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The role of demographic variables in disease spread in remote and isolated communities is poorly
understood. We developed an agent-based model of a small indigenous community to qualitatively study the
impact of pre-existing immunity in both young and elderly populations. We observed that in crowded living
conditions, the age distribution of the population is a critical factor influencing epidemic spread. As the
average age of the population increases, the effect of the pre-existing immunity in older individuals becomes
more pronounced in decreasing disease incidence, even when pre-existing immunity levels in young
individuals are low. However, in a non-crowded setting with relatively low average persons-per-household,
the pre-existing immunity levels of young individuals remains a determining factor, regardless of the age
distribution of the population. We suggest that for optimizing public health policies, social and
demographic complexities of the remote and vulnerable communities should be carefully evaluated in
modeling intervention strategies.

I
n the event of an emerging disease, public health officials are tasked with identifying the geographic spread and
time course of the outbreak, and identifying the most effective utilization of available health interventions and
resources to mitigate disease outcomes. In addition to the natural history and biology of the disease, the

demographic characteristics of the population at risk play an important role in determining the pattern of
epidemic spread and identifying the type and intensity of public health intervention measures required for disease
control1,2,3. Furthermore, the differential prevalence of predisposing health conditions and other types of health
disparities increases uncertainty about how a novel disease would affect different populations with distinctly
different mobility patterns, social interactions, and health characteristics4. The importance of these factors in
influencing disease burden was highlighted during outbreaks of the 2009 H1N1 pandemic in several Canadian
population settings, including First Nation reserves in northern Manitoba, remote and isolated communities in
Nunavut, and Aboriginal communities on Vancouver Island5,6,7.

Understanding the interplay between demographic, health, infection and control parameters requires the
development of a modeling framework that can identify individuals with their assigned information, and describe
disease spread in the population in silico (i.e., via computer simulations). Agent-based models, which specifically
encapsulate individual-level characteristics, behaviors and population profiles, provide such a framework that is
capable of reproducing observed scenarios in epidemics and exploring plausible contingency plans and control
measures for curtailing an emerging disease8,9. Agent based modeling typically uses a bottom-up approach in
which complex phenomena emerge from interactions between autonomous entities (i.e., agents) that perceive,
make decisions, and act within an environment.

Here we develop an agent-based model to investigate the role of demographic variables on disease dynamics.
Specifically, we wish to qualitatively study the extent to which population age structure and household composi-
tion influence disease propagation. For the purpose of this investigation, the spread of influenza in a remote and
isolated community is modeled, and the effects of changes in three important variables are explored: (i) age
distribution; (ii) household size; and (iii) the level of pre-existing immunity in the population. Furthermore, we
investigate the effect of reactive short-duration school closures on reducing in the epidemic size and attack rates in
different age groups in the population.
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Results
We simulated the model to investigate the effect of shifting age dis-
tributions and household compositions on the clinical attack rates
(the proportion of population infected clinically throughout the epi-
demic) as a function of pre-existing immunity levels p1 and p2 for
individuals above and below 50 years of age, respectively. These pre-
existing immunity levels remain constant throughout each simu-
lation scenario in their respective ranges. The results presented here
are based on averaging 1000 simulation runs in each scenario.
Simulations with no secondary cases following the introduction of
a primary infection were rejected and re-run with a different random
number seed.

Demographic profiles of a remote and isolated community (RC) in
northern Manitoba, and Winnipeg as the largest urban center in
Manitoba, are used and referred to for comparison. Age distributions
used for the experiments either resemble RC (Figure 1a) or are
Winnipeg-like (Figure 1c). Although not the focus of this work,
employment characteristics of Winnipeg were also considered for

adding more realism when using the Winnipeg-like age distribution.
We explored three scenarios for household composition: RC
(Figure 1b); Winnipeg-like (Figure 1d); and households of size 4
and 5. The latter was considered for redistributing individuals
amongst existing number of private dwellings to minimize the
maximum household size. Since the average number of persons
per household in RC is 4.35, this strategy will result in households
of size 4 and 5. The population of RC was fixed in all scenarios, but
the number of dwellings, originally 436, changed to 795 to simulate
Winnipeg-like household composition. Furthermore, using the ori-
ginal demographics of RC, we simulated a 4-week and an 8-week
school closure scenario following identification of an infectious case
in the school-age group. For each simulation scenario, the ranges of
immunity levels p1 and p2 are switched to explore, by analogy, the
prioritization of protective measures for younger individuals as a
public health policy. Experiments are summarized in Table 1, and
further details of each simulated scenario are provided in the
Supplementary Information.

