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GLOBAL DYNAMICS OF A TICK IXODES

SCAPULARIS MODEL

YIJUN LOU AND JIANHONG WU

ABSTRACT. Lyme disease remains the world’s most fre-
quently recorded vector-borne disease in the temperate zone,
with the black-legged tick, Ixodes scapularis Say, as the pri-
mary vector in eastern and mid-western United States and
Canada. A preliminary to determine the Lyme disease risk is
providing detailed information on the tick population. This pa-
per establishes the global dynamics of a tick population model
developed to capture dynamical temperature influences on the
tick population. It is shown that if the reproduction number
for ticks Rtick is less than one, then ticks are doomed to ex-
tinction, and it is confirmed that Rtick > 1 implies that ticks
can invade into the study region and a positive equilibrium ex-
ists. We also use a fluctuation argument to establish the global
stability of the positive equilibrium.

1 Introduction Lyme disease, a tick-borne zoonotic disease, re-
mains the world’s most commonly recorded tick-borne disease, and the
most frequently reported vector-borne disease in the temperate zone
[10]. More than 20,000 cases of Lyme disease are reported in the United
States each year [3, 10] and Lyme disease is declared as an emerging
disease in Canada due to the ongoing northward range expansion of its
primary vector, Ixodes scapularis Say (1821), which is driven by the
climate change [15, 16]. Lyme disease is caused by a bacteria called
Borrelia. Different strains of Borrelia and different species of tick vec-
tors are responsible for Lyme disease in different geographical regions.
In the eastern and mid-western United States and Canada, the Lyme
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disease is mainly caused by Borrelia burgdorferi bacterium and trans-
mitted by the black-legged tick, Ixodes scapularis. Lyme disease may
result when a human is inadvertently bitten by an infectious nymph.
The primary ecological risk factor in the Lyme disease epidemic is the
number of infected nymphs within areas where people use recreationally
and domestically from late spring to midsummer [17]. Since complex
interactions between seemingly unconnected phenomena determine the
risk of exposure to the expanding Lyme disease [17], a preliminary step
to understand the disease risk is to study the population dynamics of
its vector, Ixodes scapularis ticks.

The life cycle of Ixodes scapularis ticks is complex, proceeding through
four developmental stages: egg, larva, nymph and adult. At each post-
egg stage (larva, nymph and adult), the tick should attach to a host and
get one blood meal for development. Various mathematical models have
been formulated to track tick development dynamics and the tick-borne
disease transmission; see [1, 2, 5, 6, 7, 9, 13, 14, 15] for some of these
models. The authors in [15] proposed a process-based dynamic model
to investigate effects of climate on the geographic range and seasonality
of the tick Ixodes scapularis. Based on the given modeling framework in
[15] (reproduced in Figure 1), the authors in [25] formulated a dynamic
model, derived the tick reproduction number Rtick and determined the
local stability property for the tick free equilibrium and the tick endemic
equilibrium. An unanswered question is the global stability of the equi-
libria for the tick population model. The main purpose of this work is to
extend the results in [25] to answer the question concerning the global
dynamics of the model.

The rest of this paper is organized as follows. The next section
presents the model and some results given in [25]. Global dynamics
when Rtick < 1 and Rtick > 1 are established in Sections 3 and 4, re-
spectively. A short discussion about the mathematical techniques used
in the paper is presented in the final section.

2 The model, reproduction number and local stability Gen-
erally speaking, Ixodes scapularis ticks have four stages: egg, larva,
nymph and adult. To be capable of investigating effects of climate on
tick populations, the model proposed in [15] contains 12 mutually ex-
clusive states in the tick life cycle: egg-lying adult females (x1); eggs
(x2); hardening larvae (x3); questing larvae (x4); feeding larvae (x5);
engorged larvae (x6); questing nymphs (x7); feeding nymphs (x8); en-
gorged nymphs (x9); questing adults (x10); feeding adult females (x11)
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and engorged adult females (x12). Each state represents a specific point
in the life cycle of the tick population and flows from one stage to the
next represent the essential sequential steps of development (from en-
gorged ticks of one instar to questing ticks of the next), host attaching
(from questing to feeding ticks of the same instar), and detaching (from
feeding ticks to engorged, developing ticks) [15]. Based on the modeling
framework in [15] (also see Figure 1), the tick developmental dynamics
is described by the following system of ordinary differential equations
[25]:

