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A big problem in malaria control is the rapidity with which mosquitoes can develop
resistance to insecticides. The possibility of creating evolution-proof insecticides is
therefore of considerable interest. Biologists have suggested that effective malaria control,
with only weak selection for insecticide resistance, could be achieved if insecticides target
only old mosquitoes that have already laid most of their eggs. The strategy aims to exploit
the fact that most malarial mosquitoes do not live long enough to transmit the disease. We
derive, analyse and compare two mathematical models, one for an insecticide that kills on
exposure, and the other for an insecticide that targets only older mosquitoes. Both models
predict that insecticide-resistant mosquitoes will become dominant over time but, very
importantly, this occurs on a very much slower time scale when the insecticide only affects
older mosquitoes. We present analytical results on linear and global stability of the non-
trivial equilibrium in which only the resistant mosquito strain is present, together with a
theorem comparing the rates of convergence for the two models. Numerical simulations
show that the effect of targeting only old mosquitoes on the evolution of resistance
is dramatic.
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1. Introduction

The idea of evolution-proof insecticides is currently a hot topic in mosquito control
(Read et al. 2009) because of the potential to slow down or even halt the evolution
of insecticide resistance in mosquitoes. While insecticides are an effective and
cheap method of controlling malaria, it is well known that mosquitoes can develop
resistance and that this can happen on a surprisingly fast time scale. It was
known by the end of the 1960s that the mosquito species that transmit malaria
were developing resistance to dichlorodiphenyltrichloroethane (DDT), the single
insecticide that had been relied on until then (see Hemingway et al. (2002) and
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Kelly-Hope et al. (2008) for recent discussions on the management of insecticide
resistance). Current insecticides kill extremely rapidly after contact, but their
high lethality leads to intense selection for resistance because they kill young
female adults. The very limited insecticide arsenal available (there are still just
four classes, only one of which is approved for use on bed nets) is leading to an
increasing focus on resistant-management strategies, whereby the useful lifespan
of an existing insecticide is enhanced by the way in which the insecticide is used.
Resistant-management strategies may include using different insecticides in space
and time and restricting use to specific times and locations. Indeed, it seems clear
that the development of new insecticides will not in itself provide a sustainable
solution to the problem of resistance. All existing insecticides were new at some
point, development costs are very high and mosquito evolution dooms them all to
failure. See Koella et al. (2009) where it is further suggested that, since the Second
World War, the operational life of an insecticide, in areas of very widespread use,
has been of the order of just 5 years.

Very importantly, it is known that most mosquitoes do not actually live long
enough to be able to transmit malaria. This is due to a relatively long latency
stage during which the malaria parasite has to go through various developmental
stages and replicative cycles in the mosquito before reaching the salivary glands
from which the sporozoites can be transmitted via bites to humans. The duration
of the latency period is of the order of 10–14 days in areas of high malaria
transmission (Charlwood et al. 1997; Killeen et al. 2000). This is almost a lifetime
to a mosquito, and therefore the majority of eggs produced by a female mosquito
in her lifetime are laid before the mosquito is able to transmit malaria to a
human. To exploit these facts to advantage, Read et al. (2009) propose that the
useful lifespan of an insecticide can be enhanced if the insecticide targets only
old mosquitoes. They call such an insecticide a late-life acting (LLA) insecticide.
More precisely, the insecticide should start to take effect on a female mosquito
after she has laid most of her eggs but before the mosquito can start to transmit
malaria. This results in much weaker selection for resistance. Koella et al. (2009)
suggest that, in areas where DDT control worked well for 5 years with high and
continual coverage, an insecticide with a delayed action could provide continuous
control for as long as 35 years.

There are two ways in which an insecticide might kill only old mosquitoes and
not younger adult mosquitoes. One possibility is that the insecticide could begin
to take effect not on initial contact but some time later. This could perhaps be
achieved by cumulative exposure over time to doses each of which would not be
lethal. Existing insecticides could be used with doses lower than those currently
in use (or the insecticide could simply be diluted). An alternative is the use of
fungal pesticides that kill a mosquito 7–14 days after contact (see Thomas & Read
2007 and ongoing work by these investigators). The second approach is to have
an insecticide that takes effect only on older insects by exploiting physiological
changes and weaknesses associated with ageing.

In this paper, we consider the first of the two possibilities mentioned above, i.e.
the insecticide does not take effect on first contact but only after a time delay.
We propose to divide the lifespan of the female mosquito into three stages: the
larval stage (which is understood to include all the pre-adult stages of egg, larva
and pupa and is of total duration ti), the adult stage and the ‘old age’ stage. We
assume that once a mosquito matures from a larva into an adult, it is immediately
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exposed to insecticide. Such exposure may not in reality be immediate, but an
adult female needs to find a blood meal before it can lay eggs and the search
for such a blood meal is likely, in areas of intensive mosquito control using
insecticides, to bring the female mosquitoes into contact with insecticides on
bed nets or on the walls of homes. As an approximation it is assumed that those
mosquitoes contact the insecticide immediately on maturation and then there is
a delay, of duration ta, before the insecticide takes effect. Once this starts to
happen the mosquito is classed as an old mosquito. Thus ‘old age’, in this paper,
does not necessarily mean that the mosquito is near the end of its life or has
undergone particular physiological changes owing to ageing. It simply means that
the mosquito has been an adult for at least ta units of time and the insecticide has
started to take effect. The parameter ta is within our control, if we can control
the length of the delay before the insecticide takes effect.

We consider two mathematical models. The first is for the case of an insecticide
that kills on exposure, and not after a delay, and we refer to it as the conventional
insecticide model. The adult mosquitoes are classed as V (vulnerable) or R
(resistant) according to whether the insecticide can have an effect or not. Even
this simple model involves time delay owing to the fact that, at a given time t, the
rate at which larvae mature into adults is related to the birth rate at the earlier
time t − ti, and therefore to the number of egg-laying adults at that time. For
this model we establish, in §2a, the local and global stability of the equilibrium
in which the resistant strain is established and the vulnerable strain is extinct.
Then, in §2b, we develop a more complex model for the case of an insecticide
that targets only older mosquitoes of age exceeding ti + ta. For this model, the
linear stability analysis about the non-trivial equilibrium in which the vulnerables
are extinct is tricky but tractable. A comparison of the dominant eigenvalues for
the two models is carried out and we prove that, in the model for an insecticide
with delayed action, the resistant strain still becomes the dominant species but
on a slower time scale than in the case when the insecticide acts instantly. As
is usual in time-delay systems, the characteristic equations are transcendental,
but numerical computations of the dominant eigenvalues demonstrate that the
prolongation of the evolution of resistant mosquitoes can be dramatic if the
insecticide acts with a delay. Neither of the models takes account of fitness costs
of resistance. Inclusion of costs could alter the outcomes and this point will be
discussed later.

