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Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks
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We consider a delayed susceptible-infected-recovered epidemic model on an uncorrelated complex network
and address the effect of time lag on the shape and multiple waves of epidemic curves. We show that when
the transmission rate is above a threshold, a large delay can cause multiple waves with larger amplitudes in the
second and subsequent waves.
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I. INTRODUCTION

The role of network heterogeneity in spreading an in-
fectious disease has received substantial attention partially
due to the need for understanding the transmission dynamics
of human sexually transmitted infection (STI) through the
complex web of sexual partnerships [1,2]. The population
involved in an STI can normally be stratified according to their
levels of sexual activity and their numbers of sexual contacts.
The network heterogeneity is associated with average path
lengths among any two nodes [3,4] and can sometimes be
described by a power-law distribution (scale-free property),
P (k) ∼ k−2−γ , for the probability that a given node has
k connections to other nodes [5,6].

In the intensively studied susceptible-infected-recovered
(SIR) models on complex networks (see, for example,
Refs. [7,8] for susceptible-infected-susceptible and [9–12] for
SIR), the population is divided into three classes depending
on the disease status of individuals: susceptible, infected and
infectious, and removed (either immunized or dead). In such
a modeling framework, every node of the network is also
associated with an integer to characterize its connection to
other nodes, so we can let Sk(t), Ik(t) and Rk(t) be the
densities of susceptible, infected and infectious, and removed
individuals with degree k at time t , respectively. We then have
the normalization condition:

Sk(t) + Ik(t) + Rk(t) = 1.

Such global quantities as epidemic prevalence can be ex-
pressed by an average over the various degree classes.
Mean-field theory can then be used to derive the following
deterministic system (see Moreno et al. [10] and Yang
et al. [12])

d
dt

Sk(t) = −λkSk(t)�k(t),
d
dt

Ik(t) = −μIk(t) + λkSk(t)�k(t),
d
dt

Rk(t) = μIk(t),

(1)
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where �k(t) = ∑
h h−1ϕ(h)P (h|k)Ih(t), ϕ(h) denotes the

infectivity of a node with degree h, and P (h|k) denotes the
conditional probability for a node with degree k to connect a
node with degree h. In the uncorrelated case, one has P (h|k) =
hP (h)/〈k〉. In the above formulation, a susceptible individual
acquires the infection per unit time at the transmission rate λ

by one contact with a neighboring infected individual. Thus if
a susceptible individual has an edge connecting to an infected
individual, the disease will be transmitted to the susceptible
through the edge with the rate λ. On the other hand, the infected
ones will recover or become immune with the rate μ. In what
follows, we set μ = 1 without loss of generality.

Two special cases of Eq. (1) were considered by Moreno
et al. and Yang et al.. For both cases, the networks are
uncorrelated. In Moreno et al. [10], the case where ϕ(h) = h

was considered and an epidemic threshold λc = 〈k〉/〈k2〉 was
introduced. It was shown that when λ < λc, the total number
of recovered individuals is small enough and the epidemic
prevalence is insignificant; whereas when λ > λc, the total
number of recovered individuals attains a finite value and
the epidemic prevalence is significant. In Ref. [12], Yang
et al. considered the case where ϕ(h) = B is a constant, and
they found the threshold λc = 1/〈B〉 and similar qualitative
observations as those in Moreno et al. One of the contributions
of the present paper is to extend the aforementioned studies
to a general function ϕ(h) and, in addition, to show that
the force of infection

∑
h ϕ(h)P (h)Ih(t) has only one peak

if λ is larger than a threshold λc to be defined later, and
this force of infection has no peak and decreases very fast
when λ < λc.

Our main focus, however, is on how the incorporation of
a constant time lag (an incubation period) into the model
alters the aforementioned qualitative results. Although our
focus here is on incubation period, we note that in disease
transmission models, time delay is an important quantity
for many epidemiological mechanisms. In particular, time
delays can be introduced to model constant sojourn times
in an infective state. We refer to van den Driessche [13]
for a brief review of delay differential equations arising from
disease modeling. Delayed SIR models have been extensively
studied (see, for example, Refs. [14–35]). However, to our
best knowledge, little has been done to address the effect of
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delay on disease transmission dynamics in scale-free and other
complex networks.