(1)

x′

1 = d12x12 − µ1x1, x′

2 = pf(x11)x1 − (d2 + µ2)x2,

x′

3 = d2x2 − (d3 + µ3)x3, x′

4 = d3x3 − (d4 + µ4)x4,

x′

5 = d4x4 − (d5 + µ5(x5))x5, x′

6 = d5x5 − (d6 + µ6)x6,

x′

7 = d6x6 − (d7 + µ7)x7, x′

8 = d7x7 − (d8 + µ8(x8))x8,

x′

9 = d8x8 − (d9 + µ9)x9, x′

10 = d9x9 − (d10 + µ10)x10,

x′

11 =
1

2
d10x10 − (d11 + µ11(x11))x11,

x′

12 = d11x11 − (d12 + µ12)x12.

Here, di is the progression rate from the i-th stage to the next stage, µi

is the death rate for stage i, and p is the per-capita egg reproduction rate
by egg-laying females. Note that in this model, we have three density-
dependent death rates µ5(x5), µ8(x8), µ11(x11) and we assume that each
µj(xj) is an increasing function of xj for j = 5, 8, 11. To account for
the density dependent reduction in fecundity of egg laying females, we
suppose that f(x11) is a decreasing function of x11. The parameter
values for the tick model (1) are summarized in Table 2.
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FIGURE 1: The flowchart of the Ogden’s tick population model [15] that
predicts the specific states of the tick life cycle, progressive movement and
rates of movement.

and

D =diag (µ1; d2 + µ2; d3 + µ4; d4 + µ4;(3)

d5 + µ5(0); d6 + µ6; d7 + µ7; d8 + µ8(0);

d9 + µ9; d10 + µ10; d11 + µ11(0); d12 + µ12).

Using a variation of the next generation matrix method [4, 24], the
authors in [25] derived the tick reproduction number Rtick, which rep-
resents the number of new female ticks produced by a female tick when
there are no density dependent constraints acting anywhere in the life
cycle of the tick population, given by
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Parameter Description

µ1 Per capita mortality rate of egg-laying adult females
µ2 Per capita mortality rate of eggs
µ3 Per capita mortality rate of hardening larvae
µ4 Per capita mortality rate of questing larvae
µ5(x5) Per capita mortality rate of feeding larvae on rodents
µ6 Per capita mortality rate of engorged larvae
µ7 Per capita mortality rate of questing nymphs
µ8(x8) Per capita mortality rate of feeding nymphs on rodents
µ9 Per capita mortality rate of engorged nymphs
µ10 Per capita mortality rate of questing adults
µ11(x11) Per capita mortality rate of feeding adults on deer
µ12 Per capita mortality rate of engorged adult females
p Per capita egg production by egg-laying adult females
f(x11) Reduction in fecundity of egg-laying adult females
d2 Development rate from eggs to hardening larvae
d3 Development rate from hardening larvae to questing larvae
d4 Host attaching rate for questing larvae
d5 Development rate from feeding larvae to engorged larvae
d6 Development rate from engorged larvae to questing nymphs
d7 Host attaching rate for questing nymphs
d8 Development rate from feeding nymphs to engorged nymphs
d9 Development rate from engorged nymphs to questing adults
d10 Host attaching rate for questing adults
d11 Development rate from feeding adult females

to engorged females
d12 Development rate from engorged females to

egg-laying females

TABLE 1: Parameter definitions

(4) Rtick =
d2

d2 + µ2

d3

d3 + µ3

d4

d4 + µ4

d5

d5 + µ5(0)

d6

d6 + µ6

d7

d7 + µ7

·
d8

d8 + µ8(0)

d9

d9 + µ9

d10/2

d10 + µ10

d11

d11 + µ11(0)

d12

d12 + µ12

pf(0)

µ1
.

