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local Hopf bifurcation and to describe the global continuation of
periodic solutions for such a system with state-dependent delay.
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1. Introduction

Our goal is to apply the S1-equivariant degree theory to describe the occurrence of local Hopf
bifurcation from a stationary state, and the global continuation of periodic solutions for the following
parameterized functional differential equations (FDEs) with state-dependent delay [1,2,4–6,11,37,38]

(
ẋ(t)
τ̇ (t)

)
=

(
f (x(t), x(t − τ (t)),σ )

g(x(t), τ (t),σ )

)
, (1.1)
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where x ∈ R
N , τ ∈ R, t ∈ R and σ ∈ R, f : R

N × R
N × R → R

N , and g : R
N × R × R → R are given

maps. A stationary state of (1.1) with parameter σ is a vector (x, τ ) ∈ R
N × R so that f (x, x, σ ) = 0

and g(x, τ ,σ ) = 0.
The major problem to develop such a global Hopf bifurcation theory for the system of FDEs

(1.1) is that in the spaces of continuous periodic functions CT (R;R
N ) = {x ∈ C(R;R

N ): x(t + T ) =
x(t) for all t ∈ R} and CT (R;R) = {τ ∈ C(R;R): τ (t + T ) = τ (t) for all t ∈ R} with a fixed period
T > 0, the composition operator

χ : CT
(
R;R

N) × CT (R;R) → CT
(
R;R

N)
, (1.2)

χ(x, τ )(t) = x
(
t − τ (t)

)
, t ∈ R, (1.3)

is generally not a C1 (continuously differentiable) map with respect to τ in the supremum norm.
This causes the difficulty in formulating linearization at a stationary state, and such a linearization
is usually necessary in the functional analytical setting for the Hopf bifurcation problem where a
topological index such as a S1-equivariant degree can be calculated and applied to investigate the
birth and continuation of periodic solutions bifurcating from a stationary state.

In [12], a system of auxiliary equations obtained through a formal linearization technique was
used in the study of local stability of FDEs with state-dependent delays in the space of continuously
differentiable functions. This formal linearization technique is only heuristic and can be described in
the following way: the state-dependent delay τ (t) in x(t − τ (t)) is first fixed at a given stationary
state, then the resulting nonlinear system with the frozen constant delay is linearized. Other appli-
cations of the system of auxiliary equations obtained through a formal linearization process can be
found in [8,10,17,19]. None of these results is sufficient for us to develop a global Hopf bifurcation
theory based on the S1-equivariant degree for FDEs (1.1) with state-dependent delay. However, the
above mentioned results strongly indicate that the system of auxiliary equations obtained through
the heuristic technique of formal linearization can be utilized to detect the local Hopf bifurcation and
to describe its global continuation for FDEs with state-dependent delay.

In this paper we use the homotopy invariance property of the S1-equivariant degree to relate the
Hopf bifurcation problem of (1.1) to the change of stability of stationary states of the corresponding
system of auxiliary equations obtained through formal linearization. As such we show that informa-
tion of the auxiliary equations can be used in a standard way to develop a local and global Hopf
bifurcation theory for FDEs with state-dependent delay.

We organize the remaining part of this paper as follows. In Section 2, we use the general re-
sults in [13,24] of the S1-equivariant degree to develop a Hopf bifurcation framework for FDEs with
state-dependent delay. We then, in Sections 3 and 4, state and prove our main results about the lo-
cal bifurcation and global continuation of periodic solutions for the parameterized system of FDEs
(1.1) with state-dependent delay. Some remarks are given, in the final section, about the novelty and
challenge of our approach in comparison with existing studies.

2. S1-degree and equivariant formulation of Hopf bifurcations

We describe, following [13], the framework where an S1-equivariant degree can be applied to yield
a Hopf bifurcation theory for parameterized dynamical systems. We refer to [24] for relevant concepts
of the S1-equivariant degree.

Let V be a real isometric Banach representation of the group G = S1 := {z ∈ C; |z| = 1}. This means
that V is a Banach space with an isometric Banach representation of the group G (see [24], p. 194
and p. 196 for details). Then V has the following direct sum decomposition

V =
+∞⊕

Vk,
k=0
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where V 0 = V G := {x ∈ V ; gx = x for all g ∈ G} is the subspace of G-fixed points, and for k � 1, x ∈
Vk \ {0} implies that the isotropy group Gx is Zk := {γ ∈ G;γ k = 1}. We call such a decomposition an
isotypical direct sum decomposition. We assume that

(A1) for each integer k = 0,1, . . . , the subspace Vk is of finite dimension.

The subspace Vk , with k � 1, k ∈ N, is the vector space of all mappings of the form x sin k· + y cos k·,
x, y ∈ R

N+1, and can be endowed with a complex structure J : Vk → Vk by

J (x cos k· + y sin k·) = −x sin k· + y cos k·. (2.1)

Let X0 be a Banach space and M be the class of bounded subsets of X0. The Kuratowski
Measure of Noncompactness α : M → [0,+∞) is defined for A ∈ M by α(A) = inf{ε > 0: A =⋃n

i=1 Ai, diam(Ai) < ε for i = 1,2, . . . ,n, where n ∈ N}. A continuous map F : Dom(F ) ⊂ X0 → X0
is called a condensing map if α(F (E)) < α(E) for all E ⊆ Dom(F ) and E ∈ M with α(E) > 0.

Let X, Y be two topological spaces and Ω ⊆ X be an open, nonempty and bounded set. We say
F : X → Y is Ω-admissible if F is continuous and F (x) �= 0 for all x ∈ ∂Ω where ∂Ω is the boundary
of Ω . Let I be the closed unit interval [0,1]. Two continuous maps F1, F2 from X to Y are called
homotopic if there exists a continuous map H from X × I to Y such that H(x,0) = F1(x) and H(x,1) =
F2(x) for all x ∈ X . H is then called a homotopy between F1 and F2. If H from X × I to Y is a
homotopy between two Ω-admissible maps F1 and F2 from X to Y and if H(x, t) �= 0 for all (x, t) ∈
[0,1] × ∂Ω , then we say F1 and F2 are homotopic on Ω (or Ω-homotopic) and H is an Ω-homotopy.

Let L0 : Dom(L0) ⊆ V → V be an equivariant linear operator. Here and in what follows, L0 is
equivariant means that L0(gx) = gL0(x) for every x ∈ Dom(L0) and g ∈ G . A compact linear operator
K : V → V is called a compact resolvent of L0 if L0 + K : Dom(L0) → V is a bijection. Denote by
C RG(L0) the set of all equivariant compact resolvents of L0. We assume C RG(L0) �= ∅.

We consider the following continuous map F : Dom(L0) × R
2 ⊂ V × R

2 → V given by

F (u, λ) = L0u − N0(u, λ), (u, λ) ∈ Dom(L0) × R
2, (2.2)

where N0 : V × R
2 → V is a continuous map that is G-equivariant (i.e., N0(gu, λ) = gN0(u, λ) for

u ∈ V , λ ∈ R
2 and g ∈ G) and we have the following assumptions:

(A2) There exists K ∈ C RG(L0) such that for every fixed parameter λ ∈ R
2,

(L0 + K )−1 ◦ [
N0(·, λ) + K

] : V → V

is a condensing map.
(A3) There exists a 2-dimensional submanifold M ⊆ V 0 × R

2 such that
(i) M ⊆ F−1(0);

(ii) if (u0, λ0) ∈ M then there exists an open neighborhood Uλ0 of λ in R
2, an open neighbor-

hood Uu0 of u0 in V 0, and a C1-map η : Uλ0 → V 0 such that

M ∩ (Uu0 × Uλ0) = {(
η(λ),λ

); λ ∈ Uλ0

}
.

In relation to the bifurcation problem of (2.2), we consider the structure of the set of solutions to
the following equation

F (u, λ) = 0, (u, λ) ∈ Dom(L0) × R
2. (2.3)

All points (u, λ) ∈ M are called trivial solutions of (2.2) or (2.3), and all other solutions in F−1(0) \ M
are called nontrivial solutions. A point (u0, λ0) ∈ M is called a bifurcation point if in any neighborhood
of (u0, λ0) ∈ M there is a nontrivial solution for (2.3).
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Eq. (2.3) can be transformed into the equivariant fixed point problem

u = R K ◦ [
K + N0(·, λ)

]
(u), (u, λ) ∈ V × R

2, (2.4)

where R K := (L0 + K )−1. Let F (u, λ) = u − R K ◦ [N0(·, λ) + K ](u), (u, λ) ∈ V × R
2. Then (2.3) is

equivalent to the equation

F (u, λ) = 0, (u, λ) ∈ V × R
2. (2.5)

The idea of finding nontrivial solutions to (2.5) in an open G-invariant neighborhood U ⊆ V × R
2 of

(u0, λ0) ∈ M is based on an auxiliary function ψ to (2.5), which is introduced to distinguish nontrivial
solutions from trivial solutions. Here, U is said to be G-invariant if (gx, λ) ∈ U for all g ∈ G , (x, λ) ∈ U .
An auxiliary function to (2.5) on the set U is an equivariant function (i.e., ψ(gx) = gψ(x) for all g ∈ G
and x ∈ U , where U denotes the closure of U . Here and in what follows G acts on R

2 trivially)
ψ : U ⊂ V × R

2 → R satisfying that ψ(u, λ) < 0 for all (u, λ) ∈ U ∩ M . Then every solution to the
system

{
F (u, λ) = 0,

ψ(u, λ) = 0,
(u, λ) ∈ U (2.6)

is a nontrivial solution to (2.2). This leads to the equivariant map Fψ : U → V × R defined by

Fψ(u, λ) = (
F (u, λ),ψ(u, λ)

)
, (u, λ) ∈ U , (2.7)

and the problem of finding a nontrivial solution to (2.2) in U can be reduced to the problem of
finding a solution to the equation Fψ(u, λ) = 0 in U which may be solved by using the so-called S1-
degree (see [24] for details) as a topological invariant associated with the problem (2.6). To be more
specific, if Fψ(u, λ) = 0 has no solution on ∂U and F : U → V is a condensing field (i.e. π − F is
a condensing map, where π : U → V is the natural projection on V ), then the S1-equivariant degree
S1- deg(Fψ, U ) is well defined and its nontriviality implies the existence of solutions of Fψ(u, λ) = 0
in U . Global continuation of the branch of nontrivial solutions (solutions in F−1(0) \ M) bifurcating
from (u0, λ0) can be characterized by the above S1-degree at all bifurcation points along the closure
of the branch, if such a branch is bounded in V × R

2 (the so-called Fuller space).
To describe precisely this S1-degree based bifurcation theory, we need some additional information

about:

(a) the construction of the open neighborhood U ;
(b) the auxiliary function ψ ;
(c) the computation of S1- deg(Fψ, U ).