Figure 1 | Population age distributions (dark grey) and number of persons per household (light grey) for RC (a,b) and Winnipeg (c,d)10,11,25.

Table 1 | Summary of experiments.

Pre-existing immunity level

Experiment (Figure) Age distribution Household composition p1 p2

Original (2a) RC RC 0.5 2 0.7 0.1 2 0.3
Original (2c) RC RC 0.1 2 0.3 0.5 2 0.7
Age-employment shift (2b) Winnipeg-like RC 0.5 2 0.7 0.1 2 0.3
Age-employment shift (2d) Winnipeg-like RC 0.1 2 0.3 0.5 2 0.7
Egalitarian (3a) RC households of size 4 and 5 0.5 2 0.7 0.1 2 0.3
Egalitarian (3c) RC households of size 4 and 5 0.1 2 0.3 0.5 2 0.7
Scaled Winnipeg (3b) RC Winnipeg-like 0.5 2 0.7 0.1 2 0.3
Scaled Winnipeg (3d) RC Winnipeg-like 0.1 2 0.3 0.5 2 0.7
Scaled Winnipeg age-employment shift (4a) Winnipeg-like Winnipeg-like 0.5 2 0.7 0.1 2 0.3
Scaled Winnipeg age-employment shift (4b) Winnipeg-like Winnipeg-like 0.1 2 0.3 0.5 2 0.7
School closure: 4 weeks (5a); 8 weeks (5b) RC RC 0.5 2 0.7 0.1 2 0.3
School closure: 4 weeks (5c); 8 weeks (5d) RC RC 0.1 2 0.3 0.5 2 0.7

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 105 | DOI: 10.1038/srep00105 2



Age distribution shift. Using the 2006 census data for RC from
Statistics Canada10,11, Figure 2a illustrates the clinical attack rate when
pre-existing immunity levels are varied in the ranges 0.5 2 0.7 and
0.1 2 0.3 for p1 and p2, respectively. This figure indicates that the
attack rate is largely influenced by the pre-existing immunity level
of individuals below 50 years of age (p2), and the increase in pre-
existing immunity of elderly (p1) has no considerable effect on the
incidence of infection. However, with the same total population, as
the age profiles (and their employment ratios) shift to resemble those
of Winnipeg, the protection of individuals older than 50 years of age
becomes more pronounced in reducing the attack rate as p1 increases
(Figure 2b).

For comparison purposes, we simulated the original and age-
shifted scenarios when the levels of pre-existing immunity p1 and
p2 are switched. As illustrated in Figure 2c-d, the protection of young
adults and children is the main factor in reducing the attack rate, with
somewhat more pronounced effects of p1 and p2 when Winnipeg-like
age distribution is used (Figure 2d) compared to the original RC age
distribution (Figure 2c). All scenarios represented in Figure 2 were
simulated without any change in the household composition of RC
reported in census data.

Household composition shift. To investigate the effect of shifts in
household composition, we first considered the ranges 0.5 2 0.7 and
0.1 2 0.3 for p1 and p2, respectively, and simulated the model for a

scenario (different from census data) in which the number of persons
per household is either 4 or 5, with an average of 4.35. This scenario
was considered to evaluate the effect of reduction in the household
crowding condition without increasing the number of private dwell-
ings in the community. The distribution procedure for this scenario
is described in the Supplementary Information. Figure 3a shows a
qualitatively similar pattern as Figure 2a, indicating the importance
of increasing p1 in reducing the attack rate. These patterns remain
also qualitatively the same when the household composition is
shifted to resemble that of Winnipeg (Figure 3b). Since this shift is
associated with lower average number of persons per household, the
number of dwellings in the community was increased to 795. When
the ranges of p1 and p2 are switched (Figures 3c-d), we observed
similar effects consistent with simulations in Figures 2c-d, indicating
that the protection of individuals below age of 50 remains the key
factor for decreasing disease incidence. All scenarios represented in
Figures 3 were simulated without any shift in the reported age dis-
tribution of RC in census data.

