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We develop a new neural network architecture for projective clustering
of data sets that incorporates adaptive transmission delays and signal
transmission information loss. The resultant selective output signaling
mechanism does not require the addition of multiple hidden layers but
instead is based on the assumption that the signal transmission velocity
between input processing neurons and clustering neurons is proportional
to the similarity between the input pattern and the feature vector (the
top-down weights) of the clustering neuron. The mathematical model
governing the evolution of the signal transmission delay, the short-term
memory traces, and the long-term memory traces represents a new class of
large-scale delay differential equations where the evolution of the delay
is described by a nonlinear differential equation involving the similarity
measure already noted. We give a complete description of the computa-
tional performance of the network for a wide range of parameter values.

1 Introduction

The human nervous system learns about its environment by discovering
structures buried in the sensory inputs that it receives. How is the familiar
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to be distinguished from the unfamiliar in real time while at the same
time preserving a sensitivity for novelty and a robustness against varia-
tions (Milton & Mackey, 2000)? Yet the nervous system performs this task
so successfully that considerations of neurophysiology and neuroanatomy
have inspired the development of a large number of neural network–type
methods to mine enormously large data sets for interesting structures, a
process known as data clustering. There is an interplay between the efforts
of computational neuroscientists and neural network theorists: the better
such networks are able to mimic the nervous system, the more effective they
will likely be for clustering large data sets. Conversely, new developments
in data clustering by artificial neural networks shed light on how the living
nervous system performs this task.

Carpenter, Grossberg, and their coworkers (Carpenter & Grossberg,
1987a, 1987b, 1987c, 1990; Carpenter, Grossberg, & Reynolds, 1991; Carpen-
ter, Grossberg, & Rosen, 1991a, 1991b; Carpenter, Grossberg, Markuzon,
Reynolds, & Rosen, 1992; Williamson, 1996) introduced and developed
adaptive resonance theory (ART) to demonstrate how brain networks
automatically learn to cluster information presented to it in real time (see
section 2.1). The two key elements of an ART network are a selection process
and a match-based learning mechanism. The selection process picks up the
most likely category (cluster candidate) for an input pattern. If the chosen
category’s template is sufficiently similar to the input pattern to satisfy a
predefined vigilance condition, the category resonates and learns—its tem-
plate is updated. Otherwise the category is reset, and the next most likely
category is created. If no existing category satisfies the match criterion,
a new category is created. Thus, ART networks incrementally produce
the categories to represent clusters of input patterns. Although ART-type
networks have proven very effective for clustering arbitrary sequences of
input patterns into recognition codes, they are unable to function efficiently
in the high-dimensional spaces that the human visual system typically
encounters. The problem is the sparsity of data points, which makes it im-
possible to find interesting patterns in the full space of dimensions. Pruning
off dimensions in advance, as most feature selection procedures do, can
lead to significant loss of information, making the obtained classifications
unreliable.

Aggarwal and coworkers (Aggarwal, Procopiuc, Wolf, Yu, & Park, 1999;
Aggarwal & Yu, 2000) introduced the concept of projective clustering to ad-
dress the issue of detecting-low dimensional patterns in a high-dimensional
data set. A projective cluster consists of two parts: a subset C of data points
(the cluster) and a subset of dimension D such that the points in C are closely
related in the subspace of dimension D (the projective cluster). To illustrate
the concept of a projective subspace, consider the following animals (data
input): sheep, dog, cat, sparrow, seagull, viper, lizard, goldfish, red mullet,
blue shark, and frog. Projective subspaces can be formed, for example, by
classifying the animals into those that bear live progeny and those that do
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not, the environment that they live in, the existence of lungs, and so on. Cao
and Wu (Cao, 2002; Cao & Wu, 2002, 2004) implemented projective clus-
tering into ART network, the result is PART. PART networks outperform
ART networks for pattern recognition in high-dimensional spaces. Recent
demonstrations include the use of PART networks to classify patterns in
neural spike trains (Hunter, Wu, & Milton, 2008) and the application of
PART for gene fitting (Takahashi, Kobayashi, & Honda, 2005).

The key feature of a PART network is a hidden layer that incorporates
a selective output signal mechanism (SOS) that calculates the similarity
between the output (activation) of a given input neuron (which corresponds
to a particular component of an input) with the corresponding component
of the template (statistical mean) of a candidate cluster neuron and allows
the signal (activation of the input neuron) to be transmitted to the cluster
neuron only when the similarity measure is sufficiently large. This similarity
check is achieved by adding multiple layers of hidden neurons. In addition,
in PART, the output signal of an input neuron will be completely prohibited
from transmitting to its target cluster neuron if the similarity measure is
small, although in practice, this output signal may still play a (relatively
minor) role in the final clustering result. However, despite the success of
projective clustering for computer-generated data of high dimensionality
(Cao & Wu, 2002; Hunter et al., 2008), there is no convincing evidence as
yet to support the existence of an SOS mechanism that incorporates hidden
layers in the nervous system.

Here we introduce a novel clustering network, termed PART-D, which
interprets the SOS mechanism in terms of two recently emphasized prop-
erties of the nervous system: the adaptability of transmission time delays
(Carr, 1993; Fields, 2005; Stanford, 1987; Stevens, Tanner & Fields, 1998; Zalc
& Fields, 2000) and the signal losses that necessarily arise in the presence
of transmission delay (Bale & Petersen, 2009; Sincich, Horton, & Sharpee,
2009; see appendix A). Glial-neuron interactions play important roles in
determining axonal myelination and hence conduction velocity (Stevens
et al., 1998; Fields, 2005; Zalc & Fields, 2000). Thus, self-organization of
transmission delays may be an important but underrecognized mechanism
for learning (Eurich, Pawelzik, Cowan, & Milton, 1999). We show that a
plausible SOS mechanism can arise because the self-organized adaptation
of transmission delays is driven by the dissimilarity between the input pat-
tern and the stored pattern (represented by the template of a cluster neu-
ron). Such an adaptation can be regarded as a consequence of the Hebbian
learning law (Hebb, 1949), and the dynamic adaptation can be modeled
by a nonlinear differential equation. As a result, we obtain a new class
of systems of delay differential equations with adaptive delay. The dis-
similarity between driven transmission delay and the signal transmission
loss due to delay identifies the selective output signaling component of
input neuron activations in terms of the self-organization of transmission
delays.
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Figure 1: A simplified configuration of ART architecture that consists of an
input layer F1, a clustering layer F2, and a reset mechanism.

We organize our discussion as follows. In section 2, we briefly review
adaptive resonance theory and highlight the key differences among ART,
PART, and PART-D networks. In section 3, we derive the equations for a
PART-D network, and in section 4, we determine analytically its perfor-
mance features. Our model takes the form of an unusual system of func-
tional differential equations where the evolution of time delays is governed
by a nonlinear differential equation. Detailed qualitative analysis of the sys-
tem yields an explicit formula for calculating the total amount of selective
output signals to a given cluster neuron, and this formula gives precise in-
formation about the relative role of the signals with different dissimilarity
measures in the final clustering result. Finally in section 5, we discuss some
directions for future work.

2 Adaptive Resonant Neural Networks

2.1 ART Neural Networks. The two key components of an ART net-
work are the selection process and the match process: the selection process
picks up the most likely category (cluster candidate) for an input pattern. If
the chosen category’s template is sufficiently similar to the input pattern to
satisfy a predefined vigilance condition, the category resonates and learns:
its template is updated to respond to the new input pattern. Otherwise the
category is reset, and the next most likely category is chosen. If no existing
category satisfies the match criterion, a new category is recruited. Thus,
ART incrementally produces categories necessary to represent clusters of
input patterns.

Figure 1 illustrates the basic ART architecture, which consists of an input
processing layer or comparison layer (F1 layer), a clustering layer (F2 layer),
bottom-up synaptic weights and top-down synaptic weights between the
two layers, and a reset mechanism.

The F1 layer is analogous to cell groups in a sensory area of the cere-
bral cortex, and the role of this layer is to process the inputs. The number of
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neurons in the F1 layer is the same as the number of the components or vari-
ables of the input vector, which activates each neuron according to the size of
the corresponding component. The neurons in the F1 layer are not connected
to each other, reflecting our standing assumption in this letter that variables
in the input vector are independent. This assumption is obviously not met
in many applications. A subsequent development of PROCLUS (Aggarwal
& Yu, 2000) deals with the case when this assumption is not met. We ad-
dress the modification of our PART-D network to accommodate this case in
a future paper.

The bottom-up weights measure the impact of the output from a neuron
in the F1 layer to the collective effort to activate a candidate cluster neuron.
These weights are updated after each input or learning trial according to
certain learning laws.

