to evaluate if therapies under
either the first-line or the second-line program can lead to treatment success.

One challenge for such an evaluation arises due to the emergence of drug resistance.
As a result of high mutation and replication rates as well as the host selection pres-
sures, human immuno-deficiency virus type-1 (HIV-1) diversifies during the course
of infection (Fisher et al. 1988). Strains that are resistant to one or several antiviral
drugs have increased in frequency and patients can become infected with resistant
virus, contributing to ineffective antiretroviral therapies. Insights into HIV dynamics
in vivo have been obtained from mathematical modeling (see e.g., Nowak and May
2000; Perelson and Nelson 1999). Competition models have been formulated in the
context of the dynamics of virus-host interactions over the last two decades (Berry
and Nowak 1994; Frost and McLean 1994; Korthals Altes and Jansen 2000; McLean
and Nowak 1992; Rong et al. 2007; Smith and Wahl 2004, 2005; Wahl and Nowak
2000). These models have embedded the knowledge on the possible dynamics of
HIV-1 infection into relatively complex systems of non-linear differential equations,
and have been successfully used to investigate the implications of different hypotheses
for HIV dynamics through numerical simulations and some analytic studies. Relevant
to our study here are the works (Smith and Wahl 2004, 2005), where impulsive dif-
ferential equations are used to model the temporal evolution of drug concentrations
during HIV-1 therapy using both RTIs and PIs. These works classify different regimes
under the assumption of negligible, intermediate or high drug efficacy, and conclude
that decreasing the interval between doses is more effective than increasing the dose

123

http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf
http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf
http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf


Threshold virus dynamics with impulsive antiretroviral drug effects 625

to control viral load. Relevant to our study here is also the work (Lou et al. 2009)
where two therapy strategies (the drugs perfect adherence strategy and the drugs
therapy breaks strategy) are modeled and simulated for the post exposure prophylaxis
to HIV-1 exposure.

Our primary goal of this study is to investigate emergence of drug resistance during
the course of different treatment programs in the setting guided by the aforementioned
Manuals. A system of ordinary differential equations is employed to describe the virus
dynamics, while the antiviral drug effects are characterized as nonlinear functions of
drug concentrations in plasma. Assuming that the drug effects are instantaneous at
dosing time and drug concentrations decay exponentially after the dosing time, we
obtain impulsive differential equations (Lakshmikantham et al. 1989) to account for
the time-varying drug concentrations in plasma. Since the time-courses of drug con-
centrations is dynamic, the antiviral effects are time-varying, which makes the model a
non-autonomous system. Such a system is asymptotically periodic once the dose time
interval is fixed, and thus the well-developed theory of periodic epidemic systems
and the persistence theory of discrete dynamical systems are natural candidates of
technical tools, which we will utilize to develop a systematic approach to qualitatively
analyze the dynamical behaviors of such a complex impulsive differential system.

In mathematical epidemiology, periodic models are always formulated to account
for impacts of seasonal environmental drivers on host-pathogen interactions, such as
seasonal changes in host social behavior and contact rates, variation in encounters
with infection stages, annual pulses of host births and deaths, changes in host immune
defense systems and periodic vaccinations (Altizer et al. 2006; Grassly and Fraser
2006). Some general theoretical tools are developed to analyze these resultant peri-
odic models, see Hess (1991) and Zhao (2003) for examples. Two popular techniques
to address the disease dynamics in a periodic environment are the basic reproduction
ratio derivation and persistence analysis. The basic reproduction ratio is defined as the
expected number of secondary infections arising from a single individual during his or
her entire infectious period, in a population of susceptibles (Anderson and May 1991;
Diekmann and Heesterbeek 2000). This ratio may be derived by using the survival
function method or the next generation method (Heffernan et al. 2005). For an autono-
mous ordinary differential system, the next generation matrix (Diekmann et al. 2010;
van den Driessche and Watmough 2002) is an easy way to proceed. Recent developed
theories in the literature (Bacaër and Guernaoui 2006; Bacaër 2007; Wang and Zhao
2008) can be adapted to define the basic reproduction ratio for periodic models in
different scenarios, such as influenza pandemic (Bacaër and Ait Dads 2011), malaria
(Lou and Zhao 2010), tuberculosis (Liu et al. 2010), hantavirus infection (Wesley
et al. 2010) and so on. The persistence theory addresses the long-term survival of the
pathogen in a system, and is developed mathematically for autonomous systems (for
example Freedman and Moson 1990; Thieme 1993) and nonautonomous systems (see
for example Magal and Zhao 2005; Thieme 1999, 2000). A recent monograph (Smith
and Thieme 2011) by Smith and Thieme serves as a great review for the mathematical
theory of persistence. This theory usually implies that the disease remains endemic
when the basic reproduction ratio is greater than unity, see (Liu et al. 2010; Lou and
Zhao 2010; Nakata and Kuniya 2010; Samanta 2010; Zhang and Teng 2007) for its
applications to nonautonomous epidemic systems. Our study seems to be the first
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attempt in applying the persistence theory of periodic epidemic systems to addressing
the threshold virus dynamics with impulsive antiretroviral drug effects.

The rest of this paper is organized as follows. The next section presents the math-
ematical model and derives antiviral effects corresponding to the first-line and the
second-line treatment programs in China. The basic reproduction numbers and math-
ematical analysis are established in Sects. 3 and 4 for both cases where drug treatment
is either absent or used. Designed numerical simulations based on calculated effects
of different drug combinations are illustrated in Sect. 5. A discussion section on the
implications of the results completes the paper.

2 Model formulation

2.1 The model

Our model is a modified version of the virus dynamics model in Bonhoeffer et al.
(1997), McLean and Nowak (1992) and Perelson et al. (1996) with specific consider-
ation of the current HIV/AIDS treatment programs guided by the Manuals of National
AIDS Free Antiviral Treatment in China.

We study the temporal dynamics of both the wild-type (i.e., drug sensitive) strain
(Vw), and the drug-resistant strain (Vr ). We assume that, during the course of wild-type
viral replication, virus variants that are resistant to the drug arise at a certain rate, and
we ignore mutations from the drug-resistant strain back to the wild-type (Wodarz and
Lloyd 2004). We will consider the case where drugs may lose their intended effect to
some degree for the drug-resistant strain.

Let T denote the number of the susceptible cells, Iw and Ir be numbers of the cells
infected with the drug-sensitive virus and cells infected with the drug-resistant virus,
Vw and Vr represent the respective concentrations of wild and drug-resistant virus. The
virus dynamics is described by the following system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT (t)

dt
= λ − μT (t) − βw Hw

r t (t)T (t)Vw(t) − βr Hr
rt (t)T (t)Vr (t),

d Iw(t)

dt
= qβw Hw

r t (t)T (t)Vw(t) − αw Iw(t),

d Ir (t)

dt
= (1 − q)βw Hw

r t (t)T (t)Vw(t) + βr Hr
rt (t)T (t)Vr (t) − αr Ir (t),

dVw(t)

dt
= pnw Hw

p (t)αw Iw(t) − μwVw(t),

dVr (t)

dt
= (1 − p)nw Hw

p (t)αw Iw(t) + nr Hr
p(t)αr Ir (t) − μr Vr (t).

(1)

This model assumes that the susceptible cells are produced at a constant rate λ from
a pool of precursor cells, and die at the constant rate μ. Susceptible cells become
infected at rates βw Hw

r t (t)T (t)Vw(t) and βr Hr
rt (t)T (t)Vr (t) by sensitive and resistant

virus respectively, where βw and βr characterize the infectivity of drug-sensitive and
drug-resistant virus strains, Hw

r t (t) and Hr
rt (t) describe the effects of reverse transcrip-

tase inhibitors on the wild-type and drug-resistant strains. We assume that βw > βr , so
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the wild-type virus is more infectious than the drug-resistant strain in the absence of the
drug (Wahl and Nowak 2000). We assume that during the course of wild-type viral-cell
infection, virus variants that are resistant to the drug arise with probability (1 − q). In
this model, αw and αr denote the death rates of the two different kinds of the infected
cells respectively. Virions Vw and Vr are assumed to be cleared at ratesμw andμr by the
immune system, but are also assumed to be generated by the two types of the infected
cells at rates nwαw and nrαr , respectively, with nwαw ≥ nrαr , i.e., the drug-sensitive
virus is assumed to have higher replication rate (Korthals Altes and Jansen 2000). We
further assume that drug-resistant variants arise with probability (1 − p) during the
course of wild-type viral replication. The effects of protease inhibitors for wild-type
and drug-resistant strains are characterized by Hw

p (t) and Hr
p(t), respectively.