When the incubation period is assumed to be a constant
τ > 0, we have a delayed SIR model on networks in the
uncorrelated case as follows:

d

dt
Sk(t) = −λkSk(t)

∑
h

ϕ(h)P (h)Ih(t − τ )

〈k〉 , (2)

d

dt
Ik(t) = λkSk(t)

∑
h

ϕ(h)P (h)Ih(t − τ )

〈k〉 − Ik(t), (3)

d

dt
Rk(t) = Ik(t). (4)

Note that, even for the case without delay, it is difficult to obtain
analytic results for epidemic models on correlated networks.
For such models, only numerical simulations are done (see, for
example, Refs. [38–41]). As a result, for the sake of simplicity,
we focus on system (2)–(4) in this paper. To specify a solution
of the system, we have to specify the initial conditions, which
are assumed to be

for any degree k,

⎧⎨
⎩

Sk(θ ) > 0
Ik(θ ) � 0 for θ ∈ [−τ,0],
Rk(θ ) = 0

(5)

with Ik(θ ) > 0 for some k and some θ ∈ [−τ,0]. Note that the
global averages of the three epidemic classes defined by S(t) =∑

k P (k)Sk(t), I (t) = ∑
k P (k)Ik(t), R(t) = ∑

k P (k)Rk(t)
obey the normalization condition: S(t) + I (t) + R(t) = 1. We
will compare our results with those in Refs. [10] and [12] when
delay is ignored. It turns out that the incorporation of delay
changes the dynamics qualitatively.

For the delayed SIR models in the above-cited references
with the exception of Ref. [16], the demographics (death
and birth) is incorporated and results obtained are similar,
namely there is always a disease-free equilibrium: If the basic
reproduction number is less than 1, then there is no endemic
equilibrium and the disease-free equilibrium is locally or
globally stable. If the basic reproduction number is larger
than 1, then the disease-free equilibrium becomes unstable,
and there is a unique endemic equilibrium. In most cases,
the endemic equilibrium is locally or globally stable for
all delays, whereas in some cases it is locally or globally
stable only for small delay and Hopf bifurcation of periodic
solutions may occur when the delay passes a certain critical
value [17,19,20,23,25,29,35]. However, in our model any
points (S1,0,R1, . . . ,Sk,0,Rk, . . .) with Sk + Rk = 1 can be
an equilibrium and hence any equilibrium is unstable. To
understand the limiting behavior of each solution, we first,
in Sec. II A, establish the final size equation that enables us
to calculate the total number of recovered during the entire
course of the outbreak regardless of the transmission rate
(whether there is an outbreak or not) as long as there is an
initial infection. We mention that Di Liddo [16] considered
the following delayed SIR model

Ṡ(t) = −βS(t)I (t − a),

İ (t) = βS(t)I (t − a) − γ I (t),

Ṙ(t) = γ I (t),

and also established result on the final size of R. Note that our
model (1) is simply the counterpart of the Di Liddo model in the
framework of spread on a network rather than a homogeneous
population.

Recent studies have provided empirical evidence of epi-
demic waves in infectious diseases like the Spanish influenza
of 1918–1919 (see, for example, Refs. [36,37] and refer-
ences therein). Peak detection is very necessary for health
resource planning. Possible explanations of epidemic waves
are summarized in Merler et al. [37]. Here, we present another
possible explanation, that is, delay induces epidemic waves.
The numerical simulations in Ref. [16] have already indicated
that I (t) may have multiple waves (i.e., multiple local maxima)
during the process. Unfortunately, no rigorous analysis was
provided even in the simple case with homogeneous popula-
tions. We, in Sec. II B, introduce a threshold λc and consider
the monotonicity of the force of infection

∑
h ϕ(h)P (h)Ih(t)

and show that outbreak occurs when λ > λc whether or not
delay is incorporated. An argument is provided to show that
this force of infection changes its monotonicity only once
when the delay is small, but multiple peaks with increasing
amplitudes can take place if the delay is large. This theoretical
result will be illustrated with two special cases about the
infectivity and with some numerical simulations in Sec. III.
Our study thus confirms both theoretically and numerically that
multiple peaks can arise very naturally due to the introduction
of time delay in simple SIR models, and the value of the
delay for such multiple peaks to occur and the magnitude of a
subsequent wave of outbreak rely on the interplay of the size
and complexity of the network.