We start with the construction of the open neighborhood U . Usually, if F (u, λ) is differentiable
with respect to u, we are able to define singular points of system (2.5) through its linearization at
the trivial solutions of (2.3). This is unfortunately not so for the Hopf bifurcation problem of (1.1), as
explained in the introduction. So, we need to justify that the formal linearization can be utilized to
detect the local Hopf bifurcation and to describe the global continuation of periodic solutions for such
a system with state-dependent delay. Our approach towards this justification of formal linearization
is through a simple homotopy argument. Namely, we will consider, in the context of Hopf bifurcation
of (1.1), the following equation

F̃ (u, λ) = 0, (u, λ) ∈ Ū (2.8)
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for an S1-equivariant C1-map F̃ : U → V that is S1-homotopic to F in a sense to be detailed below.
For the functional analytic setting of the Hopf bifurcation of (1.1), such a C1-map is attained by
extending a linear operator obtained through the formal linearization from a C1-space to a C-space,
an idea previously used in [14] and [32] (see the final section for more discussions). To be more
precise, we assume that such a C1-map is given by

F̃ (u, λ) = u − R K ◦ [
Ñ0(·, λ) + K

]
(u), (u, λ) ∈ Ū , (2.9)

where Ñ0 : U → V is an S1-equivariant C1-map and

(A4) M ⊆ F̃ −1(0), and for every λ ∈ R
2, R K ◦ (Ñ0(·, λ) + K ) : V → V is a condensing map.

By the Implicit Function Theorem, if (u0, λ0) ∈ M is a bifurcation point of system (2.9), then the
derivative Du F̃ (u0, λ0) which is G-equivariant is not an automorphism of V . Therefore, all bifurcation
points of (2.9) are contained in the set

Λ := {
(u, λ) ∈ M: Du F̃ (u, λ) /∈ GLG(V )

}
,

where GLG(V ) denotes the set of G-equivariant automorphisms of V .
In what follows, we call a point (u0, λ0) ∈ Λ a V -singular point of F̃ . If (u0, λ0) is the only V -

singular point in some neighborhood of (u0, λ0) ∈ V ×R
2, we say that (u0, λ0) is an isolated V -singular

point of F̃ .
Let (u0, λ0) be an isolated V -singular point of F̃ . We consider the open neighborhood of

(u0, λ0) ∈ M defined by

BM(u0, λ0; r,ρ) := {
(u, λ) ∈ V × R

2; |λ − λ0| < ρ,
∥∥u − η(λ)

∥∥ < r
}
, (2.10)

where ρ > 0 and r > 0 are chosen so that

(i) F̃ (u, λ) �= 0 for all (u, λ) ∈ BM(u0, λ0; r,ρ) such that |λ − λ0| = ρ , ‖u − η(λ)‖ �= 0;

(ii) (u0, λ0) is the only V -singular point of F̃ in BM(u0, λ0; r,ρ).

We call BM(u0, λ0; r,ρ) a special neighborhood of F̃ determined by r and ρ . The existence of a
special neighborhood BM(u0, λ0; r,ρ) follows from the assumption that the V -singular point (u0, λ0)

of F̃ is isolated. (e.g., see [24], p. 169). That is, there exists ρ0 > 0 such that for any 0 < ρ < ρ0, there
exists r > 0 such that BM(u0, λ0; r,ρ) is a special neighborhood of F̃ .

To tie the S1-equivariant degree of F to that of F̃ , we assume that

(A5) We can choose the constants r > 0 and ρ > 0 so that B M(u0, λ0; r,ρ) is a special neighborhood
of F̃ , and that there exists 0 < r′ � r such that F (u, λ) �= 0 for all (u, λ) ∈ BM(u0, λ0; r′,ρ) with
|λ − λ0| = ρ and ‖u − η(λ)‖ �= 0.

If ψ is an auxiliary function to (2.5), then by the construction of the S1-degree and the assumptions
(A2), (A4) and (A5), there exists a special neighborhood U := B M(u0, λ0; r′,ρ) of F̃ such that the
continuous G-equivariant maps Fψ and F̃ψ are nonzero on the boundary of U , and therefore both
S1- deg(F̃ψ, U ) and S1- deg(Fψ, U ) are well defined.

Note that the equivariant version of Dugundji’s extension theorem (see [24], p. 197) implies that
there exists a continuous S1-equivariant function θ : U → R such that

(i) θ(η(λ),λ) = −|λ − λ0| for all (η(λ), λ) ∈ U ∩ M;
(ii) θ(u, λ) = r′ if ‖u − η(λ)‖ = r′ .
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The function θ is called a completing function (or Ize’s function). Clearly, if θ is a completing func-
tion, then ψδ(u, λ) := θ(u, λ) − δ is negative on the subset of trivial solutions U ∩ M , provided that
δ > 0. So, ψδ is an auxiliary function to (2.5) and (2.8).

For δ > 0 small enough, we can define Fψδ : U → V × R by

Fψδ (u, λ) := (
F (u, λ),ψδ(u, λ)

)
,

and define the S1-equivariant degree S1- deg(Fψδ , U ). By the homotopy invariance of the S1-degree,
S1- deg(Fψδ , U ) = S1- deg(Fθ , U ). Therefore, the nontriviality of S1- deg(Fθ , U ) implies the existence
of nontrivial solution of (2.3) in U .

We now turn to the computation of S1- deg(Fθ , U ). If F̃θ = (F̃ , θ) is homotopic to Fθ on U , then
the homotopy invariance of S1-degree ensures that S1- deg(Fθ , U ) = S1- deg(F̃θ , U ). In the following
part of this section, we present an algorithm to calculate S1-deg(F̃θ , U ).

We identify R
2 with C, and for sufficiently small ρ > 0, define α : D → M, D := {z ∈ C; |z| � 1}, by

α(z) = (
η(λ0 + ρz), λ0 + ρz

) ∈ V 0 ⊕ R
2.

Note that F̃ is a continuous S1-equivariant map on U . The formula Ψ (z) := Du F̃ (α(z)), z ∈ S1 ⊆ D ,
defines a continuous map Ψ : S1 → GLG(V ) which has the decomposition (see [13] for details) Ψ =
Ψ0 ⊕ Ψ1 ⊕ · · · ⊕ Ψk ⊕ · · · , where Ψk = Ψ |Vk : S1 → GLG(Vk) for k = 1,2, . . . and Ψ0 : S1 → GL(V 0) with
GL(V 0) being the set of linear automorphisms of V 0. We now define

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε0(u0, λ0) = sgn det Ψ0(z),

μk(u0, λ0) = degB

(
detC[Ψk]

)
, k = 1,2, . . . ,

μ(u0, λ0) = {
μk(u0, λ0)

} ∈
∞⊕

k=1

Z,

(2.11)

where [Ψk] is the matrix representation of Ψk with respect to an ordered C-basis of Vk and Vk
is endowed with the complex structure defined at (2.1), detC(·) is the determinant mapping,
degB(detC[Ψk]) is the usual Brouwer degree of detC[Ψk] on {z ∈ C: |z| < 1}. It is clear that ε0 does
not depend on the choice of z ∈ S1.

We need one more notion, the crossing numbers, to calculate degB(detC[Ψk]):

Lemma 2.1. (See [13].) Suppose α0, β0, δ, ε are given numbers with α0, δ, ε > 0. Let Ω := (0,α0) ×
(β0 − ε,β0 + ε) ⊆ R

2 . Assume H : [σ0 − δ,σ0 + δ] × Ω̄ → R
2 is a continuous function satisfying

(i) H(σ ,α,β) �= 0 for all σ ∈ [σ0 − δ,σ0 + δ] and (α,β) ∈ ∂Ω \ {(0, β);β ∈ (β0 − ε,β0 + ε)};
(ii) if (α,β) ∈ Ω and Hσ0±δ(α,β) = 0, then α �= 0.

Let Ω1 := (σ0 − δ,σ0 + δ) × (β0 − ε,β0 + ε) and define the function ΨH : Ω̄1 → R
2 by ΨH (σ ,β) =

H(σ ,0, β), for σ ∈ [σ0 − δ,σ0 + δ], and β ∈ [β0 − ε,β0 + ε]. Then ΨH (σ ,β) �= 0 for (σ ,β) ∈ ∂Ω1 and
degB(ΨH ,Ω1) = γ , where γ is the crossing number given by

γ := degB(Hσ0−δ,Ω) − degB(Hσ0+δ,Ω).

Finally, in order to exclude bifurcation of solutions of (2.8) in V 0 × R
2, we assume that

(A6) Du F̃ (u0, λ0)|V 0 : V 0 → V 0 is an isomorphism.
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Lemma 2.2. Assume that (A1)–(A6) hold and let U = B M(u0, λ0; r′,ρ) ⊆ V × R
2 be a special neighborhood

for F̃ . If S1-deg(F̃θ , U ) �= 0 for some completing function θ : U → R and F̃θ is homotopic to Fθ on U , then
(u0, λ0) is a bifurcation point for (2.2). That is, there exists a sequence of nontrivial solutions (un, λn) of (2.2)
such that limn→+∞(un, λn) = (u0, λ0).

Proof. Let δ > 0 be sufficiently small so that the function ψδ : U → R, defined by ψδ(u, λ) =
θ(u, λ) − δ, (u, λ) ∈ U , is an auxiliary function. Let θt(u, λ) = θ(u, λ) − tδ, t ∈ [0,1]. Then we can
apply the homotopy invariance of the S1-degree to obtain

S1- deg(Fψδ , U ) = S1- deg(Fθ , U ).

By assumption that F̃θ is homotopic to Fθ on U , we have

S1- deg(Fθ , U ) = S1- deg(F̃θ , U ).

Therefore,

S1- deg(Fψδ , U ) = S1- deg(F̃θ , U ).