2.2 The general functions for drug-effects

Recall that drug effects are described by the time-varying parameters Hw
r t (t), Hw

p (t),
Hr

rt (t) and Hr
p(t). The subscript “r t” indicates reverse transcriptase inhibitors which

block the translation of viral RNA into DNA for incorporation into the host genome,
thus preventing the infection of new cells. In contrast, the subscript “p” denotes pro-
tease inhibitors which interfere with essential steps of protein cleavage in new virions,
thus preventing infected cells from producing infectious viral particles (Janeway et al.
2001). As noted earlier, the superscripts “w” and “r” reflect the wild-type virus and
drug-resistant virus, respectively.

We now describe these time varying parameters. Assuming that drugs are taken
at time tk and the effects of drugs are instantaneous. Therefore, we follow Smith and
Wahl (2005) and describe the evolution of drug concentration by impulsive differential
equations. At the dosing time t = tk , the drug concentration for a specific drug is

D(t+k ) = D(t−k ) + Di , (2)

where Di is the drug dosage used. Under the Chinese HIV/AIDS treatment program,
the drug D can be Zidovudine (AZT), Lamivudine (3TC), Nevirapine (NVP) or riton-
avir (RTV). For t �= tk , the drug concentration is governed by

d D(t)

dt
= −gD(t), t �= tk, (3)

where g is the rate at which the drug D is cleared.
In this paper, we suppose that the drugs are taken every τ period and no dose is

missed, reflecting regular dosing periods. Therefore, tk+1 − tk = τ for any k ≥ 1. In
this case, we can see that

D(t+k ) =
k∑

j=1

e−g( j−1)τ Di = Di 1 − e−gkτ

1 − e−gτ
.

Hence, limk→∞ D(t+k ) = Di/(1 − e−gτ ) and the drug concentration is asymptotic to
the following τ−periodic function:
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D̃(t) = e−gt (mod τ) Di

1 − e−gτ
,

where t (mod τ) gives the modulus after division (t/τ ).
We now describe the anti-viral effect coefficients (Hw

r t (t), Hw
p (t), Hr

rt (t) and
Hr

p(t)) corresponding to two different treatment programs in China.

2.2.1 First-line treatment program

According to the Manuals of National AIDS Free Antiviral Treatment in China (http://
www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf), the main first-line pro-
gram for adults and adolescents living with AIDS (except for women who take nevi-
rapine to prevent mother to child transmission) consists of:

AZ T + 3T C + N V P, twice a day.

Therefore, we have

Hw
r t (t) = H AZ T

rtw (t)H3T C
rtw (t)H N V P

rtw (t)

and

Hr
rt (t) = H AZ T

rtr (t)H3T C
rtr (t)H N V P

rtr (t),

where H AZ T
rtw (t), H3T C

rtw (t), H N V P
rtw (t), H AZ T

rtr (t), H3T C
rtr (t) and H N V P

rtr (t) are the time-
courses of the antiviral effect for the respective drug. Following Wahl and Nowak
(2000), we suppose that antiviral effects of drugs can be described by the following
Hill functions:

H AZ T
rtw (t) = (�w

AZ T )m AZ T

(�w
AZ T )m AZ T + (DAZ T (t))m AZ T

,

H AZ T
rtr (t) = (�r

AZ T )m AZ T

(�r
AZ T )m AZ T + (DAZ T (t))m AZ T

,

H3T C
rtw (t) = (�w

3T C )m3T C

(�w
3T C )m3T C + (D3T C (t))m3T C

,

H3T C
rtr (t) = (�r

3T C )m3T C

(�r
3T C )m3T C + (D3T C (t))m3T C

,

H N V P
rtw (t) = (�w

N V P )m N V P

(�w
N V P )m N V P + (DN V P (t))m N V P

,

H N V P
rtr (t) = (�r

N V P )m N V P

(�r
N V P )m N V P + (DN V P (t))m N V P

,

where DAZ T (t), D3T C (t) and DN V P (t) are the drug concentrations of the three drugs
in plasma. �w

AZ T ,�w
3T C and �w

N V P are the corresponding drug concentration which
inhibits drug-sensitive viral replication by 50%, and �r

AZ T ,�r
3T C and �r

N V P are the

123

http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf
http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf


Threshold virus dynamics with impulsive antiretroviral drug effects 629

corresponding drug concentration which inhibits drug-resistant viral replication by
50%. Parameter m with a suitable subindex for the specific drug is the slope parameter
which is mathematically analogous to the Hill coefficient, a measure of cooperativity
in the binding of multiple ligands to linked binding sites (Shen et al. 2008).

Note that Hw
p (t) = Hr

p(t) ≡ 1 in the first-line treatment program since protease
inhibitors are not included. We remark also that when only one drug is taken, the
concentration of other drugs is zero and the anti-viral effects can be computed in a
similar way.

2.2.2 Second-line treatment program

One of the recommended second-line treatment programs for adults and adolescents
living with AIDS is

T DF + 3T C + P I/RT V, once a day,

where TDF is the abbreviation of tenofovir disoproxil fumarate and PI/RTV is a
protease inhibitor plus ritonavir. This program is recommended for patients without
taking drug resistance testing. In areas where drug resistance testing is feasible, the
combination of drugs should be changed based on the test results.

For the aforementioned second-line program, we will use the following anti-viral
effects:

Hw
r t (t) = H T DF

rtw (t)H3T C
rtw (t), Hr

rt (t) = H T DF
rtr (t)H3T C

rtr (t),

Hw
p (t) = H RT V

pw (t), Hr
p(t) = H RT V

pr (t),

where

H RT V
pw (t) = (�w

RT V )m RT V

(�w
RT V )m RT V + (DRT V (t))m RT V

,

H RT V
pr (t) = (�r

RT V )m RT V

(�r
RT V )m RT V + (DRT V (t))m RT V

,

with terms self-explained, similar to what we used for the first-line treatment program.

3 Viral dynamics in the absence of treatment

In the absence of drugs, Hw
r t (t) = Hr

rt (t) = Hw
p (t) = Hr

p(t) ≡ 1 and system (1)
reduces to an autonomous differential system, i.e., model coefficients are constant.
The system has an infection free equilibrium, E0 = (λ/μ, 0, 0, 0, 0), where two viral
strains are absent. Following the “next-generation matrix” method (see Diekmann
et al. 1990; van den Driessche and Watmough 2002), we obtain the basic reproduction
number R0 = max{Rw

0 ,Rr
0} with Rw

0 = pqnwλβw/(μμw) and Rr
0 = nrλβr/(μμr ).

The numbers Rw
0 and Rr

0 are the basic reproduction numbers of the wild-type strain
and drug-resistant strain, respectively. In the next two subsections, we briefly discuss
how these reproduction numbers predict the viral dynamics.
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3.1 Equilibria

System (1) has three possible equilibria: (i). the disease-free equilibrium E0 =
(λ/μ, 0, 0, 0, 0), which always exists; (ii). The drug-resistance equilibrium

Er =
(

μr

nrβr
, 0,

λnrβr − μμr

nrαrβr
, 0,

λnrβr − μμr

βrμr

)

,

which exists if and only if Rr
0 > 1; and (iii). the coexistence equilibrium E∗ =

(T ∗, I ∗
w, I ∗

r , V ∗
w, V ∗

r ) with I ∗
w > 0 and V ∗

w > 0, which exists if and only if Rw
0 > 1

and Rw
0 > Rr

0. The coexistence equilibrium (T ∗, I ∗
w, I ∗

r , V ∗
w, V ∗

r ), if exists, is given
by

T ∗ = μw

nw pqβw

,

I ∗
w = (nw pqβwλ − μμw)(nw pqβwμr − nrβrμw)

nw pqαwβw�
,

I ∗
r = (nw pqβwλ − μμw)[(1 − p)βrμw + p(1 − q)βwμr ]

pqαrβw�
,

V ∗
w = (nw pqβwλ − μμw)(nw pqβwμr − nrβrμw)

qμwβw�
,

V ∗
r = (nw pqβwλ − μμw)[nr (1 − q) + nw(1 − p)q]

q�
,

where

� = nw(1 − p)μwβr + (nw pβwμr − nrβrμw).