Age and household shifts. We combined shifts in age profile and
household composition to simulate the demographic characteristics
of Winnipeg with the total population in RC (Figure 4a-b). This
combination effectively considers scenarios simulated in Figures 2
and 3 simultaneously. While the protection of young adults and
children (p2) remains an important parameter determining the

Figure 2 | Clinical attack rate with the original household composition of RC as reported in census data with: (a) the original age distribution of RC;
(b) a shift to Winnipeg-like age distribution; (c) the original age distribution of RC with switched levels of pre-existing immunity; and (d) a shift to
Winnipeg-like age distribution with switched levels of pre-existing immunity.
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Figure 3 | Clinical attack rate with the original age profiles of RC as reported in census data and a shift in household size to have: (a) 4 and 5 persons per
household; (b) Winnipeg-like composition; (c) 4 and 5 persons per household with switched levels of pre-existing immunity; and (d) Winnipeg-like
composition and switched levels of pre-existing immunity.

Figure 4 | Clinical attack rate for a shift to have: (a) Winnipeg-like age distribution and household composition; (b) Winnipeg-like age distribution and
household composition with switched levels of pre-existing immunity.
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attack rate (Figure 4a), the level of pre-existing immunity in indivi-
duals above 50 years of age (p1) has no considerable effect, contrast-
ing the scenario in Figure 2b. Similar results are inferred by switching
the ranges of p1 and p2 (Figure 4b), which simultaneously simulates
the shifts considered in Figures 2d and 3d.

School closures. Using the original demographics of RC we inves-
tigated the effect of school closures (upon diagnosis of the first
school-aged infectious cases), as a means of transmission reduction.
Two scenarios were simulated in which schools were closed for
either 4 or 8 weeks, and re-opened after each closure period.
Compared to the original scenario (Figure 2a), a 4-week school
closure has the potential to significantly reduce the attack rate
(Figure 5a). When the level of pre-existing immunity is relatively
low, the reduction in the overall attack rate is considerably more
pronounced for a longer period (e.g., 8-week) of school closure
(Figure 5b). We observed similar results with greater reduction in
the overall attack rate when the ranges of p1 and p2 are switched
(Figures 5c,d). However, due to high levels of pre-existing immunity
in the young population, the outcomes of 4-week and 8-week clo-
sures are virtually the same, indicating that reactive school closure
periods could be shorter when levels of protection (p2) are high in
young adults and children.

Discussion
Using a discrete-time, agent-based simulation model for a remote
community in the province of Manitoba, Canada, we have demon-
strated that both age profiles and household compositions play an
important role in the transmission of influenza within a remote and
isolated community. Our findings, in the context of public health,
can be summarized as follows:

. In population settings with crowded living conditions (i.e., many
individuals per household), the age distribution of the population
can significantly influence the outcome of disease spread and the
impact of interventions. If the population is relatively young (with
low average age) as observed in many Aboriginal communities10,
then protection of young individuals is a primary factor in redu-
cing the overall attack rate (Figure 2a), and protection of the
elderly has little impact. This is primarily because even if the
proportion of older individuals with pre-existing immunity is
high, there are so few individuals in these age groups that it is
not sufficient to have any significant effect on reducing disease
incidence. However, it is important to note that protection in the
elderly remains important for decreasing the risk of developing
serious complications as a result of influenza infection, which can
lead to costly healthcare interventions (e.g. hospitalization, and
ICU admission).

Figure 5 | Clinical attack rate with the original demographics of RC as reported in census data for: (a) 4 week school closure; (b) 8 week school closure;
(c) 4 week school closure with switched levels of pre-existing immunity; and (d) 8 week school closure with switched levels of pre-existing immunity.
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. When the population is relatively young or household sizes are
small, the pre-existing immunity in the over-50s age group
appears insignificant in reducing the overall attack rate.
However, as the average age of the population increases, the pro-
tection of older individuals becomes more pronounced in
decreasing disease incidence (Figure 2b).