Each neuron in the F2 layer represents a cluster, and an input vector that
eventually activates a given F2 neuron through the bottom-up connections
is assigned to the cluster represented by the F2 layer neuron. Neurons in
the F2 layer are connected to each other, and the connection topology is de-
termined by the underlying learning rules. Here we adopt the competitive
learning rule and the special on-center, off-surround connection topology
inspired by visual neurophysiology. Hence, the neuron in the F2 layer that
receives the maximal total amount input signals from the F1 layer is the
winner candidate to represent the input vector. Other connection topolo-
gies are possible. For example, a connection topology can be constructed to
overcome the problem that ART or PART clustering results can depend on
the order in which input vectors are presented to the network (Cao & Wu,
unpublished observations).

For each cluster neuron the associated top-down weights represent the
statistical mean of the corresponding cluster, and thus these weights give
the feature of the cluster. The feature vector will also be updated again after
each learning trail according to certain learning rules to record the learning
experience.

2.2 PART Neural Networks. The basic architecture of PART (see
Figure 2a) is similar to that of the ART neural networks but includes a
new feature: selective output signal. This feature is essential for pattern
recognition in subspaces (Cao, 2002; Cao & Wu, 2002, 2004). Because of
the competitive learning in the F2 layer, calculating the total inputs from
all neurons in the F1 layer to a given cluster neuron is essential for the
choice of a winner candidate cluster neuron to represent the input vector.
This is closely related to the clustering criterion to be discovered by the
network. This calculation distinguishes PART from its ancestor ART and
distinguishes the proposed architecture (PART-D) of this letter from PART.
In ART, the focus is to find clusters with respect to all variables of the input
vector, and the total number of signals received by a cluster neuron is the
weighted (by the bottom-up weights) sum of the outputs of the process-
ing neurons. In PART, a new feature is developed. This SOS mechanism
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Figure 2: (a) PART architecture. In addition to the usual F1 layer (input and
comparison), F2 layer (clustering), and a reset mechanism, a hidden layer is
associated with each F1 layer node vi for similarity check to determine whether
the node vi is active relatively to an F2 layer node v j . (Adapted from Cao,
2002.) (b) PART-D architecture. The PART-D neural network replaces the hidden
layers by a new concept based on dissimilarity-driven transmission delays and
a delay-induced signal loss.

requires the addition of hidden multi layers of neurons to perform the
similarity check and ultimately leads to a new reset subsystem.

For each cluster neuron, we add a layer of neurons (the total number
is the same as the number of input neurons), the similarity check layer,
to check the similarity of the output signal from a given input neuron
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with the corresponding top-down weight of the target cluster neuron. The
output signal is allowed to be broadcast to the cluster neuron only when
there is a strong similarity and when the corresponding bottom-up weight
(significance factor of the corresponding dimension) is larger than a given
constant. Obviously this also determines the projective subspace at the end
of the current learning trial for a cluster represented by a cluster neuron.

The role of the reset subsystem is to reset the candidate cluster neuron
if the dimension of the projective subspace is smaller than a vigilance pa-
rameter. This is natural and necessary, since for a given pair of points in a
large data set in high-dimensional spaces, the probability of finding a few
dimensions with respect to which the two points are close to each other is
large, and thus the vigilance parameter should be relatively large to get rid
of this randomness.

2.3 PART-D Neural Networks. The PART-D neural network introduced
here (see Figure 2b) replaces the hidden layers by a new concept based on
a dissimilarity-driven transmission delay and a delay induced signal loss.
These are motivated by the following observations and assumptions:

� Dissimilarity-driven transmission delay: Signal transmission between
neurons in two different layers is not instantaneous, and the transmis-
sion speed between an input neuron and a cluster neuron is propor-
tional to the similarity between the output from the input neuron to the
corresponding component of the top-down weights (feature vector),

� Delay-induced transmission loss: During transmission, the signal de-
cays exponentially, and thus the longer the delay, the larger the loss of
the signal.

As a consequence, the signal received by a cluster neuron is only a
portion of the output signal from an input neuron. If the transmission is
instantaneous, the proportionality constant is 1, as is typically assumed, but
if the transmission is delayed, this proportionality constant is e−ατ , where
α is the decay rate of the signal and τ is the delay (see appendix A). In
PART, this constant is assumed to be zero if the dissimilarity-driven delay
is positive. In PART-D the calculation of the proportionality constant utilizes
a nonlinear differential equation that describes the adaptation of the time
delay. Thus, there is an explicit formula that determines the proportionality
constant. In some sense, this formula provides a qualitative formulation,
very much similar to the concept of membership in fuzzy clustering, of the
dissimilarity and its related delay.

3 Projective Adaptive Resonant Theory with Delay (PART-D)

The PART-D network consists of two layers of neurons, synaptic con-
nections between neurons of these two layers and synaptic connections
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among cluster neurons, a reset mechanism and a dissimilarity-driven
transmission delay, and the resulting loss of the signal (see Figure 2b).
Denote the nodes in the F1 layer (comparison/input processing layer)
by Pi , i ∈ �p := {1, . . . , m}; nodes in the F2 layer (clustering layer) by
C j , j ∈ �c := {1, . . . , n} and the activation of the F1 node Pi by xi and the
activation of the F2 node C j by yj ; and the bottom-up weight from Pi to
C j by zi j and the top-down weight (also called a template) from C j to Pi

by w j i .
The short-term memory (STM) equations for neurons in the F1 layer are

given by

εp
dxi (t)

dt
= −xi (t) + Ii , t ≥ −1, i ∈ �p, (3.1)

where 0 < εp � 1 and Ii is the constant input imposed on Pi . This is based
on the assumption that for an isolated neuron, the dynamics is the balance
of the internal decay and the external input excitation.

The change of the STM for an F2 neuron depends on the internal decay,
the excitation from self-feedback, the inhibition from other F2 neurons, and
the excitation by the bottom-up filter inputs from F1 neurons. We have the
STM equations for the committed neurons in the F2 layer:

εc
dyj (t)

dt
=−yj (t) + [1 − Ayj (t)][ fc(yj (t)) + Tj (t)]

−[B + Cyj (t)]
∑

k∈�c\{ j}
fc(yk(t)), t ≥ 0, j ∈ �c, (3.2)

where 0 < εc � 1, fc : R → R is a signal function to be specified later; A,
B, and C are nonnegative constants; and the bottom-up filter input Tj is
given by

Tj (t) = D
∑
i∈�p

zi j (t) f p(xi (t − τi j (t)))e−ατi j (t), t ≥ 0, (3.3)

where D is a scaling constant and f p : R → R is the signal function of the
input layer. It is assumed here that the signal transmissions between two
layers are not instantaneous and the signal decays exponentially at a rate
α > 0 (see appendix A). The exponential decay term e−ατi j can be replaced
by any parameterized function gα = gα(τi j ) as long as gα(0) = 1 and for a
fixed τ > 0, gα(τ ) can be made arbitrarily small if α is sufficiently large.

The term τi j is the signal transmission delay between the input neuron
Pi and the cluster neuron C j . We assume this delay is driven by the dis-
similarity in the sense that the signal processing from the input neuron Pi

to the cluster neuron C j is faster when the output from Pi is similar to the
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corresponding component of w j i of the feature vector w j = (w j i )i∈�p of the
cluster neuron C j . Therefore, we have

β
dτi j (t)

dt
= −τi j (t) + E[1 − hi j (t)], t ≥ 0, i ∈ �p, j ∈ �c, (3.4)

where β > 0, E ∈ (0, 1) are constants and

hi j (t) = S(d( f p(xi (t)), w j i (t)), zi j (t))

is the similarity measure between the output signal f p(xi (t)) and the cor-
responding component w j i (t) of the feature vector of the cluster neuron
C j , with respect to the significance factor of the bottom-up synaptic weight
zi j (t). Here, d is the usual distance function,

d(a , b) = |a − b| for any a , b ∈ R,

and S : R+ × [0, 1] → [0, 1] is a given function, nonincreasing with respect
to the first argument and nondecreasing with respect to the second argu-
ment. Moreover, S(0, 1) = 1 (the similarity measure is 1 with complete simi-
larity and maximal synaptic bottom-up weight) and S(+∞, z) = S(x, 0) = 0
for all z ∈ [0, 1] and x ∈ R+ := [0,∞)(the similarity measure is 0 with com-
plete dissimilarity or minimal bottom-up synaptic weight). Therefore, if
τi j (0) = 0, then from equation 3.4, it follows that 0 ≤ τi j (t) ≤ E for all t ∈ R+.
Moreover, if hi j (t) = 1 on an interval [0, b) for a given b > 0, then τi j (t) = 0
for all t ∈ [0, b).