Note that when there is no mutation (i.e., p = 1 and q = 1), the coexistence-equi-
librium reduces to the drug-sensitive equilibrium

Es =
(

μw

nwβw

,
nwλβw − μμw

nwαwβw

, 0,
nwλβw − μμw

βwμw

, 0

)

.

3.2 The stability of equilibria

Simple calculations show that E0 is locally stable if R0 < 1. On the other hand, if
Rr

0 > 1, then Er exists and E0 is unstable. The Jacobian matrix of system (1) at Er is

JEr =

⎡

⎢
⎢
⎢
⎢
⎣

−A 0 0 −B −μr
nr

0 −αw 0 qB 0
A − d 0 −αr (1 − q)B μr

nr

0 C 0 −μw 0
0 D nrαr 0 −μr

⎤

⎥
⎥
⎥
⎥
⎦

,
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where

A = λnrβr

μr
, B = βwμr

nrβr
, C = pnwαw and D = (1 − p)nwαw.

Hence, we have the characteristic polynomial for Er given by

[qBC−(ω + αw)(ω + μw)][ω3−μαrμr + A(ω+αr )(ω + μr ) + ω2(αr + μr )]=0.

It is easy to see that roots of qBC − (ω + αw)(ω + μw) = 0 are

ω1 = 1

2

⎛

⎝−αw − μw −
√

nrβr (αw − μw)2 + 4pqnwαwβwμr

nrβr

⎞

⎠ ,

ω2 = 1

2

⎛

⎝−αw − μw +
√

nrβr (αw − μw)2 + 4pqnwαwβwμr

nrβr

⎞

⎠ .

Moreover, the equation

ω3 − μαrμr + A(ω + αr )(ω + μr ) + ω2(αr + μr ) = 0 (4)

can be rewritten as

ω3 + (A + αr + μr )ω
2 + A(αr + μr )ω + (A − μ)αrμr = 0.

Since (A − μ)αrμr = αr (nrβrλ − dμr ) > 0 when R0 > 1 and

(A + αr + μr )[A(αr + μr )] − [(A − μ)αrμr ]
= dαrμ

3
r + n2

r β
2
r λ2(αr + μr ) + nrβrλμr (α

2
r + αrμr + μ2

r )

μ2
r

> 0,

we deduce that three roots of (4) are negative.
We also note that ω < 0 if and only if Rw

0 < Rr
0. Therefore we obtain, in the

absence of drug treatment, the following

Theorem 1 If R0 < 1, then the disease free equilibrium E0 is locally stable: nei-
ther the drug-resistance equilibrium Er nor the coexistence equilibrium E∗ exists.
If R0 > 1, then Er exists and E0 is unstable; furthermore, when Rw

0 < Rr
0, Er is

locally stable and E∗ does not exist; while Rw
0 > Rr

0, Er is unstable and E∗ exists.
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The Jacobian matrix of system (1) at the coexistence equilibrium E∗ (if exists) is
given by

JE∗ =

⎡

⎢
⎢
⎢
⎢
⎣

−μ − βwV ∗
w − βr V ∗

r 0 0 −βwT ∗ −βr T ∗
qβwV ∗

w −αw 0 qβwT ∗ 0
(1 − q)βwV ∗

w + βr V ∗
r 0 −αr (1 − q)βwT ∗ βr T ∗

0 nw pαw 0 −μw 0
0 nw(1 − p)αw nrαr 0 −μr

⎤

⎥
⎥
⎥
⎥
⎦

.

Since the diagonal elements of the matrix JE∗ are all negative, a simple argument using
Gers̆gorin theorem (Usmani 1987) shows that it is stable if it is diagonally dominant
in rows. On the other hand, the sum of elements in each row is given respectively by

g1 = −nw pqβwλ

μw

− (βw + βr )μw

nw pqβw

,

g2 = K1 − K2

nw pμw�
,

g3 = K3 − K4

nw pqβwμw�
,

g4 = nw pαw − μw,

g5 = nw(1 − p)αw + nrαr − μr ,

where

K1 = n3
w p3q2β2

wλμr + nwμ2
w(βr (nr p(μ + αw) + (1 − p)μw) + pβwμr ),

K2 = nrβrμ
3
w + n2

w pμw(nr pqβwβrλ + (1 − p)αwβrμw + p(μq + αw)βwμr ),

K3 = n3
w p2q2β2

wλ[(1 − p)βrμw + p(1 − q)βwμr ]
+nwμ2

w[nr pqαrβwβr + ((1 − q)βw + βr )((1 − p)βrμw + pβwμr )],
K4 = nrβr [βw(1 − q) + βr ]μ3

w

+n2
w pqβwμw[(1 − p)(μ + αr )βrμw + p(μ(1 − q) + αr )βwμr ].

Obviously g1 < 0. Let

M := max{K1 − K2,K3 − K4, nw pαw − μw, nw(1 − p)αw + nrαr − μr }.

Since � > 0, we conclude that the endemic equilibrium E∗, if exists, is locally stable
if M < 0.

It would be nice to show that E∗ is asymptotically stable (if exists) without the
condition M < 0. However, our focus in this paper is the virus dynamics of model
system (1) with certain treatments. As shall be shown, the model system with treatment
will be a non-autonomous system for which the analogue of E∗ is a periodic solution,
and determining the stability of such a periodic solution is quite difficult although
co-existence of two strains will be obtained using the persistence theory of discrete
dynamical systems.
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4 Dynamics with treatment

In the presence of drug treatment, the system has time-varying coefficients (anti-viral
effects). These coefficients are asymptotically periodic. In particular, D(t) is asymp-
totic to the following τ -periodic function

D̃(t) = e−gt (mod τ) Di

1 − e−gτ

in the sense that limt→∞(D(t) − D̃(t)) = 0. Therefore, the model (1) with treatment
is asymptotic to the following periodic system:

dT (t)

dt
= λ − μT (t) − βw H̃w

r t (t)T (t)Vw(t) − βr H̃r
rt (t)T (t)Vr (t),

d Iw(t)

dt
= qβw H̃w

r t (t)T (t)Vw(t) − αw Iw(t),

d Ir (t)

dt
= (1 − q)βw H̃w

r t (t)T (t)Vw(t) + βr H̃r
rt (t)T (t)Vr (t) − αr Ir (t),

dVw(t)

dt
= pnw H̃w

p (t)αw Iw(t) − μwVw(t),

dVr (t)

dt
= (1 − p)nw H̃w

p (t)αw Iw(t) + nr H̃r
p(t)αr Ir (t) − μr Vr (t), (5)

with τ -periodic functions H̃w
i (t) and H̃r

i (t) for i = r t, p. This model still has an
infection free state (λ/μ, 0, 0, 0, 0), and the so-called basic reproduction number
introduced in Bacaër and Guernaoui (2006) and Wang and Zhao (2008) can be cal-
culated and the persistence theory of non-autonomous semiflows (Zhao 2003) can be
applied to show this reproduction number provides the critical parameter for the virus
being extinct or persist.