2. Derivation and analysis of the models

(a) Insecticide that kills on exposure

We let V (t) denote the number of female mosquitoes that are vulnerable to the
insecticide and R(t) the number that are resistant to it, and we derive a system
of delay differential equations to be solved for V (t) and R(t). Resistance arises
via a genetic mutation that generates a small non-zero initial value for R(t). The
model derivation proceeds by reducing an age-structured model, for the densities
v(t, a) and r(t, a) of vulnerable and resistant mosquitoes at time t of age a, to
a system of delay equations. It is similar to the derivation of the more complex
model to be considered in §2b, so here we only present brief details. If insecticide
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does not affect larval mosquitoes then we may assume that the density v(t, a) of
vulnerables satisfies

vv(t, a)
vt

+ vv(t, a)
va

= −miv(t, a), 0 < a < ti, (2.1)

where the density v(t, a) is defined such that for infinitesimal da the number
of vulnerables aged between a and a + da is v(t, a) da. In equation (2.1), mi is
the per capita natural death rate for immature (larval) mosquitoes and ti is
the maturation time for the larva from egg to adult and is the total duration
of all pre-adult stages. For adult mosquitoes, we let their natural per capita
death rate be ma, and we let ma + d denote the overall per capita death rate for
vulnerables (so that d is the per capita insecticide-induced mortality). Therefore,
for adult vulnerables,

vv(t, a)
vt

+ vv(t, a)
va

= −(ma + d)v(t, a), a > ti. (2.2)

The total number of adult vulnerables is

V (t) =
∫∞

ti

v(t, a) da,

and, using equation (2.2) and assuming that v(t, ∞) = 0, it satisfies

V ′(t) = v(t, ti) − (ma + d)V (t). (2.3)

We calculate v(t, ti) from equation (2.1) by integrating along the characteristics,
obtaining v(t, ti) = v(t − ti, 0)e−miti . In this type of model formulation, v(t, a)
has an additional interpretation: it is the rate at time t at which individuals pass
through age a, and therefore v(t, 0) is the birth rate (of vulnerables). We assume
that vulnerable and resistant mosquitoes of all adult ages are equally likely to lay
eggs, that egg production is continuous and that all adult mosquitoes compete
with each other on an equal basis for resources. Thus, the overall egg-laying rate
at time t will be taken to be a function b(M (t)) of the total number of adult
mosquitoes, M (t) = V (t) + R(t). On the assumption that insecticide resistance
is an inherited characteristic involving changes in insect genes (Hemingway et al.
2004), we assume that the offspring of vulnerables are vulnerable and the offspring
of resistant mosquitoes are resistant, so that the birth rates for vulnerable and
resistant mosquitoes are given, respectively, by

v(t, 0) = V (t)
M (t)

b(M (t)) and r(t, 0) = R(t)
M (t)

b(M (t)). (2.4)

Thus, v(t, ti) = v(t − ti, 0)e−miti = e−mitib(M (t − ti))V (t − ti)/M (t − ti), and so
equation (2.3) becomes the V equation of the system

V ′(t) = −(ma + d)V (t) + e−miti
V (t − ti)
M (t − ti)

b(M (t − ti))

and R′(t) = −maR(t) + e−miti
R(t − ti)
M (t − ti)

b(M (t − ti)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)
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The R equation of system (2.5), for resistant mosquitoes, is derived in very much
the same way, except that there is no d term as these mosquitoes are resistant
to insecticide.

We always assume that b(0) = 0 and that b ∈ C 1[0, ∞). System (2.5) therefore
has no singularity and always has (0, 0) as an equilibrium. We show under some
reasonable assumptions on the function b(·) that, according to model (2.5), if
d > 0, the vulnerable mosquitoes are driven to extinction while the resistant ones
take over. What is particularly of interest, in both these sections and the model
of §2b, is the time scale on which this process takes place. This can be estimated
from linearized analysis at the relevant equilibrium. It is straightforward to see
that system (2.5) has no equilibrium with both V , R > 0. Apart from the zero
equilibrium, it may have an equilibrium with V = 0 and R > 0 and another with
V > 0 and R = 0. We prove that the former is locally stable in theorem 2.1. In
this equilibrium, V = 0 and R = R∗, where R∗ satisfies

maR∗ = e−mitib(R∗). (2.6)

If an equilibrium (V , R) = (0, R∗) exists, then another equilibrium (V ∗, 0) also
exists if d is sufficiently small, and analysis similar to the proof of theorem 2.1
shows it to be linearly unstable. Such an equilibrium does not exist if d is large
(i.e. the insecticide is very effective). Small d is arguably more realistic, as a single
mutation is likely to confer only a small increase in insecticide tolerance.

Theorem 2.1. Suppose that d > 0, that R∗ > 0 satisfies equation (2.6) and that
ma > e−mitib′(R∗) > 0. Then, the equilibrium (V , R) = (0, R∗) of system (2.5) is
locally asymptotically stable.

Proof. Linearization of system (2.5) at the equilibrium (0, R∗) yields the
partially decoupled system

V ′(t) = −(ma + d)V (t) + e−miti
b(R∗)
R∗ V (t − ti)

and R̃′(t) = −maR̃(t) + e−mitib′(R∗)R̃(t − ti)

+ e−miti

[
b′(R∗) − b(R∗)

R∗

]
V (t − ti),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

where R̃ = R − R∗. In view of equation (2.6), the first of these equations can be
put in the form

V ′(t) = −(ma + d)V (t) + maV (t − ti), (2.8)

and, since d > 0, Kuang (1993, theorem 3.2.1) yields that V (t) → 0 as t → ∞.
The R̃ equation then becomes

R̃′(t) = −maR̃(t) + e−mitib′(R∗)R̃(t − ti).

Since ma > e−mitib′(R∗) > 0, R̃(t) → 0 as t → ∞ (Kuang 1993, theorem 3.2.1). �
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For the global stability of (0, R∗), to be proved next, we shall need to assume
that the birth function b(·) has the classic hump shape with the equilibrium on
the increasing side, in the following precise sense:

b(0) = 0, b(R) is strictly increasing up to some value bmax attained at Rmax
and is decreasing thereafter but remains positive. There exists R∗ > 0, such
that equation (2.6) holds, R∗ < Rmax, ma < e−mitib′(0), ma > e−mitib′(R∗) > 0,
maR < e−mitib(R) for 0 < R < R∗, maR > e−mitib(R) for R > R∗. Further,
b′′(R) < 0 at least for R ≤ Rmax. (2.9)

The Nicholson’s blowflies birthrate, b(M ) = pM e−qM , satisfies equation (2.9) for
appropriate parameter values.