In what follows, we are going to assume

hi j (t) = hσ (d( f p(xi (t)), w j i (t)))lθ (zi j (t)), t ≥ 0, i ∈ �p, j ∈ �c . (3.5)

In other words, hi j (t) is determined by the distance between the output
signal f p(xi (t)) and the corresponding component w j i (t) of the feature vector
of the cluster neuron C j , multiplied by the significance factor of the bottom-
up synaptic weight zi j (t). We also assume that for a given constant σ , hσ is
given by

hσ (ξ ) =
{

1 if ξ ≤ σ

0 if ξ > σ
,

and for a constant, θ > 0, lθ is given by

lθ (ξ ) =
{

1 if ξ ≥ θ

0 if ξ < θ
.
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Therefore, hi j (t) = 1 if | f p(xi (t)) − w j i (t)| ≤ σ and zi j (t) ≥ θ , and hi j (t) = 0
if either | f p(xi (t)) − w j i (t)| > σ or zi j (t) < θ . As a consequence, the dissimi-
larity 1 − hi j (t) is either 0 or 1. This choice of the dissimilarity measure will
significantly simplify the mathematical analysis of the model, as shown in
the next section. However, we emphasize that this dissimilarity measure
involves the choice of two parameters (θ, σ ) and that the binary values 0
or 1 do not reflect the fuzzy nature of the dissimilarity. (More details are
provided in section 6.)

The equation governing the change of the weights follows from the
synaptic conservation rule of von der Malsburg (1973), and only connections
to activated neurons are modified. The top-down weights are modified so
that the template will point to the direction of the delayed and exponentially
decayed outputs from F1 layer. Therefore, we have

γ
dw j i (t)

dt
= fc(yj (t))

[ − w j i (t) + f p(xi (t − τi j (t)))e−ατi j (t)
]
,

t ≥ 0, i ∈ �p, j ∈ �c, (3.6)

where γ > 0 is a given constant.
The bottom-up weights are changed according to the competitive learn-

ing law and Weber’s law rule that says that long-term memory (LTM) size
should vary inversely with input pattern scale to present a clustering neu-
ron that has learned a particular pattern from coding every superset pattern
(see Carpenter & Grossberg, 1987c). Thus, the LTM equations for committed
neurons C j in F2 layer are

δ
dzi j (t)

dt
= fc(yj (t))[(1 − zi j (t))hi j (t)L − zi j (t)(1 − hi j (t))

−zi j (t)
∑

k∈�p\{i} hk j (t)], t ≥ 0, i ∈ �p, j ∈ �c,
(3.7)

where 0 < δ � γ = O(1) and L > 0 is a given constant.
The LTM equations for noncommitted candidate node C j in F2 layer are

δ
dzi j (t)

dt
= [1 − zi j (t)]L − zi j (t)(m − 1), t ≥ 0, i ∈ �p, (3.8)

and

δ
dw j i (t)

dt
= −w j i (t) + f p(xi (t)), t ≥ 0, i ∈ �p. (3.9)

In the PART-D architecture, this dynamical process is coupled with a
reset mechanism. In particular, a candidate (active) F2 node C j will be reset
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if at any given time t ≥ 0, the degree of match is less than a prescribed
vigilance. Reset occurs if and only if

∑
i∈�p

hi j (t) < ρ. (3.10)

Here, ρ ∈ {1, 2, . . . , m} is a vigilance parameter.

4 Performance of PART-D Neural Networks

Equations 3.1 to 3.7 describe a system of functional differential equations
where the dynamics of the delay τi j (t) are adaptive and are described by
the nonlinear equation 3.4. To determine a solution, we need to specify the
initial condition. We assume that all neurons in both layers are set to their
normalized equilibrium states and that the transmission delays are initially
set to zero:

xi (t) = 0, i ∈ �p, t ≤ −1,

yj (t) = 0, j ∈ �c, t ∈ [−1, 0],
τi j (t) = 0, i ∈ �p, j ∈ �c, t ∈ [−1, 0].

Unlike most of the delay differential systems investigated in the literature,
the delay is state dependent, and, in fact, the evolution of the delay is
governed by a differential equation involving the dissimilarity measure
mentioned above, which is related to the status of input neurons and the
top-down weights (see Hartung, Krisztin, Walther, & Wu, 2006, for a recent
survey of using state-dependent delays). We show that the model equation
has regular dynamics that are essential for the algorithm development:

� The winner-take-all paradigm. The F2 node with the largest bottom-
up filter input becomes the winner, and only this node is activated
after some finite time.

� An F2 node will never be reset during the whole trial if it is not initially
reset.

� The synaptic weights are updated following specific formulas.
� The dimension of a specific projective cluster is nonincreasing in time.

In what follows, we make the following assumptions:

H1: Constants A, B, and C satisfy A = 1, B = 0, C > 0.
H2: The signal function f p : R → R is nondecreasing and satisfies the

Lipschitz condition (with a given constant K > 0):

| f p(x) − f p(x̂)| ≤ K |x − x̂|, x, x̂ ∈ R.
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H3: The signal function fc : R → R satisfies, for a constant ηc ∈ (0, 1), that

fc(y) =
{

1 if y ≥ ηc

0 if y < ηc
.

The dynamics of the PART-D neural network are described by the fol-
lowing two theorems:

Theorem 1. Let

τ ∗
i j = E[1 − hi j (0)],

T∗
j = D

∑
i∈�p

zi j (0) f p(Ii )e−ατ ∗
i j .

Assume that

L
L + m − 1

> θ

and that there exists J ∈ �c such that T∗
j < T∗

J for all j ∈ �c \ {J }. Let M =∑
i∈�p

zi J (0) f p(Ii ). Assume further that there exists Tmin > 0 so that

DL
L + m − 1

f p(Ii ) > Tmin, i ∈ �p,

T∗
J > Tmin + DMe−αE ,

1 + T∗
j

2 + T∗
j + C

< ηc < min
{

T∗
J

1 + T∗
J

,
1 + Tmin

2 + Tmin

}
, j ∈ �c \ {J }.

Then we can choose εp, εc , and δ sufficiently small so that the following results
hold:

i. Inhibition of noncandidate neurons: For j 
= J and t ≥ 0, yj (t) < ηc , and
fc(yj (t)) = 0.

ii. Sustained excitation of the candidate neuron: There exists � > 0 such that
yJ (t) < ηc and fc(yJ (t)) = 0 when t < �, and yJ (t) ≥ ηc and fc(yJ (t)) = 1
when t ≥ �.

iii. Invariance of similarity: For any i ∈ �p, j ∈ �c and t ≥ 0, hi j (t) = hi j (0).
iv. (Learning at Infinity): For any i ∈ �p and j ∈ �c with j 
= J , zi j (t) and

w j i (t) remain unchanged for all t ≥ 0. But

lim
t→∞ zi J (t) =

⎧⎪⎨
⎪⎩

0 if hi J (0) = 0

L
L + li

if hi J (0) = 1
,
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and

lim
t→∞ wJ i (t) = f p(Ii )e−ατ ∗

i J ,

where li = #{k ∈ �p \ {i}; hk J (0) = 1}.

Theorem 2. If εp, εc, δ are sufficiently small, we have

v. Fast excitation: � ∈ (0, 1).
vi. Fast learning: Write zεp,εc ,δ

i j and w
εp,εc ,δ

j i to indicate explicitly the dependence
on (εp, εc, δ). Then we have

lim
δ→0

zεp,εc ,δ

i J (1) =

⎧⎪⎨
⎪⎩

0 if hi J (0) = 0

L
L + li

if hi J (0) = 1

and

lim
εp→0,β→0

w
εp,εc ,δ

J i (1) = (1 − q )wJ i (0) + q f p(Ii )e−ατ ∗
i J ,

where q = 1 − e−1/γ .
vii. Convergence of projective subspace: For any j ∈ �c , define Dj (t) = {i ∈

�p; lθ (zi j (t)) = 1}. Then, as εp, εc, δ → 0, we have

Dj (t) = Dj (0) for any j 
= J ,

DJ (t2) ⊆ DJ (t1) if t2 ≥ t1 ≥ 0,

DJ (t) = DJ (1) for all t ≥ 1.