4.1 The basic reproduction number

The linearization of system (5) at the infection free state (λ/μ, 0, 0, 0, 0) without the
equation for susceptible cells, which is decoupled, is

d Iw(t)

dt
= qβw

λ

μ
H̃w

r t (t)Vw(t) − αw Iw(t),

dVw(t)

dt
= pnw H̃w

p (t)αw Iw(t) − μwVw(t),

d Ir (t)

dt
= (1 − q)

λ

μ
βw H̃w

r t (t)Vw(t) + βr
λ

μ
H̃r

rt (t)Vr (t) − αr Ir (t),

dVr (t)

dt
= (1 − p)nw H̃w

p (t)αw Iw(t) + nr H̃r
p(t)αr Ir (t) − μr Vr (t). (6)
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To calculate the basic reproduction number, we denote

F(t) =

⎛

⎜
⎜
⎝

0 qβw H̃w
r t (t)

λ
μ

0 0
0 0 0 0
0 (1 − q)βw H̃w

r t (t)
λ
μ

0 βr H̃r
rt (t)

λ
μ

0 0 0 0

⎞

⎟
⎟
⎠ ,

and

J (t) =

⎛

⎜
⎜
⎝

αw 0 0 0
−pnw H̃w

p (t)αw μw 0 0
0 0 αr 0

−(1 − p)nw H̃w
p (t)αw 0 −nr H̃r

p(t)αr μr

⎞

⎟
⎟
⎠ .

So equations (6) can be rewritten as

dx(t)

dt
= (F(t) − J (t))x(t).

Let 	A(τ ) and ρ(	A(τ )) be the monodromy matrix of the linear τ -periodic system
z′(t) = A(t)z(t) and the spectral radius of 	A(τ ), respectively. Assume Y (t, s), t ≥ s,
is the evolution operator of the linear periodic system y′(t) = −J (t)y(t). That is, for
each s ∈ R, the 4 × 4 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −J (t)Y (t, s) ∀t ≥ s, Y (s, s) = I,

where I is the 4 × 4 identity matrix.
Let Cτ be the Banach space of τ -periodic functions from R to R

4, equipped with
the maximum norm. Suppose φ ∈ Cτ is the initial distribution of infectious cells and
the virus. Using the framework (Wang and Zhao 2008), we define the next infection
operator L : Cτ → Cτ by

(Lφ)(t) =
∞∫

0

Y (t, t − a)F(t − a)φ(t − a)da ∀t ∈ R, φ ∈ Cτ .

The basic reproduction number is then defined as the spectral radius of the next infec-
tion operator, that is R̃0 := ρ(L), the spectral radius of L . We will use the following
result (Wang and Zhao 2008, Theorem 2.2) and we refer to Wang and Zhao (2008) for
early versions of this result and relevant references:

Lemma 1 The following statements are valid:

(i). R̃0 = 1 if and only if ρ(	F−J (τ )) = 1;
(ii). R̃0 > 1 if and only if ρ(	F−J (τ )) > 1;

(iii). R̃0 < 1 if and only if ρ(	F−J (τ )) < 1;
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(iv). The infection free state (λ/μ, 0, 0, 0, 0) is locally asymptotically stable (unsta-
ble) if R̃0 < 1 (resp. R̃0 > 1).

Similarly, if we denote

Fw(t) =
(

0 qβw H̃w
r t (t)

λ
μ

0 0

)

, Jw(t) =
(

αw 0

−pnw H̃w
p (t)αw μw

)

,

we can define the basic reproduction number for the drug-sensitive virus R̃w
0 :=

ρ(Lw), the spectral radius of the operator Lw, by

(Lwφ)(t) =
∞∫

0

Yw(t, t − a)Fw(t − a)φ(t − a)da, ∀t ∈ R,

where Yw(t, s), t ≥ s, is the evolution operator of the linear periodic system y′(t) =
−Jw(t)y(t). Moreover, if we set

Fr (t) =
(

0 βr H̃r
rt (t)

λ
μ

0 0

)

, Jr (t) =
(

αr 0
−nr H̃r

p(t)αr μr

)

,

we can then define the basic reproduction number for the drug-resistant virus R̃r
0 :=

ρ(Lr ), the spectral radius of the operator Lr . This is given by

(Lrφ)(t) =
∞∫

0

Yr (t, t − a)Fr (t − a)φ(t − a)da ∀t ∈ R,

where Yr (t, s), t ≥ s, is the evolution operator of the linear periodic system y′(t) =
−Jr (t)y(t).

Notice that

F(t) − J (t) =

⎛

⎜
⎜
⎝

Fw(t) − Jw(t)
0 0
0 0

0 (1 − q)βw H̃w
r t (t)

λ
μ

(1 − p)nw H̃w
p (t)αw 0

Fr (t) − Jr (t)

⎞

⎟
⎟
⎠ .

According to Theorem 1, R̃0 > 1 if and only if R̃w
0 > 1 or R̃r

0 > 1, and R̃0 < 1 if and
only if R̃w

0 < 1 and R̃r
0 < 1. We can also further observe that R̃0 = max{R̃w

0 , R̃r
0}

from the computation algorithm (Wang and Zhao 2008, Theorem 2.1).

4.2 Treatment success

The following result indicates that a properly designed drug therapy can decrease the
basic reproduction number to below the unity and clear out the virus. This is consistent
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with findings of other modeling studies such as Perelson et al. (1997a), which suggest
that the level of virus can be reduced to one clinically undetectable.

Theorem 2 If the basic reproduction number R̃0 < 1, the infection free state
(λ/μ, 0, 0, 0, 0) of system (5) is globally asymptotically stable.

Proof By Lemma 1, we know that if R̃0 < 1, then the infection free state
(λ/μ, 0, 0, 0, 0) is locally asymptotically stable. It is sufficient to prove that it is
also globally attractive in this case. Since R̃0 < 1, we obtain ρ(	F−J (τ )) < 1.
Hence we can choose a small number δ > 0 such that ρ(	G(δ)(τ )) < 1, where

G(δ)(t) =

⎛

⎜
⎜
⎜
⎜
⎝

−αw qβw
˜Hw

r t (t)(
λ
μ + δ) 0 δ

pnw
˜Hw

p (t)αw −μw 0 0

0 (1 − q)βw
˜Hw

r t (t)(
λ
μ + δ) −αr βr H̃r

r t (t)(
λ
μ + δ)

(1 − p)nw
˜Hw

p (t)αw 0 nr H̃r
p(t)αr −μr

⎞

⎟
⎟
⎟
⎟
⎠

.

Since there exists some N1 such that T (t) ≤ λ/μ + δ for all t ≥ N1τ , the following
comparison holds for t ≥ N1τ :

d Iw(t)

dt
≤ qβw H̃w

r t (t)(λ/μ + δ)Vw(t) + δVr (t) − αw Iw(t),

dVw(t)

dt
= pnw H̃w

p (t)αw Iw(t) − μwVw(t),

d Ir (t)

dt
≤ (1 − q)βw H̃w

r t (t)(λ/μ + δ)Vw(t) + βr H̃r
rt (t)(λ/μ + δ)Vr (t) − αr Ir (t),

dVr (t)

dt
= (1 − p)nw H̃w

p (t)αw Iw(t) + nr H̃r
p(t)αr Ir (t) − μr Vr (t).

It then follows from Zhang and Zhao (2007a, Lemma 2.1) that there exists a positive

τ -periodic function h(t) such that e
1
τ

ln(ρ(	G(δ)(τ )))t h(t) is a solution of the the follow-
ing system

d Iw(t)

dt
= qβw H̃w

r t (t)(λ/μ + δ)Vw(t) + δVr (t) − αw Iw(t),

dVw(t)

dt
= pnw H̃w

p (t)αw Iw(t) − μwVw(t),

d Ir (t)

dt
= (1 − q)βw H̃w

r t (t)(λ/μ + δ)Vw(t) + βr H̃r
rt (t)(λ/μ + δ)Vr (t) − αr Ir (t),

dVr (t)

dt
= (1 − p)nw H̃w

p (t)αw Iw(t) + nr H̃r
p(t)αr Ir (t) − μr Vr (t).