Thus, S1-deg(F̃θ , U ) �= 0 implies that the equation Fψδ (u, λ) = 0 has a solution in U and hence (2.2)
has a nontrivial solution in U . By the excision property of the S1-degree, we know that S1-deg(F̃θ , U )

is independent of the choice of r′ and ρ , (e.g., see Proposition 5.1.6 in [24] for details). Therefore, the
result follows. �
Lemma 2.3. Assume that (A4)–(A6) hold. Let U = B M(u0, λ0; r′,ρ) ⊆ V × R

2 be a special neighborhood
of F̃ , and θ a completing function. Then the S1 degree S1- deg(F̃θ , U ) is well defined and

S1- deg(F̃θ , U ) = ε0 · μ(u0, λ0).

That is,

S1- degk(F̃θ , U ) = ε0 · μk(u0, λ0), k = 1,2, . . . ,

where μ(u0, λ0) is defined by (2.11).

Proof. Note that by the assumptions (A4) and (A5) and from the construction of the S1-equivariant
degree, S1- deg(F̃θ , U ) is well defined. Then the calculation formula of S1- deg(F̃θ , U ) is a straight-
forward consequence of Theorem 7.1.5 in [24]. This completes the proof. �

By Lemma 2.2 and Lemma 2.3, we have the following local bifurcation theorem of Krasnosel’skii
type.

Theorem 2.4. Assume that (A1)–(A6). Let U = B M(u0, λ0; r′,ρ) ⊆ V × R
2 be a special neighborhood of F̃ ,

and θ a completing function. If F̃θ is homotopic to Fθ on U and if there exists k � 1 such that μk(u0, λ0) �= 0,
then (u0, λ0) is a bifurcation point of (2.2). More precisely, there exists a sequence (un, λn) of nontrivial solu-
tions to (2.2) such that the isotropy group of un contains Zk and (un, λn) → (u0, λ0) as n → ∞.

For global bifurcation, we assume further that both F and F̃ are defined on V × R
2, and that

(A7) every bifurcation point of (2.2) is a V -singular point of F̃ .
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(A8) F̃θ is homotopic to Fθ on some special neighborhood U of each isolated V -singular point of F̃ ,
where θ is a completing function defined on U .

Now we can state and prove the following global bifurcation theorem of Rabinowitz type.

Theorem 2.5. Assume (A1)–(A8) hold and (A5)–(A6) hold for every V -singular point (u0, λ0) of F̃ . Assume
further that every V -singular point of F̃ in M is isolated and M is complete. Let S denote the closure of the set
of all nontrivial solutions of (2.2). Then for each bounded component C of S , the set C ∩ M is a finite set, i.e.,
C ∩ M = {(u1, λ1), (u2, λ2), . . . , (uq, λq)}, and

q∑
i=1

S1- deg(Fθi , Ui) =
q∑

i=1

εi · μ(ui, λi) = 0,

where Ui is a special neighborhood of (ui, λi), θi is a completing function defined on U i , εi and μ(ui, λi) are
defined by (2.11).

Proof. C is a bounded component of S , then every point of C ∩ M is a bifurcation point which is also
a V -singular point of F̃ . Since every V -singular point of F̃ is isolated and M is complete, C ∩ M is a
bounded and closed subset of V 0 × R

2 ⊃ M . By (A1), V 0 × R
2 is finite dimensional and hence C ∩ M

is compact. Therefore, C ∩ M is a finite set.
Choose r,ρ > 0 sufficiently small so that for each i = 1,2, . . . ,q, Ui = BM(ui, λi; r,ρ) is a spe-

cial neighborhood of (ui, λi) for F̃ and Ui ∩ U j = ∅ if i �= j. By assumption (A5), we can assume
r is also small enough such that F (u, λ) �= 0 for all (u, λ) ∈ {(u, λ) ∈ B M(ui, λi; r,ρ); |λ − λ0| = ρ,

‖u − η(λ)‖ �= 0}.
Let U = U1 ∪ U2 ∪ · · · ∪ Uq and find a bounded, open set Ω1 ⊂ V × R

2 such that C \ U ⊆ Ω1 and
Ω1 ∩ M = ∅. Put Ω2 = U ∪ Ω1, then C ⊆ Ω2. We can (e.g., see [24], p. 174) find an open, invariant
subset Ω ⊆ V × R

2 such that C ⊆ Ω ⊆ Ω2 and ∂Ω ∩ S = ∅.
Note that Ω is an open, bounded, invariant subset. We now choose r0 ∈ (0, r) and ρ0 ∈ (0,ρ) such

that, for every i = 1,2, . . . ,q, we have

(i) BM(ui, λi; r0,ρ0) ⊆ Ω;
(ii) Ui := BM(ui, λi; r0,ρ0) is a special neighborhood of (ui, λi) for F̃ .

Set U = U1 ∪ U2 ∪ · · · ∪ Uq and

∂Ur0 := {
(u, λ) ∈ Ω̄:

∥∥u − η(λ)
∥∥ = r0,

(
η(λ),λ

) ∈ U ∩ M
}
.

We note that r0 > 0 and define an invariant function by

θ(u, λ) =
{

|λ − λi| ‖u−η(λ)‖−r0
r0

+ ‖u − η(λ)‖, if (u, λ) ∈ Ūi,

r0, if (u, λ) ∈ C \ U .
(2.12)

Ui is a special neighborhood and hence we have (C \ U ) ∩ Ūi = C ∩ ∂Ui ⊆ ∂Ur0 , where we have
θ(u, λ) = r0. Then, by (2.12), θ(u, λ) is continuous on (C \ U ) ∩ Ūi . Also, by the construction of Ui ,
we have Ūi ∩ Ū j = ∅ if i �= j. Therefore, θ : C ∪ Ū → R is continuous.

By the equivariant version of Dugundji’s extension theorem (see [24], pp. 197), we can extend
θ : C ∪ Ū → R to a continuous invariant function θ : Ω → R such that

(iii) θ(u, λ) = −|λ − λi | if (u, λ) ∈ U i ∩ M;

(iv) θ(u, λ) = r0 if (u, λ) ∈ (C \ U ) ∪ ∂Ur0 .



Q. Hu, J. Wu / J. Differential Equations 248 (2010) 2801–2840 2809
Let Fθ (u, λ) = (F (u, λ), θ(u, λ)) and F̃θ (u, λ) = (F̃ (u, λ), θ(u, λ)). Then F −1
θ (0) = F −1(0) ∩ θ−1(0).

By (iii), we know F −1
θ (0) ⊆ C . Since C ∩ ∂Ω = ∅, F −1

θ (0) ∩ ∂Ω = ∅. Therefore, S1- deg(Fθ ,Ω) is well
defined.

We now construct a homotopy H : Ω × [0,1] → V × R as follows

H(u, λ,α) = (
F (u, λ), (1 − α)θ(u, λ) − αρ0

)
, (u, λ,α) ∈ Ω × [0,1].

Note that trivial solutions (u, λ) ∈ Ω̄ outside S are contained in Ūi ∩ M for some i = 1,2, . . . ,q, and
by (iii), we have

(1 − α)θ(u, λ) − αρ0 = −(1 − α)|λ − λi| − αρ0 < 0.

Then, by the fact that ∂Ω ∩ S = ∅, we have H(u, λ,α) �= 0 for all (u, λ,α) ∈ ∂Ω ×[0,1]. Note that θ is
invariant and F is equivariant. So H is an S1-homotopy. Since H(u, λ,0) = Fθ (u, λ) and H(u, λ,1) =
(F (u, λ),−ρ0) �= 0 for all (u, λ) ∈ Ω × [0,1], by the existence and homotopy invariance of the S1-
degree, we have S1- deg(Fθ ,Ω) = 0. But (i)–(iv) imply that F −1

θ (0) ⊆ C ∩ U . Then it follows from the
excision property of the S1-degree that

S1- deg(Fθ , U ) = S1- deg(Fθ ,Ω) = 0.

On the other hand, by the additivity property of the S1-degree, we have

q∑
i=1

S1- deg(Fθ , Ui) = S1- deg(Fθ , U ) = 0.

Let θi(u, λ) = θ(u, λ)|U i
. Note that U ⊆ Ω implies that ((C \ U )∪ ∂Ur0 )∩ U i = ∂Ui ∩ ∂Ur0 , then θi(u, λ)

is a completing function on U i and we have

q∑
i=1

S1- deg(Fθi , Ui) = S1- deg(Fθ , U ) = 0.

By assumption (A8), we have S1- deg(Fθi , Ui) = S1- deg(F̃θi , Ui). Therefore, it follows from Lemma 2.3
that

q∑
i=1

εi · μ(ui, λi) =
q∑

i=1

S1- deg(Fθi , Ui) = 0. �

3. Local Hopf bifurcation for FDEs with state-dependent delay

We turn to the Hopf bifurcation of (1.1), with its solution denoted by u(t) = (x(t), τ (t)). Denote by
C(R;R

N ) the normed space of continuous functions from R to R
N equipped with the usual supre-

mum norm ‖x‖ = supt∈R |x(t)| for x ∈ C(R;R
N ), where | · | denotes the Euclidean norm. We also

denote by C1(R;R
N ) the normed space of continuously differentiable bounded functions from R to

R
N equipped with the usual C1 norm

‖x‖C1 = max
{

sup
∣∣x(t)∣∣, sup

∣∣ẋ(t)∣∣}

t∈R t∈R
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for x ∈ C(R;R
N ). For a stationary state (u0, τ0) of (1.1) with the parameter σ0, we say (u0, σ0) is a

Hopf bifurcation point of system (1.1), if there exist a sequence {(uk, σk, Tk)}+∞
k=1 ⊆ C(R;R

N+1) × R
2

and T0 > 0 such that

lim
k→+∞

∥∥(uk,σk, Tk) − (u0,σ0, T0)
∥∥

C(R;RN+1)×R2 = 0,

and (uk, σk) is a nonconstant Tk-periodic solution of system (1.1).
We assume that

(S1) The map f : R
N × R

N × R � (θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R
N and the map g : R

N × R × R �
(γ1, γ2, σ ) → g(γ1, γ2, σ ) ∈ R are C2 (twice continuously differentiable).

(S2) There exists L > 0 such that g(γ1, γ2, σ ) < L
L+1 for γ1 ∈ R

N , γ2 ∈ R, σ ∈ R.