Theorem 2.2. Suppose that d > 0, and R∗ satisfies equation (2.6) and that b(·)
satisfies assumption (2.9). Then, the equilibrium (V , R) = (0, R∗) of system (2.5)
is globally attractive for all solutions with non-negative initial data, such that
R(q) �≡ 0 on [−ti , 0].

Proof. First note that V (t) ≥ 0 and R(t) ≥ 0 for all t > 0; this follows from
Smith (1995, theorem 5.2.1 on p. 81). Next, let us prove that both V (t) and R(t)
enter, in finite time, the interval of values where b(·) is increasing. To see this,
note that, if we add the equations in system (2.5),

M ′(t) ≤ −maM (t) + e−mitib(M (t − ti)) ≤ −maM (t) + e−mitibmax, (2.10)

so that lim supt→∞ M (t) ≤ e−mitibmax/ma. A graphical argument using the
properties of b(·) shows that e−mitibmax/ma < Rmax. Therefore, M (t) < Rmax for
sufficiently large t, and the same is true for V (t) and R(t). Inequality (2.10) can
also be used to prove the positive invariance of the region

D :=
{
(V (·), R(·)) ∈ C ([−ti, 0], R2) :

V (q), R(q) ≥ 0 and V (q) + R(q) <
e−mitibmax

ma
, for q ∈ [−ti, 0]

}
.

We proceed via the use of theorem B in Hsu et al. (1996). It is a rather general
result that admits infinite-dimensional dynamical systems that have solutions
which evolve in a product of two partially ordered Banach spaces. Each space
contains the solutions involving one component (V or R, in our case) remaining
identically zero. If the solution operator is strictly order preserving, the origin is a
repelling equilibrium, each subsystem with V (t) ≡ 0 or R(t) ≡ 0 contains a global
attractor, and some other technical conditions are satisfied, then, if there is no
coexistence equilibrium, solutions must approach one of the boundary equilibria.
Linear stability theory can be used to decide which boundary equilibrium is
approached. The theorem is stated in the entire phase space C ([−ti, 0], R2), but
it remains valid when applied to the region D owing to the attractivity and
invariance of the region within which b(·) is increasing. So, in what follows, we
assume b′ > 0 without loss of generality.
Proc. R. Soc. A
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How the proof proceeds depends on whether or not there is an equilibrium
with V = V ∗ and R = 0. For such an equilibrium, V ∗ would satisfy (ma + d)V ∗ =
e−mitib(V ∗). Under hypothesis (2.9), such a boundary equilibrium exists if d is
sufficiently small and we assume this to be so. However, the theorem remains
true, even if d is large enough to preclude the existence of such an equilibrium.

Let X = C ([−ti, 0], R) and let X+ be the positive cone of X . Define the cone
K = X+ × (−X+), which induces the partial ordering

(V , R) ≤K (V̄ , R̄) ⇔ V ≤ V̄ and R̄ ≤ R,

where ≤ is the partial ordering induced by X+. To verify hypothesis (H1) in
Hsu et al. (1996, p. 4086), it is necessary to check that the solution operator
T (t), which maps the initial state (V (q), R(q)), q ∈ [−ti, 0] to the state at time t,
namely (Vt(q), Rt(q)), q ∈ [−ti, 0], is strictly order preserving with respect to <K .
Here, < means ≤ and �=, and Vt(·) is the function Vt(q) = V (t + q), q ∈ [−ti, 0].
So we need to check that (V (·), R(·)) <K (V̄ (·), R̄(·)) implies that (Vt(·), Rt(·)) <K

(V̄ t(·), R̄t(·)), i.e. that

V (q) ≤ V̄ (q) and R̄(q) ≤ R(q), q ∈ [−ti, 0],
with V (q) �≡ V̄ (q) or R(q) �≡ R̄(q) on [−ti, 0], implies

V (t + q) ≤ V̄ (t + q) and R̄(t + q) ≤ R(t + q), q ∈ [−ti, 0],
with V (t + q) �≡ V̄ (t + q) or R(t + q) �≡ R̄(t + q), q ∈ [−ti, 0]. This amounts to
showing strict order preserving for the variable (V , −R), in the sense of the
usual partial ordering in R2. Letting V̂ = V and R̂ = −R, we find the evolution
equations for (V̂ , R̂) to be

V̂ ′(t) = −(ma + d)V̂ (t) + e−mitiF1(V̂ (t − ti), R̂(t − ti))

and R̂′(t) = −maR̂(t) + e−mitiF2(V̂ (t − ti), R̂(t − ti)),

}
(2.11)

where

F1(V̂ , R̂) = V̂

V̂ − R̂
b(V̂ − R̂) and F2(V̂ , R̂) = R̂

V̂ − R̂
b(V̂ − R̂).

Routine differentiation, using that b is increasing and that R̂ = −R < 0, shows
that F1 and F2 are each increasing with respect to both variables if b′(M ) <
b(M )/M , and this is easily seen to follow from the hypothesis that b′′ < 0 on
the increasing side of b. Therefore, theorem 5.1.1 (p. 78) of Smith (1995) yields
that system (2.11) preserves ordering. To show the order preserving is strict,
suppose that, for some t∗ > 0, V (t∗ + q) ≡ V̄ (t∗ + q) and R(t∗ + q) ≡ R̄(t∗ + q)
for q ∈ [−ti, 0]. Then, the two solutions (V , R) and (V̄ , R̄) of system (2.5) agree
on an interval of length ti and, by uniqueness, (V (t), R(t)) = (V̄ (t), R̄(t)) for all
t > t∗. We show that this contradicts V (q) �≡ V̄ (q) or R(q) �≡ R̄(q) on [−ti, 0] by
Proc. R. Soc. A
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showing that it implies V (q) ≡ V̄ (q) and R(q) ≡ R̄(q) on [−ti, 0]. Introducing
x(t) = V̄ (t) − V (t) ≥ 0 and h(t) = R(t) − R̄(t) ≥ 0, these functions are zero for
t ≥ Nti, where N is an integer such that Nti ≥ t∗. Hence, from system (2.5),

G1(V̄ (t), R̄(t)) − G1(V (t), R(t)) = emiti (x′(t + ti) + (ma + d)x(t + ti)) = 0,

for t ≥ (N − 1)ti, where

G1(V , R) = V
V + R

b(V + R) and G2(V , R) = R
V + R

b(V + R).