Theorem 1 shows that only the node CJ in the cluster layer that receives
the maximal sum (T∗

J ) of selective and delayed output signals from all in-
put neurons Pi , i ∈ �p, will be eventually activated and the corresponding
top-down and bottom-up weights will be updated. In real applications, the
time interval between successive inputs of signals to the network is finite,
and thus for the PART-D network to function efficiently, it is necessary that
it stabilizes very fast for each given constant input. Theorem 2 describes the
transient behaviors of the PART-D network. As Cao and Wu (2002) show,
these transient behaviors are the basis for the development of effective
algorithms for projective clustering. In particular, formulas in part vi of
theorem 2 give us the explicit expression for the updating of synaptic
weights corresponding to the activated clustering neuron CJ , and part vii
confirms that the dimension of the associated projective subspace is de-
creasing and eventually stabilizes.

Following a similar procedure, we have developed a Matlab code that
implements our PART-D clustering model. Figure 3b shows the output
of PART-D applied to a data set in R3, where it successfully recovers the
projected subspaces and their respective clusters.
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Figure 3: (a) A data set with two projected clusters. The horizontal plane to-
gether with points on the right-hand side of the dashed line gives one projec-
tive cluster, and the vertical yz-plane together with points on the left-hand side
gives another projective cluster. The application of ART to clusters in full three-
dimensional space will result in a false conclusion of three clusters (depicted
by points enclosed by each ellipse). (b) PART-D successfully recovers the two
projected subspaces and their respective clusters, shown as small squares and
small circles.
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4.1 Proof of Theorem 1. Theorem 1 is a summary of the following five
lemmas:

Lemma 1. Limited variance of activation level for F1 neurons: For a given input
I = (I1, . . . , Im)T and a given ζ > 0, there exists ε0

p > 0 so that | f p(xi (t)) −
f p(Ii )| < ζ for all t ≥ 0, provided εp ∈ (0, ε0

p).

Proof. We first note that from equation 3.1 and xi (−1) = 0, it follows that

xi (t) = Ii
[
1 − e−(t+1)/εp

]
, t ≥ −1, i ∈ �p. (4.1)

Using equation 4.1 and Lipschitz continuity of f p (see H2), we have

| f p(xi (t)) − f p(Ii )| ≤ K |xi (t) − Ii | = K Ii e−(t+1)/εp ≤ K Ii e−1/εp , t ≥ 0.

If Ii 
= 0, ζ

K Ii
< 1, and

0 < εp < ε0
p := − 1

ln
(

ζ

K Ii

) ,

then we have

| f p(xi (t)) − f p(Ii )| ≤ K Ii e−1/εp < K Ii e−1/ε0
p = ζ, t ≥ 0.

On the other hand, if Ii = 0, then

| f p(xi (t)) − f p(Ii )| = 0 < ζ, t ≥ 0

for any εp > 0, and if ζ

K Ii
≥ 1, then

| f p(xi (t)) − f p(Ii )| ≤ K Ii e−1/εp < ζ, t ≥ 0,

since e−1/εp < 1 for any εp > 0.

Lemma 2. Uniform variance of activation level for F1 neurons: For a given input
I = (I1, · · · , Im)T : and t2 ≥ t1 ≥ 0 and a given εp > 0, there exists 0 < ε̂p ≤ εp

so that xi (t1; ε̂p) = xi (t2; εp).

Proof. Choose

ε̂p = t1 + 1
t2 + 1

εp.
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Note that yj (0) = 0 < ηc for all j ∈ �c . Therefore,

� := sup{t ≥ 0; yj (t) < ηc for every j ∈ �c} > 0. (4.2)

In other words, � is the first instant when at least one cluster neuron is
activated. We show later that � < ∞.

On [0, �), we have

fc(yj (t)) = 0 for j ∈ �c . (4.3)

Therefore, using equations 3.6 and 3.7, we get

zi j (t) = zi j (0), w j i (t) = w j i (0) for t ∈ [0, �), i ∈ �p, j ∈ �c . (4.4)

Using lemma 1, we can find ε0
p > 0, so that if 0 < εp < ε0

p, then f p(xi (t)) →
f p(Ii ) and f p(xi (0)) → f p(Ii ), both from the same side because of the mono-
tonicity of f p. Hence, if | f p(Ii ) − w j i (0)| > σ , then | f p(xi (t)) − w j i (t)| > σ

and | f p(xi (0)) − w j i (0)| > σ , and we have

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0)) − w j i (0)|) = 0,

i ∈ �p, j ∈ �c, t ∈ [0, �).

Similarly, if | f p(Ii ) − w j i (0)| < σ , then | f p(xi (t)) − w j i (t)| < σ , and
| f p(xi (0)) − w j i (0)| < σ , and we have

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0)) − w j i (0)|) = 1,

i ∈ �p, j ∈ �c, t ∈ [0, �).

Finally if | f p(Ii ) − w j i (0)| = σ , then we consider two possible cases:

Case 1: f p(xi (t)) 
= f p(Ii ) for all t ≥ 0 and all εp > 0. In this case, either
f p(xi (t)), f p(xi (0)) ∈ (w j i (0) − σ,w j i (0) + σ ), resulting in

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0)) − w j i (0)|) = 1,

or f p(xi (t)), f p(xi (0)) /∈ [w j i (0) − σ,w j i (0) + σ ], which means

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0)) − w j i (0)|) = 0.

Case 2: There exist some t̃ ≥ 0 and ε̃p > 0 for which f p(xi (t̃); ε̃p) = f p(Ii ; ε̃p).
In this case, for 0 ≤ t ≤ t̃, using lemma 2, we can choose ε0

p =
mint≥0{ t+1

t̃+1
ε̃p} = ε̃p

t̃+1
to get

f p(xi (t); εp) = f p(xi (t̃); ε̃p) for all 0 < εp < ε0
p,
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which is also true for t > t̃, since f p(xi (t)) is nondecreasing and
xi (t) ≤ Ii . Therefore,

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0)) − w j i (0)|)
= hσ (| f p(Ii ) − w j i (0)|) = 1.

In all cases, we can find ε0
p > 0, so if 0 < εp < ε0

p, then

hσ (| f p(xi (t)) − w j i (t)|) = hσ (| f p(xi (0))

−w j i (0)|), i ∈ �p, j ∈ �c, t ∈ [0, �). (4.5)

Therefore,

hi j (t) = hi j (0), t ∈ [0, �), i ∈ �p, j ∈ �c . (4.6)

Note also that τi j (0) = 0. Therefore, using equation 4.6, we get

τi j (t) = E[1 − hi j (0)][1 − e−t/β ], t ∈ [0, �], i ∈ λp, j ∈ �c . (4.7)

Here and in what follows, [0, �] = [0,∞) if � = ∞. Furthermore, from
equation 4.2, we get

εc
dyj (t)

dt
= −yj (t) + [1 − yj (t)]Tj (t), t ∈ [0, �), i ∈ �c, j ∈ �p.

(4.8)

It is natural to introduce

τ ∗
i j = E[1 − hi j (0)] (4.9)

and

T∗
j = D

∑
i∈�p

zi j (0) f p(Ii )e−ατ ∗
i j . (4.10)

Obviously,

0 ≤ τ ∗
i j − τi j (t)

= τ ∗
i j e

−t/β ≤ τ ∗
i j e

−ts/β → 0 uniformly on [ts, �] as β → 0, (4.11)

for any 0 < ts < �.
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Using equation 4.7, we have

0 ≤ τi j (t) ≤ E < 1, 0 ≤ t ≤ �, i ∈ �p, j ∈ �c (4.12)

and

t − τi j (t) + 1 ≥ 1 − τi j (t) > 0, t ∈ [0, �], i ∈ �p, j ∈ �c .

Therefore, using equations 4.1, 4.4, and 4.11, we get

|Tj (t) − T∗
j | ≤ D

∑
i∈�p

zi j (0)| f p(xi (t − τi j (t)))e−ατi j (t) − f p(Ii )e−ατ ∗
i j |

≤ D
∑
i∈�p

zi j (0)( f p(Ii )|e−ατi j (t) − e−ατ ∗
i j | + | f p(xi (t − τi j (t)))

− f p(Ii )|e−ατi j (t)), for t ∈ [0, �],
(4.13)

where we used the inequality

|ac − bd| ≤ b|c − d| + |a − b|c for a , b, c, d ≥ 0 ∈ R.