In what follows, we write ∂i f = ∂
∂θi

f for i = 1,2, and similarly we define ∂i g for i = 1,2.
As outlined in Section 2, we shall study the Hopf bifurcation of (1.1) through its formal lineariza-

tion. We assume that for a fixed σ0 ∈ R, (xσ0 , τσ0 ) (or, abusing notations, (xσ0 , τσ0 , σ0)) is a stationary
state of (1.1). That is,

f (xσ0 , xσ0 ,σ0) = 0, g(xσ0 , τσ0 ,σ0) = 0.

We also assume that

(S3) ( ∂
∂θ1

+ ∂
∂θ2

) f (θ1, θ2, σ )|σ=σ0,θ1=θ2=xσ0
is nonsingular and

∂

∂γ2
g(γ1, γ2,σ )

∣∣∣
σ=σ0,γ1=xσ0 ,γ2=τσ0

�= 0.

This assumption implies that there exists ε0 > 0 and a C1-smooth curve (σ0 − ε0, σ0 + ε0) � σ �→
(xσ , τσ ) ∈ R

N+1 such that (xσ , τσ ) is the unique stationary state of (1.1) in a small neighborhood of
(xσ0 , τσ0 ) for σ close to σ0.

We now consider, for σ ∈ (σ0 − ε0, σ0 + ε0), the following formal linearization of system (1.1) at
the stationary point η(σ ) = (xσ , zσ ):

(
ẋ(t)
τ̇ (t)

)
=

[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

](
x(t) − xσ

τ (t) − τσ

)
+

[
∂2 f (σ ) 0

0 0

](
x(t − τσ ) − xσ

τ (t − τσ ) − τσ

)
, (3.1)

where

∂1 f (σ ) := ∂1 f (xσ , τσ ,σ ), ∂2 f (σ ) := ∂2 f (xσ , τσ ,σ ),

∂1 g(σ ) := ∂1 g(xσ , τσ ,σ ), ∂2 g(σ ) := ∂2 g(xσ , τσ ,σ ).

Let the state and delay pair

u(t) := (
x(t), τ (t)

) = eωt · C + (xσ , τσ ),

with C ∈ R
N+1. Then we obtain the following characteristic equation of the linear system correspond-

ing to the inhomogeneous linear system (3.1),

det�(xσ ,τσ ,σ )(ω) = 0, (3.2)
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where �(xσ ,τσ ,σ )(ω) is an (N + 1) × (N + 1) complex matrix defined by

�(xσ ,τσ ,σ )(ω) = ωI −
[

∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

]
−

[
∂2 f (σ ) 0

0 0

]
e−ωτσ . (3.3)

A solution ω0 to the characteristic equation (3.2) is called a characteristic value of the stationary state
(xσ0 , τσ0 , σ0). (xσ0 , τσ0 , σ0) is a nonsingular stationary state if and only if zero is not a characteristic
value of (xσ0 , τσ0 , σ0). We say that (xσ0 , τσ0 , σ0) is a center if the set of nonzero purely imaginary
characteristic values of (xσ0 , τσ0 , σ0) is nonempty and discrete. (xσ0 , τσ0 , σ0) is called an isolated center
if it is the only center in some neighborhood of (xσ0 , τσ0 , σ0) in R

N+1 × R.
If (xσ0 , τσ0 , σ0) is an isolated center of (3.1), then there exist β0 > 0 and δ ∈ (0, ε0) such that

det �(xσ0 ,τσ0 ,σ0)(iβ0) = 0,

and

det�(xσ ,τσ ,σ )(iβ) �= 0, (3.4)

for any σ ∈ (σ0 − δ,σ0 + δ) and any β ∈ (0,+∞) \ {β0}. Hence, we can choose constants α0 =
α0(σ0, β0) > 0 and ε = ε(σ0, β0) > 0 such that the closure of the set Ω := (0,α0)× (β0 − ε,β0 + ε) ⊂
R

2 ∼= C contains no other zero of det�(xσ0 ,τσ0 ,σ0)(·) in ∂Ω . We note that det �(xσ ,τσ ,σ )(ω) is analytic
in ω and is continuous in σ . If δ > 0 is small enough, then there is no zero of det�(xσ0±δ ,τσ0±δ ,σ0±δ)(ω)

in ∂Ω . So we can define the number

γ±(xσ0 , τσ0 ,σ0, β0) = degB

(
det�(xσ0±δ,τσ0±δ,σ0±δ)(·),Ω

)
,

and the crossing number of (xσ0 , τσ0 , σ0, β0) as

γ (xσ0 , τσ0 ,σ0, β0) = γ− − γ+. (3.5)

To formulate the Hopf bifurcation problem as a fixed point problem in the space of continuous
functions of period 2π , we normalize the period of the 2π/β-periodic solution (x, τ ) in (1.1) by
(x(t), τ (t)) = (y(βt), z(βt)) and obtain

(
ẏ(t)
ż(t)

)
= 1

β
N0(u,σ ,β)(t), (3.6)

where u = (y, z) and N0 : V � (u, σ ,β) × R
2 → N0(u, σ ,β) ∈ V , with V := C2π (R;R

N+1) equipped
with the supremum norm, is defined by

N0(u,σ ,β)(t) =
(

f (y(t), y(t − βz(t)),σ )

g(y(t), z(t),σ )

)
.

Correspondingly, (3.1) is transformed into

(
ẏ(t)
ż(t)

)
= 1

β
Ñ0(u,σ ,β)(t), (3.7)



2812 Q. Hu, J. Wu / J. Differential Equations 248 (2010) 2801–2840
where (yσ , zσ ) = (xσ , τσ ) and Ñ0 : V � (u, σ ,β) × R
2 → Ñ0(u, σ ,β) ∈ V is defined by

Ñ0(u,σ ,β)(t) =
[

∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

](
y(t) − yσ

z(t) − zσ

)
+

[
∂2 f (σ ) 0

0 0

](
y(t − βzσ ) − yσ

z(t − βzσ ) − zσ

)
.

It is clear that u := (y, z) is 2π -periodic if and only if (x, τ ) is (2π/β)-periodic.
Before we state and prove our local Hopf bifurcation theorem, we need some technical prepara-

tions. We denote by C1
2π (R;R

N+1) the Banach space of 2π -periodic and continuously differentiable
functions equipped with the C1 norm

‖x‖C1 = max
{

sup
t∈[0,2π ]

∣∣x(t)∣∣, sup
t∈[0,2π ]

∣∣ẋ(t)∣∣}.

Lemma 3.1. Let L0 : C1
2π (R;R

N+1) → V be defined by L0u(t) = u̇(t), t ∈ R and let K : V → R
N+1 be defined

by K u(t) = 1
2π

∫ 2π
0 u(t)dt, t ∈ R. Then L0 + K has a compact inverse (L0 + K )−1 : V → V .

Proof. We first show the existence of (L0 + K )−1 : V → C1
2π (R;R

N+1). We show that the lin-
ear operator L0 + K : C1

2π (R;R
N+1) → V is one-to-one and onto. Suppose (L0 + K )u = 0, then

u̇(t) + 1
2π

∫ 2π
0 u(s)ds = 0 for t ∈ R. Therefore,

u(t) = − t

2π

2π∫
0

u(s)ds + u(0). (3.8)

Noting that u(2π) = u(0), it follows from (3.8) that
∫ 2π

0 u(s)ds = 0 and u(t) ≡ u(0). Hence, u(t) ≡ 0.
This shows that L0 + K : C1

2π (R;R
N+1) → V is one-to-one.

Now we show that the operator L0 + K : C1
2π (R;R

N+1) → V is onto. For any v ∈ V , integrating

both sides of the equation u̇(t) + 1
2π

∫ 2π
0 u(t)dt = v(t) from 0 to t gives

u(t) = u(0) +
t∫

0

v(s)ds − t

2π

2π∫
0

u(s)ds. (3.9)

Letting t = 2π in (3.9) and note that u(2π) = u(0), we have

2π∫
0

v(s)ds =
2π∫
0

u(s)ds. (3.10)

Then by (3.9) and (3.10), we have

u(t) = u(0) +
t∫

v(s)ds − t

2π

2π∫
v(s)ds. (3.11)
0 0
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Integrating both sides of (3.11) from 0 to 2π , we have

2π∫
0

u(t)dt = u(0) · 2π +
2π∫
0

t∫
0

v(s)ds dt − 2π

2

2π∫
0

v(s)ds

= u(0) · 2π +
2π∫
0

2π∫
s

v(s)dt ds − 2π

2

2π∫
0

v(s)ds

= u(0) · 2π + 2π

2

2π∫
0

v(s)ds −
2π∫
0

sv(s)ds. (3.12)

Then, by (3.10) and (3.12) we have

u(0) = 1 − π

2π

2π∫
0

v(s)ds + 1

2π

2π∫
0

sv(s)ds. (3.13)

By (3.11) and (3.13) we have

u(t) =
t∫

0

v(s)ds + 1 − π − t

2π

2π∫
0

v(s)ds + 1

2π

2π∫
0

sv(s)ds. (3.14)

That is, for every v ∈ V , we define u : R → R
N+1 by (3.14). Then u is 2π -periodic since v is 2π -

periodic. It is clear from (3.14) that u ∈ C1
2π (R;R

N+1) holds. This shows that u is a preimage of v and
the operator L0 + K : C1

2π (R;R
N+1) → V is onto. Then L0 + K : C1

2π (R;R
N+1) → V is one-to-one and

onto. Hence the linear operator (L0 + K )−1 : V → C1
2π (R;R

N+1) exists and is given by

(L0 + K )−1(v)(t) =
t∫

0

v(s)ds + 1 − π − t

2π

2π∫
0

v(s)ds + 1

2π

2π∫
0

sv(s)ds.

Next, we show that (L0 + K )−1 : V → C1
2π (R;R

N+1) is continuous. Indeed, we have

‖L0 + K‖L(C1
2π (R;RN+1),V ) = sup

‖u‖C1 =1
sup

t∈[0,2π ]

∣∣∣∣∣u̇(t) + 1

2π

2π∫
0

u(t)dt

∣∣∣∣∣ � 2,

which implies that L0 + K : C1
2π (R;R

N+1) → V is continuous. Then by the Open Mapping Theorem,
(L0 + K )−1 : V → C1

2π (R;R
N+1) is continuous.