Under the hypotheses, G1 is increasing with respect to V and decreasing with
respect to R, while G2 is increasing with respect to R and decreasing with respect
to V . Therefore, for t ≥ (N − 1)ti,

0 = G1(V̄ (t), R̄(t)) − G1(V (t), R̄(t)) + G1(V (t), R̄(t)) − G1(V (t), R(t))

≥ G1(V̄ (t), R̄(t)) − G1(V (t), R̄(t))

= x(t)
vG1(4(t), R̄(t))

vV
,

for some function 4(t) ∈ (V (t), V̄ (t)). Since vG1/vV > 0, this implies x(t) ≤ 0,
and so x(t) = 0. We have shown that x(t) = 0 for t ≥ Nti implies the same for
t ≥ (N − 1)ti. The argument can be continued to yield x(t) = 0 for t ∈ [−ti, 0],
and the same can be shown for h(t) using properties of G2. So, V (q) ≡ V̄ (q) and
R(q) ≡ R̄(q) on [−ti, 0], giving a contradiction. This establishes (H1) in Hsu et al.
(1996).

To verify (H2) in Hsu et al. (1996), we need to check that (0, 0) is a repelling
equilibrium. This is easy to do and follows from ma < e−mitib′(0). Hypothesis (H3)
in Hsu et al. (1996) holds because {0} × X+ is invariant (if V starts zero, it
stays zero) and since the equilibrium R∗ of R′(t) = −maR(t) + e−mitib(R(t − ti))
is globally attracting within {0} × X+ under our hypotheses (see Kuang 1993,
theorem 4.9.4, p. 164). Also, the equilibrium (V , R) = (V ∗, 0), if d is small enough
to ensure its existence, is globally attracting within X+ × {0}.

To verify (H4) of Hsu et al. (1996), note that if both V and R start off
not identically zero, they both become and remain strictly positive. Verification
of (H4) also involves checking that if (V (·), R(·)) <K (V̄ (·), R̄(·)) and either
(V (·), R(·)) or (V̄ (·), R̄(·)) belongs to int (X+ × X+), then (Vt(·), Rt(·)) �K

(V̄ t(·), R̄t(·)) for t > 0. In terms of the functions x(t) and h(t), we need to show
that if x(q) ≥ 0 and h(q) ≥ 0 on [−ti, 0], x(q) �≡ 0 or h(q) �≡ 0, then x(t) and h(t)
become and remain strictly positive. The evolution equation for x(t), in the form

x′(t) + (ma + d)x(t) = e−miti[G1(V̄ (t − ti), R̄(t − ti)) − G1(V (t − ti), R(t − ti))]
yields

x′(t) ≥ −(ma + d)x(t) + e−mitix(t − ti)
vG1(4(t − ti), R̄(t − ti))

vV
.
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The requirement that (V (·), R(·)) or (V̄ (·), R̄(·)) belongs to int (X+ × X+)
guarantees that 4(t − ti) and R̄(t − ti) cannot both be zero, so that vG1(4(t − ti),
R̄(t − ti))/vV > 0. Hence, if x(q) �≡ 0 on [−ti, 0], then the usual argument (of
considering the initial evolution in the interval t ∈ [0, ti]) yields that x(t) must
become positive at some time in [0, ti]. Having become positive, x(t) remains
positive because x′(t) ≥ −(ma + d)x(t). The possibility that h(q) �≡ 0 on [−ti, 0] is
treated similarly by making use of the evolution equation for h(t).

Having checked these hypotheses, the trichotomy in Hsu et al. (1996,
theorem B) applies and, in the absence of a coexistence equilibrium, we conclude
that solutions must approach one of the boundary equilibria (V ∗, 0) or (0, R∗). The
former can easily be shown to be linearly unstable to perturbations involving the
introduction of R (the linearized equation is R′(t) = −maR(t) + (ma + d)R(t − ti))
and the latter is linearly stable by theorem 2.1. The proof is complete. �

Later in the paper, we will be particularly interested in the decay rate lall,
which tells us something about how fast the solutions evolve to the equilibrium
(0, R∗), at which vulnerables are extinct, for the present model in which all
adult mosquitoes, and not just older ones, are targeted. The parameter lall is the
dominant root (the root of the largest real part) of the characteristic equation

l + ma + d = mae−lti ,

which results from the use of the trial solution exp(lt) in equation (2.8). The
dominant root is real and negative (Smith 1995, theorem 5.5.1, p. 92) and the time
taken to reach equilibrium is of the order |lall|−1. Later, we will also be concerned
with the corresponding decay rate lold associated with the model of the next
section, in which only older mosquitoes are targeted.

(b) Insecticide that targets older mosquitoes

Again V and R denote, respectively, the numbers of female adult vulnerable
and insecticide-resistant mosquitoes, but in this section mosquitoes are considered
to have three stages of life in all. These are (i) the larval stage, considered to be
of duration ti, (ii) the adult stage, which is of duration ta and does not include
old age, and (iii) the ‘old age’ stage, for mosquitoes of age exceeding ti + ta.
Subscripts ‘i’, ‘a’ and ‘o’, standing for immature, adult and old, are used as
appropriate so that, for example, Va is the number of adult vulnerable mosquitoes
and Vo is the number of old vulnerable mosquitoes. We propose the following
model, which we call the LLA insecticide model:

V ′
a(t) = −maVa(t) + e−mitib(Ma(t − ti) + Mo(t − ti))

×
(

Va(t − ti) + Vo(t − ti)
Ma(t − ti) + Mo(t − ti)

)
− e−matae−mitib(Ma(t − ti − ta)

+ Mo(t − ti − ta))
(

Va(t − ti − ta) + Vo(t − ti − ta)
Ma(t − ti − ta) + Mo(t − ti − ta)

)
,
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V ′
o(t) = −(mo + d)Vo(t) + e−matae−mitib(Ma(t − ti − ta)

+ Mo(t − ti − ta))
(

Va(t − ti − ta) + Vo(t − ti − ta)
Ma(t − ti − ta) + Mo(t − ti − ta)

)
, (2.12)

R′
a(t) = −maRa(t) + e−mitib(Ma(t − ti) + Mo(t − ti))

×
(

Ra(t − ti) + Ro(t − ti)
Ma(t − ti) + Mo(t − ti)

)
− e−matae−mitib(Ma(t − ti − ta)

+ Mo(t − ti − ta))
(

Ra(t − ti − ta) + Ro(t − ti − ta)
Ma(t − ti − ta) + Mo(t − ti − ta)

)
,

R′
o(t) = −moRo(t) + e−matae−mitib(Ma(t − ti − ta)

+ Mo(t − ti − ta))
(

Ra(t − ti − ta) + Ro(t − ti − ta)
Ma(t − ti − ta) + Mo(t − ti − ta)

)
,

where Ma(t) = Va(t) + Ra(t), etc. Note that in this system, d, which represents
insecticide-induced death, only appears in the equation for old vulnerable
mosquitoes, and not all vulnerable mosquitoes. This is how we model the age-
dependent effect of the insecticide. Old mosquitoes may also have a different
natural per capita mortality mo from the corresponding mortality ma for adults.
In reality, one expects that mo ≥ ma. Let us derive in detail the Va equation; the
derivations of the other equations are similar. Adults are individuals aged between
ti and ti + ta and therefore the number of vulnerable adults is

Va(t) =
∫ ti+ta

ti

v(t, a) da. (2.13)

For vulnerable mosquitoes at all stages of life, their age density v(t, a) satisfies

vv(t, a)
vt

+ vv(t, a)
va

= −m(a)v(t, a), (2.14)

where

m(a) =
⎧⎨
⎩

mi, 0 < a < ti,
ma, ti < a < ti + ta,
mo, a > ti + ta.