Based on Rtick , they also proved the following result for the tick
model (1):

Theorem 1. The tick-free equilibrium E0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
is asymptotically stable if Rtick < 1. A unique tick endemic equilibrium

E∗ exists and it is locally asymptotically stable when Rtick > 1.
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In the next two sections, we will extend this theorem with respect to
the global dynamics of the tick model (1). We start with the case where
Rtick < 1.

3 Global stability of the tick-free equilibrium when Rtick < 1
In this section, we study the global dynamics in the case where the
reproduction number is less than unity. As stated in Theorem 1, the tick-
free equilibrium is locally stable. This implies that the tick population
could not sustain itself in the habitat (when Rtick < 1) if the initial
size is in the attraction basin of the tick-free equilibrium. To ensure
that the tick elimination is independent of the initial size of each stage,
it is necessary to show that the tick-free equilibrium is also globally
asymptotically stable if Rtick < 1. This result is established in the
following theorem.

Theorem 2. If Rtick < 1, then the tick-free equilibrium E0 = (0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0) is globally stable.

Proof. Since the tick-free equilibrium is locally asymptotically stable
when Rtick < 1, we just need to check it is also globally attractive. To
prove this, we use a comparison argument arising from the monotone
dynamical systems theory (see [18]). Consider the linear system

(5)
dx(t)

dt
= (T − D)x(t),

where matrices T and D are defined in equations (2) and (3), respec-
tively. Since Rtick < 1, then the stability modulus of the matrix T −D,
s(T − D) = max{Reλ : det(λI − (T − D)) = 0} < 0, where I is the
identity matrix. Therefore, the zero solution is globally stable for the
linear system (5). For every solution x(t) of the system (1), x(t) ≥ 0 for
every t ≥ 0. Thus the 11th element of x(t), x11(t) ≥ 0. Because f(z) is a
decreasing function of the variable z, we have f(x11(t)) ≤ f(0), ∀t ≥ 0.
Moreover, since xi(t) ≥ 0 for i = 5, 8, 11, we also have µi(xi(t)) ≥ µi(0).
Thus, system (1) can be controlled by the linear system (5) from above.
By applying the comparison principle (see, e.g., [21, Theorem B.1]), we
have x(t) → 0 as t → ∞.

Since abiotic and biotic factors influence the tick development process,
thereby altering the parameters in the model system (1), these factors
change the value of the reproduction number Rtick . An unfavorable
habitat, where the biotic and abiotic environments are disadvantageous
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for the tick development, brings the reproduction number Rtick to a
value less than unity, thus forcing the tick population to extinction in
the habitat. However, our results in the next section show that for a
favorable habitat, where the abiotic and biotic factors make Rtick > 1,
the population size of each tick stage always remains above a certain
positive level. Thus, if the environment-determined parameter Rtick is
greater than unity, then the tick population can remain endemic in the
study region.

4 Global dynamics when Rtick > 1 In this section, we will es-
tablish the global dynamics of the tick model when Rtick > 1. Before
introducing our main results, we make a few observations. For two vec-
tors x, y ∈ R

12, we write x ≥ y if xi ≥ yi; x > y if x ≥ y and x 6= y; and
x � y if xi > yi, ∀i ∈ [1, 12]. For any x ∈ R

12
+ and g ≥ 0, set

G(x, g) = (d12x12 − µ1x1, x1 × g × p − (d2 + µ2)x2,

d2x2 − (d3 + µ3)x3, d3x3 − (d4 + µ4)x4,

d4x4 − (d5 + µ5(x5))x5, d5x5 − (d6 + µ6)x6,

d6x6 − (d7 + µ7)x7, d7x7 − (d8 + µ8(x8))x8,

d8x8 − (d9 + µ9)x9, d9x9 − (d10 + µ10)x10,

d10x10/2− (d11 + µ11(x11))x11,

d11x11 − (d12 + µ12)x12)
T ,

(6)

where T denotes the transpose of a vector, µj(xj) is a positive increasing
function of xj for j = 5, 8, 11 and other parameters are positive. It
then follows from [29, Corollary 3.2] that the system dx/dt = G(x, g)
possesses the following properties:

Lemma 1. Consider the system dx/dt = G(x, g). If s(DG(0, g)) =
s(∂G(0, g)/∂x) = max{Reλ : det(λI − Df(0, g)) = 0} ≤ 0, then x = 0
is globally asymptotically stable with respect to R

12
+ ; if s(DG(0, g)) > 0,

then system dx/dt = G(x, g) admits a unique positive equilibrium x∗(g)
which is globally asymptotically stable with respect to R

12
+ \ {0}.

