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We formulate and analyze a delay differential equation model for the transmission of West Nile virus
between vector mosquitoes and avian hosts that incorporates maturation delay for mosquitoes. The mat-
uration time from eggs to adult mosquitoes is sensitive to weather conditions, in particular the temper-
ature, and the model allows us to investigate the impact of this maturation time on transmission
dynamics of the virus among mosquitoes and birds. Numerical results of the model show that a combi-
nation of the maturation time and the vertical transmission of the virus in mosquitoes has substantial
influence on the abundance and number of infection peaks of the infectious mosquitoes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

West Nile virus (WNv) is transmitted among mosquitoes, birds,
humans, and other animals. Mosquitoes are the vector of the virus
and birds are its natural reservoir, whereas humans, horses and
probably other vertebrates are circumstantial hosts; that is, they
can be infected by an infectious mosquito but they do not transmit
the disease. Thus the virus is maintained in nature in a mosquito-
bird-mosquito transmission cycle ([8,21]). When an infectious
mosquito bites a susceptible bird, it can transmit the virus to the
bird, and the bird may then develop sufficiently high viral titers
in three to five days to infect mosquitoes. The virus can also be
passed via vertical transmission from a mosquito to its offsprings
([1,15]) and this increases the survival probability of WNv in nat-
ure. It is reasonable to believe that this vertical transmission was
the mechanism responsible for the persistence of epidemics in
New York after the winter of 1999.

Much has been done in terms of modeling and analysis of trans-
mission dynamics of WNv, see, for example Bowman et al. [6],
Lewis et al. [25], Wan and Zhu [37] and Wonham et al. [38]. But
ll rights reserved.
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none of these models have considered the effect of temperature
on the transmission of the virus spread. Estimating the potential
impact of climate change on WNv transmission is of great impor-
tance due to the concern that this virus may emerge or re-emerge
in many parts of the world. Global warming may affect the future
pattern of many arthropod-borne diseases, yet the relationship be-
tween temperature and the transmission mechanisms for many
key vectors has been mostly ignored. The rate at which new indi-
vidual mosquitoes develop from eggs is one of the key factors that
determines the growth rate of the mosquitoes. This rate is critically
dependent on the growth characteristics of immature stages,
which is governed by temperature, where food is not limited
[24]. The influence of temperature on these stages has been stud-
ied in a number of different species of mosquitoes, including
Anopheles quadrimaculatus Say [20], Aedes aegypti Linnaeus [34].

In general, within the limits of a lower development threshold
and an upper lethal temperature, the aquatic stages of mosquitoes
develop faster as temperature increases ([7,18]). The shortening of
aquatic life is important since it increases adult mosquito turnover,
with consequences for increased vector biting rate and disease
transmission [14]. There have been some modeling studies for
other mosquito borne diseases incorporating the impact of temper-
ature. For example, in the study of St. Louis encephalitis virus, Lord
and Day [26] used a modified cosine function of time as a driving
function for the vector mortality rate and the length of the latent
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period, and in a recent paper Paaijmans et al. [30] studied the effect
of temperature on mosquitoes in the context of malaria.

The life cycle of the mosquito consists of three successive aqua-
tic juvenile phases (egg, larva and pupa) and one adult pupa [39]. It
usually takes 1–2 weeks from the egg to the adult, which is large
compared to the average life span (about 3 weeks) of an adult mos-
quito. The size of the mosquito population is strongly affected by
temperature ([5,31]). The number of female mosquitoes changes
accordingly due to seasonal variations. During the favorable peri-
ods when the size of the mosquito population increases, the risk
of WNv infection among birds also increases, therefore the inci-
dence for humans increases. So, it is important to consider the mat-
uration time, the length of the larval phase from egg to adult
mosquitoes, and its impact on the transmission of WNv.