On the other hand, using H2 and equation 4.1,

| f p(xi (t − τi j (t))) − f p(Ii )| ≤ K |xi (t − τi j (t)) − Ii |
= K Ii e−(t−τi j (t)+1)/εp

= K Ii e−t/εp e (τi j (t)−1)/εp

≤ K Ii e−t/εp

≤ K Ii e−ts/εp for t ∈ [ts, �], ∀ 0 < ts < �,

(4.14)

and using equation 4.7,

e−ατi j (t) − e−ατ ∗
i j = e−ατ ∗

i j (eατ ∗
i j e

−t/β − 1)

≤ eαEe−t/β − 1

≤ 7
4
αEe−t/β

≤ 7
4
αEe−ts/β for t ≥ ts, (4.15)
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where we used the inequality

ea − 1 ≤ 7
4

a for 0 ≤ a < 1

and assumed 0 < ts < � is chosen such that

αEe−ts/β < 1. (4.16)

Now we can combine equations 4.13, 4.14, and 4.15 to get

|Tj (t) − T∗
j | ≤ Pe−ts/εp + Qe−ts/β → 0 uniformly on [ts, �] as

β → 0 and εp → 0, (4.17)

where 0 < ts < � must satisfy equation 4.16, and

P = DK
∑
i∈�p

zi j (0)Ii

Q = 7
4
αDE

∑
i∈�p

zi j (0) f p(Ii )

are nonnegative constants.
Note that ts in equation 4.11 or 4.17 can be made arbitrarily small as

long as ts → 0 is slower than both β → 0 and εp → 0. This condition can
be satisfied, for example, by choosing ts = max{√β,

√
εp}. However, if ts

changes as either β or εp changes, then the uniform convergence cannot
be stated. In the rest of this letter, whenever we consider ts as a dependent
of β or εp, we will only use the upper-bound expressions introduced in
equations 4.11 and 4.17.

Lemma 3. Excitation of a cluster neuron: Assume that there exists J ∈ �c so that

0 ≤ T∗
j < T∗

J , j ∈ �c \ {J } (4.18)

and

T∗
J

1 + T∗
J

> ηc . (4.19)

Then there exist t̂s ∈ [0, �), ε̂p > 0, and β̂ > 0 so that if 0 < εp < ε̂p and 0 <

β < β̂, then � given in equation 4.2 is finite and

yJ (�) = ηc > yj (�), ẏJ (�) > 0, j ∈ �c \ {J } (4.20)
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and

yj (t) < yJ (t) < ηc, j ∈ �c \ {J }, t ∈ [t̂s, �). (4.21)

Furthermore, if ε̂p and β̂ are small, then � can be made arbitrarily small.

Proof. Fix μ > 0 so that

T∗
J

1 + T∗
J

− (1 + ηc)μ > ηc . (4.22)

Using equations 4.18 and 4.17, we can find β̂ > 0 and ε̂p > 0, so that if
0 < εp < ε̂p and 0 < β < β̂, then

|TJ (t) − T∗
J | < μ, t ∈ [ts, �] (4.23)

and

0 ≤ Tj (t) < TJ (t), t ∈ [ts, �], j ∈ �c \ {J } (4.24)

for any given 0 < ts < �.
For every j ∈ �c \ {J }, we consider three possible cases,

Case 1: ∀ t ∈ (ts, �), yj (t) < yJ (t). Simply take t{ j}
s := ts . Figure 4 shows an

example of this typical situation.
Case 2: ∀ t ∈ (ts, �), yj (t) > yJ (t). Then

εc
d
dt

[yJ (t) − yj (t)]=−yJ (t) + yj (t) + [1−yJ (t)]TJ (t) − [1 − yj (t)]Tj (t)

≥ [1 − yj (t)]TJ (t) − [1 − yj (t)]Tj (t)

= [1 − yj (t)][TJ (t) − Tj (t)]

≥ (1 − ηc)[T∗
J − T∗

j − (PJ + Pj )e−ts/εp − (QJ + Q j )e−ts/β ]

≥ (1 − ηc)[T∗
J − T∗

j − φ(ts, εp, β)] for t ∈ (ts, �), (4.25)

where

φ(ts, εp, β) = (PJ + Pj )e−ts/εp + (QJ + Q j )e−ts/β .

On the other hand,

εc

∣∣∣∣ d
dt

[yJ (t) − yj (t)]
∣∣∣∣ = | − yJ (t) + yj (t) + [1 − yJ (t)]TJ (t)

− [1 − yj (t)]Tj (t)|
≤ | − yJ (t) + yj (t)‖ + |TJ (t)| + |Tj (t)|
≤ 1 + T∗∗

J + T∗∗
j for t ∈ (0, ts), (4.26)
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Figure 4: Plots of simulation results for the case where yJ (t) > yj (t) for 0 < t ≤ �

(case 1 in the proof of lemma 3). Here J = 1, j = 2, and � ≈ 0.0871. The top
middle plot provides a closer look at the top right plot for t ≤ �. Note the wider
range chosen to show the dynamics of wJ 1 and w j1 (LTM variables) compared to
others (STM variables). The real winner is the expected winner, CJ . The expected
winner in this case has a larger initial bottom-up weight (z1J > z1 j ) and a better
similarity measure (h1J = 1, h1 j = 0), which results in shorter signal delays
(τ1J = 0, τ1 j → E = 0.5). See appendix B for the details of parameter values
used.

where

T∗∗
J = D

∑
i∈�p

zi J (0) f p(Ii ),

T∗∗
j = D

∑
i∈�p

zi j (0) f p(Ii ),

are nonnegative constants.
Using equation 4.25, while integrating over [0, ts] and equation

4.26 over [ts, �], we get

0 ≥ εc[yJ (�) − yj (�)] ≥−(1 + T∗∗
J + T∗∗

j )ts + (1 − ηc)

[T∗
J − T∗

j − φ(ts, εp, β)](� − ts) (4.27)
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Figure 5: Plots of simulation results for the case where yj (t) > yJ (t) for 0 < t ≤ �

(case 2 in the proof of lemma 3). Here J = 2, j = 1, β = 0.1, and � ≈ 0.0550. The
top middle plot is a closer look at the top right plot for t ≤ �. This situation
can be prevented by choosing a sufficiently small value for the parameter β

(e.g., β = 0.01, as shown in Figure 6). It can also be seen that w j1 exhibits a
nonuniform behavior compared to the expected uniform behavior of the other
standard cases. Note the wider range chosen to show the dynamics of wJ 1 and
w j1 (LTM variables) compared to others (STM variables). The real winner is not
the expected winner, CJ . The expected winner in this case has a smaller initial
bottom-up weight (z1J < z1 j ) but a better similarity measure (h1J = 1, h1 j = 0),
which results in shorter signal delays (τ1J = 0, τ1 j → E = 0.5). However, the
chosen grow rate for τ1 j (proportional to 1/β) is not fast enough to affect the
selection made by initial bottom-up weights. See appendix B for details on the
parameter values used.

or

(1 + T∗∗
J + T∗∗

j )ts ≥ (1 − ηc)[T∗
J − T∗

j − φ(ts, εp, β)](� − ts).

(4.28)

If ts , εp and β are small enough, then equation 4.28 cannot hold,
meaning that this case cannot occur. Figure 5 shows an example
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of this situation, where a (relatively) large chosen β causes the
predictions to fail.

Case 3: ∃ t∗ ∈ (ts, �) such that yj (t∗) = yJ (t∗). Then

εc
d
dt

[yJ (t) − yj (t)]|t=t∗ = TJ (t∗) − Tj (t∗) > 0,

from which it follows that yJ (t) > yj (t) for t > t∗ close to t∗. We
claim that yJ (t) > yj (t) for all t ∈ (t∗, �). If, by way of contradiction,
there exist t∗∗ ∈ (t∗, �) so that yJ (t∗∗) = yj (t∗∗) and yJ (t) > yj (t) for
all t ∈ (t∗, t∗∗), then

d
dt

[yJ (t) − yj (t)]|t=t∗∗ ≤ 0.

But by equation 4.8, we have

εc
d
dt

[yJ (t) − yj (t)]|t=t∗∗ = [1 − yJ (t∗∗)][TJ (t∗∗) − Tj (t∗∗)] > 0

since yJ (t∗∗) ≤ ηc < 1 and TJ (t∗∗) > Tj (t∗∗), a contradiction.
In this case, take t{ j}

s := t∗ (to be used later). Figure 6 shows an
example of this situation.

Finally, by taking t̂s = max j∈�c {t{ j}
s }, we have, yJ (t) > yj (t) on [t̂s, �) and for

every j ∈ �c \ {J }.
We now show that � < ∞. If, by way of contradiction, � = ∞, then

yj (t) < ηc for j ∈ �c and t ≥ 0. Thus, by equation 4.8, we get

εc
d
dt

yJ (t) = −yJ (t) + [1 − yJ (t)]TJ (t)

= −[1 + TJ (t)]yJ (t) + TJ (t)

= −[1 + T∗
J ]yJ (t) + T∗

J + q (t)

with

|q (t)| ≤ |TJ (t) − T∗
J |(|yJ (t)| + 1) ≤ (ηc + 1)μ, for t ∈ [t̂s, �).