Remark 1. In the case where s(DG(0, g)) > 0, we have a positive equi-
librium x∗(g), which is an increasing function of g. More precisely, if
g1 > g2, then x∗(g1) � x∗(g2). To show this, we first use the comparison
principle (see, e.g., [21, Theorem B. 1]) to prove that x∗(g1) ≥ x∗(g2),
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from which it follows easily that x∗(g1) � x∗(g2). Moreover, by setting
g = f(0), Lemma 1 implies that if s(DG(0, f(0))) > 0 (which is equiv-
alent to Rtick > 1), there is a positive equilibrium x∗(f(0)) which is
globally stable for the system dx/dt = G(x, f(0)).

Our next result indicates that the tick population remains persistent
if the habitat-determined reproduction number is greater than unity.

Theorem 3. If Rtick > 1, then the system is uniformly persistent, that

is, there exists an ε > 0 such that every solution x(t, x0) of system (1)
with initial value x0 6= 0 satisfies lim inft→∞ xi(t, x

0) > ε, ∀i ∈ [1, 12].

Proof. Since Rtick > 1, we have s(T − D) = max{λ : det(λI − (T −
D)) = 0} > 0. Hence, there exists small δ > 0 such that s(T (δ) − D) >
0, where T (δ) is generated by replacing f(0) with f(δ) in the ma-
trix T defined by (2). It then follows from Lemma 1 that the system
(1) with f(x11) replaced by f(δ) has a positive equilibrium x∗(f(δ)),
which is globally asymptotically stable with respect to R

12
+ \ {0}. Since

x∗(f(δ)) → x∗(f(0)) � 0 as δ → 0, we can choose δ0 < δ small enough
such that x∗

11(f(δ0)) > δ0, where x∗

11(f(δ0)) is the 11th element of
x∗(f(δ0)).

Define X = R
12
+ and X0 = IntR12

+ = {x ∈ R
12
+ : xi > 0, i =

1, 2, . . . , 12}. Then the boundary ∂X0 := X \X0 = {x ∈ R
12
+ : Π12

i=1xi =
0}. Suppose Φ(t) is the solution semiflow of system (1), i.e., Φ(t)x0 =
x(t, x0). It is easy to see that Φ(t)x ∈ X0 if x ∈ X0, ∀t ≥ 0 and
Φ(t)x � 0 if x ∈ X \ {0}, ∀t > 0. If we define M∂ = {x ∈ R

12
+ : Φ(t)x ∈

∂X0, ∀t > 0}, then M∂ = {0}. Our next claim shows that {0} is a
uniformly weak repeller for X0.

Claim. lim supt→∞
‖Φ(t)x‖ > δ0/2, ∀x ∈ X0. Suppose, by contraction,

that lim supt→∞
‖Φ(t)x0‖ ≤ δ0/2 for some x0 ∈ X0. Then there exists

a T1 > 0 such that ‖Φ(t)x0‖ ≤ δ0 for all t ≥ T1. Thus, we have
the following inequality dx2/dt ≥ x1f(δ0)p − (d2 + µ2)x2, ∀t ≥ T1.
Hence, dx/dt ≥ G(x, f(δ0)), ∀t ≥ T1. By the comparison principle,
we have lim supt→∞

x11(t, x0) ≥ x∗

11(f(δ0)) > δ0, a contradiction to
lim supt→∞

‖Φ(t)x0‖ ≤ δ0/2.
Using Lemma 1 and a comparison argument, we can easily show that

system (1) is point dissipative. By the acyclicity theorem on uniform
persistence for maps (see [27, Theorem 1.3.1 and Remark 1.3.1]), it
follows that Φ(t) is uniformly persistent with respect to X0.