(2.15)

Differentiating equation (2.13) and using equations (2.14) and (2.15) gives

V ′
a(t) = −maVa(t) + v(t, ti) − v(t, ti + ta). (2.16)

The last two terms of this are the maturation rate and the rate of reaching old
age, and these two terms can be calculated in terms of the birth rate v(t, 0).
Solving equation (2.14) for a general m(a) yields that

v(t, a) = v(t − a, 0) exp
(

−
∫ a

0
m(x) dx

)
.
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With m(a) given by expression (2.15), this gives

v(t, ti) = e−mitiv(t − ti, 0) (2.17)

and

v(t, ti + ta) = e−miti e−matav(t − ti − ta, 0). (2.18)

In the second expression, the exponential factors represent the probabilities of
surviving the larval phase and the adult phase to reach old age. The birth rate
for vulnerables is v(t, 0). Adult and old, vulnerable and resistant mosquitoes are
assumed to be equally likely to lay eggs, so that the overall egg-laying rate is
b(Ma(t) + Mo(t)). As in the previous section, we deduce that

v(t, 0) = b(Ma(t) + Mo(t))
(

Va(t) + Vo(t)
Ma(t) + Mo(t)

)
(2.19)

because the above expression represents the proportion of the eggs laid that
contain the genes for vulnerability, having acquired those genes from their parents.
From equation (2.19), we calculate (2.17) and (2.18) and insert the results into
equation (2.16), completing the derivation of the Va equation of system (2.12).

The Va equation of system (2.12) essentially formulates the change rate of
the Va population as the combination of death, the maturation rate, which is
the birth rate at time t − ti, and the progression into the ‘old age’ class, which
happens ta time units after maturation. Integration of this equation yields the
integral equation

Va(t) = e−miti

∫ t

t−ta

e−ma(t−s)b(Ma(s − ti) + Mo(s − ti))
Va(s − ti) + Vo(s − ti)
Ma(s − ti) + Mo(s − ti)

ds

if this matching condition is met initially. So system (2.12) can be replaced
by the differential equations for Vo and Ro, coupled with the above integral
equation and its analogue for Ra. In what follows, we shall not distinguish the
system (2.12) from its equivalent formulation involving integral equations as just
described.

As in the conventional insecticide model of §2a, we shall be concerned primarily
with the linear stability of the equilibrium in which the vulnerables are extinct,
but the resistant mosquitoes are not. So, at equilibrium, Va = Vo = 0 and Ra = R∗

a,
Ro = R∗

o where

maR∗
a = (1 − e−mata )e−mitib(R∗

a + R∗
o)

and moR∗
o = e−matae−mitib(R∗

a + R∗
o).

}
(2.20)

Thus, R∗
a = (1 − e−mata )ematamoR∗

o/ma and we have a single equation for R∗
o,

moR∗
o = e−matae−mitib

(
R∗

o + (emata − 1)moR∗
o

ma

)
. (2.21)
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This makes it easy to impose biologically realistic conditions sufficient for the
existence of unique equilibrium values with R∗

o > 0 and R∗
a > 0. Such a reasonable

assumption would be

b(0) = 0, there exists R∗
o > 0 such that equation (2.21) holds, and

moR < e−matae−mitib
(

R + (emata − 1)moR
ma

)
, for 0 < R < R∗

o,

moR > e−matae−mitib
(

R + (emata − 1)moR
ma

)
, for R > R∗

o.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.22)

For the linear stability of the equilibrium (Va, Vo, Ra, Ro) = (0, 0, R∗
a, R

∗
o) of

system (2.12), we shall need the following additional condition:

mo > e−matae−miti

(
1 + mo

ma
(emata − 1)

)
b′(R∗

a + R∗
o) > 0. (2.23)

We now investigate this linear stability. Near the equilibrium (0, 0, R∗
a, R

∗
o), the

linearization of the V equations is

V ′
a(t) = −maVa(t) + e−miti

b(R∗
a + R∗

o)
R∗

a + R∗
o

(Va(t − ti) + Vo(t − ti))

− e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o
(Va(t − ti − ta) + Vo(t − ti − ta))

and V ′
o(t) = −(mo + d)Vo(t) + e−matae−miti

b(R∗
a + R∗

o)
R∗

a + R∗
o

× (Va(t − ti − ta) + Vo(t − ti − ta)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.24)

Setting Ra = R∗
a + R̃a and Ro = R∗

o + R̃o yields the linearization of the R
equations,

R̃′
a(t) = −maR̃a(t) + e−mitib′(R∗

a + R∗
o)(R̃a(t − ti) + R̃o(t − ti))

+ e−miti

[
b′(R∗

a + R∗
o) − b(R∗

a + R∗
o)

R∗
a + R∗

o

]
(Va(t − ti) + Vo(t − ti))

− e−matae−mitib′(R∗
a + R∗

o)(R̃a(t − ti − ta) + R̃o(t − ti − ta))

− e−matae−miti

[
b′(R∗

a + R∗
o) − b(R∗

a + R∗
o)

R∗
a + R∗

o

]
× (Va(t − ti − ta) + Vo(t − ti − ta)) (2.25)

and

R̃′
o(t) = −moR̃o(t) + e−matae−mitib′(R∗

a + R∗
o)(R̃a(t − ti − ta) + R̃o(t − ti − ta))

+ e−matae−miti

[
b′(R∗

a + R∗
o) − b(R∗

a + R∗
o)

R∗
a + R∗

o

]
× (Va(t − ti − ta) + Vo(t − ti − ta)). (2.26)
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Insecticide resistance in mosquitoes 13

 on November 9, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
System (2.24) involves only the V variables and therefore the linearized system
is partially decoupled. The characteristic equation, which we will not write
down in full, decomposes into a product of factors leading effectively to two
characteristic equations, both of which must be considered. The first of these
relates to system (2.24), and to enable satisfactory analytical progress, it is
essential that this characteristic equation be cast into a suitable form. Note that
the first equation of system (2.24) can be recast as