. In a non-crowded setting where there are a low average number of
persons per household, the protection of young people remains
an important and dominating factor in reducing disease trans-
mission over time, regardless of the age distribution of the popu-
lation (Figures 2, 3).

. When school closure is implemented, significant reductions in
the overall attack rate can be achieved, and the period of closure
can be shortened as the protection of young adults and children
increases (Figure 5).

This study has important implications for projecting the potential
success of different intervention strategies based on the demographic
characteristics of the community (e.g., age distribution and house-
hold size). Clearly, what might be optimal interventions for an urban
city like Winnipeg may not be as optimal for a remote and isolated
community. Our results indicate that target groups for interventions
in small population settings with a large number of people per house-
hold (crowding) may be different from those in urban centers. An
important public health message is that preventing young indivi-
duals from infection should not be disregarded due to limited pre-
ventive resources or other community factors. However, optimal
ways to control infection in young people need to be carefully con-
sidered. For instance, school closure might appear to be a useful
social distancing measure to employ in small communities in order
to prevent transmission between children and reduce the overall
attack rate. However, in a setting where households are large and
often multigenerational, such a measure may overlook the fact that
exposed older family members are at increased risk of suffering
serious complications that may require costly healthcare resources,
such as hospitalization and intensive care which are not readily
available in remote and isolated communities. As discussed in the
Supplementary Information, limitations in current health data and
contact network data do not lend themselves to analysis of healthcare
costs of particular demographic groups. Future work will need to
address the variable healthcare costs of particular demographic
groups. However, it is clear that understanding the contextual impli-
cations of public health measures in communities with low mean age
and large household size is of critical importance.

All models make simplifications and rely on assumptions12. We
have attempted to develop our model using the best available evid-
ence at this time in order to examine the effect of age and household
size on disease transmission. However, there are limitations that are
important to consider for future investigation. Interventions such as
vaccination have not been explicitly included in the model and this is
currently the subject of ongoing research to evaluate the impact of
within-community factors on disease intervention strategies. In
addition, it is unlikely that public health measures are treated inde-
pendently. More realistically, multiple intervention strategies are
employed that often overlap in time resulting in synergistic effects
(e.g. vaccination, antiviral drug therapy, and social distancing mea-
sures)13. All of these will have significant impacts on epidemic out-
comes. In addition, we simplified the model to consider the clinical
course of influenza infection; yet we understand that a sizable frac-
tion of infection is transmitted through asymptomatic infection, in
which infectious individuals spread the disease without obvious
symptoms14. We also assume that some proportion of symptomatic
individuals will practice self-isolation; however it is unclear to what
extent self-isolation may be adopted by community members as a
variety of external factors will likely influence this decision.
Furthermore, in the absence of specific data for mobility patterns
and time use of individuals in remote and isolated communities, we

have structured the model with assumptions consistent with pre-
vious work15,16,17.

Our results generated in this study using an agent-based model
of a small community in rural Manitoba support the hypothesis
that both age structure and household size play an important role
in the transmissibility of influenza throughout a remote and isolated
community. Identifying novel intervention strategies that address
the additional complexities of disease transmission within large
households that are often crowded and multigenerational poses a
significant challenge for public health professionals. The use of an
agent-based model such as the one described here can provide an
opportunity to begin to examine optimal intervention strategies
for these communities that have specific social and demographic
complexities.

Methods
The agent based approach taken here is a discrete-time simulation model15,18, based
on the movement of individuals (i.e., agents) that are distributed in a scaled lattice
representation of a community (i.e., environment). As described below, a Markov
chain compartmental disease state is maintained for each agent in the model. For the
inclusion of parameters central to this study, the model was built on compartments
representing agents and their epidemiological health status, and agent movements
and interactions between the compartments in the community. We considered the
same 5-year age groupings as provided by the Canadian census data (Figure 1) for
determining agent age distribution. Further details of the model and simulator can be
found in the Supplementary Information.