In this paper, we first formulate (in Section 2) a model of de-
lay differential equations to explore the temporal mosquito-bird
cycle transmission of WNv. It consists of the interactions among
susceptible and infectious individuals of the two species assum-
ing that the transmission of the virus is only by the bites of
mosquitoes and vertical transmission in the vector population.
Section 3 classifies the equilibria and describes the global dynam-
ics of the model system. In Section 4 we present some simulation
results. We investigate the effects of maturation delay due to
the temperature on the number of mosquitoes and on WNv
spread among mosquitoes and birds. The analysis and simula-
tions reveal that, with the combination of the maturation delay
and vertical transmission of mosquitoes, the model can exhibit
rich dynamics.
2. Model formulation and global dynamics of mosquitoes

Let Ms(t) and Mi(t) denote the number of susceptible and infec-
tious female adult mosquitoes.

The total female mosquito population is NM(t) = Ms(t) + Mi(t).
Though more than one species of birds are involved in the trans-
mission of the virus, as in the models mentioned in the introduc-
tion and for simplicity, we consider the birds as one family, and
let Bs(t), Bi(t), and Br(t) be the number of susceptible, infectious,
and recovered birds, respectively. The total bird population is
NB(t) = Bs(t) + Bi(t) + Br(t).

Since the development of mosquitoes from eggs to adults is
density dependent, a Ricker type function is taken for the birth rate
into the adult mosquitoes. This function has been used for example
in [11] and to model the vector population of Chagas disease [36].
Let the finite constant s P 0 be the maturation time of the mos-
quito, i.e., the average time needed for an egg to develop into an
adult mosquito, and let dj P 0 be the death rate of juvenile mosqui-
toes. Then the birth rate function of mosquitoes is taken as
rmNMðt � sÞe�djse�aNM , where rm > 0 is the maximum per capita dai-
ly mosquito egg production rate, and 1

a (with a > 0) is the size of the
mosquito population at which egg laying is maximized when mat-
uration delay is ignored. The term rmNM(t�s) represents the mos-
quito eggs laid s units ago and e�djs reflects the survival
probability to become an adult mosquito over the maturation per-
iod. Even if mosquito eggs survive the maturation period, the cur-
rent environment determines whether or not they can turn over to
adult mosquitoes, hence the Ricker type birth rate function e�aNM

has NM at the current time. The parameter dm > 0 is the natural
death rate of adult female mosquitoes. Vertical transmission of
the virus in the mosquito population is incorporated by a fraction
q 2 [0,1) of births from infectious mosquitoes going directly to the
infectious mosquito class. The cross-infection between birds and
mosquitoes is modeled using mass action incidence (see [19]) nor-
malized by total bird population (see also [2]). Parameters bm and
bb are the contact transmission rates between infectious birds to
susceptible mosquitoes and infectious mosquitoes to susceptible
birds, respectively. The parameter l > 0 is the West Nile virus in-
duced death rate of infectious birds, and the parameter m > 0
denotes the recovery rate of the infectious birds. In this annual
model, it is reasonable to assume that the demographic dynamics
for birds can be ignored, as the natural birth and death are
balanced in the absence of virus. Though there is evidence shown
(see [23,28]) that bird to bird transmission of the virus is possible,
the contact transmission probability is low and hence is neglected
in this study. The above assumptions lead to the following
system

dMsðtÞ
dt ¼ rmMsðt � sÞe�djse�aNM ðtÞ � bmMsðtÞBiðtÞ

NBðtÞ
� dmMsðtÞ

þð1� qÞrmMiðt � sÞe�djse�aNMðtÞ;
dMiðtÞ

dt ¼ qrmMiðt � sÞe�djse�aNMðtÞ þ bmMsðtÞBiðtÞ
NBðtÞ

� dmMiðtÞ;
dBsðtÞ

dt ¼ �
bbMiðtÞBsðtÞ

NBðtÞ
;

dBiðtÞ
dt ¼

bbMiðtÞBsðtÞ
NBðtÞ

� ðlþ mÞBiðtÞ;
dBrðtÞ

dt ¼ mBiðtÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:1Þ

with initial data

MsðhÞ ¼ /sðhÞ > 0; MiðhÞ ¼ /iðhÞ > 0;

Bsð0Þ ¼ Bs0 > 0; Bið0Þ ¼ Bi0 P 0; Brð0Þ ¼ Br0 P 0; ð2:2Þ

where /s(h) and /i(h) are positive continuous functions of
h 2 [�s, 0]. Later we will show that for t P 0, NB(t) – 0. This
conclusion will guarantee the existence and uniqueness of
solutions.