Va(t) = e−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o

∫ t

t−ta

e−ma(t−s)(Va(s − ti) + Vo(s − ti)) ds. (2.27)

We solve equation (2.27) together with the second of system (2.24) using the
usual ansatz (Va, Vo) = (c1, c2) exp(lt), where c1 and c2 are constants. After some
algebra, this leads to the following useful form for the characteristic equation to
be solved for l:

l + mo + d = e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o
f (l), (2.28)

where

f (l) = (l + ma)e−l(ti+ta)

l + ma − (b(R∗
a + R∗

o)/(R∗
a + R∗

o))e−(l+mi)ti (1 − e−(l+ma)ta )
. (2.29)

In theorem 2.3, we prove that all roots of equation (2.28) have a negative real
part, and this means that (Va(t), Vo(t)) → (0, 0) as solutions of system (2.24). But
this means that in the study of the linearization of the R equations, it is sufficient
to set the V variables to zero, leading to the simpler linearized equations

R̃′
a(t) = −maR̃a(t) + e−mitib′(R∗

a + R∗
o)(R̃a(t − ti) + R̃o(t − ti))

− e−matae−mitib′(R∗
a + R∗

o)(R̃a(t − ti − ta) + R̃o(t − ti − ta))

and R̃′
o(t) = −moR̃o(t) + e−matae−mitib′(R∗

a + R∗
o)

× (R̃a(t − ti − ta) + R̃o(t − ti − ta)),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(2.30)

the first of which can be rewritten as

R̃a(t) = e−mitib′(R∗
a + R∗

o)
∫ t

t−ta

e−ma(t−s)(R̃a(s − ti) + R̃o(s − ti)) ds. (2.31)

This leads to the second characteristic equation

l + mo = e−matae−mitib′(R∗
a + R∗

o)f1(l), (2.32)

where

f1(l) = (l + ma)e−l(ti+ta)

l + ma − b′(R∗
a + R∗

o)e−(l+mi)ti (1 − e−(l+ma)ta )
. (2.33)

We prove the following result on the linear stability of (0, 0, R∗
a, R

∗
o).

Theorem 2.3. Suppose that assumption (2.22) and inequality (2.23) hold. Then,
for any d > 0, the equilibrium (Va, Vo, Ra, Ro) = (0, 0, R∗

a, R
∗
o) of system (2.12) is

locally asymptotically stable.
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Proof. We prove that all roots of equation (2.28) satisfy Re l < 0. The situation
for equation (2.32) is similar. Let us first prove that∣∣∣∣∣1 − e−(l̄+ma)ta

l̄ + ma

∣∣∣∣∣ ≤ 1 − e−mata

ma
, for Re l̄ ≥ 0. (2.34)

Writing l̄ = x + iy, it is necessary to show that, for x ≥ 0,

1 + e−2ta(x+ma) − 2e−ta(x+ma) cos tay
(x + ma)2 + y2

≤ (1 − e−mata )2

m2
a

, (2.35)

or, equivalently, that

h(x, h) := 1 + e−2x − 2e−x cos h

x2 + h2
≤ (1 − e−m̄a )2

m̄2
a

, for x ≥ m̄a, (2.36)

where m̄a = mata. Let us first prove that, for a fixed x ≥ m̄a,

max
h∈R

h(x, h) = h(x, 0) = (1 − e−x)2

x2
. (2.37)

Since h(x, ±∞) = 0, it is clearly enough to check that h(x, h∗) < h(x, 0) where, for
a fixed x, h∗ is any turning point of the function h(x, ·) other than zero. Such a
turning point satisfies

(x2 + h2
∗)e

−x sin h∗ = h∗(1 + e−2x − 2e−x cos h∗),

so that

h(x, h∗) = e−x sin h∗
h∗

≤ e−x.

To show h(x, h∗) < h(x, 0), it is sufficient to check that e−x < (1 − e−x)2/x2.
This is true for all x > 0; indeed, it is equivalent to the assertion that
j(x) > 0, where j(x) = 1 − e−x − xe−x/2. But this function satisfies j(0) = 0 and
j ′(x) = e−x/2(e−x/2 − (1 − 1

2x)) > 0 for x > 0, so that j(x) > 0 when x > 0. Having
established equation (2.37), to show (2.36) it is necessary to show that

1 − e−x

x
≤ 1 − e−m̄a

m̄a
, for x ≥ m̄a, (2.38)

and this follows from the fact that the function x → (1 − e−x)/x is decreasing (see
Gourley et al. 2007). We have shown inequality (2.34).

Now suppose there exists a root l̄ of equation (2.28) such that Re l̄ ≥ 0. Then,

|l̄ + mo + d| = e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o
|f (l̄)|. (2.39)

Writing f (l) in the form

f (l) = e−l(ti+ta)

1 − (b(R∗
a + R∗

o)/(R∗
a + R∗

o))e−(l+mi)titag((l + ma)ta)
, (2.40)
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where g(x) = (1 − e−x)/x , we have, since Re l̄ ≥ 0,

|f (l̄)| ≤ 1

|1 − (b(R∗
a + R∗

o)/(R∗
a + R∗

o))e−(l̄+mi)titag((l̄ + ma)ta)|
.

It is our claim that, for Re l̄ ≥ 0,∣∣∣∣1 − b(R∗
a + R∗

o)
R∗

a + R∗
o

e−(l̄+mi)titag((l̄ + ma)ta)
∣∣∣∣ ≥

∣∣∣∣1 − b(R∗
a + R∗

o)
R∗

a + R∗
o

e−mititag(mata)
∣∣∣∣ .

(2.41)
The right-hand side of this simplifies to 1 − R∗

a/(R
∗
a + R∗

o) because of (2.20).
Therefore, in view of the inequality |z1 − z2| ≥ |z1| − |z2| for z1, z2 ∈ C, it suffices
to show that

tab(R∗
a + R∗

o)
R∗

a + R∗
o

|e−(l̄+mi)ti ||g((l̄ + ma)ta)| ≤ R∗
a

R∗
a + R∗

o
. (2.42)

But, using the first equation of (2.20) and the definition of g, we can show that
inequality (2.34) is equivalent to

tab(R∗
a + R∗

o)
R∗

a + R∗
o

e−miti |g((l̄ + ma)ta)| ≤ R∗
a

R∗
a + R∗

o
,

and inequality (2.42) follows immediately, since Re l̄ ≥ 0. Using inequality (2.41)
and the simplification of its right-hand side, we may now deduce from equation
(2.39) that

|l̄ + mo + d| ≤ e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o

1
1 − R∗

a/(R∗
a + R∗

o)

= e−matae−miti
b(R∗

a + R∗
o)

R∗
o

= mo

using the second equation of (2.20). But for Re l̄ ≥ 0, this is impossible because
it implies that l̄ is within a disc contained entirely in the open left-half plane.