We also note that the embedding C1
2π (R;R

N+1) ↪→ V is compact, and hence (L0 + K )−1 : V → V
is a compact linear operator. �
Lemma 3.2. For any σ ∈ R and β > 0, the map N0(·, σ ,β) : V → V defined by (3.6) is continuous.
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Proof. Let {(yn, zn)}∞n=1 ⊂ V be such that (yn, zn) → (y0, z0) in V as n → ∞. Then by the Integral
Mean Value Theorem (see [25], p. 341), we have

∥∥N0(yn, zn,σ ,β) − N0(y0, z0,σ ,β)
∥∥

� sup
t∈[0,2π ]

∣∣ f
(

yn(t), yn
(
t − βzn(t)

)
,σ

) − f
(

y0(t), y0
(
t − βz0(t)

)
,σ

)∣∣
+ sup

t∈[0,2π ]
∣∣g

(
yn(t), zn(t),σ

) − g
(

y0(t), z0(t),σ
)∣∣

� sup
t∈[0,2π ]

∣∣ f
(

yn(t), yn
(
t − βzn(t)

)
,σ

) − f
(

y0(t), yn
(
t − βzn(t)

)
,σ

)∣∣
+ sup

t∈[0,2π ]
∣∣ f

(
y0(t), yn

(
t − βzn(t)

)
,σ

) − f
(

y0(t), y0
(
t − βzn(t)

)
,σ

)∣∣
+ sup

t∈[0,2π ]
∣∣ f

(
y0(t), y0

(
t − βzn(t)

)
,σ

) − f
(

y0(t), y0
(
t − βz0(t)

)
,σ

)∣∣
+ sup

t∈[0,2π ]
∣∣g

(
yn(t), zn(t),σ

) − g
(

y0(t), zn(t),σ
)∣∣

+ sup
t∈[0,2π ]

∣∣g
(

y0(t), zn(t),σ
) − g

(
y0(t), z0(t),σ

)∣∣

= sup
t∈[0,2π ]

∣∣∣∣∣
1∫

0

∂1 f
(

yn(t) + s
(

yn(t) − y0(t)
)
, yn

(
t − βzn(t)

)
,σ

)
ds

(
yn(t) − y0(t)

)∣∣∣∣∣

+ sup
t∈[0,2π ]

∣∣∣∣∣
1∫

0

∂2 f
(

y0(t), y0
(
t − βzn(t)

)

+ s
(

yn
(
t − βzn(t)

) − y0
(
t − βzn(t)

))
,σ

)
ds

(
yn(t) − y0(t)

)∣∣∣∣∣
+ sup

t∈[0,2π ]

∣∣∣∣∣
1∫

0

∂2 f
(

y0(t), y0
(
t − βzn(t)

)

+ s
(

y0
(
t − βzn(t)

) − y0
(
t − βz0(t)

))
,σ

)
ds

(
y0

(
t − βzn(t)

) − y0
(
t − βz0(t)

))∣∣∣∣∣
+ sup

t∈[0,2π ]

∣∣∣∣∣
1∫

0

∂1 g
(

y0 + s(yn − y0), zn,σ
)

ds
(

yn(t) − y0(t)
)∣∣∣∣∣

+ sup
t∈[0,2π ]

∣∣∣∣∣
1∫

0

∂2 g
(

y0, z0 + s(zn − z0),σ
)

ds
(
zn(t) − z0(t)

)∣∣∣∣∣
� sup

t∈[0,2π ]
sup

s∈[0,1]
∣∣∂1 f

(
yn(t) + s

(
yn(t) − y0(t)

)
, yn

(
t − βzn(t)

)
,σ

)∣∣ · ‖yn − y0‖
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+ sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂2 f
(

y0(t), y0
(
t − βzn(t)

)
+ s

(
yn

(
t − βzn(t)

) − y0
(
t − βzn(t)

))
,σ

)∣∣ · ‖yn − y0‖
+ sup

t∈[0,2π ]
sup

s∈[0,1]
∣∣∂2 f

(
y0(t), y0

(
t − βzn(t)

) + s
(

y0
(
t − βzn(t)

) − y0
(
t − βz0(t)

))
,σ

)∣∣
· sup

t∈[0,2π ]
∣∣y0

(
t − βzn(t)

) − y0
(
t − βz0(t)

)∣∣
+ sup

t∈[0,2π ]
sup

s∈[0,1]
∣∣∂1 g

(
y0 + s(yn − y0), zn,σ

)∣∣ · ‖yn − y0‖

+ sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂2 g
(

y0, z0 + s(zn − z0),σ
)∣∣ · ‖zn − z0‖. (3.15)

Since limn→∞ ‖(yn, zn) − (y0, z0)‖ = 0, {(yn(t), zn(t)): t ∈ R, n ∈ N} is bounded in R
N+1 and hence

the first two arguments of the partial derivatives in the last inequality of (3.15) are bounded. Then by
(S1) we know that there exists a constant L̃0 > 0 so that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂1 f
(

yn(t) + s
(

yn(t) − y0(t)
)
, yn

(
t − βzn(t)

)
,σ

)∣∣ � L̃0,

sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂2 f
(

y0(t), y0
(
t − βzn(t)

)
+ s

(
yn

(
t − βzn(t)

) − y0
(
t − βzn(t)

))
,σ

)∣∣ � L̃0,

sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂2 f
(

y0(t), y0
(
t − βzn(t)

)
+s

(
y0

(
t − βzn(t)

) − y0
(
t − βz0(t)

))
,σ

)∣∣ � L̃0,

sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂1 g
(

y0 + s(yn − y0), zn,σ
)∣∣ � L̃0,

sup
t∈[0,2π ]

sup
s∈[0,1]

∣∣∂2 g
(

y0, z0 + s(zn − z0),σ
)∣∣ � L̃0.

(3.16)

Also, y0 is a 2π -periodic continuous function and hence y0 is uniformly continuous on R. Therefore,

lim
n→∞

∥∥y0
(· − βzn(·)

) − y0(· − βz0)
∥∥ = 0. (3.17)

Then by (3.15), (3.16) and (3.17), we have

lim
n→∞

∥∥N0(yn, zn,σ ,β) − N0(y0, z0,σ ,β)
∥∥ = 0,

which implies that N0(·, σ ,β) : V → V is continuous. �
Lemma 3.3. If system (3.1) has a nonconstant periodic solution with period T > 0, then there exists an integer
m � 1, m ∈ N such that ±im2π/T are characteristic values of the stationary state (xσ , τσ ,σ ).

Proof. Suppose that (x, τ ) is a nonconstant T -periodic solution of system (3.1) at σ with T > 0. Let
β = 2π

T and

(
x(t), τ (t)

) − (xσ , τσ ) = (
y(βt), z(βt)

)
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for any t ∈ R. Then u = (y, z) has period 2π and (y, z) is a nonconstant solution of the following
system

(
ẏ(t)
ż(t)

)
= 1

β

[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

](
y(t)
z(t)

)
+ 1

β

[
∂2 f (σ ) 0

0 0

](
y(t − βzσ )

z(t − βzσ )

)

= 1

β
Ñ0(u,σ ,β)(t), (3.18)

where Ñ0 : V × R
2 � (u, σ ,β) → Ñ0(u, σ ,β) ∈ V is defined in the formula following (3.7). Let L0

and K be as in Lemma 3.1, then (3.18) is equivalent to

u − (L0 + K )−1
(

1

β
Ñ0(u,σ ,β) + K (u)

)
= 0. (3.19)

It is known that the space V has an isotypical direct sum decomposition (see [24], p. 231)

V =
∞⊕

k=0

Vk,

where V 0 is the space of all constant mappings from R into R
N+1, and Vk , k > 0, k ∈ N is the vector

space of all mappings of the form x cos k· + y sin k· : R � t → x cos kt + y sin kt ∈ R
N+1, x, y ∈ R

N+1.
Note that u ∈ V is infinitely differentiable. Then u has an uniformly convergent Fourier series (see,
e.g., [21], p. 157). That is, for any k � 0, k ∈ N, there exists uk ∈ Vk such that

u =
∞∑

k=0

uk. (3.20)

We denote by Ṽk the vector space over the complex numbers which is spanned by eik· · ε j : R � t →
eikt · ε j ∈ C

N+1, j = 1,2, . . . , N + 1, where {ε1, ε2, . . . , εN+1} denotes the standard basis of R
N+1. Then

we can define a linear isomorphism J0 : Vk → Ṽk,k � 1,k ∈ N, by

J0(x cos k· + y sin k·) = 1

2
θk(x − iy) (3.21)

where x, y ∈ R
N+1 and θk = eik· is the map defined by θk : R � t → eikt ∈ S1.

Let Ψ (σ ,β) = Id− (L0 + K )−1( 1
β

Du Ñ0(·, σ ,β)+ K ) and note that N1 is linear and continuous in u.
By (3.19) and (3.20), we have

Ψ (σ ,β)(u) =
∞∑

k=0

Ψ (σ ,β)uk = 0. (3.22)

Note that u ∈ V is infinitely differentiable. We can obtain the uniformly convergent Fourier series
of u̇ ∈ V through term by term differentiation on both sides of (3.20) with u̇k ∈ Vk (see, e.g., [21],
p. 165). Therefore, we assume, without loss of generality, that u0 = 0, for otherwise we replace the
sequence {uk}+∞

k=0 by {u̇k}+∞
k=0 with u̇ = ∑+∞

k=1 u̇k .
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Now we show that Ψ (σ ,β)uk ∈ Vk for every k � 1, k ∈ N. Indeed, for every uk = x cos k· + y sin k·,
x, y ∈ R

N+1, by (3.14) we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K (uk) = 0,

(L0 + K )−1(cos k·) = 1

k
sink·,

(L0 + K )−1(sin k·) = −1

k
cos k · .