It follows from (2.1) that the total number of adult female mos-
quitoes satisfies the following equation:

dNMðtÞ
dt

¼ rmNMðt � sÞe�djse�aNMðtÞ � dmNMðtÞ; ð2:3Þ

with initial data

NMðhÞ ¼ /sðhÞ þ /iðhÞ > 0 for h 2 ½�s;0�: ð2:4Þ

Letting

N�M ¼
1
a

lnð rm

dmedjs
Þ; ð2:5Þ

it follows that NM ¼ N�M is the unique positive equilibrium for the
mosquito Eq. (2.3), and this exists if and only if rme�djs > dm.
Defining h ¼ 1

2 minfminh2½�s;0�f/sðhÞ þ /iðhÞg;N�Mg and H ¼ 1þmax
fmaxh2½�s;0�f/sðhÞ þ /iðhÞg;N�Mg, the following theorem describes
the global asymptotic behavior of (2.3) (see [4], Theorem 2.3).

Theorem 2.1. For system (2.3) with initial data (2.4) , the solution
NM(t) is positive for any finite time t P 0.

(i) If rme�djs 6 dm, then the solution NM(t) is bounded and the triv-
ial equilibrium NM = 0 is globally asymptotically stable with
respect to the positive initial data.

(ii) If rme�djs > dm, then h < NM(t) < H for any t P 0. Moreover
there exists a positive equilibrium N�M that is globally asymptot-
ically stable.
Proof. We use the method of contradiction to prove that NM(t) > 0
for any finite t P 0. Noting that NM(h) > 0 for any h 2 [�s,0], sup-
pose that there exists a t̂ > 0 such that NM ð̂tÞ ¼ 0, NM(t) > 0 for
t < t̂, and dNM ðt̂Þ

dt 6 0. It follows from (2.3) that

dNM ð̂tÞ
dt

¼ rmNM ð̂t � sÞe�djs > 0;

a contradiction. Hence NM(t) > 0 for any finite t P 0.
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We next prove that solutions are bounded in cases (i) and (ii).
Case (i) Assume that rme�djs 6 dm. Let L = maxh2[�s, 0]{/s(h) +

/i(h)}. Then NM(t) 6 L. Otherwise there exists a �t > 0 such that
NMð�tÞ ¼ L, NM(t) 6 L for any t < �t, and dNMð�tÞ

dt P 0. From (2.3),

dNMð�tÞ
dt

¼ rmNMð�t � sÞe�djse�aL � dmL 6 Lðrme�djse�aL � dmÞ

< Lðrme�djs � dmÞ 6 0;

a contradiction. Hence NM(t) 6 L for any t P 0.
Case (ii) Assume that rme�djs > dm. With L defined as above and

l = minh2[�s, 0]{/s(h) + /i(h)}, it follows that h ¼ 1
2 minfl;N�Mg and

H ¼ 1þmaxfL;N�Mg with L > l > 0. We claim that h < NM(t) < H for
any t P 0. Otherwise there exists a �t > 0 such that NMð�tÞ ¼ H and
NM(t) < H for any t < �t. From (2.3),

dNMð�tÞ
dt

¼ rmNMð�t � sÞe�djse�aH � dmH < Hðrme�djse�aH � dmÞ 6 0:

The last inequality is true since H > N�M . But the definition of �t im-
plies dNM ð�tÞ

dt P 0, a contradiction. Hence NM(t) < H for any t P 0. Sim-
ilarly, we assume there exists a ~t > 0 such that NMð~tÞ ¼ h, NM(t) > h
for any t < ~t, and dNM ð~tÞ

dt 6 0. Again from (2.3), since h 6 N�M ,

dNMð~tÞ
dt

¼ rmNMð~t � sÞe�djse�ah � dmh > hðrme�djse�ah � dmÞP 0;

a contradiction. Therefore, h < NM(t) < H for any t P 0.
In order to prove the global stability of N�M , we denote the right