II. GENERAL ANALYTICAL RESULTS

In this section, we consider system (2)–(4) with a general
infectivity function ϕ(h).

A. The final size

With the initial conditions (5), we can integrate (2) on the
interval [0,t] to obtain

Sk(t) = S0
k e

−λk〈k〉−1ψ(t) for t � 0, (6)

where S0
k = Sk(0) and ψ(t) = ∫ t

0

∑
h ϕ(h)P (h)Ih(s − τ )ds

and hence

ψ(t) =
∑

h

ϕ(h)P (h)
∫ t−τ

−τ

Ih(s)ds

=
∑

h

ϕ(h)P (h)

[∫ 0

−τ

Ih(s)ds +
∫ t−τ

0
Ih(s)ds

]
= ϒ(t − τ ) + L,

(7)

where ϒ(t − τ ) = ∑
h ϕ(h)P (h)

∫ t−τ

0 Ih(s)ds and L =∑
h ϕ(h)P (h)

∫ 0
−τ

Ih(θ )dθ (> 0). For t � τ , with the help

TABLE I. Thresholds in the case where ϕ(h) = αh.

Max. deg. 5 10 15 20 25 30

λc ≈ 0.5920 0.3891 0.2987 0.2459 0.2108 0.1856
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of (4) and (6), we have ϒ(t − τ ) = ∑
h ϕ(h)P (h)Rh(t − τ )

and

d

dt
ϒ(t − τ )

=
∑

h

ϕ(h)P (h)Ih(t − τ )

=
∑

h

ϕ(h)P (h)[1 − Rh(t − τ ) − Sh(t − τ )]

=
∑

h

ϕ(h)P (h) − ϒ(t − τ )

−
∑

h

ϕ(h)P (h)S0
he

−λh〈k〉−1ψ(t−τ )

=
∑

h

ϕ(h)P (h) − ϒ(t − τ )

−
∑

h

ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t−2τ )).

(8)

As Rk is increasing and bounded by 1, we concluded that
limt→∞ Rk(t) exists and limt→∞ Ik(t) = 0. It follows from
ϒ(t − τ ) = ∑

h ϕ(h)P (h)Rh(t − τ ) that limt→∞ ϒ(t) := ϒ∞
exists. Using Rh(∞) = 1 − Sh(∞) as well as (6) and (7), we
can express R∞ := ∑

h P (h)[1 − Sh(∞)] as

R∞ =
∑

h

P (h)
[
1 − S0

he
−λh〈k〉−1Le−λh〈k〉−1ϒ∞

]
. (9)

On the other hand, since limt→∞ Ik(t) = 0, we have
limt→∞ d

dt
ϒ(t − τ ) = 0. This, together with (8), yields

G(ϒ∞) = 0, where

G(ϒ∞) : =
∑

h

ϕ(h)P (h) − ϒ∞

−
∑

h

ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ∞).
(10)

Note that G(
∑

h ϕ(h)P (h)) < 0 and G(0) > 0. Therefore,
the concavity of G implies the existence of a unique ϒ∞ ∈
(0,

∑
h ϕ(h)P (h)) such that G(ϒ∞) = 0.

Consequently, we obtain R∞ in terms of Eq. (9). It is
important to note that we obtain R∞ for a general infectivity
function without requiring a threshold condition λ > λc that
was required in Moreno et al. [10] and Yang et al. [12] even
for some special cases.

B. Multiple peaks of the force of infection

Though a measurable quantity is the total of infection
I (t) = ∑

h P (h)Ih(t) defined before, the quantity describing
more accurately the severeness of the disease outbreak is
the force of infection. The force of infection is defined as
Î (t) := ∑

h ϕ(h)P (h)Ih(t). Whether the epidemic has multiple
peaks depends on the existence and the number of t∗ such that
d
dt

Î (t∗) = 0. In the sequel, we focus on Î (t). However, our
simulations to be reported below will plot both the force of
infection and the total of infection and will show how they
differ depending on the infectivity function ϕ.