Model structure. The underlying structure of the model describes the dynamics of
the clinical course of influenza infection, and includes health state compartments of
susceptible (S), exposed but not yet infectious (E), pre-symptomatic infectious
without symptoms (P); infectious with symptoms (I), hospitalized (H), and recovered
(R) individuals (Figure 6). We do not explicitly consider asymptomatic infection
beyond the pre-symptomatic stage. We further subdivided symptomatic infectious
compartment into four classes that are more compatible with observed data: diag-
nosed (Id) and undiagnosed (Iu) compartments that are transient and considered only
to generate a count of diagnosed cases and hospitalizations; and the behaviorally
distinct compartments of Is (individuals who practice self-isolation and stay home)
and Ik (individuals who follow their normal schedule, which also subsume the role of
asymptomatic individuals spreading infection). Movements of individuals between
these classes occur as a result of a change in epidemiological status or hospitalization
of infectious cases over time. Assuming a relatively simple agent schedule for indi-
viduals’ mobility, the model captures work, school, and household contacts with
random mixing for between-agent interactions as detailed in the supplementary
Information.

Disease transmission occurs as a result of contact between susceptible and infec-
tious agents. We assumed a standard Markov chain for disease progression in the
model compartments. At any time during the epidemic simulation, agents will be in
one of these compartments according to their epidemiological status. In our model,
each time-step in the simulation is associated with an independent Bernoulli trial for
disease transmission. Once exposed, the individual will remain in this compartment
for an average duration of TE. After time TE has elapsed, the epidemiological status
will change to pre-symptomatic, with an average duration of TP. Following this stage
of disease, the infected individual will develop symptoms and will be diagnosed with
some probability. A fraction of diagnosed cases will be hospitalized and therefore
effectively removed from the simulation scenarios without contributing to infection
spread. We assumed that a fraction of infectious individuals who are not hospitalized
will self-isolate for an average infectious period TI, sampled from the log-normal
distribution19. We also assumed that recovery upon infection will confer immunity
against re-infection in the same epidemic episode.

Figure 6 | Model structure for population compartments for simulation
scenarios. Infectious compartment is divided into four classes of

individuals: diagnosed (Id), undiagnosed (Iu), self-isolated (Is), and those

who continue with their normal schedule (Ik).
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Model parameters. Parameter values used to simulate the model are taken from the
estimated ranges published in the literature. The probability of transmission between
each susceptible-infectious pair of agents is given by:

Ptransmission~1� (1� bbase(1�pi))
t ,

where bbase is the baseline transmission rate per unit time (t), pi is the ‘‘Age Protection
Factor’’ that models the amount of pre-existing immunity (as a result of prior
exposure to an antigenically similar pathogen, for example) in each age group. We
assumed two different ranges of pre-existing immunity associated with groups below
and above 50 years of age. The effect of this protection was captured by a reduction in
transmissibility. The exposed (pre-symptomatic) period was sampled from a uniform
distribution with a minimum of 24 (12) and a maximum of 48 (24) hours for TE

(PE)19,20. The infectious period TI was sampled from a log-normal distribution with a
mean of 74 hours (3.1 days) and standard deviation of 12 hours. Within the published
estimates21, we assumed a probability of 0.02 for an infectious case to be diagnosed
with laboratory testing following symptoms onset. The age-specific probability of
hospitalization was estimated from pandemic data collected for the Burntwood health
region in the province of Manitoba, Canada, where the majority of remote and
isolated communities are located (see Supplementary Information). The probability
of self-isolation was assumed to be 0.8 for children below 18; 0.3 for adults between 19
and 49 years of age; and 0.8 for individuals above age of 5016,17,22.

A key parameter in understanding the nature of an epidemic is the basic repro-
duction number (R0), defined as the number of secondary cases caused by a single
infected case in an entirely susceptible population23. In our model, the level of pre-
existing immunity reduces the overall susceptibility of the population, and therefore
R0 may be higher than the number of secondary cases generated in simulation
scenarios. The base transmission probability bbase (in the absence of any pre-existing
immunity or limitation to disease spread) was tuned such that the average number of
secondary infections over the entire sample of realizations was 1.924.