hand side of (2.3) as f(NM(t),NM(t�s)). Since @f ðx;yÞ
@y > 0, it follows

that (2.3) generates an eventually strongly monotone semiflow on
the space C of continuous function on [�s,0] with the usual
pointwise ordering (see Smith [32]). If rme�djs 6 dm, there exists
only a single trivial equilibrium NM = 0. By Theorem 2.3.1 in [32],
the equilibrium NM = 0 is globally asymptotically stable. If
rme�djs > dm, there are two equilibria NM = 0 and N�M . By Theo-
rem 2.3.2 in [32], solutions of (2.3) converges to one of the
equilibria. To eliminate the possibility of NM = 0 as the attractor,
we linearize the system about NM = 0 and use Theorem A2 in [10]
to conclude that it is unstable when rme�djs > dm. Hence
NMðtÞ ! N�M as t ?1. h

Note that, using a similar argument to that in the proof of The-
orem 2.1, we can show that if the total number of mosquitoes is
initially less than N�M , then NMðtÞ < N�M for any finite t P 0; whereas
if the total number of mosquitoes is initially greater than N�M , then
NMðtÞ > N�M for any finite t P 0.

3. Classification of equilibria and dynamics of the full model

We now study the full mosquito and bird system.

Theorem 3.1. Solutions of (2.1) with initial data (2.2) are positive
and bounded for any finite time t P 0 and

lim
t!1

BiðtÞ ¼ 0;
Z 1

0
BiðtÞdt <1:

In addition, there are the following two cases.

(i) If rme�djs 6 dm, then limt?1Ms(t) = 0 and limt?1Mi(t) = 0.
(ii) If rme�djs > dm, then limt!1MsðtÞ ¼ N�M and limt?1Mi(t) = 0.
Proof. First we show that Ms(t) > 0 and Mi(t) > 0 for any finite
t P 0. Otherwise assume that the susceptible mosquitoes reach
zero first. Noting that Ms(t) > 0 for t 2 [�s,0], then there exists
a t0 > 0, such that Ms(t0) = 0. Let t0 = inf {t > 0jMs(t) = 0}. It fol-
lows that Ms(t) > 0 and Mi(t) > 0 for t 2 [�s, t0). From system
(2.1),
dMsðt0Þ
dt

¼

rme�djse�aðMsðt0ÞþMiðt0ÞÞð/sðt0 � sÞ þ ð1� qÞ/iðt0 � sÞÞ;
0 6 t0 6 s;

rme�djse�aðMsðt0ÞþMiðt0ÞÞðMsðt0 � sÞ þ ð1� qÞMiðt0 � sÞÞ;
t0 > s:

8>>><
>>>:

Then dMsðt0Þ
dt > 0. But the definition of t0 implies dMsðt0Þ

dt 6 0, giving a
contradiction. Thus Ms(t) > 0 for finite t P 0. Similarly it can be
proved that Mi(t) > 0 for finite t P 0. The boundedness of Ms(t)
and Mi(t) follows from Theorem 2.1.

Next we consider each class of birds. From (2.1),

BsðtÞ ¼ Bsð0Þ exp �
Z t

0

bbMiðsÞ
NBðsÞ

ds
� �

> 0 for t P 0:

To prove that Bi(t) > 0 and Br(t) > 0, we use the method of contradic-
tion. Since Br(t) increases whenever Bi(t) is positive, without loss of
generality, we assume that Bi(t) reaches zero first at some t̂ > 0. For
t < t̂, Bi(t) > 0 and Br(t) > 0. From (2.1),

dBi ð̂tÞ
dt

¼ bbMi ð̂tÞBsðt̂Þ
NB ð̂tÞ

> 0;

since NBðt̂Þ ¼ Bsðt̂Þ þ Biðt̂Þ þ Brðt̂Þ ¼ Bsðt̂Þ þ Br ð̂tÞ > 0. This gives a
contradiction. Hence Bi(t) > 0 for any finite t > 0. It follows that
Br(t) > 0. The total bird population NB(t) = Bs(t) + Bi(t) + Br(t) > 0 is
decreasing due to the disease induced death in the infectious birds,
with a lower limit of zero. Hence each class of birds is bounded.