(3.23)

By linearity of (L0 + K )−1 and (3.23), we obtain

Ψ (σ ,β)(x cos k· + y sin k·)

= x cos k· + y sin k· − 1

β
(L0 + K )−1

{[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

]
(x cos k· + y sin k·)

+
[

∂2 f (σ ) 0
0 0

](
x cos k(· − βzσ ) + y sin k(· − βzσ )

)}

= x cos k· + y sin k·

− 1

β

{[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

](
x(L0 + K )−1 cosk· + y(L0 + K )−1 sin k·)

+
[

∂2 f (σ ) 0
0 0

](
x(L0 + K )−1 cos k(· − βzσ ) + y(L0 + K )−1 sin k(· − βzσ )

)}

= x cos k· + y sin k· − 1

kβ

{[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

]
(x sin k· − y cos k·)

+
[

∂2 f (σ ) 0
0 0

](
x sin k(· − βzσ ) − y cos k(· − βzσ )

)}
. (3.24)

Note that each term in the last equality of (3.24) is a linear combination of cos k· and sin k·. Therefore,
we have Ψ (σ ,β)uk ∈ Vk . Then by (3.22) there exists m ∈ N, m � 1 such that um �= 0 and

Ψ (σ ,β)um = 0. (3.25)

We note that every element in Ṽk can be written as a linear combination of the elements in Vk
with complex coefficients. Therefore, we can extend the domain of Ψ (σ ,β) from Vk to Ṽk using this
linearity. We claim that for this extension, we have Ψ (σ ,β) J0(um) = 0. To verify this claim, we show
that the composition of J0 and Ψ (σ ,β) is commutative on Vk,k � 1,k ∈ N. By the linearity of J0
and (L0 + K )−1, we only need to show that J0(L0 + K )−1 = (L0 + K )−1 J0 holds on Vk . Indeed, let
uk = x cos k· + y sin k· ∈ Vk . Then it follows from (3.21) and (3.23) that

J0(L0 + K )−1(x cos k· + y sin k·) = 1

k
J0(x sin k· − y cos k·)

= − 1

2k
θk(y + ix)

and



2818 Q. Hu, J. Wu / J. Differential Equations 248 (2010) 2801–2840
(L0 + K )−1 J0(x cos k· + y sin k·) = 1

2
(L0 + K )−1θk(x − iy)

= 1

2k
(x − iy)(sin k· − i cos k·)

= − 1

2k
(y + ix)(cos k· + i sin k·)

= − 1

2k
θk(y + ix),

where θk = eik·. This shows that J0(L0 + K )−1 = (L0 + K )−1 J0 holds on Vk and hence the composition
of J0 and Ψ (σ ,β) is commutative on Vk , k � 1, k ∈ N. Therefore, by (3.25) we have

J0Ψ (σ ,β)um = Ψ (σ ,β) J0(um) = 0. (3.26)

Now we denote Ψm(σ ,β) = Ψ (σ ,β)|Ṽm
. We have, for vm ∈ Ṽm ,

Ψm(σ ,β)vm = vm − 1

β
(L0 + K )−1

{[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

]
vm +

[
∂2 f (σ ) 0

0 0

]
(vm)βzσ

}
,

where (vm)βzσ = vm(· − βzσ ). By replacing k, x and y in (3.24) by m, ε j and iε j , respectively, we
have

Ψm(σ ,β)
(
eim·ε j

)
= 1

imβ

[
imβId − ∂1 f (σ ) − ∂2 f (σ )e−imβzσ 0

−∂1 g(σ ) imβ − ∂2 g(σ )

]
· (eim·ε j

)

= 1

imβ
�(u(σ ),σ ,β)(imβ) · eim·ε j (3.27)

for eim·ε j ∈ Ṽm , where the last equality follows from (3.3).
Therefore, the matrix representation [Ψm] of Ψm(σ ,β) with respect to the ordered basis {eim·ε1,

eim·ε2, . . . , eim·εN+1} is given by

1

imβ
�(u(σ ),σ ,β)(imβ).

Then by (3.25), we have

1

imβ
�(u(σ ),σ ,β)(imβ)ūm = 0,

where ūm is the nonzero coordinate vector of J (um) with respect to the ordered basis {eim·ε1, eim·ε2,

. . . , eim·εN+1} of Ṽm . Then imβ = im2π/T is a characteristic value of (xσ , τσ ) and therefore ±im2π/T
are characteristic values of (xσ , τσ ,σ ). �
Lemma 3.4. Assume (S1)–(S3) hold. Let L0 and K be as in Lemma 3.1 and Ñ0 : V × R

2 → V be as in (3.7).
Define the map F̃ : V × R

2 → V by

F̃ (u,σ ,β) := u − (L0 + K )−1
[

1

β
Ñ0(u,σ ,β) + K (u)

]
,
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where u = (y, z). If BM(u0, σ0, β0; r,ρ) ⊆ V × R
2 is a special neighborhood of F̃ where 0 < ρ < β0 , then

there exist r′ ∈ (0, r] such that the neighborhood

BM
(
u0,σ0, β0; r′,ρ

) = {
(u,σ ,β):

∥∥u − η(σ )
∥∥ < r′,

∣∣(σ ,β) − (σ0, β0)
∣∣ < ρ

}
satisfies

u̇(t) �≡ 1

β

(
f (y(t), y(t − βz(t)),σ )

g(y(t), z(t),σ )

)

for (u, σ ,β) ∈ BM(u0, σ0, β0; r′,ρ) with u �= η(σ ) and |(σ ,β) − (σ0, β0)| = ρ .

Proof. Suppose not, then for any 0 < r′ � r, there exists (u, σ ,β) such that 0 < ‖u − η(σ )‖ < r′ ,
|(σ ,β) − (σ0, β0)| = ρ and

u̇(t) = 1

β

(
f (y(t), y(t − βz(t)),σ )

g(y(t), z(t),σ )

)
for t ∈ R. (3.28)

Then there exists a sequence of nonconstant periodic solutions {(uk, σk, βk) = (yk, zk, σk, βk)}∞k=1 of
(3.28) such that

lim
k→+∞

∥∥uk − η(σk)
∥∥ = 0,

∣∣(σk, βk) − (σ0, β0)
∣∣ = ρ, (3.29)

and

u̇k(t) = 1

βk

(
f (yk(t), yk(t − βkzk(t)),σk)

g(yk(t), zk(t),σk)

)
for t ∈ R. (3.30)

Note that 0 < ρ < β0 implies that βk � β0 − ρ > 0 for every k ∈ N. Also, since the sequence
{σk, βk}∞k=1 belongs to a bounded neighborhood of (σ0, β0) in R

2, there exists a subsequence, denoted
by {(σk, βk)}∞k=1, that converges to (σ ∗, β∗) so that |(σ ∗, β∗) − (σ0, β0)| = ρ and β∗ > 0. Without loss
of generality, we denote this sequence by {(σk, βk)}∞k=1. Then we have

lim
k→+∞

∥∥uk − η(σk)
∥∥ = 0, lim

k→+∞
∣∣(σk, βk) − (

σ ∗, β∗)∣∣ = 0, (3.31)

and

u̇k(t) = 1

βk

(
f (yk(t), yk(t − βkzk(t)),σk)

g(yk(t), zk(t),σk)

)
for t ∈ R. (3.32)

Our strategy here is to show that the system

v̇(t) = 1

β∗

[
∂1 f (σ ∗) 0
∂1 g(σ ∗) ∂2 g(σ ∗)

]
v(t) + 1

β∗

[
∂2 f (σ ∗) 0

0 0

]
v
(
t − β∗zσ ∗

)
, (3.33)

has a nonconstant periodic solution which contradicts the assumption that u0 = (yσ0 , zσ0 ) is the only
center of (3.7) in BM(u0, σ0, β0; r,ρ).
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By (S1), f : R
N × R

N × R � (θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R
N is C2 in (θ1, θ2) and the map g : R

N ×
R × R � (γ1, γ2, σ ) → g(γ1, γ2, σ ) ∈ R is C2 in (γ1, γ2). It follows from the Integral Mean Value
Theorem (see [25], p. 341) and (3.32) that

u̇k(t) = 1

βk

1∫
0

[
∂1 fk(σk, s)(t) 0
∂1 gk(σk, s)(t) ∂2 gk(σk, s)(t)

]
ds

(
yk(t) − yσk

zk(t) − zσk

)

+ 1

βk

1∫
0

[
∂2 fk(σk, s)(t) 0

0 0

]
ds

(
yk(t − βkzk(t)) − yσk

zk(t − βkzk(t)) − zσk

)
, (3.34)

where

∂1 fk(σk, s)(t) : = ∂1 f
(

yσk + s
(

yk(t) − yσk

)
, yσk + s

(
yk

(
t − zk(t)

) − yσk

)
,σk

)
,

∂2 fk(σk, s)(t) : = ∂2 f
(

yσk + s
(

yk(t) − yσk

)
, yσk + s

(
yk

(
t − zk(t)

) − yσk

)
,σk

)
,

∂1 gk(σk, s)(t) : = ∂1 g
(

yσk + s
(

yk(t) − yσk

)
, zσk + s

(
zk(t) − zσk

)
,σk

)
,

∂2 gk(σk, s)(t) : = ∂2 g
(

yσk + s
(

yk(t) − yσk

)
, zσk + s

(
zk(t) − zσk

)
,σk

)
.

Put

vk(t) = uk(t) − η(σk)

‖uk − η(σk)‖ . (3.35)

Then we have

vk
(
t − βkzk(t)

) = uk(t − βkzk(t)) − η(σk)

‖uk − η(σk)‖ . (3.36)

By (3.34) and (3.36) we have

v̇k(t) = 1

βk

1∫
0

[
∂1 fk(σk, s)(t) 0
∂1 gk(σk, s)(t) ∂2 gk(σk, s)(t)

]
dsvk(t)

+ 1

βk

1∫
0

[
∂2 fk(σk, s)(t) 0

0 0

]
dsvk

(
t − βkzk(t)

)
. (3.37)

We claim that there exists a convergent subsequence of {vk}+∞
k=1 . Indeed, by (3.29), we know that

{zk, βk}+∞
k=1 is uniformly bounded in C(R;R) × R and hence limt→+∞[t − βk zk(t)] = +∞. Then by

(3.35) and (3.36), we have

‖vk‖ = 1,
∥∥vk

(· − βkzk(·)
)∥∥ = 1.