Population study. The model is based on the demographic characteristics of a remote
community (RC) in northern Manitoba with a total population of 1895. The com-
munity has no road access to any urban center and air travel is a major conduit. The
choice of a remote community for this study was mainly due to recent experience of a
disproportionate incidence of infection in that region during the 2009 H1N1 pan-
demic5. Baseline parameters pertinent to RC demographics, including age and sex
profiles, and household compositions were obtained from the 2006 census com-
munity profiles (catalogue no. 92-591-XWE, 97-554-XCB2006016) of the Statistics
Canada databases10,11. Compared to the Winnipeg health region which is the largest
urban centre in the province of Manitoba25, remote communities differ significantly
in both age distribution and household composition. These demographic variables
are illustrated in Figure 1 for occupied private dwellings in RC and Winnipeg.

1. Keeling, M. J., Danon, L., Vernon, M. C. & House, T. A. Individual identity and
movement networks for disease metapopulations. Proc. Nat.l Acad. Sci. U.S.A.
107, 8866–8870 (2010).

2. House, T. & Keeling, M. J. Household structure and infectious disease
transmission. Epidemiol. Infect. 137, 654–661 (2009).

3. House, T. & Keeling, M. J. Deterministic epidemic models with explicit household
structure. Math. Biosci. 213, 29–39 (2008).

4. Walters,V., McDonough, P. & Strohschein, L. The influence of work, household
structure, and social, personal and material resources on gender differences in
health: an analysis of the 1994 Canadian National Population Health Survey. Soc.
Sci. Med. 54, 677–692 (2002).

5. Kumar, A., et al. Critically ill patients with 2009 influenza A(H1N1) infection in
Canada. J. Amer. Med. Ass. 302, 1872–1879 (2009).

6. Campbell, A., et al. Risk of severe outcomes among patients admitted to hospital
with pandemic (H1N1) influenza. Can. Med. Ass. J. 182, 349–355 (2010)

7. Kondro, W. Dispensing antivirals in underserved communities. Can. Med. Ass. J.
181, E199–200 (2009).

8. Burke, D. S., et al. Individual-based computational modeling of smallpox
epidemic control strategies. Acad. Emerg. Med. 13, 1142–1149 (2006).

9. Mostaço-Guidolin, L. C., Pizzi, N. J., Demko, A. B. & Moghadas, S. M. A Software
Development Framework for Agent-Based Infectious Disease Modelling, In
Biomedical Engineering Trends in Electronics, Communications and Software.
pp. 641 – 664, 2011.

10. Statistics Canada. 2007. Manitoba (Code4622048) (table). 2006 Community
Profiles. 2006 Census. Statistics Canada Catalogue no. 92-591-XWE. Ottawa.
Released March 13, 2007.

11. Number of Rooms (12) and Household Size (9) for Occupied Private Dwellings
of Canada, Provinces, Territories, Census Divisions and Census Subdivisions,
2006 Census - 20% Sample Data. Statistics Canada, 2006 Census of Population,
Statistics Canada catalogue no. 97-554-XCB2006016 (IRI Code4622048).

12. Moghadas, S. M., Pizzi, N., Wu, J. & Yan, P. Managing public health crises: the role
of models in pandemic preparedness. Influenza Other Respir. Viruses. 3, 75–79
(2009).

13. Halder, N., Kelso, J. K. & Milne, G. J. Analysis of the effectiveness of interventions
used during the 2009 A/H1N1 influenza pandemic. BMC Public Health. 10, 168
(2010).

14. Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an
infectious disease outbreak controllable. Proc. Natl. Acad. Sci. U.S.A. 101, 6146–
6151 (2004).

15. Carley, K., et al. BioWar: scalable agent-based model of bio-attacks. IEEE Trans.
on Systems, Man, and Cybernetics. 36, 252–265 (2006).

16. Gojovic, M. Z., Sander, B., Fisman, D., Krahn, M. D. & Bauch, C. T. Modelling
mitigation strategies for pandemic (H1N1) 2009. Can. Med. Ass. J. 181, 673–680
(2009).