Therefore, using the variation-of-constants formula, we obtain

∣∣∣∣yJ (t) − yJ (t̂s)e−(1+T∗
J )(t−t̂s )/εc − T∗

J

1 + T∗
J

(1 − e−(1+T∗
J )(t−t̂s )/εc )

∣∣∣∣
≤ (ηc + 1)μ

1 + T∗
J

≤ (ηc + 1)μ, for t ∈ [t̂s, �),
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Figure 6: Plots of simulation results for for the case where ∃ t∗ ∈ (ts, �), such
that yj (t∗) = yJ (t∗) (case 3 in the proof of lemma 3). Here J = 2, j = 1, β = 0.01,
t∗ ≈ 0.0292, and � ≈ 0.1103. The top middle plot is a closer look at the top right
plot for t ≤ �. Note the wider range chosen to show the dynamics of wJ 1 and
w j1 (LTM variables) compared to others (STM variables). The real winner is
the expected winner CJ . The expected winner in this case has a smaller initial
bottom-up weight (z1J < z1 j ) but a better similarity measure (h1J = 1, h1 j = 0),
which results in shorter signal delays (τ1J = 0, τ1 j → E = 0.5). The increase
of τ1 j finally overcomes the selection made by initial bottom-up weights. See
appendix B for the details of the parameter values used.

from which it follows that

lim inf
t→∞ yJ (t) ≥ T∗

J

1 + T∗
J

− (ηc + 1)μ > ηc,

a contradiction to yJ (t) ≤ ηc for all t ≥ 0. Therefore, � < ∞ and yJ (�) = ηc .
Note that the above argument also shows that if εc is small, then � can be
made arbitrarily small.

Using a similar argument as above, we can also establish yj (�) < yJ (�)
if j 
= J .
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Finally, we note that at t = �, we have yJ (t) = ηc and hence

εc
d
dt

yJ (t) = −yJ (t) + [1 − yJ (t)][1 + TJ (t)]

= −[2 + TJ (t)]yJ (t) + 1 + TJ (t)

= −(2 + T∗
J )yJ (t) + 1 + T∗

J + p(t)

with |p(t)| ≤ (ηc + 1)μ. Note that

1 + T∗
J

2 + T∗
J

≥ T∗
J

1 + T∗
J

.

Thus, equation 4.19 implies ẏJ (�) > 0.

Lemma 4. Sustained excitation: Assume equations 4.18 and 4.19 hold. In addi-
tion, assume

L
L + m − 1

> θ (4.29)

and that there exists Tmin > 0 so that

DL
L + m − 1

f p(Ii ) > Tmin, i ∈ �p, (4.30)

1 + T∗
j

2 + T∗
j + C

< ηc <
1 + Tmin

2 + Tmin
, j ∈ �c \ {J }, (4.31)

and

T∗
J > DMe−αE + Tmin, (4.32)

where

M =
∑
i∈�p

zi J (0) f p(Ii ).

Then if εp, β and δ are small, yJ (t) > ηc > yj (t) for all t > � and all j ∈ �c \ {J }.
Moreover, hi j (t) = hi j (0) for all t ≥ 0.

Proof. Using lemma 3 and equations 4.17 and 4.32, if β and εp are small,
then there exists � > 0 such that yJ (t) > ηc > yj (t) and TJ (t) > Tmin for all
t ∈ (�,� + �). We now claim that the supremum of such � is infinity.
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By way of contradiction, if sup{�} < ∞, then for t∗ = � + sup{�}, we
have

yJ (t) > ηc > yj (t), TJ (t) > Tmin, t ∈ [�, t∗),

and at least one of the following three equalities must hold:

yJ (t∗) = ηc, yj (t∗) = ηc for some j ∈ �c \ {J }, TJ (t∗) = Tmin.

Step 1. We now show that yJ (t∗) = ηc is impossible. By way of contradic-
tion, if yJ (t∗) = ηc , then ẏJ (t∗) ≤ 0. On the other hand, we have

εc ẏJ (t∗) = −yJ (t∗) + [1 − yJ (t∗)][1 + TJ (t∗)]

= [2 + TJ (t∗)]
[

1 + TJ (t∗)
2 + TJ (t∗)

− yJ (t∗)
]

.

Note that TJ (t∗) ≥ Tmin; we have

1 + TJ (t∗)
2 + TJ (t∗)

≥ 1 + Tmin

2 + Tmin
> ηc,

and hence, we also have

εc ẏJ (t∗) = [2 + TJ (t∗)]
[

1 + TJ (t∗)
2 + TJ (t∗)

− ηc

]
> 0,

a contradiction.
Step 2: We now show that for any given j ∈ �c \ {J }, yj (t∗) = ηc is impos-

sible. Again, by way of contradiction, if yj (t∗) = ηc , then ẏj (t∗) ≥ 0. On the
other hand, we note that equations 3.6 and 3.7 imply δżi j (t) = γ ẇ j i (t) = 0,
and, hence, zi j (t) = zi j (�) = zi j (0) and w j i (t) = w j i (�) = w j i (0) for all t ∈
[0, t∗). Therefore, hi j (t) = hi j (�) = hi j (0) for all t ∈ [0, t∗). By equation 3.4,
we get βτ̇i j (t) = −τi j (t) + E[1 − hi j (0)]. Hence, we can use a similar argu-
ment that led us to equation 4.17 and show that Tj (t) → T∗

j as β → 0 and
εp → 0 uniformly on [ts, t∗) for any ts ∈ (0, t∗). Therefore, if εp and β are
small,

1 + Tj (t∗)
2 + Tj (t∗) + C

→ 1 + T∗
j

2 + T∗
j + C

< ηc .



1594 J. Wu, H. Zivari-Piran, J. Hunter, and J. Milton

This shows that

εc ẏj (t∗) = −yj (t∗) + [1 − yj (t∗)][1 + Tj (t∗)] − Cyj (t∗)

= −[2 + Tj (t∗) + C]yj (t∗) + 1 + Tj (t∗)

= [2 + Tj (t∗) + C)]
[

1 + Tj (t∗)
2 + Tj (t∗) + C

− yj (t∗)
]

< 0,

a contradiction.
In what follows, we show that TJ (t∗) = Tmin is impossible.
Step 3: We claim that hi j (0) = 1 implies hi j (t) = 1 for all t ∈ [0, t∗). The

case where j 
= J is trivial. We now deal with the case where j = J . We must
have that hi J (�) = 1 and, hence, zi J (�) ≥ θ and | f p(xi (�)) − wJ i (�)| ≤ σ .

In the case where zi J (�) = θ , we have at t = � that

δżi J (t) = [1 − zi J (t)]L − zi J (t)
∑

k∈�p\{i}
hk J (t)

= L − [L +
∑

k∈�p\{i}
hk J (t)]zi J (t)

= L − [L +
∑

k∈�p\{i}
hk J (t)]θ

≥ L − [L + m − 1]θ > 0

since θ < L/(L + m − 1). Hence, zi J (t) > θ for all t > � but close to �.
In the case where f p(xi (�)) − wJ i (�) = σ , we have

γ ẇJ i (�) = −wJ i (�) + f p(xi (� − τi J (�)))e−ατi J (�)

= −wJ i (�) + f p(xi (�))

= σ > 0,

and hence f p(xi (t)) − wJ i (t) < σ for all t > � and t close to �. Similarly, we
show that f p(xi (�)) − wJ i (�) = −σ leads to f p(xi (t)) − wJ i (t) > −σ for all
t > � and t close to �.

Therefore, in any case, we have zi J (t) > θ and | f p(xi (t)) − wJ i (t)| < σ for
all t > � and t close to �.