Recall that ∂i f (σ ∗) and ∂i g(σ ∗), i = 1,2, are defined in (3.1). By (3.31), we know that

(
yσk + s

(
yk(t) − yσk

)
, yσk + s

(
yk

(
t − zk(t)

) − yσk

)
,σk

)
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converges to the stationary state (xσ ∗ , τσ ∗ , σ ∗) in C(R;R) × R uniformly for all s ∈ [0,1]. By (S1) we
know that f (θ1, θ2, σ ) is C2 in (θ1, θ2) and ∂1 f (θ1, θ2, σ ) is C1 in σ . Also, by (3.29), the sequence
{uk, βk, σk}+∞

k=1 is uniformly bounded in C(R;R
N+1) × R

2. Then there exists a constant L̃1 > 0 so that

∣∣∂1 fk(σk, s)(t) − ∂1 f (σ0)
∣∣

� L̃1
∣∣(yσk + s

(
yk(t) − yσk

)
, yσk + s

(
yk

(
t − zk(t)

) − yσk

)
,σk

) − (
xσ ∗ , τσ ∗ ,σ ∗)∣∣,

for all t ∈ R, k ∈ N and s ∈ [0,1]. Therefore, we have limk→+∞ ‖∂1 fk(σk, s) − ∂1 f (σ ∗)‖ = 0 uniformly
for s ∈ [0,1]. By the same argument we obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
k→+∞

∥∥∂1 fk(σk, s) − ∂1 f
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂2 fk(σk, s) − ∂2 f
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂1 gk(σk, s) − ∂1 g
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂2 gk(σk, s) − ∂2 g
(
σ ∗)∥∥ = 0,

(3.38)

uniformly for s ∈ [0,1]. It is clear from (3.38) that ‖∂1 fk(σk, s)‖, ‖∂2 fk(σk, s)‖, ‖∂1 gk(σk, s)‖ and
‖∂2 gk(σk, s)‖ are all uniformly bounded for all k ∈ N and s ∈ [0,1]. Then it follows from (3.37) that
there exists a constant L̃2 > 0 such that ‖v̇k‖ < L̃2 for any k ∈ N. By the Arzela–Ascoli Theorem, there
exists a convergent subsequence {vk j }+∞

j=1 of {vk}+∞
k=1 . That is, there exists v∗ ∈ {v ∈ V : ‖v‖ = 1} such

that

lim
j→+∞

∥∥vk j − v∗∥∥ = 0. (3.39)

By the Integral Mean Value Theorem, we have

∣∣vk j

(
t − βk j zk j (t)

) − vk j

(
t − β∗zσ ∗

)∣∣
=

∣∣∣∣∣
1∫

0

v̇k j

(
t − θ

(
βk j zk j (t) − β∗zσ ∗

))
dθ

(
βk j zk j (t) − β∗zσ ∗

)∣∣∣∣∣
� ‖v̇k j ‖ · ∣∣βk j zk j (t) − β∗zσ ∗

∣∣
� L̃2

(
βk j

∣∣zk j (t) − zσ ∗
∣∣ + ∣∣βk j − β∗∣∣zσ ∗

)
. (3.40)

By (3.31) and (3.40) we have

lim
j→+∞

∥∥vk j

(· − βk j zk j (·)
) − vk j

(· − β∗zσ ∗
)∥∥ = 0. (3.41)

Therefore, it follows from (3.39) and (3.41) that

lim
j→+∞

∥∥vk j

(· − βk j zk j (·)
) − v∗(· − β∗zσ ∗

)∥∥ = 0. (3.42)

It follows from (3.31), (3.38), (3.39) and (3.42) that the right-hand side of (3.37) converges uniformly
to the right-hand side of (3.33). Therefore, v∗ is differentiable and we have
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lim
k→+∞

∣∣v̇k(t) − v̇∗(t)
∣∣ = 0,

and

v̇∗(t) = 1

β∗

[
∂1 f (σ ∗) 0
∂1 g(σ ∗) ∂2 g(σ ∗)

]
v∗(t) + 1

β∗

[
∂2 f (σ ∗) 0

0 0

]
v∗(t − β∗zσ ∗

)
. (3.43)

Since by (S3) the matrix

[
∂1 f (σ ∗) + ∂2 f (σ ∗) 0

∂1 g(σ ∗) ∂2 g(σ ∗)

]

is nonsingular, v = 0 is the only constant solution of (3.43). Also, we have v∗ ∈ {v ∈ V : ‖v‖ = 1},
‖v∗‖ �= 0. Therefore, (v∗(t),σ ∗, β∗) is a nonconstant periodic solution of the linear equation (3.43).
Then by Lemma 3.3 (η(σ ∗),σ ∗, β∗) is also a center of (3.7) in BM(u0, σ0, β0; r,ρ). This contradicts the
assumption that BM(u0, σ0, β0; r,ρ) is a special neighborhood of (3.6). This completes the proof. �

As a preparation for the proof of our local Hopf bifurcation theorem, we need the following

Lemma 3.5. Assume (S1)–(S3) hold. Let L0 , K , Ñ0 , F̃ be as in Lemma 3.4 and N0 : V ×R
2 → V be as in (3.6).

Define the map F : V × R
2 → V by

F (u,σ ,β) := u − (L0 + K )−1
[

1

β
N0(u,σ ,β) + K (u)

]
.

If U = BM(u0, σ0, β0; r,ρ) ⊆ V × R
2 is a special neighborhood of F̃ with 0 < ρ < β0 , then there exists r′ ∈

(0, r] such that Fθ = (F , θ) and F̃θ = (F̃ , θ) are homotopic on BM(u0, σ0, β0; r′,ρ), where θ is a completing
function defined on BM(u0, σ0, β0; r′,ρ).

Proof. Since U = BM(u0, σ0, β0; r,ρ) ⊆ V × R
2 is a special neighborhood of F̃ with 0 < ρ < β0, then

by Lemma 3.4, both Fθ = (F , θ) and F̃θ = (F , θ) are U -admissible.
Suppose that the conclusion is not true, then for any r′ ∈ (0, r], Fθ = (F , θ) and F̃θ = (F , θ) are

not homotopic on BM(u0, σ0, β0; r′,ρ). That is, any homotopy map between Fθ and F̃θ has a zero on
the boundary of BM(u0, σ0, β0; r′,ρ). In particular, the linear homotopy h(·,α) := αFθ + (1 −α)F̃θ =
(αF + (1 − α)F̃ , θ) has a zero on the boundary of BM(u0, σ0, β0; r′,ρ), where α ∈ [0,1].

Note that θ(u, σ ,β) < 0 if ‖u − η(σ )‖ = r′ . Then, there exist (u, σ ,β) and α ∈ [0,1] such that
‖u − η(σ )‖ < r′ , |(σ ,β) − (σ0, β0)| = ρ and

H(u,σ ,β,α) := αF + (1 − α)F̃ = 0. (3.44)

Since r′ > 0 is arbitrary in the interval (0, r], there exists a nonconstant sequence {(yk, zk, σk,

βk,αk)}∞k=1 of solutions of (3.44) such that

lim
k→+∞

∥∥uk − η(σk)
∥∥ = 0,

∣∣(σk, βk) − (σ0, β0)
∣∣ = ρ, 0 � αk � 1, (3.45)

and

H(uk,σk, βk,αk) = 0, for all k ∈ N. (3.46)
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Note that 0 < ρ < β0 implies that βk � β0 − ρ > 0 for any k ∈ N. From (3.45) we know that
{(σk, βk,αk)}∞k=1 belongs to a compact subset of R

3. Therefore, there exist a convergent subse-
quence, denoted still by {(σk, βk,αk)}∞k=1 without loss of generality, and (σ ∗, β∗,α∗) ∈ R

3 such that
β∗ � β0 − ρ > 0, α∗ ∈ [0,1] and

lim
k→+∞

∣∣(σk, βk,αk) − (
σ ∗, β∗,α∗)∣∣ = 0. (3.47)

Similarly to the proof of Lemma 3.4, we show that the system

v̇(t) = 1

β∗

[
∂1 f (σ ∗) 0
∂1 g(σ ∗) ∂2 g(σ ∗)

]
v(t) + 1

β∗

[
∂2 f (σ ∗) 0

0 0

]
v
(
t − β∗zσ ∗

)
(3.48)

with ∂i f (σ ∗), ∂i g(σ ∗), i = 1,2, defined after (3.1), has a nonconstant periodic solution which contra-
dicts the assumption that BM(u0, σ0, β0; r,ρ) is a special neighborhood which contains an isolated
center of (3.7).

By (3.46), we know that the subsequence {(yk, zk, σk, βk,αk)}∞k=1 satisfies

H(uk,σk, βk,αk) = 0. (3.49)

By (S1), f : R
N × R

N × R � (θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R
N is C2 in (θ1, θ2) and the map g : R

N ×
R × R � (γ1, γ2, σ ) → g(γ1, γ2, σ ) ∈ R is C2 in (γ1, γ2). Then it follows from the Integral Mean Value
Theorem and from (3.49) that

u̇k(t) = αk

βk

1∫
0

[
∂1 fk(σk, s) 0
∂1 gk(σk, s) ∂2 gk(σk, s)

]
ds

(
yk(t) − yσk

zk(t) − zσk

)

+ αk

βk

1∫
0

[
∂2 fk(σk, s) 0

0 0

]
ds

(
yk(t − βkzk(t)) − yσk

zk(t − βkzk(t)) − zσk

)

+ 1 − αk

βk

1∫
0

[
∂1 fk(σk, s) 0
∂1 gk(σk, s) ∂2 gk(σk, s)

]
ds

(
yk(t) − yσk

zk(t) − zσk

)

+ 1 − αk

βk

1∫
0

[
∂2 fk(σk, s) 0

0 0

]
ds

(
yk(t − βkzσk ) − yσk

zk(t − βkzσk ) − zσk

)
, (3.50)

where

∂1 fk(σk, s) : = ∂1 f
(

yσk + s
(

yk(t) − yσk

)
, yσk + s

(
yk

(
t − βzk(t)

) − yσk

)
,σk

)
,

∂2 fk(σk, s) : = ∂2 f
(

yσk + s
(

yk(t) − yσk

)
, yσk + s

(
yk

(
t − βzk(t)

) − yσk

)
,σk

)
,

∂1 gk(σk, s) : = ∂1 g
(

yσk + s
(

yk(t) − yσk

)
, zσk + s

(
zk(t) − zσk

)
,σk

)
,

∂2 gk(σk, s) : = ∂2 g
(

yσk + s
(

yk(t) − yσk

)
, zσk + s

(
zk(t) − zσk

)
,σk

)
.
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Put

vk(t) = uk(t) − η(σk)

‖uk − η(σk)‖ . (3.51)

Then we have

vk
(
t − βkzk(t)

) = uk(t − βkzk(t)) − η(σk)

‖uk − η(σk)‖ . (3.52)

By (3.50) and (3.52), we have

v̇k(t) = αk

βk

1∫
0

[
∂1 fk(σk, s) 0
∂1 gk(σk, s) ∂2 gk(σk, s)