Using the method in [3], we first prove that limt?1Bi(t) = 0.
Addition of the equations of (2.1) for susceptible and infectious
birds gives

dðBs þ BiÞ
dt

¼ �ðlþ mÞBi:

Integration with respect to t from 0 to 1 gives

Bsð0Þ þ Bið0Þ � Bs;1 � Bi;1 ¼ ðlþ mÞ
Z 1

0
BiðtÞdt;

where Bs,1 = limt?1Bs(t) and Bi,1 = limt?1Bi(t). The left side is finite
since Bs(0), Bi(0), Bs,1, and Bi,1 are bounded by the initial total pop-
ulation size. Therefore,

R1
0 BiðtÞdt <1. Since Bi(t) is smooth and

non-negative, it follows that Bi,1 = 0 andZ 1

0
BiðtÞdt ¼ 1

lþ m
Bsð0Þ þ Bið0Þ � Bs;1ð Þ:

Case (i) Assume rme�djs 6 dm. By Theorem 2.1.i), it follows that
NM(t) ? 0. Hence Ms(t) + Mi(t) ? 0. Since Ms(t) and Mi(t) are non-
negative, Ms(t) ? 0 and Mi(t) ? 0 as t ? +1.

Case (ii) Assuming rme�djs > dm, Theorem 2.1.ii) gives
limt!1NMðtÞ ¼ N�M . Since limt?1Bi(t) = 0, the equation for infec-
tious mosquitoes is asymptotically autonomous with limit
equation

dy
dt
¼ qrmyðt � sÞe�djse�aN�MðtÞ � dmy: ð3:1Þ

Eq. (3.1) has only a trivial equilibrium y = 0 and it is globally asymp-
totically stable (see [22, p. 32]). By Corollary 4.3 in [33],
limt?1Mi(t) = 0, and thus limt!1MsðtÞ ¼ N�M . h

The equilibria of system (2.1) are obtained by setting the right
hand side to zero. In the presence of West Nile virus, Bs(t) is strictly
decreasing and therefore the model exhibits no endemic equilib-
rium. On the other hand, system (2.1) always has an infinite num-
ber of equilibria. More precisely, we observe the following.

(i) The first type of disease-free equilibrium with no mosqui-
toes E01 ¼ ð0;0;Bs;0;BrÞ always exists with arbitrary Bs and
Br .



Fig. 1. Simulations using parameters from Table 1. The phase portrait in (Bs,Br,Bi)
coordinates with Bi(0) = 0, Bs(0) varying from 1000 to 8000 and Br(0) varying from 0
to 800. Each orbit approaches a different equilibrium E02 depending on the initial
data.
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(ii) If rme�djs > dm, system (2.1) has an infinite number of the
second type of disease-free equilibria with mosquitoes and
birds given by E02 ¼ ðN�M;0; eBs;0; eBrÞwith arbitrary eBs and eBr .

Linearizing the system (2.1) about E01, we obtain the character-
istic equation as

z2ðlþ mþ zÞð�dm � zþ rme�ðdjþzÞsÞð�dm � zþ qrme�ðdjþzÞsÞ ¼ 0:

ð3:2Þ

Eq. (3.2) has three roots 0, 0 and �(l + m), with all other eigenvalues
determined by roots of

ðdm þ z� rme�ðdjþzÞsÞðdm þ z� qrme�ðdjþzÞsÞ ¼ 0:

Linearizing at the equilibrium E02 ¼ ðNM;0; eBs;0; eBrÞ yields the char-
acteristic equation

z2ðz� dme�zs þ dmð1þ aN�MÞÞðz2 þ ðlþ mþ dmÞzþ ðdmðlþ mÞ

� bb
eBsbmN�M
ðN�BÞ

2 Þ � e�zsqdmðzþ lþ mÞÞ ¼ 0: ð3:3Þ

However, due to the existence of a continuous curve of equilibria, 0
is a double zero eigenvalue together of both characteristic equations
(3.2) and (3.3). This existence of a double zero eigenvalue together
with the fact that initial values also appear in the coefficients of the
characteristic Eq. (3.3) shows that both types of equilibria are in a
critical case and E02 is a degenerate singularity. The study of such
a degeneracy from a bifurcation point of view is out of the scope
of this study. Indeed, we will see in our simulations (Section 4), this
degeneracy may give rise to some transient multiple peaks of infec-
tion. Despite this difficulty, we do have a full picture of the global
asymptotic dynamics as now described.