Since ρ(	G(δ)(τ )) < 1, we have e
1
τ

ln(ρ(	G(δ)(τ )))t h(t) → 0 as t → ∞. For any
nonnegative initial value x0, there is a sufficiently large M such that

(Iw(N1τ, x0), Vw(N1τ, x0), Ir (N1τ, x0), Vr (N1τ, x0)) ≤ Mh(0).
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Since equations for infectious cells and the virus can be controlled by the compari-
son system, applying the comparison principle (see, e.g., Smith and Waltman 1995,
Theorem B. 1), we obtain that

(Iw(t, x0), Vw(t, x0), Ir (t, x0), Vr (t, x0)) ≤ Me
1
τ

ln(ρ(	G(δ)(τ )))(t−N1τ)h(t)

holds for all t ≥ N1τ . Therefore,

lim
t→∞(Iw(t, x0), Vw(t, x0), Ir (t, x0), Vr (t, x0)) = 0, ∀x0 ∈ R

5+.

By the theory of asymptotically autonomous semiflows (see Thieme 1992, Corollary
4.3), we have T (t, x0) → λ/d as t → ∞. Thus, the infection free equilibrium is
globally attractive.

Using similar arguments, we can show that when the basic reproduction number for
drug sensitive virus R̃w

0 < 1, then limt→∞(Iw(t), Vw(t)) = 0. That is, the numbers
of cells infected with wild-type virus and the wild-type strain will be eventually very
small. In this case, the wild-type virus is suppressed by the treatment program.

4.3 Treatment failure

We now show at least the drug-resistant virus remains persistent under a treatment
program which is not sufficiently efficient to reduce the basic reproduction number to
below unity. We start with the case where the reproduction number for the drug-resis-
tant virus exceeds unity.

Theorem 3 If the basic reproduction number for the drug-resistant virus R̃r
0 > 1, then

there exists an ε > 0 such that every solution (T (t, x0), Iw(t, x0), Ir (t, x0), Vw(t, x0),

Vr (t, x0)) of system (5) with initial value x0 = (T 0, I 0
w, I 0

r , V 0
w, V 0

r ) so that x0
i > 0

for some i ∈ {2, 3, 4, 5} satisfies

lim inf
t→∞ Ir (t, x0) > ε and lim inf

t→∞ Vr (t, x0) > ε,

and system (5) admits at least one nontrivial periodic solution.

Proof Let P : R
5+ → R

5+ be the Poincaré map associated with system (5), that is

P(x0) = (T (τ, x0), Iw(τ, x0), Ir (τ, x0), Vw(τ, x0), Vr (τ, x0)), ∀x0 ∈ R
5+.

Define X = R
5+, X0 = {x ∈ R

5+ : xi > 0, i = 3, 5} and ∂ X0 := X\X0 = {x ∈
R

5+ : x3 = 0 or x5 = 0}. Clearly, ∂ X0 is relatively closed in X. We first prove that
P is uniformly persistent with respect to (X0, ∂ X0). It is easy to see that both X
and X0 are positively invariant, and system (5) is point dissipative. Set M∂ = {x ∈
R

5+ : Pm(x) ∈ ∂ X0,∀m > 0}. Then M∂ = {(x1, 0, 0, 0, 0) ∈ R
+
5 : x1 ≥ 0}. Since

R̃r
0 > 1, we have ρ(	Fr −Jr (τ )) > 1. Hence, there exists a small δ1 > 0 such that
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ρ(	Fr (δ1)−Jr (τ )) > 1, where Fr (δ1) is generated by replacing λ/d with λ/d − δ1 in
the matrix Fr (t). Since

lim
x0→( λ

d ,0,0,0,0)

(T (t, x0), Iw(t, x0), Ir (t, x0), Vw(t, x0), Vr (t, x0)) =
(

λ

μ
, 0, 0, 0, 0

)

uniformly for t ∈ [0, τ ], there exists δ2 > 0 such that

‖(T (t, y0), Iw(t, y0), Ir (t, y0), Vw(t, y0), Vr (t, y0)) −
(

λ

μ
, 0, 0, 0, 0

)

‖ ≤ δ1,

∀t ∈ [0, τ ], ‖y0 − (λ/μ, 0, 0, 0, 0)‖ ≤ δ2. We now claim that {(λ/μ, 0, 0, 0, 0)} is a
uniform weak repeller for X0. Namely,

Claim lim supn→∞ ‖Pn(x0) − (λ/μ, 0, 0, 0, 0)‖ ≥ δ2
2 , for all x0 ∈ X0. Suppose, by

contraction, that lim supn→∞ ‖Pn(y0) − (λ/μ, 0, 0, 0, 0)‖ ≤ δ2
2 for some y0 ∈ X0.

Then there exists a N2 > 0 such that

‖(T (t, y0), Iw(t, y0), Ir (t, y0), Vw(t, y0), Vr (t, y0)) − (λ/μ, 0, 0, 0, 0)‖ ≤ δ1

for all t ≥ N2τ . In this case, the following inequalities hold for t ≥ N2τ :

d Ir (t)

dt
≥ βr H̃r

rt (t)(λ/μ − δ1)Vr (t) − αr Ir (t),

dVr (t)

dt
≥ nr H̃r

p(t)αr Ir (t) − μr Vr (t).

For the comparison system

d Ir (t)

dt
= βr H̃r

rt (t)(λ/μ − δ1)Vr (t) − αr Ir (t),

dVr (t)

dt
= nr H̃r

p(t)αr Ir (t) − μr Vr (t),
(7)

since ρ(	Fr (δ1)−Jr (τ )) > 1, it then follows from Zhang and Zhao (2007a, Lemma 2.1)

that there exists a positive τ -periodic function h̃(t) such that e
1
τ

ln(ρ(	Fr (δ1)−Jr (τ )))t h̃(t)

is a solution of system (7). Since ρ(	Fr (δ1)−Jr (τ )) > 1, e
1
τ

ln(ρ(	Fr (δ1)−Jr (τ )))t h̃(t) →
∞ as t → ∞. For any nonnegative initial value y0 with y0

3 > 0 or y0
5 > 0, there is

a sufficiently small M̃ such that (Ir (N2τ, y0), Vr (N2τ, y0)) ≥ M̃h̃(0). Applying the
comparison principle (see, e.g., Smith and Waltman 1995, Theorem B. 1), we have

(Ir (t, y0), Vr (t, y0)) ≥ M̃e
1
τ

ln(ρ(	Fr (δ)−Jr (τ )))(t−N2τ)h̃(t), ∀t ≥ N2τ.

Therefore, Ir (t, y0) → ∞ and Vr (t, y0) → ∞ as t → ∞. Thus we get a contradiction
to the boundedness of solutions, and this proves the claim.
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Note that every orbit in M∂ approaches to {(λ/μ, 0, 0, 0, 0)}, and {(λ/μ, 0, 0, 0, 0)}
is acyclic in M∂ . It follows from Zhao (2003, Theorem 1.3.1) that P is uniformly per-
sistent with respect to (X0, ∂ X0). Hence the solutions of system (5) are uniformly per-
sistent with respect to (X0, ∂ X0) by Zhao (2003, Theorem 3.1.1). If x0

i > 0 for some
i ∈ {2, 3, 4, 5}, we then easily see that Ir (t, x0) > 0 and Vr (t, x0) > 0,∀t > 0. Hence,
there exists an ε > 0 such that any solution x(t, x0) of system (5) with initial value
x0 ∈ {x ∈ R

5+ : xi �= 0 for some i ∈ {2, 3, 4, 5}} satisfies lim inf t→∞ Ir (t, x0) > ε

and lim inf t→∞ Vr (t, x0) > ε. Furthermore, Zhao (2003, Theorem 1.3.6) implies
that P has a fixed point x∗ ∈ X0. Thus, (T (t, x∗), Iw(t, x∗), Ir (t, x∗), Vw(t, x∗), Vr

(t, x∗)), the solution through x∗, is a nontrivial periodic solution with Ir (t, x∗) > 0
and Vr (t, x∗) > 0.

The proof of Theorem 3 also shows that if the basic reproduction number for the
drug-resistant virus R̃r

0 > 1, then there exists a drug-resistance periodic orbit in the
form of Ẽr (t) = (T (t), 0, Ir (t), 0, Vr (t)).