First, we consider the case where τ = 0. Following the
calculations of Ref. [10], we have

Î (t) =
∑

h

ϕ(h)P (h)

−φ̃(t) −
∑

h

ϕ(h)P (h)S0
he

−λh〈k〉−1φ̃(t)

:= H0(φ̃(t)),

(11)

where φ̃(t) = ∫ t

0 Î (s)ds = ∑
h ϕ(h)P (h)Rh(t). Then d

dt
Î (t) =

H1(φ̃(t))Î (t), where

H1(x) = −1 +
∑

h

λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1x.

As Î (t) > 0, it reaches its peaks only when H1(φ̃(t)) =
0. Note that H1 is strictly decreasing and H1(0) = −1 +∑

h λh〈k〉−1ϕ(h)P (h)S0
h. It follows that H1(x) < 0 for all

x > 0 if λ
〈S0

k ϕ(k)k〉
〈k〉 � 1 or, equivalently, if

λ � λc := 〈k〉
〈S0

k ϕ(k)k〉 .

If λ > λc, then H1(0) > 0. This implies that Î (t) is increasing
when t is close enough to 0. This, combined with Î (t) → 0 as
t → ∞, implies that Î (t) has a local maximum. As H1(x) is
decreasing as a function of x � 0, we conclude that there exists
exactly one nonzero φ̃0 such that H1(φ̃0) = 0. On the other
hand, φ̃(t) is strictly increasing. It follows that there exists a
unique t∗ such that φ̃(t∗) = φ̃0. Therefore, we conclude that: if
λ > λc, the epidemic will take off and the force of infection will
have exactly one peak, and if λ < λc, then the force of infection
will decrease and the epidemic will not take off. This result,
when τ = 0, is consistent with those of Moreno et al. [10] and
Yang et al. [12].

We now consider the case where τ > 0, and here we assume
Ik(θ ) = I 0

k (� 0) for θ ∈ [−τ,0] and I 0
k > 0 for some k. It

follows from (3) that

d
dt

Î (t) = −Î (t) +
∑

h

λh〈k〉−1ϕ(h)P (h)

×S0
he

−λh〈k〉−1(L+ϒ(t−τ ))Î (t − τ ).
(12)

We now distinguish two cases.
Case 1 : λ � λc. We claim that Î (t) is decreasing in t . To

verify this, we first note that∑
h

λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t−τ ))

�
∑

h

λh〈k〉−1ϕ(h)P (h)S0
h

= λ〈k〉−1
〈
hϕ(h)S0

h

〉
� 1.

As Ih(−τ ) = Ih(0), it follows from (12) that d
dt

Î (0) � 0. Let
t∗ = sup{s � 0 : Î (t) is decreasing on [0,s]}. Then, from the
above discussion it follows that t∗ � 0. It suffices to show
that t∗ = ∞. By way of contradiction, suppose that t∗ < ∞,
then we have d

dt
Î (t∗) = 0 and there exists a t† ∈ (t∗,t∗ + τ ]

such that d
dt

Î (t†) > 0. It follows that there exists a t‡ ∈ [t∗,t†)
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FIG. 1. (a) The evolution of
∑

h αhP (h)Ih(t); (b) the evolution
of

∑
h P (h)Ih(t) for different delays when λ = 0.1 in the case where

ϕ(h) = αh. The five curves from the left to right in (a) and (b)
correspond to delay τ = 0, 1, 2, 4, 6, respectively.

such that d
dt

Î (t‡) = 0 and Î (t‡) < Î (t†). Note that Î (t‡ − τ ) �
Î (t† − τ ). It follows from (12) that

0 <
d

dt
Î (t†) � d

dt
(t‡) = 0,

a contradiction. This proves the claim. It follows that the
disease will take off but the force of infection will not increase.

Case 2: λ > λc. In this case, since Ih(0) = Ih(−τ ) and∑
h

λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(−τ ))

= λ〈k〉−1〈S0
k kϕ(k)〉

> 1,

we have d
dt

Î (0) > 0, which implies that Î (t) increases at the
beginning of the epidemic. Since Î (t) → 0 as t → ∞, there
exists at least one outbreak.