The previous theorem ensures that ticks can invade into the habitat if
Rtick > 1. Our next result confirms that the tick population will eventu-
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ally stabilize at an equilibrium level. Suppose Rtick > 1, then there ex-
ists a unique positive equilibrium x∗(f(0)) for dx/dt = G(x, f(0)) which
is globally asymptotically stable with respect to R

12
+ \ {0} according to

Lemma 1 and Remark 1. Denote y(1) = x∗(f(0)) and y
(1)
11 = x∗

11(f(0)),
the 11th element of y(1).

Theorem 4. Suppose Rtick > 1. If the zero solution of system (1)

with f(x11) being replaced by f(y
(1)
11 ) is unstable, then the positive equi-

librium E∗ of system (1) is globally asymptotically stable. Here, y(1) is

the positive equilibrium of system (1) with f(x11) replaced by f(0).

Proof. To prove this theorem, we will use a fluctuation argument, pre-
viously used in different settings by [11, 12, 19, 23, 26, 28].

According to Lemma 1 and Remark 1, system dx2/dt = G(x, f(0))
admits a globally stable equilibrium x∗(f(0)) when Rtick > 1. Since
dx2/dt ≤ x1f(0)p−(d2+µ2)x2, system (1) can be controlled from above
by the cooperative system dx/dt = G(x, f(0)). It then follows from the
comparison principle and the global stability of x∗(f(0)) for the system
dx/dt = G(x, f(0)) that for any ε > 0, there exists a T1 > 0 such that
x(t) ≤ x∗(f(0)) + ε = y(1) + ε, ∀t > T1. Since the stability modulus of

the matrix T −D with f(0) replaced by f(y
(1)
11 ) is greater than zero, we

can choose ε small enough such that the same statement holds for the

matrix T − D with f(0) replaced by f(y
(1)
11 + ε). It then follows from

Lemma 1 that there exists a unique positive equilibrium x∗(f(y
(1)
11 + ε))

for dx/dt = G(x, f(y
(1)
11 +ε)) which is globally asymptotically stable with

respect to R
12
+ \{0}. Denote z(1) = x∗(f(y

(1)
11 +ε)). Since x11(t) ≤ y

(1)
11 +ε,

∀t > T1, we have f(x11(t)) ≥ f(y
(1)
11 + ε) for t > T1. Hence, dx2/dt ≥

x1f(y
(1)
11 + ε)p − (d2 + µ2)x2, ∀t ≥ T1. Therefore, the model system

(1) can be controlled from below by the cooperative system dx/dt =

G(x, f(y
(1)
11 + ε)), ∀t > T1. Thus, the comparison principle and the

global stability of z(1) = x∗(f(y
(1)
11 + ε)) imply that for any ε > 0 with

z(1) − ε � 0, there exists T2 > T1 such that x(t) ≥ z(1) − ε, ∀t > T2.
Moreover, it is easy to see that z(1) � y(1) from Remark 1.

Continuing this process, we can construct two vectors y(2) = x∗(f(z
(1)
11

−ε)) and z(2) = x∗(f(y
(2)
11 + ε)). Moreover, there exists a T4 > 0 such

that z(2) − ε ≤ x(t) ≤ y(2) + ε, ∀t > T4. We claim that the relationship

z(1) � z(2) � y(2) � y(1) holds. Since f(z
(1)
11 − ε) < f(0), we have

y(2) = x∗(f(z
(1)
11 − ε)) � x∗(f(0)) = y(1). Similarly, since f(y

(2)
11 + ε) >

f(y
(1)
11 +ε), we have z(2) = x∗(f(y

(2)
11 +ε)) � x∗(f(y

(1)
11 +ε)) = z(1). Since
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f(z
(1)
11 − ε) > f(y

(1)
11 + ε), we have y(2) = x∗(f(z

(1)
11 − ε)) � x∗(f(y

(1)
11 +

ε)) = z(1). Thus we get f(y
(2)
11 + ε) < f(z

(1)
11 − ε), and consequently,

z(2) = x∗(f(y
(2)
11 + ε)) � x∗(f(z

(1)
11 − ε)) = y(2). Therefore, z(1) �

z(2) � y(2) � y(1).
Using a similar idea, we can construct two monotone sequences of