17. Stroud, P. D., Del Valle, S. Y., Sydoriak, S. J., Riese, J. M. & Mniszewski, S. M.
Spatial dynamics of pandemic influenza in a massive artificial society. J. Artificial
Soc. Social. Simulation. 10 (2007).

18. Uhrmacher, A. & Weyns, D., Eds. Multi-Agent Systems: Simulation and
Applications. New York, CRC Press, 2009.

19. Tuite, A. R., et al. Estimated epidemiologic parameters and morbidity associated
with pandemic H1N1 influenza. Can. Med. Ass. J. 182, 131–136 (2010).

20. Lessler, J., et al. Incubation periods of acute respiratory viral infections:
a systematic review. Lancet Infect. Dis. 9, 291–300 (2009).

21. Reed, C., et al. Estimates of the prevalence of pandemic (H1N1) 2009,
United States, April–July 2009. Emerg. Infect. Dise. 15, 2004–2007 (2009).

22. Mniszewski, S. M., Del Valle, S. Y., Stroud, P. D., Riese, J. M., Sydoriak, S. J.
Pandemic simulation of antivirals1school closures: buying time until strain-
specific vaccine is available. Comput. Math. Organ. Theory. 14, 209–221 (2008).

23. Diekmann,O. & Heesterbeek, J. A. P. Mathematical Epidemiology of Infectious
Diseases. Chichester, Wiley, 2000.

24. White, L. F., et al. Estimation of the reproductive number and the serial interval in
early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other
Respir. Viruses. 3(6), 267–276 (2009).

25. Statistics Canada. 2007. Winnipeg, Manitoba (Code4611040) (table). 2006
Community Profiles. 2006 Census. Statistics Canada Catalogue no. 92-591-XWE.
Ottawa. Released March 13, 2007.

Acknowledgements
The authors would like to acknowledge the support of CIHR Catalyst Grant for Pandemic
Preparedness (Grant No.: 104047, 114932) and the Operating Grant for Vulnerable
Populations (Grant No.: MOP - 114932), and the Mathematics of Information Technology
and Complex Systems. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript. The authors would also like to
acknowledge Compute Canada for providing computational resources, and the
Simstitution Foundation for access to their agent based simulation framework.

Author contributions
Designed the study and collected data: SM. Conceived and developed the simulation model:
ML, LG. Contributed reagents/materials/analysis tools: LG, AG, JW, SM. Wrote the paper:
ML, AG, SM. All the authors have read the paper and approved it.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing Financial Interests: The authors declare that they have no competing financial
interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Laskowski, M., Mostaço-Guidolin, L.C., Greer, A.L., Wu, J. &
Moghadas, S.M. The Impact of Demographic Variables on Disease Spread: Influenza in
Remote Communities. Sci. Rep. 1, 105; DOI:10.1038/srep00105 (2011).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 105 | DOI: 10.1038/srep00105 7

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Population age distributions (dark grey) and number of persons per household (light grey) for RC (a,b) and Winnipeg (c,d)10,11,25.
	Table 1 Summary of experiments.
	Figure 2 Clinical attack rate with the original household composition of RC as reported in census data with: (a) the original age distribution of RC; (b) a shift to Winnipeg-like age distribution; (c) the original age distribution of RC with switched levels of pre-existing immunity; and (d) a shift to Winnipeg-like age distribution with switched levels of pre-existing immunity.
	Figure 3 Clinical attack rate with the original age profiles of RC as reported in census data and a shift in household size to have: (a) 4 and 5 persons per household; (b) Winnipeg-like composition; (c) 4 and 5 persons per household with switched levels of pre-existing immunity; and (d) Winnipeg-like composition and switched levels of pre-existing immunity.
	Figure 4 Clinical attack rate for a shift to have: (a) Winnipeg-like age distribution and household composition; (b) Winnipeg-like age distribution and household composition with switched levels of pre-existing immunity.
	Figure 5 Clinical attack rate with the original demographics of RC as reported in census data for: (a) 4 week school closure; (b) 8 week school closure; (c) 4 week school closure with switched levels of pre-existing immunity; and (d) 8 week school closure with switched levels of pre-existing immunity.
	Figure 6 Model structure for population compartments for simulation scenarios.
	References