Assume that t∗ is the first peak time and remember that
Ik(θ ) = I 0

k for θ ∈ [−τ,0]. Then Î (t) is increasing on [−τ,t∗]
and d

dt
Î (t∗) = 0. Using (12), we get∑
h

λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t∗−τ )) > 1.
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FIG. 2. (a) The evolution of
∑

h αhP (h)Ih(t); (b) the evolution
of

∑
h P (h)Ih(t) for different delays when λ = 0.8 in the case where

ϕ(h) = αh. The five curves from the left to right in (a) and (b)
correspond to delay τ = 0, 1, 2, 4, 6, respectively.

We now consider two extreme cases for the possibility of
multiple outbreaks.

Case 2S (Small delay). In this case,
Î (t∗) ≈ Î (t∗ − τ ) and hence, by Eq. (12),∑

h λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t∗−τ )) ≈ 1. As ϒ(t) is
increasing in t , it is easy to have

∑
h λh〈k〉−1

ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t−τ )) < 1 for t > t∗, and so it
is hard to get a t∗∗ > t∗ such that d

dt
Î (t∗∗) > 0 by (12).

Therefore, multiple outbreaks are unlikely.
Case 2L (Large delay). In this case, Î (t∗) is

much greater than Î (t∗ − τ ) and hence it follows
from (12) that

∑
h λh〈k〉−1ϕ(h)P (h)S0

he
−λh〈k〉−1(L+ϒ(t∗−τ ))

is much greater than 1. There is a good chance
of the occurrence of multiple peaks. For example, if∑

h λh〈k〉−1ϕ(h)P (h)S0
he

−λh〈k〉−1(L+ϒ(t∗)) > 1 then Î (t) cannot
be decreasing on [t∗,t∗ + τ ]. Otherwise, there exists t† ∈
[t∗,t∗ + τ ] such that Î (t†) � Î (t† − τ ). Hence it follows from
Eq. (12) that d

dt
Î (t†) > 0, a contradiction. If Î (t) is not

decreasing on [t∗,∞) then as discussed above there exists
at least another peak of the force of infection.

056121-4



MULTIPLE EPIDEMIC WAVES IN DELAYED . . . PHYSICAL REVIEW E 83, 056121 (2011)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
(a)

Time (day)

T
h

e 
F

o
rc

e 
o

f 
In

fe
ct

io
n

τ=0
τ=1
τ=2
τ=4
τ=6

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (day)

T
h

e 
T

o
ta

l o
f 

In
fe

ct
io

n

(b)

τ=0
τ=1
τ=2
τ=4
τ=6

FIG. 3. (a) The evolution of
∑

h αhP (h)Ih(t); (b) the evolution
of

∑
h P (h)Ih(t) for different delays when λ = 5 in the case where

ϕ(h) = αh. The five curves from the left to right in (a) and (b)
correspond to delay τ = 0, 1, 2, 4, 6, respectively.

In summary, we conclude that if λ � λc, there is no peak of
the force of infection; if λ > λc, there is only one peak when
the delay is small enough, while there may be multiple peaks
when the delay is large.

III. NUMERICAL SIMULATIONS: TWO CASE STUDIES

In Sec. II, we obtained some general results for system (2)–
(4) on an uncorrelated network. We know that the maximum
network degree plays an important role in determining whether
an epidemic can take off. This becomes clear from the
expression of the threshold λc = 〈k〉

〈S0
k ϕ(k)k〉 . On the other hand,

larger delays can be a potential cause for multiple outbreaks
represented by multiple peaks of the force of infection. In
this section, we will support these theoretical results with
numerical simulations for two special cases of the infectivity
function ϕ. Both cases will involve only scale-free uncorrelated
networks for the sake of simplicity, and it is an important
issue to see that multiple waves in a single outbreak can be
generated by the delay in an uncorrelated network. Recall that,
in a scale-free network, P (k) ∼ k−2−γ . Moreover, the maximal
degree is taken to be 15 in both cases. We emphasize that
the simulations are numerical integration without any explicit

networks. In other words, instead of simulating a spreading
model on complex networks, we numerically integrate with
respect to time of the group of delay differential equations
(2)–(4).

Case 1: ϕ(h) = αh. In this case, the final size R∞ is

R∞ =
∑

h

P (h)
(
1 − S0

he
−λh〈k〉−1(L+ϒ∞)),

where L = ∑
h αhP (h)

∫ 0
−τ

Ih(θ )dθ and ϒ∞ is the unique
positive solution to

α〈k〉 − ϒ∞ −
∑

h

αhP (h)S0
he

−λh〈k〉−1(L+ϒ∞) = 0.