If the above claim is not true, then there exists the first t̂ ∈ (�, t∗) so
that either zi J (t̂) = θ or | f p(xi (t̂)) − wJ i (t̂)| = σ . If zi J (t̂) = θ and | f p(xi (t̂)) −
wJ i (t̂)| < σ , then żi J (t̂) ≤ 0. Using the same argument as above, we get
δżi J (t̂) > 0, a contradiction. Therefore, if the claim is not true, then
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| f p(xi (t̂)) − wJ i (t̂)| = σ . In this case, if f p(xi (t̂)) − wJ i (t̂) = σ , then using
τi J (t) = 0, t ∈ (�, t̂), we have

γ ẇJ i (t) = −wJ i (t) + f p(xi (t)), t ∈ (�, t̂),

which can be solved analytically to get

wJ i (t̂) =wJ i (�)e−(t̂−�)/γ + e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
f p(xi (t)) dt

≥ wJ i (�)e−(t̂−�)/γ

+ e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
( f p(xi (t̂)) − K [xi (t̂) − xi (t)]) dt

=wJ i (�)e−(t̂−�)/γ + (1 − e−(t̂−�)/γ ) f p(xi (t̂))

−K e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
[xi (t̂) − xi (t)] dt

≥ wJ i (�)e−(t̂−�)/γ + (1 − e−(t̂−�)/γ ) f p(xi (t̂)) − K (1 − e−(t̂−�)/γ )ξ,

where |xi (t1) − xi (t2)| ≤ ξ, t1, t2 ∈ (�, t̂), and hence, using wJ i (t̂) =
f p(xi (t̂)) − σ , we get

−σ ≥wJ i (�)e−(t̂−�)/γ − e−(t̂−�)/γ f p(xi (t̂)) − K (1 − e−(t̂−�)/γ )ξ

≥wJ i (�)e−(t̂−�)/γ − e−(t̂−�)/γ f p(xi (�)) − K e−(t̂−�)/γ (xi (t̂)

−xi (�)) − K (1 − e−(t̂−�)/γ )ξ

≥ −σ e−(t̂−�)/γ − K ξ,

or, equivalently,

σ ≤ σ e−(t̂−�)/γ + K ξ,

which cannot hold for a small εp, as ξ → 0 when εp → 0, a contradiction.
Similarly, we can show that f p(xi (t̂)) − wJ i (t̂) = −σ leads to a contradiction,
since

wJ i (t̂) =wJ i (�)e−(t̂−�)/γ + e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
f p(xi (t)) dt

≤ wJ i (�)e−(t̂−�)/γ + e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
( f p(xi (�))

+K [xi (t) − xi (�)]) dt
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= wJ i (�)e−(t̂−�)/γ + (1 − e−(t̂−�)/γ ) f p(xi (�))

+K e−(t̂−�)/γ
∫ t̂

�

e (t−�)/γ

γ
[xi (t) − xi (�)] dt

≤ σ e−(t̂−�)/γ + f p(xi (�)) + K (1 − e−(t̂−�)/γ )ξ,

which, using wJ i (t̂) = f p(xi (t̂)) + σ , leads to

f p(xi (t̂)) + σ ≤ σ e−(t̂−�)/γ + f p(xi (�)) + K (1 − e−(t̂−�)/γ )ξ

or

σ ≤ σ e−(t̂−�)/γ + ( f p(xi (�)) − f p(xi (t̂))) + K (1 − e−(t̂−�)/γ )ξ

≤ σ e−(t̂−�)/γ + K (1 − e−(t̂−�)/γ )ξ.

But this cannot hold for a small εp, as ξ → 0 when εp → 0, a contradiction.
This verifies the claim.

Step 4: We now prove that if hi J (0) = 1 and zi J (0) > L
L+m−1 for some

i ∈ �p, then TJ (t∗) > Tmin. By the result in step 3, we know that hi J (t) = 1
for all t ∈ [0, t∗), and hence,

δżi J (t) = [1 − zi J (t)]L − zi J (t)
∑

k∈�p\{i} hk J (t)

= [1 − zi J (t)]L − zi J (t)li = (L + li )
[

L
L + li

− zi J (t)
]

,

for all t ∈ [0, t∗), where li = ∑
k∈�p\{i} hk J (t) ≤ m − 1 is a constant integer.

Therefore, if zi J (0) ≥ L
L+li

, then zi J (t) is decreasing, but always zi J (t) ≥ L
L+li

for all t ∈ [0, t∗), and if L
L+m−1 ≤ zi J (0) < L

L+li
then zi J (t) is increasing for all

t ∈ [0, t∗), and hence, zi J (t) > zi J (0) > L
L+m−1 . Therefore,

TJ (t) ≥ Dzi J (t) f p(xi (t))

≥ DL
L + m − 1

f p(xi (t))

→ DL
L + m − 1

f p(Ii ) as εp → 0

> Tmin

for all t ∈ [0, t∗].
Step 5: We claim that if δ is sufficiently small and if hi j (0) = 0, then hi j (t) =

0 for all t ∈ [0, t∗). This is clearly true if j 
= J . If hi J (0) = 0, then at �, we
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have either zi J (�) < θ or | f p(xi (�)) − wJ i (�)| > σ . In the latter case, we can
find Q > 0 so that on [�,� + Q] ⊂ [�, t∗), we have | f p(xi (t)) − wJ i (t)| > σ

and, hence, hi J (t) = 0. This implies that

δżi J (t) = −zi J (t) − zi J (t)
∑

k∈�p\{i}
hk J (t) ≤ −zi J (t),

from which it follows that

zi J (t) ≤ zi J (0)e−(t−�)/δ.

Consequently, zi J (� + Q) < θ provided zi J (0)e−Q/δ < θ . In any case, if
hi J (0) = 0 and if δ is small, then we can find small θ > 0 so small that
hi J (t) = 0 for t ∈ [�,� + Q] and zi J (� + Q) < θ . If zi J (t) < θ does not hold
for all t ∈ [� + Q, t∗), then there is the first s ∈ (� + Q, t∗) so that zi J (s) = θ .
However, on [� + Q, s), we have hi J (t) = 0 and thus δżi J (t) ≤ 0, from which
it follows that zi J (s) = θ is impossible. Thus, zi J (t) < θ for all t ∈ [� + Q, t∗),
and hence, hi J (t) = 0 for all t ∈ [0, t∗).

Step 6: We now show that TJ (t∗) = Tmin is impossible. This has been
shown already in step 4 if hi J (0) = 1, f p(Ii ) ≥ 1 and zi J (0) > L

L+m−1 for some
i ∈ �p.

For any given i ∈ �p with hi J (0) = 1 and zi J (0) ≤ L
L+m−1 , we have

δżi J (t) = [1 − zi J (t)]L − zi J (t)li = (L + li )
[

L
L + li

− zi J (t)
]

,

where li = ∑
k∈�p\{i} hk J (t) ≤ m − 1 is a constant integer. Therefore, since

zi J (0) ≤ L
L+m−1 ≤ L

L+li
, we must have that zi J (t) is increasing on [0, t∗).

In conclusion, if there exists no i ∈ �p so that hi J (0) = 1 and zi J (0) >
L

L+m−1 , then we have

Tmin < T∗
J − DMe−αE

= D
∑
i∈�p

zi J (0) f p(Ii )e−ατ ∗
i J − D

∑
i∈�p

zi J (0) f p(Ii )e−αE

= D
∑

i∈�p,hi J (0)=1

zi J (0) f p(Ii )(e−ατ ∗
i J − e−αE )

+ D
∑

i∈�p,hi J (0)=0

zi J (t) f p(Ii )(e−ατ ∗
i J − e−αE )

= D
∑

i∈�p,hi J (0)=1

zi J (0) f p(Ii )(1 − e−αE )
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≤ D
∑

i∈�p,hi J (0)=1

zi J (0) f p(Ii )

≤ D
∑

i∈�p,hi J (0)=1

zi J (0)( f p(xi (t)) + K (Ii − xi (t)))

= D
∑

i∈�p,hi J (0)=1

zi J (0) f p(xi (t)) + DK
∑

i∈�p,hi J (0)=1

zi J (0)(Ii − xi (t))

≤ D
∑

i∈�p,hi J (0)=1

zi J (t) f p(xi (t)) + DK e−(t+1)/εp
∑

i∈�p,hi J (0)=1

zi J (0)Ii

≤ D
∑
i∈�p

zi J (t) f p(xi (t − τi j (t)))e−ατi j (t)

+ DK e−(t+1)/εp
∑

i∈�p,hi J (0)=1

zi J (0)Ii

= TJ (t) + DK e−(t+1)/εp
∑

i∈�p,hi J (0)=1

zi J (0)Ii , for t ∈ [0, t∗),

where we used τi j (t) = 0 if hi j (0) = 1, for t ∈ [0, t∗). Taking limits when
εp → 0, we get

Tmin < T∗
J − DMe−αE ≤ TJ (t), for t ∈ [0, t∗).

Therefore, Tmin = TJ (t∗) is impossible. This completes the proof.