We now treat equation (2.32). The above argument essentially proves that, if
conditions are such that the dominant real root of equation (2.28) is negative,
then there can be no complex roots with positive real part. The arguments
for equation (2.32) are similar, so for simplicity we only look at its real roots.
Simple graphical arguments yield that the dominant real root of equation (2.32)
is negative if we can show that

mo > e−matae−mitib′(R∗
a + R∗

o)f1(0), (2.43)

and f1(l) is decreasing for l ≥ 0. Note that inequality (2.23) implies

mo > e−matae−miti

(
mo

ma
(emata − 1)

)
b′(R∗

a + R∗
o),

so that
ma > b′(R∗

a + R∗
o)e

−miti (1 − e−mata ). (2.44)
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Since inequalities (2.23) and (2.44) hold, we have

e−matae−mitib′(R∗
a + R∗

o)f1(0) = mae−matae−mitib′(R∗
a + R∗

o)
ma − b′(R∗

a + R∗
o)e−miti (1 − e−mata )

< mo,

so inequality (2.43) holds. To show that f1(l) is decreasing for l ≥ 0, we can write
it in terms of the positive and decreasing function g, similar to expression (2.40)
for f (l). Written in this form, f1(l) has a decreasing numerator and increasing
denominator (note that b′(R∗

a + R∗
o) > 0, from inequality (2.23)). It follows that

f1(l) is decreasing if

1 − b′(R∗
a + R∗

o)e
−(l+mi)ti

(
1 − e−(l+ma)ta

l + ma

)
> 0,

when l ≥ 0. The left-hand side is increasing in l and so it is enough to check the
inequality for l = 0, but in that case, it reduces to inequality (2.44). �

In the next theorem, we prove that, if mo = ma, then, although the solutions
of models (2.5) and (2.12) both converge to equilibria in which the resistant
mosquitoes are present and the vulnerables are extinct, in the latter model, the
convergence to equilibrium occurs on a slower time scale. Insecticide resistance
therefore develops more slowly if the insecticide affects only the older mosquitoes.
Later, we present numerical computations which demonstrate that the effect is
dramatic.

Theorem 2.4. Suppose that mo = ma and d > 0. Then, the convergence of
solutions to the equilibrium (0, 0, R∗

a, R
∗
o) of system (2.12) occurs more slowly

than the convergence of solutions of system (2.5) to its equilibrium (0, R∗). More
precisely, if lold and lall are, respectively, the dominant real eigenvalues of the
linearizations of systems (2.12) and (2.5) at these equilibria, then

lall < lold < 0. (2.45)

Proof. The eigenvalue lall satisfies

lall + ma + d = mae−lallti , (2.46)

and, since mo = ma, lold satisfies equation (2.28), i.e.

lold + ma + d = e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o
f (lold). (2.47)

Define f1(l) = mae−lti and

f2(l) = e−matae−miti
b(R∗

a + R∗
o)

R∗
a + R∗

o
f (l),

with f (l) given by (2.29). Sketches of the curves l → l + ma + d, l → f1(l) and
l → f2(l) and continuity arguments show that, if

f2(lall) > f1(lall) and f2(0) < ma + d, (2.48)
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then inequality (2.45) follows. Since we assume mo = ma, we may add the equations
in (2.20) to get ma(R∗

a + R∗
o) = e−mitib(R∗

a + R∗
o), and so

f2(lall) = e−matama(lall + ma)e−lall(ti+ta)

lall + ma − mae−lallti (1 − e−(lall+ma)ta )
.

Also, f1(lall) = mae−lallti . So, to show that f2(lall) > f1(lall), it is necessary to show
that

e−matae−lallta (lall + ma) > lall + ma − mae−lallti (1 − e−(lall+ma)ta ),

which is equivalent to
mae−lallti > lall + ma,

and the truth of this follows from equation (2.46). It is easily checked that
f2(0) = ma < ma + d. Thus, (2.48) holds and the proof is complete. �

3. Numerical simulations and discussion

In this section, we use numerical simulation to confirm the analytical results
and explore other properties of the models. Figures 1 and 2 illustrate the two
kinds of behaviours of models (2.5) and (2.12). We chose the egg-laying rate
as b(M ) = pM e−qM , which is the famous Nicholson’s blowflies birthrate (Gurney
et al. 1980). It is a popular choice in modelling insect dynamics owing to its
positivity, the ease of interpretation of the parameter p (per capita egg production
rate at low densities) and the fact that it models reduction in egg production at
very high densities owing to intraspecific competition for resources. If p = 15, both
systems evolve to a state in which the vulnerable mosquitoes have died out owing
to the insecticide, and the resistant mosquitoes have become the dominant species
with their numbers stabilized. Figure 1a shows the evolution for the conventional
insecticide model (2.5) in which the insecticide kills mosquitoes on exposure, and
not after a delay. This is qualitatively very similar to Koella et al. (2009, fig. 1b),
in fact, the time scales on which the resistant individuals take over is similar. The
main notable difference between the evolution of solutions of the two models (2.5)
and (2.12) is, of course, the time scale on which the resistant strain takes over. It
is very much slower in the case of an insecticide that only targets old mosquitoes.
Note, in the latter case, that Ra + Ro actually evolves to a lower equilibrium
value than does R in system (2.5). This is because, in this simulation, we use
parameter values with mo > ma since older mosquitoes have a higher per capita
natural mortality.

Figure 2 shows that, if we increase p to 50, even though the vulnerable
mosquitoes still die out owing to the insecticide and the resistant mosquitoes
still become dominant, in model (2.12), the resistant mosquitoes evolve to an
oscillatory state rather than an equilibrium. Note that, when p is large, the R
value of the equilibrium being considered is beyond the interval in which the birth
rate function b(·) is monotone increasing.

Figures 3 and 4 demonstrate how the time to extinction of vulnerables
(defined as the reciprocal of the modulus of the dominant eigenvalue) for each
model changes with respect to two of the parameters, which we consider to be
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Figure 1. In this figure, p = 15. (a) The evolution for the conventional insecticide model (2.5). For
this model, the vulnerable mosquito dies out and the resistant strain very rapidly takes over, the
process being essentially complete after around 250–300 days. Dot-dashed line, V (t); solid line,
R(t). The culling rate d = 0.4. For comparison, (b) shows the evolution for the LLA insecticide
model (2.12), again with d = 0.4, but this time the insecticide only affects older vulnerable
mosquitoes. Here, the vulnerables are again driven to extinction by the resistant strain, but on
a much longer time scale of the order of 700 days. Dot-dashed line, Va(t) + Vo(t); solid line,
Ra(t) + Ro(t). Other parameter values are taken from table 1.