Theorem 3.2. If rme�djs 6 dm, then (Ms(t), Mi(t), Bs(t), Bi (t),
Br(t)) ? E01 as t ? +1, thus all mosquitoes and WNv infectious birds
die out.
Fig. 2. The phase portrait in the (Bi,Mi)-plane for parameters as given in Table 1. For
different orbits, there are different initial data with Mi(t) = Mi0 for t 2 [�s,0] and
Proof. By Theorem 3.1.i), Ms(t) ? 0 and Mi(t) ? 0; i.e. the mosqui-
toes eventually die out. From results of [9], the limit equations for
the bird population are dBs

dt ¼ 0, dBi
dt ¼ �ðlþ mÞBi, and dBr

dt ¼ mBi. Hence
ðBsðtÞ;BiðtÞ;BrðtÞÞ ! ðBs;0;BrÞ as t ?1. h
Bi(0) = Bi0 where Mi0 2 [50,2000] and Bi0 2 [10,900]. All orbits approach (0,0) along
the vertical axis as t ?1.
Theorem 3.3. If rme�djs > dm, then for any solution of (2.1) with ini-
tial data (2.2) , there exists bBs P 0 and bBr P 0 such that

ðMsðtÞ;MiðtÞ;BsðtÞ;BiðtÞ;BrðtÞÞ ! ðN�M ;0; bBs; 0; bBrÞ; as t !1:
Proof. We first show that if rme�djs > dm, then E02 is unstable. For
any � > 0, consider a solution with constant initial data
ðN�M � �; �; eBs � �;0; eBr þ �Þ close to E02. By Theorem 3.1.ii),
MsðtÞ ! N�M , Mi(t) ? 0, and Bi(t) ? 0 as t ?1. Since Bs(t) is
decreasing with lower bound 0, there exists 0 6 bBs < eBs such that
BsðtÞ ! bBs as t ?1. Noting that Br(t) increases with an upper
bound of the total initial bird population, there exists bBr > eBr such
that BrðtÞ ! bBr as t ?1. h
4. Numerical simulations

Throughout this section, for all simulations, we use constant ini-
tial data on the interval [�s,0], and take parameters so that
rme�djs > dm. For Figs. 1–3, all parameters are as collected and given
in Table 1. For such choice of parameters, N�M � 28361. Any point
E02 ¼ ðN�M;0; eBs; 0; eBrÞ with ðeBs; eBrÞ in the non-negative quadrant
of the BsBr� plane is a second type of disease-free equilibrium.
For the mosquito population, we use initial data (Ms(t),Mi(t))
=(28000,100) for t 2 [�s,0] so that mosquitoes are close to their
steady state ðN�M ;0Þ. For the bird population, we choose initial val-
ues in the BsBr� plane. Simulations using parameters from Table 1
are given in Fig. 1. From this figure, it can be seen that each orbit
leaves its starting point and approaches another equilibrium in
the BsBr� plane which has smaller Bs and larger Br values. None
of the equilibrium E02 in the BsBr� plane is stable except eBs ¼ 0.

In order to illustrate the transient and asymptotic behaviors of
infectious classes (mosquitoes and birds), we fix initial data for
susceptible and recovered classes (Ms(t) = 28000 for t 2 [�s,0]
for mosquitoes, Bs(0) = 1000 and Br(0) = 0 for birds). Varying the
initial data of the infectious classes, Fig. 2 shows that even if there
are only a small number of mosquitoes or birds or both that are
infectious at the beginning, the infectious classes have a chance
to increase before they eventually return to zero again as pre-
dicted in Theorem 3.1. From Fig. 2, we notice that usually the
number of infectious birds reaches its peak before the number of
infectious mosquitoes reaches its peak. This remains true even
when maturation delay varies (see Fig. 3). Depending on the initial
data, we also notice that (simulations not presented here) an alter-
native case can also happen with the infectious mosquitoes first
reaching their peak but the infectious birds monotonically
decreasing to zero.
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Fig. 3. The time evolution of infectious mosquitoes (LEFT) and birds (RIGHT) for values s = 5 and 10 days. All parameters are as given in Table 1. Initial data
(Ms(t),Mi(t)) = (28000,35) for t 2 [�s,0] and Bs(0) = 1000, Bi(0) = 2 and Br(0) = 0. The vertical dotted line indicates the time of peaks t � 48 days for birds and t � 65 days for
mosquitoes.