vectors {z(n)} and {y(n)} such that 0 � z(1) � z(2) � · · · z(n) � y(n) �

· · · � y(2) � y(1), G(z(n), f(y
(n)
11 +ε)) = 0 and G(y(n), f(z

(n−1)
11 −ε)) = 0,

∀n ≥ 2. Moreover, there exists T2n such that z(n) − ε ≤ x(t) ≤ y(n) + ε,
∀t ≥ T2n. Hence, there exist two positive vectors Y and Z with Y ≥ Z
such that limt→∞ z(n) = Z and limt→∞ y(n) = Y . Moreover, the ordered
interval [Z, Y ] is positively invariant and the positive equilibrium E∗ is
in this interval, that is Z ≤ E∗ ≤ Y . For any x 6= 0, the omega limit set
ω(x) ∈ [Z, Y ].

If Z = Y , then we proved that Z = Y = E∗ and this equilibrium is
globally asymptotically stable.

If Z 6= Y , that is Z < Y , then it is easy to see that Z � Y . Moreover,
a persistence argument shows that there exists an η > 0 such that ω(x)
is in the ordered interval [Z, Y ] with Z11 + η ≤ (ω(x))11 ≤ Y11 − η,
where (ω(x))11 is the 11-th variable of ω(x). By repeating the previous
procedure, we can construct two vectors Z(1) and Y (1) such that for any
nonzero point x,

Z � Z(1) ≤ E∗ ≤ Y (1) � Y and ω(x) ∈ [Z(1), Y (1)].

If Z(1) = Y (1) then we finish the proof. If Z(1) < Y (1), then Z(1) � Y (1).
Repeating the procedure, we can eventually construct two series Y (n)

and Z(n) such that

Z(n−1) ≤ Z(n) ≤ E∗ ≤ Y (n) ≤ Y (n−1)

and
lim

n→∞

Z(n) = lim
n→∞

Y (n) = E∗,

which implies that the omega limit set of every nonzero point x is E∗

and thus E∗ is globally stable.

5 Discussion In this paper, we have investigated the long-term
behavior of a tick model formulated in [25]. Our results confirm that
the tick reproduction number Rtick serves as a threshold condition for
tick establishment and extinction: ticks are doomed to extinction when
Rtick < 1 and invading into the habitat when Rtick > 1. Moreover,
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under a minor technical condition, Rtick > 1 implies that the tick pop-
ulation will eventually stabilize at a constant level.

Mathematical techniques in this paper involve the monotone dynami-
cal systems theory [18], the uniform persistence theory [20, 22, 27] and
a fluctuation argument motivated by previous studies [11, 12, 19, 22,

23, 26, 28]. Since the system (1) is not a cooperative system and the
nonlinear terms f(x11), µ5(x5), µ8(x8) and µ11(x11) may be very com-
plicated (see parameters in [25] for examples), it is highly motivated
to derive the global stability of the positive equilibrium by using the
monotone dynamical systems theory or the Lyapunov function method
directly. To get a global stability result when Rtick > 1, here we use
a fluctuation technique instead. The main idea is to construct two se-
quences of monotone systems, with each series controlling the original
system from below and above, respectively. If all nonzero solutions of
a specific system converge to a corresponding positive equilibrium, then
we get an upper bound and lower bound for nonzero solutions of the orig-
inal system according to the comparison principle. To show the global
attractivity of the positive equilibrium, it is sufficient to prove that the
upper bound and lower bound tend to the same vector (see the proof of
Theorem 4).

In fact, the argument of the fluctuation idea was used previously to
yield information of dynamics of a differential system. It was developed
and used to study asymptotic behaviors of some parasitic models by
Hirsch, Hanisch and Gabriel [8]. Thieme employed this method to prove
the uniform persistence of a dynamic system [22]. In [12, 23, 28], this
idea was used to prove the global stability of the positive equilibrium for
nonmonotone reation-diffusion systems with time delays. The authors
in [11] proved the global attractivity of the interior equilibrium for a
stage-structured predator-prey model by using the fluctuation method.
Another modification of the fluctuation method was used in [19] to es-
tablish the global stability of a fixed point for discrete maps. This idea
seems to have great potential to be used for the global dynamics of
differential equations where the widely used comparison principle and
Lyapunov method may fail to yield the global attractivity property.
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