Notice that when the basic reproduction number for the wild-type virus is less than
one, the wild-type strain is suppressed. However, this is not the case when the basic
reproduction number of the drug-resistant virus is less than one. Our next result shows
that R̃w

0 > 1 implies the persistence of both wide-type and drug-resistance strains
regardless of the size for R̃r

0.

Theorem 4 If the basic reproduction number for the wild-type virus R̃w
0 > 1 and

that for the drug-resistant virus R̃r
0 < 1, then there exists an η > 0 such that every

solution (T (t, x0), Iw(t, x0), Ir (t, x0), Vw(t, x0), Vr (t, x0)) of system (5) with initial
value x0 = (T 0, I 0

w, I 0
r , V 0

w, V 0
r ) and x0

i > 0 for i = 2, 4 satisfies

lim inf
t→∞ (Iw(t, x0), Ir (t, x0), Vw(t, x0), Vr (t, x0)) > (η, η, η, η),

and system (5) admits at least one positive periodic solution.

Proof Let P : R
5+ → R

5+ be the Poincaré map associated with system (5), that is

P(x0) = (T (τ, x0), Iw(τ, x0), Ir (τ, x0), Vw(τ, x0), Vr (τ, x0)), ∀x0 ∈ R
5+.

Define X = R
5+, U0 = {x ∈ R

5+ : xi > 0, i = 2, 4} and ∂U0 := X\U0 = {x ∈
R

5+ : x2 = 0 or x4 = 0}. Set M̃∂ = {x ∈ R
5+ : Pm(x) ∈ ∂U0,∀m > 0}. We claim

that M̃∂ = {(x1, 0, x3, 0, x5) ∈ R
+
5 : xi ≥ 0, i = 1, 3, 5}. In fact, if x0 ∈ X and

x0
i > 0 for i = 2 or i = 4, we have Iw(t, x0) > 0 and Vw(t, x0) > 0 for any t > 0.

Thus (T (t, x0), Iw(t, x0), Ir (t, x0), Vw(t, x0), Vr (t, x0)) /∈ U0 for any t > 0, and
M̃∂ = {(x1, 0, x3, 0, x5) ∈ R

+
5 : xi ≥ 0, i = 1, 3, 5}. Hence, the solution through

y0 ∈ M̃∂ satisfies the following system

dT̃ (t)

dt
= λ − μT̃ (t) − βr H̃r

rt (t)T̃ (t)Ṽr (t),

d Ĩr (t)

dt
= βr H̃r

rt (t)T̃ (t)Ṽr (t) − αr Ĩr (t),
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dṼr (t)

dt
= nr H̃r

p(t)αr Ĩr (t) − μr Ṽr (t). (8)

Since R̃r
0 < 1, by the same argument as that of Theorem 2, we conclude that

(T̃ (t, y0), Ĩr (t, y0), Ṽr (t, y0)) → (λ/μ, 0, 0)

as t → ∞, where (T̃ (t, y0), Ĩr (t, y0), Ṽr (t, y0)) is the solution of system (8) through
y0. Hence, every orbit in M̃∂ approaches {(λ/μ, 0, 0, 0, 0)}. Using similar arguments
to that in the proof of Theorem 3, we can see that there exists an η1 > 0 such that any
solution (T (t, x0), Iw(t, x0), Ir (t, x0), Vw(t, x0), Vr (t, x0)) of system (5) with initial
value x0 ∈ {x ∈ R

5+ : xr �= 0 or x4 �= 0} satisfies

lim inf
t→∞ Iw(t, x0) > η1 and lim inf

t→∞ Vw(t, x0) > η1.

Furthermore, Zhao (2003, Theorem 1.3.6) implies that P has a fixed point
x̃∗ ∈ X0. Thus, the solution through x̃∗ is a positive periodic solution. If
lim inf t→∞ Iw(t, x0) > η1 and lim inf t→∞ Vw(t, x0) > η1, using a comparison prin-
ciple, we can show that there exists an η2 > 0 such that lim inf t→∞ Ir (t, x0) > η2
and lim inf t→∞ Vr (t, x0) > η2,∀x0 ∈ U0. Choosing η = min{η1, η2}, we get the
result.

If the basic reproduction number for wild-type virus R̃w
0 > 1 and that for the

drug-resistant virus R̃r
0 < 1, there is a coexistence periodic orbit in the form of

Ẽ∗(t) = (T ∗(t), I ∗
w(t), I ∗

r (t), V ∗
w(t), V ∗

r (t)).

4.4 Asymptotic periodicity

The original model is asymptotically periodic and convergent to the periodic system
(5). So what we have obtained for system (5) remains true for model (1) using the the-
ory of asymptotically periodic systems, see Zhang and Zhao (2007b) and Zhao (2003).
In particular, using Zhao (2003, Lemma 1.2.2 and Theorem 1.2.1) and as discussed in
Zhang and Zhao (2007b, Sect. 5), we obtain the following

Theorem 5 The following statements hold for the model (1):

(i). If the basic reproduction number R̃0 < 1, the infection free state (λ/μ, 0, 0,

0, 0) is globally attractive;
(ii). If the basic reproduction number for the wild-type virus R̃w

0 < 1, then
limt→∞(Iw(t), Vw(t)) = 0;

(iii). If the basic reproduction number for the wild-type virus R̃w
0 > 1 and that

for the drug-resistant virus R̃r
0 < 1, then there exists an η > 0 such that

lim inf t→∞(Iw(t), Ir (t), Vw(t), Vr (t)) > (η, η, η, η) for any initial value x0

with x0
i > 0 for i = 2, 4;

(iv). If the basic reproduction number for the drug-resistant virus R̃r
0 > 1, then

there exists an ε > 0 such that lim inf t→∞ Ir (t) > ε and lim inf t→∞ Vr (t) >

ε for any initial value x0 with x0
i > 0 for some i ∈ {2, 3, 4, 5}.
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Note that if the drug-sensitive virus under a therapy exists, the drug-resistant virus
will remain persistent (case (iii)). However, the drug-resistant strain can also persist if

the sensitive strain is cleared through treatment (case (iv) with R̃r
0 > 1 and R̃w

0 < 1).

5 Numerical simulations

In this section, we present some numerical simulations to illustrate likely scenarios in
a patient according to the free-treatment policy currently being implemented in China.
We suppose perfect adherence, and drugs are taken at a fixed interval τ . Currently,
three different combinations for the first-line and the second-line treatment programs
are used:

(C1) Only a single of the three aforementioned drugs is used;
(C2) Two of the three aforementioned drugs are used;
(C3) Triple drugs are used.

To conduct numerical simulations, we use parameters close to the reality as much as
possible. We first estimate relevant model parameters of antiviral effects.

5.1 Pharmacokinetics

We first estimate the value of parameter g, the clearance rate for a specific drug being
used or is expected to be accessible in the near future in China. For the first-line
treatment program, we fix the dosing interval τ = 0.5 day so the drugs are taken
twice a day. As an example, we estimate the value of g3T C , the rate at which drug
Heptodin (i.e. Lamivadin, 3TC) is cleared in vivo. Heptodin may be a good drug for
gastrointestinal absorption: under normal circumstances, adult bioavailability after
oral administration of Lamivudine is 80–85%. After oral administration, the aver-
age peak time (Tmax ) to arrive the maximum plasma concentration (C SS

max ) is about 1
hour. The valley peak concentration at steady state is C SS

max = 1.1–1.5 µg/ml and the
trough value is C SS

trough = 0.015–0.020 µg/ml. The drug concentration D(t) therefore
eventually satisfies

D3T C e−g3T C τ

1 − e−g3T C τ
≤ D(t) ≤ D3T C

1 − e−g3T C τ
,

which has D3T C

1−r̄ and D3T C r̄
1−r̄ as maximal and minimal values, where D3T C is the dosage

of drug 3TC and r̄ = e−g3T C τ . Choosing D3T C

1−r̄ = 1.25 and D3T C r̄
1−r̄ = 0.0175, we get

r̄ = e−g3T C τ = 0.0175
1.25 , which implies that g3T C ≈ 4.27 and D3T C ≈ 1.23. In our

simulations, we choose g3T C = 4 and D3T C = 1.5 respectively (Table 1). Similarly,
we can estimate parameter values for other drugs, as shown in Table 1.