Table 1
Parameters for Figs. 1–3. Time unit is one day and rates are daily.

Parameter Description Mean (Range) Resource

rm Average number of eggs laid 20 (0.036–42.5) [38]
per female mosquito

bm Effective contact transmission 0.0144 (0.0006–0.384) [38]
rate from birds to mosquitoes

bb Effective contact transmission 0.08 (0.024–0.16) [38]
rate from mosquitoes to birds

dm Mosquito adult per capita 0.029 (0.016–0.07) [38]
mortality rate

l WNv induced per capita 0.143 (0.125–0.2) [38]
mortality rate of birds

m Recovery rate of infectious birds 0.3 (0.18–0.36) [21]
s Maturation delay of mosquitoes 10 (5–30) [26,17]
dj Death rate of immature mosquitoes 0.37 (0.28–0.46) [29,35]
1/a Size of mosquito population at which 10000 [16,17]

egg laying is maximized without delay
q Vertical transmission rate in mosquitoes 0.007 [13,15]
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In order to better visualize the impact of maturation delay s and
vertical transmission rate q, we carry out numerical simulations of
system (2.1) by varying s and q in the case of a WNv epidemic for a
different set of parameters as used in [12], see the caption of Fig. 4.
The initial conditions are taken to be: Ms(h) = 90000, Mi(h) = 5000
for h 2 [�s,0], Bs(0) = 50000, Bi(0) = 100, and Br(0) = 50. In Fig. 4,
when s increases from 5 to 10, then to 15 days, the number of
susceptible mosquito increases initially and then stabilizes at a
positive level (N�M � 9:35� 108, 8.35 � 108, or 7.35 � 108 respec-
tively), which decreases with s. The smaller the delay, the quicker
the population reaches its stable level. The number of infectious
mosquitoes has two peaks, and decreases monotonically after its
second peak for each delay value, and the infectious mosquitoes at-
tain their first peak almost at the same time (�9 days). But the
amplitudes of the peaks are different. The smaller the delay, the
larger the peak. For a second peak, both the amplitude and the
peaking time vary with delay. For s = 10 days, the second peak is
even higher than the first peak. But for s = 20 and 30 days, the sec-
ond peak is lower than the first. For each curve, the time between
the two peaks is approximately equal to the time delay used for the
simulation. The susceptible birds decrease monotonically, and de-
crease slower as s increases. The number of infectious birds in-
creases first, reaches the peak within a short period of time,
3 days for s = 10, 3.5 days for s = 20, and 4.5 days for s = 30, and
then decreases to zero quickly. As the delay increases, the peaking
time increases and the amplitude of the peak decreases. In all
cases, the infectious birds reach their peaks approximately 5 days
earlier than the infectious mosquitoes.

To investigate the effects of vertical transmission of mosquitoes
on the dynamical behaviors of the model, we take different q values
with all other parameters fixed as in Fig. 4. We choose q = 0.03 and
varys from 10 to 20, and then to 30 days. The numerical results dem-
onstrate that the susceptible mosquitoes and birds behave similarly
as with q = 0.007 for the corresponding delay values. But the behav-
iors of infectious mosquitoes and birds are different (see Fig. 5). In
Fig. 5(a), for each delay, the infectious mosquitoes reach their first
peak one day earlier than with q = 0.007, but the amplitude of the
peak is almost the same. However the amplitude of the second peak