Lemma 5. Learning at infinity. Assume all conditions of lemma 4 are satisfied,
and assume that β, εp, δ are sufficiently small. Then for any i ∈ �p and j ∈ �c

with j 
= J , zi j (t) and w j i (t) remain unchanged for all t ≥ 0. But

lim
t→∞ zi J (t) =

⎧⎪⎨
⎪⎩

0 if hi J (0) = 0

L
L + li

if hi J (0) = 1

and

lim
t→∞ wJi(t) = f p(Ii )e−ατ ∗

i J ,

where li = #{k ∈ �p \ {i}; hk J (0) = 1}.
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Proof. This is now obvious after lemma 4, since for j ∈ �c \ {J }, we have
γ ẇ j i (t) = δżi j (t) = 0, and on [�,∞), we have

γ ẇJ i (t) = −wJ i (t) + f p(xi (t − τi J (t)))e−ατi J (t),

δżi J (t) = [1 − zi J (t)]L − zi J (t)li , if hi J (0) = 1,

δżi J (t) = −zi J (t) − zi J (t)li , if hi J (0) = 0.

5 Proof of Theorem 2

Note that on [�,∞), we have

γ ẇJ i (t) = −wJ i (t) + f p(xi (t − τi J (t)))e−ατi J (t),

δżi J (t) = [1 − zi J (t)]L − zi J (t)li , if hi J (0) = 1,

δżi J (t) = −zi J (t) − zi J (t)li , if hi J (0) = 0.

Note also that � → 0 as εp, β, εc → 0. Therefore,

wJ i (1) → e−1/γ wJ i (0) + f p(Ii )e−ατ ∗
i J (1 − e−1/γ ), as εp → 0, β → 0,

zi J (1) = e−(L+li )/δzi J (0) + L
L + li

(1 − e−(L+li )/δ) → L
L + li

as δ → 0,

if hi J (0) = 1,

zi J (1) = e−(1+li )/δzi J (0) → 0 as δ → 0, if hi J (0) = 0.

This proves the first part of theorem 2.
To prove part vi of theorem 2, we first note that if j 
= J , then zi j (t) =

zi j (0) for all t ≥ 0, and hence Dj (t) = Dj (0) for all t ≥ 0. On the other hand,
zi J (t) = zi J (0) on [0, �). The case where hi J (0) = 0 is simple since on [0,∞),
we have

δżi J (t) = −zi J (t) − zi J (t)
∑
k 
=i

hk J (t) ≤ −zi J (t).

For the case where hi J (0) = 1, we have on the interval [�,∞), δżi J (t) =
(L + li )[ L

L+li
− zi J (t)]. Therefore, if zi J (s) ≥ L

L+li
for some s ∈ [�,∞), then

zi J (t) ≥ L
L+li

for all t ≥ s, and if θ ≤ zi J (�) < L
L+li

, then zi J (t) is increasing
for all t ≥ �, from which the rest of part vii follows naturally.
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6 Conclusion

We have shown that the selective output signaling mechanism (SOS)
in a PART network can be identified with two physiologically relevant
properties of living neural networks: the adaptability of transmission de-
lays and transmission information loss. Thus, it is not necessary to assign
the SOS to a hypothetical hidden layer of neurons. The key concept is the
similarity between the level of activation of an input neuron and the corre-
sponding component of the template of the considered cluster neuron. This
similarity is measured by hi j , which assumes values of either 1 or 0. This
simple measure of the similarity leads to an explicit formula, 4.7, for the
dissimilarity-driven signal transmission delay, derived from the equation
governing the evolution of the time lag. Such an explicit formula of the time
lag determines the value of the delays for all future time by looking at the
initial values of the network. Our starting point is that time delays in the
signal transmission of the proposed neural network are adaptive, following
rule 3.4, which describes the delay shift guided by the dissimilarity. Inter-
estingly, the choice of the dissimilarity measure 3.5 enables us to conclude
that this transmission delay is either zero or quickly stabilizes to a positive
constant determined by the dissimilarity. As a consequence, the network
works as it follows the delay selection mechanism, suggested in Eurich
et al. (1999). This seems to suggest that in some cases, the delay selection
mechanism can be regarded as a limit of the delay shift mechanism. The
assumption that signal strength decays if the transmission is delayed can be
replaced by the mechanism of delay selection as follows: replacing equation
3.3 by Tj (t) = Df

∑
i∈�p,τi j (t)=0 zi j (t) f p(xi (t)) + Dd

∑
i∈�p,τi j (t)>0 zi j (t) f p(xi (t −

τi j (t))) with Df � Dd . This definition makes sense, as we have shown that
either τi j (t) = 0 for all t ≥ 0 or τi j (t) is close to a positive constant for all
t ≥ 0.

We emphasize, however, that our choice of the similarity-dissimilarity
measure represents a gross approximation of an otherwise fuzzy concept.
More precisely, the similarity between the output of an input neuron (in
the F1 layer) and the corresponding component of the feature vector of
its target clustering neuron (in the F2 layer) does not necessarily take the
value of either 1 (similar) or 0 (dissimilar); there should be a gray scale
for this similarity, like Zadel’s metric for fuzzy mathematics. A natural
solution is to consider a more general similarity measure function hi j (t)
such as hi j (t) = M(| f p(xi (t)) − w j i (t)|)N(zi j (t)) with M : R+ → [0, 1] being
monotonically nonincreasing and N : [0, 1] → [0, 1] being monotonically
nondecreasing, and such that M(0) = 1 > 0 = M(∞) and N(0) = 0 < 1 =
N(1). This would also have the advantage for the software implementation
of our neural network architecture for clustering, as the two parameters, σ

and θ , will no longer be needed. Unfortunately, such a general similarity
measure leads to a very complicated system of delay differential equations
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with adaptive delay. A general qualitative theory and numerical package
for such a system is not available at this time and thus should be developed
in the future.

Appendix A: Signal Loss with Delayed Transmission

The cable equation for a linear RC membrane cylinder, extending infinitely
in both directions, is given by the partial differential equation

∂

∂t
v(t, x) − ∂2

∂x2 v(t, x) + v(t, x) = δ(t)δ(x).

This can be solved using the Fourier transform to yield the Green’s function,
which gives the voltage response as a function of t and x after an impulse
stimulation at time t = 0 at point x = 0 for

v(t, x) = H(t)√
4π t

exp
(

−t − x2

4t

)
, (A.1)

where H is the Heaviside step function, the distance x is normalized by the
space constant, and time t is normalized by the time constant.

To compute the delay from stimulus onset to maximal response, we
differentiate this function with respect to t, ignoring the scalar term

√
4π ,

which does not affect the maximum, and obtain

∂

∂t
v(t, x) = −1/2t−3/2 exp

(
−t − x2

4t

)

+ t−1/2 exp
(

−t − x2

4t

) (
−1 + x2

4t2

)
.

(A.2)

Setting the left-hand side equal to zero and solving for t gives the quadratic
equation 4t2

m + 2tm − x2 = 0, where tm is the time of the maximum, with
positive time solution

delay = tm = −1 + √
1 + 4x2

4
.

Solving this equation for x and substituting the result into equation A.1
gives the amplitude (the voltage at the maximum) as a function of the delay
tm, yielding

a (tm) = e−1/2

√
4π tm

e−2tm .
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Appendix B: Details of Simulations

Here we give the details of parameters and prestored patterns we used for
the simulations shown in Figures 3b and 4 to 6.

We chose f p(x) = x for all the simulations. Some of the parameters are
set the same for all the experiments:

α = 2.0, εp = 0.2, εc = 0.1, E = 0.5, γ = 1.0, δ = 0.1, L = 2.0.

In what follows, the index J refers to the index for which T∗
J > T∗

j , for
j ∈ �c \ {J }.

Example 1: Details of parameters for the clustering shown in Figure 3b.
m = 3, 270 data points. ηc = 0.78 , C = 1.74, β = 0.01, σ = 1.1, θ =
0.00001, ρ = 2. Since our results are based on the nonnegativity of
the input, the points are shifted along the z-axis before being fed to
the network (we used the transformation z → z + 6.0).

Example 2: Details of parameters for the simulations shown in Figure 4. m =
1, n = 2, J = 1. z11(0) = 2/3, z12(0) = 1/3, w11(0) = 1/3, w21(0) = 2/3,
I1 = 0.4, ηc = 0.14, C = 7.0, β = 0.01, σ = 0.17, θ = 0.05. Output is:
winner = 1, � ≈ 0.0871.

Example 3: Details of parameters for the simulations shown in Figure 5.
m = 1, n = 2, J = 2. All initial values and parameters as in example
2, except I1 = 0.7, β = 0.1. Output is: winner = 1, � ≈ 0.0550. The
winner is not CJ since β is not chosen small enough.

Example 4: Details of parameters for the simulations shown in Figure 6.
m = 1, n = 2, J = 2. All initial values and parameters as in example
3, except β = 0.01. Output is: winner = 2, � ≈ 0.1103, t∗ ≈ 0.0292.
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