Given these parameters, we can describe the time-courses of drug concentrations
in plasma and the antiviral effects (we use 1 − H j

i to denote the effects of drugs on
reducing infection or/and transition, with i ∈ {r t, p} and j ∈ {w, r}), as shown in
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Table 1 Parameters of pharmacokinetics

Parameters Meanings Value Reference

�w
3T C Concentration of drug 3TC which

inhibits drug-sensitive viral
replication by 50%

0.0197 µg/ml Wahl and Nowak (2000)

�r
3T C Concentration of drug 3TC which

inhibits drug-resistant viral
replication by 50%

200 × 0.0197 µg/ml Wahl and Nowak (2000)

�w
AZ T Concentration of drug AZT which

inhibits drug-sensitive viral
replication by 50%

0.0234 µg/ml Wahl and Nowak (2000)

�r
AZ T Concentration of drug AZT which

inhibits drug-resistant viral
replication by 50%

100 × 0.0234 µg/ml Wahl and Nowak (2000)

�w
N V P Concentration of drug NVP which

inhibits drug-sensitive viral
replication by 50%

0.012 µg/ml http://www.yp900.com/Drug-220179-
A90218782025C48E09BA0436CF30D0.htm

�r
N V P Concentration of drug NVP which

inhibits drug-resistant viral
replication by 50%

5 × 0.012 µg/ml http://www.yp900.com/Drug-220179-
A90218782025C48E09BA0436CF30D0.htm

�w
RT V Concentration of drug RTV which

inhibits drug-sensitive viral
replication by 50%

0.0159 µg/ml Wahl and Nowak (2000)

�r
RT V Concentration of drug RTV which

inhibits drug-resistant viral
replication by 50%

10 × 0.0159 µg/ml Wahl and Nowak (2000)

�w
T DF Concentration of drug TDF which

inhibits drug-resistant viral
replication by 50%

0.04 µg/ml http://www.giead.com/pdf/truvada_pi.pdf

�r
T DF Concentration of drug TDF which

inhibits drug-resistant viral
replication by 50%

3 × 0.04 µg/ml http://www.gilead.com/pdf/truvada_pi.pdf

g3T C Rate at which drug 3TC is
cleared in vivo

4 day−1 http://www.gzbaozhilin.com/Html/livergall/
liver/1260.html

g AZ T Rate at which drug AZT is
cleared in vivo

16 day−1 http://baike.baidu.com/view/2260123.htm

gN V P Rate at which drug NVP is
cleared in vivo

10 day−1 http://www.yp900.com/Drug-220179-
A90218782025C48E09BA0436CF30D0.htm

gT DF Rate at which drug TDF is
cleared in vivo

1.5 day−1 http://www.gilead.com/pdf/truvada_pi.pdf

gRT V Rate at which drug RTV is
cleared in vivo

2 day−1 Dai and Zhu (2005)

D3T C dosage of drug 3TC 1.5 µM http://www.gzbaozhilin.com/Html/livergall/
liver/1260.html

D AZ T Dosage of drug AZT 2 µM http://baike.baidu.com/view/2260123.htm

DN V P Dosage of drug NVP 2 µM http://www.yp900.com/Drug-220179-
A90218782025C48E09BA0436CF30D0.htm

DT DF Dosage of drug TDF 0.2 µM http://www.gilead.com/pdf/
truvada_ pi.pdf

DRT V Dosage of drug RTV 5 µM Dai and Zhu (2005)

m3T C Slope parameter of 3TC 1.15 Shen et al. (2008)

m AZ T Slope parameter of AZT 0.85 Shen et al. (2008)

m N V P Slope parameter of NVP 1.55 Shen et al. (2008)
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Table 1 continued

Parameters Meanings Value Reference

mT DF Slope parameter of TDF 0.97 Shen et al. (2008)

m RT V Slope parameter of RTV 2.5 Estimated

τ1 Dosing interval of the first-line drugs 0.5 day

τ2 Dosing interval of the second-line drugs 1 day

Di and gi are calculated from the literature mentioned

Fig. 1. Figure 1a gives an example of the time-course of a single-drug concentration
(lamivudine, 3TC) in plasma, Fig. 1b plots the time courses of anti-viral effects on
both drug-sensitive and drug-resistant strains after a patient takes the drug (3TC). This
illustrates that the anti-viral effect of the drug is a periodic function with the period
τ = 0.5 day. Figure 1c shows dose effect responses of Lamivudine (3TC) to the drug
sensitive strain, partially resistant strain and highly resistant virus. We observe that
the anti-viral effect can reduce the virus to the near zero level with a rather low dose
of 3TC for the drug-sensitive virus, implying that the drug can completely inhibit the
sensitive-strain infection. However, for the highly resistant virus, this effect is insig-
nificant even with a very high dose of 3TC (1− H ≤ 0.5 when the drug concentration
reaches 10 µM).

5.2 Simulations

According to the Manuals of National AIDS Free Antiviral Treatment in China (http://
www.chinaids.org.cn/n16/n1657/n32880.files/n32881.pdf), a patient starts to receive
the treatment when the CD4+ T cells is about 300 mm−3. We thus suppose T (0) =
300 mm−3. Other initial values and model parameters in our simulations are shown
in Tables 1, 2 and 3.

We now present some explanations for parameter values listed in Table 3. The
recruitment rate of CD4+ cells, λ, was chosen as 10 in Perelson et al. (1993) and 36
in Perelson (1989). Here, we suppose λ = 20. The parameter βw can have values
ranging from 2.4 × 10−5 to 2.4 (Kirschner and Webb 1997) and different literatures
supported different values. Here we set βw = 2 × 10−4. For βr , we choose a smaller
value than that of βw since drug-resistant strains normally have a lower infection rate
compared with the drug-sensitive strain. The value of nw varies in different studies,
being 10 in Kirschner and Webb (1997), 210 in Smith and Wahl (2005) and ranging
from 500 to 5000 in Perelson et al. (1993). For illustration, we set nw = 150. We also
suppose nr = 120, so that the drug-resistant strain can reproduce smaller numbers of
free virus. For αw and αr , they were chosen as 0.5 and 0.2 in Wahl and Nowak (2000)
and Wodarz and Lloyd (2004) respectively. Here we suppose αw = αr = 0.24.

Using our formulas for the two basic reproduction numbers in the absence of treat-
ment, we obtain that Rw

0 = 9.98 and Rr
0 = 6. Hence the basic reproduction number

R0 = 9.98. Since Rw
0 > Rr

0, both of the drug-sensitive virus and drug-resistant virus
will persist according to Theorem 1.
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Fig. 1 Time-courses of drug concentration, antiviral efficacy and dose effect. We take lamivudine (3TC)
as an example, with g3T C = 4/day and D3T C = 1.5 µM. a The drug concentration time-course in plasma.
b The time-course of the drug efficacy on reducing infection for both drug-sensitive and drug-resistant
strains. c Dose effects of Lamivudine (3TC) for the drug-sensitive and drug-resistant (partially/highly) viral
strains. Parameter values can be found in Tables 1 and 3. The parameter �w

3T C for the drug-sensitive virus
is 0.0197 µM; �r

3T C is 200 times (for partially resistant strains) or 500 times (for highly resistant strains)
greater (that is 3.94 or 9.85 µM), respectively

Figure 2 compares the time course of infection in the absence of therapy with the
time course of infection with a single-drug treatment (3TC). In the absence of ther-
apy, the drug-sensitive strain dominates (solid lines). However, this is changed with a
single-drug treatment (3TC). In comparison with the situation without a drug therapy,
the proportion of infected cells decreases substantially with a single-drug treatment
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Table 2 Variables and initial values

Variable Meaning Initial value

T Concentration of uninfected CD4+ T-cells 300 mm−3

Iw Concentration of CD4+ T-cells infected by drug-sensitive virus 1 mm−3

Ir Concentration of CD4+ T-cells infected by the drug-resistant virus 0.001 mm−3

Vw Concentration of the free drug-sensitive virus 1,000 mm−3

Vr Concentration of the free drug-resistant virus 0.001 mm−3

(from 50 to 20%, the lower right corner sub-figure). Moreover, the drug (3TC)-treat-
ment decreases R̃w

0 = 0.22 < 1, implying that the drug-sensitive virus will be cleared
(Theorem 5). Note however that, in this case, R̃r

0 = 5.24 remains greater than unity,
indicating that the drug-resistant strain is persistent.