Fig. 4. The variation of mosquito and bird populations for three delay values s = 10, 20, and 30 days. In each of the figures, the solid curve, the dash-dotted, and the dotted
correspond to s = 10, 20 and 30 days. In (b), the quantity PK1,M denotes the time at which the first peak of infectious mosquitoes is reached. For different delay values, the
infectious mosquitoes reach their first peak almost at the same time 9 days. But the times for the second peak are different. For each curve, the time between those two peaks
is approximately equal to the time delay. The second peak for s = 10 is even higher than the first peak. But for s = 20 and 30 days, the second peak is lower than the first peak.
In (d), the quantity PK1,B denotes the time at which the first peak for infectious birds is reached. For s = 10, 20, and 30 days, PK1,B � 3, 3.5 and 4.5 days. Parameters dm = 0.06,
bm = 0.2, bb = 0.5, l = 0.08, q = 0.007, and m = 0.36 are taken from [12]. Other parameters rm = 30, dj = 0.06, a = 0.000000006 are estimated.
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Fig. 5. The population dynamics of infectious mosquitoes and birds for three delay values s = 10, 20, and 30 days. Parameter q = 0.03 and all other parameters are as in Fig. 4.
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increases, getting close to or above the first peak. Also at the end of
100 days, a larger number of infectious mosquitoes remains alive.
In Fig. 5(b), for each delay, the infectious birds reach their peak half
a day earlier than with q = 0.007 and the amplitude is almost the
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Fig. 6. The population of infectious mosquitoes and birds. Pa
same. In Fig. 6(a) with q = 0.3, for s = 20 and 30 days, the infectious
mosquitoes have a third peak with amplitude greater than those of
the first two peaks. Also the amplitude of the second peak is greater
than that of the first peak. At the end of 100 days, there are still a lot of
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infectious mosquitoes left, a number even larger than the infectious
mosquitoes at the peaks when q = 0.007.

5. Discussion

In this paper, we consider a single-season model with time de-
lay and vertical transmission. Here, the time delay is the matura-
tion time of the mosquitoes, which reflects the effects of the
temperature variation on the development of the aquatic stages
of the mosquito. Our numerical results indicate that infectious
birds reach their peak first (within 3–5 days) and then the infec-
tious mosquitoes reach their first peak (about 8–10 days). This
seems to suggest that the infectious birds drive the infectious mos-
quitoes to a peak. For infected mosquitoes, the time between two
peaks is approximately equal to the maturation time. The increase
of the vertical transmission rate has no big impact on the ampli-
tude of the first peak. However if the vertical transmission rate be-
comes higher, there are multiple peaks appearing and the
amplitudes of the second or later peaks can be even larger than
the amplitude of the first peak. Vertical transmission increases
the survival of West Nile virus in nature. Thus increased vertical
transmission from adult mosquitoes to offspring increases the
number of infectious mosquitoes and the risk of humans and other
vertebrate animals being infected by WNv.

As pointed out in [7,18,27], within the limits of a lower develop-
ment threshold and an upper lethal temperature, the aquatic
stages of mosquitoes develop faster as temperature increases.
Our numerical results indicate that more mosquitoes can be in-
fected within a certain time period. Hence when temperature in-
creases, the maturation time from egg to adult mosquito
becomes shorter, and more mosquitoes can be infected. Thus
increasing the temperature provides a better chance for the trans-
mission of West Nile virus, and potentially increases the risk of hu-
man infection.

In North America, many areas carry out an annual mosquito
control program. One of the commonly used methods is insecticide
spraying to kill the flying adult mosquitoes. However, due to the
vertical transmission of the virus, the mosquito eggs that carry
the virus mature to carry on the transmission cycle of the virus
in birds and mosquitoes and further cause human infection. In par-
ticular, increasing temperature in an area can speed up the hatch-
ing process of mosquito eggs even though insecticide spraying is
applied. Therefore the combination of the impact of increasing
temperature and the vertical transmission of the virus in the mos-
quitoes can cause an outbreak of the virus in an area even though
an adult mosquito control program is applied. The dynamics of the
interaction of increasing temperature and vertical transmission
could explain the continuing activity of the virus in Southern On-
tario and other places in Canada [40].

There are a number of other factors we have not considered in
this paper. The diversity of bird species and their dispersion,
migration, as well as latitudinal variation in host and vector popu-
lation, all remain to be explored.
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