Table 1. Parameter values used, except where figure captions state otherwise. The values relate
mainly to the malarial Anopheles genus.

parameter definition, unit and source value used (likely range)

mi death rate of mosquito larva, day−1; Wonham et al.
(2004); Silver (2008)

0.3 (0.213–16.9)

ma death rate of adult mosquito, day−1; Charlwood et al.
(1997); Silver (2008)

0.1 (0.06–0.26)

mo death rate of old mosquito, day−1; Centers for Disease
Control; Silver (2008)

0.143 (0.06–0.26)

d culling rate of vulnerable mosquito, day−1 0.4
ti duration of larval stage, days; Centers for Disease

Control; Silver (2008)
10 (5–28)

ta duration of adult stage, days; Centers for Disease
Control; Silver (2008)

10 (7–30)

b(M ) birth function: b(M ) = pM e−qM ; Gurney et al. (1980)
p maximum possible per capita female egg production

rate; Centers for Disease Control; Silver (2008)
(8–150)

1/q population size at which the population as a whole
achieves maximum reproductive success

100 000
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Figure 2. In this figure, p has been increased to p = 50 and the death rate of larvae mi decreased
to mi = 0.25, with other parameter values being the same as in figure 1. (a) The evolution for the
conventional insecticide model (2.5): the vulnerable mosquitoes have died out and the resistant
strain has almost completely taken over by 150 days, with the culling rate d = 0.4. Dot-dashed line,
V (t); solid line, R(t). (b) Still with d = 0.4, this figure shows the corresponding evolution for the
LLA insecticide model (2.12). Dot-dashed line, Va(t) + Vo(t); solid line, Ra(t) + Ro(t). The effect
is a substantial lengthening, to around 600 days, of the time taken for the resistant strain to take
over. In contrast to figure 1, the numbers of resistant mosquitoes evolve to a limit cycle rather than
an equilibrium. This change is attributable to the increase in the value of p and decrease in the
value of mi. Since LLA insecticides are not yet in use, it is not known whether natural mosquito
populations can oscillate as a result of being subjected to an LLA insecticide.

particularly important owing to the ability to change them as part of a control
strategy: the insecticide-induced death rate, d (which is effectively a measure of
the effectiveness of the insecticide) and the duration ta of the adult stage of the
mosquito. It is very important to stress here that the duration of the adult stage is
defined solely by the action of the insecticide, and not by anything intrinsic to the
mosquito such as the onset of particular physiological changes attributable to age.
It is assumed that mosquitoes become exposed to the insecticide on maturation,
but that the action of the insecticide is delayed. What we call ‘old age’ is just the
age, namely ti + ta, at which the insecticide starts to take effect on the mosquito.
A mosquito is classed as an adult if it has matured, and has been exposed to the
insecticide since then, but the insecticide has not yet started to take effect on the
mosquito. In this sense, the duration ta of the adult phase is within our control
if we can design the insecticide to act with a specified time delay ta.

From figures 3 and 4, we see that, whether ma equals mo or not, for the
conventional insecticide model (2.5), vulnerables go extinct more quickly than in
the LLA insecticide model (2.12). See the caption of figure 3 for further comments.
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Figure 3. In this figure, mo = 0.1, the same as ma and p = 50. (a,b) Show how the time to extinction of
vulnerables (defined as 1/|lall| and 1/|lold| for models (2.5) and (2.12), respectively) changes as we
increase the culling rate d or the duration ta of the adult stage. The plots confirm inequality (2.45)
and also yield quantitative information. Increasing d (essentially, the effectiveness of the insecticide)
shortens the time taken for the resistant strain to take over. Very importantly, this effect is many
times more dramatic in the conventional insecticide model (2.5) than in the case where only older
mosquitoes are targeted. (b) Shows that if we increase the delay ta before the insecticide takes
effect, then the time for the resistant strain to take over increases, and the effect is significant. The
conventional insecticide model does not have a parameter ta, hence the horizontal line. (a) ta = 10.
(b) d = 0.4. (a,b) Dot-dashed line, conventional insecticide model; solid line, LLA insecticide model.

Read et al. (2009) point out that the evolution of resistance to an LLA
insecticide could be slowed down even more if the insecticide could be made to
act only on malaria-infected mosquitoes because, in this way, one further relaxes
selection for resistance without any loss of control. Moreover, there would be
increased selection pressure favouring mosquitoes that are resistant to malaria.

Another aspect that we have not emphasized in this paper is the possibility
of larviciding (killing larval mosquitoes using larvicides). Larvicides are not
as effective as adulticides and, like adulticides, can prompt rapid evolution of
resistance. However, Koella et al. (2009) suggest that this could actually benefit
control, for the following reason. Resistance often comes with an evolutionary
cost and, in Culex, resistant individuals may have shorter lifespans (Gazave
et al. 2001). This is important because, as noted in §1, the adult mosquito
lifespan is one of the most crucial factors affecting the transmission of malaria.
Other evolutionary costs of resistance can include longer developmental times and
smaller size as adults (which in turn is known to be correlated to longevity and
biting rate; Koella et al. 2002; Lehmann et al. 2006). A combination of larviciding
and the use of an LLA insecticide could lead to some particularly interesting
future work owing to resistance to the two insecticides involving opposite changes
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Figure 4. (a,b) In this figure, mo = 0.25 and other parameters are the same as in figure 3. We draw
similar conclusions to those described in the caption to figure 3, but here we illustrate a situation
when ma �= mo. Dot-dashed line, conventional insecticide model; solid line, LLA insecticide model.

in the traits associated with resistance (Koella et al. 2009). Costs of resistance
to an LLA insecticide could, as emphasized by Read et al. (2009), lead to such
an insecticide becoming completely evolution proof if resistance costs outweigh
resistance benefits. The reason this becomes a realistic possibility is that the
fitness gains of resistance to an LLA insecticide benefit only a few mosquitoes
(those that live to old age), whereas the fitness costs (which may be additional
mortality or reduced fecundity) are paid by all.

Finally, it should be emphasized that the strategy of killing only old, potentially
infectious adult mosquitoes emphasizes disease control, and not insect control. As
currently used, chemical insecticides control mosquitoes by killing individuals of
all ages. Since mosquitoes are generally perceived as a nuisance, this is popular
with the public. However, killing mosquitoes of all ages does increase the selection
pressure for insecticide resistance (Read & Thomas 2009). There is thus a tradeoff
between effective prevention of malaria transmission by mosquitoes, and having
to live with mosquito bites involving no malarial transmission.
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