Moreover, the threshold λc = 〈k〉
α〈S0

k k2〉 . For the case without

delay (τ = 0), if S0
k ≈ 1 for any degree k, then λc ≈ 〈k〉

α〈k2〉 ,
which is consistent with the result in Ref. [10].

For the simulation below, we take γ = 0.1 and α = 0.8. We
also assume that, for any degree k, S0

k = 0.999 and I 0
k = 0.001.

Table I lists the thresholds for different maximum degrees. We
can easily see that the threshold decreases as the maximum
degree increases. This means that heterogeneity is an important
factor for a disease to take off.

To consider the effect of delay, we assume that the maximal
degree is 15. Then λc ≈ 0.2987. Figure 1 shows the evolutions
of

∑
h αhP (h)Ih(t) and

∑
h P (h)Ih(t) for different delays with

λ = 0.1. It turns out that there is no peak for
∑

h αhP (h)Ih(t)
as λ is less than λc and

∑
h P (h)Ih(t) has similar behaviors.

We now consider the case where λ > λc. First, we take λ =
0.8 ∈ (λc,μ) = (λc,1). Figure 2 shows that there is always a
peak and the number of peaks increases with delay for both∑

h αhP (h)Ih(t) and
∑

h P (h)Ih(t). Then, we take λ = 5 >

μ = 1. Figure 3 illustrates more remarkably multiple peaks of
the infection with the highest peak being determined by the
size of the delay.

Case 2 : ϕ(h) = B, where B is a constant. In this case, the
final size R∞ is

R∞ =
∑

h

P (h)
(
1 − S0

he
−λh〈k〉−1(L+ϒ∞)

)
,
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FIG. 4. The evolution of
∑

h BP (h)Ih(t) for different delays
when λ = 0.1 in the case where ϕ(h) = B. The five curves from
the left to right correspond to delay τ = 0, 1, 2, 4, 6, respectively.
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FIG. 5. The evolution of
∑

h BP (h)Ih(t) for different delays
when λ = 0.8 in the case where ϕ(h) = B. The five curves from
the left to right correspond to delay τ = 0, 1, 2, 4, 6, respectively.

where L = ∑
h BP (h)

∫ 0
−τ

Ih(θ )dθ and ϒ∞ is the unique
positive solution to

B − ϒ∞ −
∑

h

BP (h)S0
he

−λh〈k〉−1(L+ϒ∞) = 0.

Moreover, the threshold λc = 〈k〉
B〈S0

k k〉 . Note that if S0
k are the

same for all k then λc is independent of the maximum degree.
Moreover, if S0

k ≈ 1 for any degree k then λc ≈ 1/B, which
agrees with the result in Yang et al. [12]. In general, λc depends
on the maximum degree and so the heterogeneity again affects
whether a disease can take off.

Since the force of infection is proportional to the total of
infection, we plot only the force of infection in the simulations
below. During the simulations, we take the maximal degree to
be 15, γ = 0.1 and B = 4. We also assume that S0

k = 0.999
and I 0

k = 0.001 for any degree k. Then λc ≈ 0.2503. Similar
to the case where ϕ(h) = αh, we first take λ = 0.1 
 λc.
Figure 4 shows the evolution of

∑
h BP (h)Ih(t) for different

delays. We observe no increase for
∑

h BP (h)Ih(t). Then we
take λ = 0.8 ∈ (λc,μ). Figure 5 indicates that there is always
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FIG. 6. The evolution of
∑

h BP (h)Ih(t) for different delays
when λ = 5 in the case where ϕ(h) = B. The five curves from the
left to right correspond to delay τ = 0, 1, 2, 4, 6, respectively.

a peak and the number of peaks increases with delay for∑
h BP (h)Ih(t). Finally, we take λ = 5 > μ. Figure 6 shows

that a higher or the highest peak seems to appear in subsequent
waves when delay is increased.

We conclude the paper with a remark. In the above, we have
plotted both the force of infection and the total of infection. It is
interesting to note that in the first case, these two quantities may
differ in their behavior depending on the infectivity function ϕ.
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