Figure 3 plots the time courses of infection using different combinations of drugs
under the first-line drugs program, focusing on the comparison between the single-
drug treatment (3TC) and the triple-drug treatment (3TC, AZT and NVP). Although
the basic reproduction number remains greater than unity for the triple-drug treatment
(see Table 4), the drug-resistant strain emerges and becomes dominant with a low viral
load after a long time lag. The triple-drug treatment greatly reduces the population of
infected cells (solid lines): the immune system builds (the upper-left corner sub-fig-
ure), and the proportion of infected cells decreases to 7% (in comparison with 28%
under the single-drug treatment).

Numerical calculations of the basic reproduction number using its definition in
terms of the spectral radius of monodromy operators are possible. Figure 4 plots the
relationship between dose intervals and the basic reproduction number, while fixing the
daily dose. Using the parameters specified, the basic reduction number can be reduced
to less than the unity once the dose interval is reduced to 8 hours. These calculations can
also facilitate the optimal combinations of drugs and their dosages under the first-line
program. For example, Fig. 5 illustrates how the basic reproduction number changes
as a function of the dosages of three drugs in the triple-drug treatment program.

Next, we evaluate the efficientiveness of the second-line treatment program in China
(3TC, TDF and RNV). Figure 6 reports the time courses of infection under a therapy
guided by the second-line program. Compared with the first-line triple-drug treatment
program (3TC, AZT and NVP, solid lines in Fig. 6), the second-line triple-drug treat-
ment seems to be highly effective. Although the first-line treatment can reduce the
basic reproduction number significantly (from 9.98 to 1.7), it fails to reduce it below
unity. However, the second-line treatment can bring this number to below unity (from
9.98 to 0.01, see Table 4). As a result, both of the drug-sensitive and drug-resistant
strains are cleared out: this is confirmed theoretically (Theorem 5) and numerically
(Fig. 6). In this case, the immune system rebuilds.

Table 4 summarizes our calculation of the reproduction numbers for different treat-
ment therapies. We note that the first-line treatment program can reduce the basic
reproduction number greatly, but this program alone can not bring the basic reproduc-
tion number to below unity. So it fails to clear all of the virus and at least the drug-resis-
tant strain presents (Theorem 5). On the other hand, the second-line treatment program
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Table 3 Immune parameters

Parameter Meaning Value Reference

λ Source rate of
susceptible
CD4+ T cells

20 mm−3 day−1 Perelson et al. (1993), Perelson (1989)

μ Natural death rate
of T-cell

0.02 day−1 Kirschner (1996)

βw Rate of
drug-sensitive
HIV virus infect
healthy T-cells

0.0002 mm−3 day−1 Kirschner and Webb (1997)

βr Rate of the
drug-resistant
HIV virus infect
healthy T-cells

0.00015 mm−3 day−1 Estimated

nw Number of free
virus produced
by lysing a
drug-sensitive
T-cell

150 Smith and Wahl (2005)

nr Number of free
virus produced
by lysing a
drug-resistant
T-cell

120 Estimated

q Probability of
drug-sensitive T
cells that are
infected arising
from infection

0.999 Coffin (1995), Kirschner and Webb (1997)

p Probability of
drug-sensitive
virus variants
produced by
infected T cells

0.999 Estimated

αw Death rate of
drug-sensitive
infected cells

0.24 day−1

Wahl and Nowak (2000), Wodarz and
Lloyd (2004)

αr Death rate of
drug-resistant
infected cells

0.24 day−1

Wahl and Nowak (2000), Wodarz and
Lloyd (2004)

μw Death rate of the free
drug-sensitive HIV
virus

3 day−1 Smith and Wahl (2005)

μr Death rate of the free
drug-resistant HIV
virus

3 day−1 Smith and Wahl (2005)

may reduce the basic reproduction number to below unity, thus can reduce the level
of virus for both the wild-type and drug-resistant strains to a clinically undetectable
level.
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Fig. 2 Simulated time courses of infection in the absence of therapy and with the single-drug treatment
(3TC) respectively. Parameter values are shown in Tables 1 and 3. In the absence of treatment, we have
Rw

0 = 9.98,Rr
0 = 6 and so R0 = 9.98 > 1, the drug-sensitive virus dominates (solid lines). With a

single-drug treatment (3TC) for patients, the reproduction numbers become˜Rw
0 = 0.22 and R̃r

0 = 5.24:
the drug-resistant strain dominates
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treatment (3TC) and the triple-drug treatment (3TC, AZT and NVP). Initial conditions are shown in Table 2.
Parameter values are shown in Tables 1 and 3
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Table 4 Reproduction numbers
for each therapy Treatment program ˜Rw

0 R̃r
0 R̃0

No drug 9.98 6 9.98

3TC 0.22 5.24 5.24

AZT 4.44 5.44 5.44

NVP 0.76 1.84 1.84

3TC & AZT 0.14 4.8 4.8

First-line 0.03 1.7 1.7

Second-line 5 × 10−6 0.01 0.01
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Fig. 4 The relationship between the basic reproduction number and the dose interval. The daily dosage is
fixed at 3TC = 3 µM, AZT = 4 µM and NVP = 4 µM
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6 Discussion

In this paper, we have considered a two-strain mathematical model to study the pos-
sible outcomes of the China’s free AIDS-treatment policy with the two treatment
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Fig. 6 Simulated time courses of infection under the second-line drugs (3TC, TDF and RNV). Initial
conditions are shown in Table 2. Parameter values are shown in Tables 1 and 3

programs in China. Impulsive differential equations have been used to model the drug
concentrations in plasma, and hence the full model is a non-autonomous ordinary
differential system. We have developed a rigorous analysis of the model via the use
of the theories of asymptotic periodic systems and persistence of discrete dynamical
systems, and such an analysis naturally yields biologically important and qualitatively
insightful quantities, the so-called basic reproduction numbers for both the wild-type
and drug resistant strains. We have shown that these quantities completely determine
the eventual outcomes of virus concentrations in a patient. In particular, a scenario of
virus elimination has been provided via this model (see Theorem 5 (i) and Fig. 6).
Early work on impulsive differential equations has been largely based on numerical
simulations, but our study here clearly confirms the feasibility of analytical investi-
gation of such models and a wide range of within-host virus dynamics models and
population-level epidemiological models subject to interventions implemented in a
sequence of discrete times

For the current therapies guided by the Manuals of National AIDS Free Antivi-
ral Treatment in China (http://www.chinaids.org.cn/n16/n1657/n32880.files/n32881.
pdf), our mathematical and numerical results show that the drug-resistant virus dom-
inates (the first-line treatment program) or both the strains can be rapidly “cleared
out” (the second-line treatment program). As such, both treatment programs will have
positive effect in altering the virus dynamics, but the second-line program is much
desirable in order to clear out the drug-resistant virus.

We should remark that our model assumed that the change of drug concentration
is nearly instantaneous, i.e., the time-to-peak is negligible compared to the timescale
of the interest (days). In reality, several drugs can be slowly absorbed after oral med-
ication and reach peak plasma concentration after some delays. How to incorporate
these delays in our model and analysis remains an interesting question. Note also
that we assumed that the drugs are taken and absorbed in a prefect-adherence way,
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clearly just an ideal condition. Finally, we note that latently infected cells or long-lived
infected cells are not incorporated in our model (Perelson et al. 1997b). All of these
assumptions make our results overestimating the viral effects of treatment programs.
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