]
ds vk(t)

+ αk

βk

1∫
0

[
∂2 fk(σk, s) 0

0 0

]
ds vk(t − βkzσk )

+ 1 − αk

βk

1∫
0

[
∂1 fk(σk, s) 0
∂1 gk(σk, s) ∂2 gk(σk, s)

]
ds vk(t)

+1 − αk

βk

1∫
0

[
∂2 fk(σk, s) 0

0 0

]
ds vk(t − βkzσk ). (3.53)

We claim that there exists a convergent subsequence of {vk}+∞
k=1 . Indeed, by (3.45) we know that

{zk, βk}+∞
k=1 is uniformly bounded in C(R;R) × R. Therefore we have

lim
t→+∞

[
t − βkzk(t)

] = +∞. (3.54)

By (3.51), (3.52) and (3.54), we have ‖vk‖ = 1, ‖vk(· − βk zk)‖ = 1. Note that by (S1) and (3.47) and
by an argument similar yielding (3.38), we know that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
k→+∞

∥∥∂1 fk(σk, s) − ∂1 f
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂2 fk(σk, s) − ∂2 f
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂1 gk(σk, s) − ∂1 g
(
σ ∗)∥∥ = 0,

lim
k→+∞

∥∥∂2 gk(σk, s) − ∂2 g
(
σ ∗)∥∥ = 0,

(3.55)

uniformly for s ∈ [0,1]. It is clear from (3.55) that ‖∂1 fk(σk, s)‖, ‖∂2 fk(σk, s)‖, ‖∂1 gk(σk, s)‖ and
‖∂2 gk(σk, s)‖ are all uniformly bounded for any k ∈ N and s ∈ [0,1]. It follows from (3.53) that there
exists L̃3 > 0 such that ‖v̇k‖ < L̃3 for any k ∈ N. By the Arzela–Ascoli Theorem, there exists a conver-
gent subsequence {vk j }+∞

j=1 of {vk}+∞
k=1 . That is, there exists v∗ ∈ {v ∈ V : ‖v‖ = 1} such that

lim
j→+∞

∥∥vk j − v∗∥∥ = 0. (3.56)
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By the Integral Mean Value Theorem, we have, for all t ∈ R,

∣∣vk j

(
t − βk j zk j (t)

) − vk j

(
t − β∗zσ ∗

)∣∣
=

∣∣∣∣∣
1∫

0

v̇k j

(
t − β∗zσ ∗ − θ

(
βk j zk j (t) − β∗zσ ∗

))
dθ

(
βk j zk j (t) − β∗zσ ∗

)∣∣∣∣∣
� ‖v̇k j ‖ · ∣∣βk j zk j (t) − β∗zσ ∗

∣∣
� L̃3

(
βk j

∣∣zk j (t) − zσ ∗
∣∣ + ∣∣βk j − β∗∣∣zσ ∗

)
. (3.57)

Then by (3.47) and (3.57) we have

lim
j→+∞

∥∥vk j

(· − βk j zk j (·)
) − vk j

(· − β∗zσ ∗
)∥∥ = 0. (3.58)

From (3.56) and (3.58) we have

lim
j→+∞

∥∥vk j

(· − βk j zk j (·)
) − v∗(· − β∗zσ ∗

)∥∥ = 0. (3.59)

It follows from (3.47), (3.55), (3.56) and (3.59) that the right-hand side of (3.53) converges uniformly
to the right-hand side of (3.48). Therefore,

lim
j→+∞

∣∣v̇k j (t) − v̇∗(t)
∣∣ = 0 (3.60)

and

v̇∗(t) = 1

β∗

[
∂1 f (σ ∗) 0
∂1 g(σ ∗) ∂2 g(σ ∗)

]
v∗(t) + 1

β∗

[
∂2 f (σ ∗) 0

0 0

]
v∗(t − β∗τσ ∗

)
. (3.61)

Since v∗ ∈ {v: ‖v‖ = 1}, ‖v∗‖ �= 0 and the matrix

[
∂1 f (σ ∗) + ∂2 f (σ ∗) 0

∂1 g(σ ∗) ∂2 g(σ ∗)

]

is nonsingular, v∗ is a nonconstant periodic solution of (3.61). By Lemma 3.3 (η(σ ∗),σ ∗, β∗) is also
a center of (3.7) in BM(u0, σ0, β0; r,ρ). This contradicts the assumption that B M(u0, σ0, β0; r,ρ)

is a special neighborhood of (3.7) which contains only one center (u0, σ0, β0). This completes the
proof. �

Now we are able to state and prove our local Hopf bifurcation theorem.

Theorem 3.6. Assume (S1)–(S3) hold. Let (xσ0 , τσ0 , σ0) be an isolated center of system (3.1). If the crossing
number defined by (3.5) satisfies

γ (xσ0 , τσ0 ,σ0, β0) �= 0,

then there exists a bifurcation of nonconstant periodic solutions of (1.1) near (xσ0 , τσ0 , σ0). More precisely,
there exists a sequence {(xn, τn, σn, βn)} such that σn → σ0 , βn → β0 as n → ∞, and limn→∞ ‖xn −xσ0‖ = 0,
limn→∞ ‖τn − τσ0‖ = 0, where
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(xn, τn,σn) ∈ C
(
R;R

N+1) × R

is a nonconstant 2π/βn-periodic solution of system (1.1).

Proof. Suppose (x, τ ) is a 2π/β-periodic solution of system (1.1) with β > 0. Let (x(t), τ (t)) =
(y(βt), z(βt)). Then system (1.1) is transformed to

⎧⎪⎪⎨
⎪⎪⎩

ẏ(t) = 1

β
f
(

y(t), y
(
t − βz(t)

)
,σ

)
,

ż(t) = 1

β
g
(

y(t), z(t),σ
)
.

(3.62)

Then (x, τ ) is a 2π/β-periodic solution of system (1.1) if and only if (y, z) is a 2π -periodic solution
of system (3.62).

Let V = C2π (R;R
N+1). S1 acts on V by argument shift. Namely, for any ξ = eiν ∈ S1, u ∈ V ,

(ξu)(t) := u(t + ν). The idea of the proof in the sequel is to verify all the conditions for applying
Theorem 2.4.

Recall that δ and ε are defined before (3.5). Let D(σ0, β0) = (σ0 − δ,σ0 + δ) × (β0 − ε,β0 + ε) and
define the maps

L0u(t) :=
(

ẏ(t)
ż(t)

)
, u ∈ C1

2π

(
R;R

N+1),
N0(u,σ ,β)(t) :=

(
f (y(t), y(t − βz(t)),σ )

g(y(t), z(t),σ )

)
, u ∈ V ,

Ñ0(u,σ ,β)(t) :=
(

∂1 f (σ )(y(t) − yσ ) + ∂2 f (σ )(y(t − βzσ ) − yσ )

∂1 g(σ )(y(t) − yσ ) + ∂2 g(σ )(z(t) − zσ )

)
, u ∈ V ,

where u = (y, z), (σ ,β) ∈ D(σ0, β0) and t ∈ R, and η(σ ) = (yσ , zσ ) is the stationary point of the
system. The space V is a Banach representation of the group G = S1. Define the operator K : V →
R

N+1 by

K (u) := 1

2π

2π∫
0

u(t)dt, u ∈ V .

By Lemma 3.1, the operator L0 + K : C1
2π (R;R

N+1) → V has a compact inverse (L0 + K )−1 : V → V .
Then, finding a 2π/β-periodic solution for the system (1.1) is equivalent to finding a solution of the
following fixed point problem:

u = (L0 + K )−1
[

1

β
N0(u,σ ,β) + K (u)

]
, (3.63)

where (u, σ ,β) ∈ V × R × (0,+∞).
By (S1) we know that the linear operator Ñ0 is continuous. By Lemma 3.2, we know that

N0(·, σ ,β) : V → V is continuous. Moreover, by Lemma 3.1 the operator (L0 + K )−1 : V → V is com-
pact and hence (L0 + K )−1 ◦ ( 1

β
N0(·,α,β) + K ) : V → V and (L0 + K )−1 ◦ ( 1

β
Ñ0(·,α,β) + K ) : V → V

are completely continuous and hence are condensing maps. That is, (A2) and (A4) are satisfied.
In summary, we can define the following maps F : V × R × (0,+∞) → V and F̃ : V × R ×

(0,+∞) → V by
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F (u,σ ,β) := u − (L0 + K )−1
[

1

β
N0(u,σ ,β) + K (u)

]
,

F̃ (u,σ ,β) := u − (L0 + K )−1
[

1

β
Ñ0(u,σ ,β) + K (u)

]
,

which are equivariant condensing fields. Finding a 2π/β-periodic solution of system (1.1) is equivalent
to finding the solution of the problem

F (u,σ ,β) = 0, (u,σ ,β) ∈ V × R × (0,+∞).

Since (u0, σ0) := (xσ0 , τσ0 , σ0) is an isolated center of system (3.1) with a purely imaginary character-
istic value iβ0, β0 > 0, (u0, σ0, β0) ∈ V × R × (0,+∞) is an isolated V -singular point of F̃ . One can
define the following two-dimensional submanifold M ⊂ V G × R × (0,+∞) by

M := {(
η(σ ),σ ,β

)
: σ ∈ (σ0 − δ,σ0 + δ), β ∈ (β0 − ε,β0 + ε)

}
such that the point (η(σ0),σ0, β0) = (u0, σ0, β0) is the only V -singular point of F̃ in M . M is the set
of trivial solutions to the system (3.1) and satisfies the assumption (A3).

Moreover, (u0, σ0, β0) ∈ V × R × (0,+∞) is an isolated V -singular point of F̃ . That is, for ρ > 0
sufficiently small, the linear operator Du F̃ (η(σ ),σ ,β) : V → V with |(σ ,β) − (σ0, β0)| < ρ , is not an
isomorphism only if (σ ,β) = (σ0, β0). Then, by the Implicit Function Theorem, there exists r > 0 such
that for all (u, σ ,β) ∈ V × R × (0,+∞) with |(σ ,β) − (σ0, β0)| = ρ and 0 < ‖u − η(σ )‖ � r, we have
F̃ (u, σ ,β) �= 0. Then the set BM(u0, σ0, β0; r,ρ) defined by

{
(u,σ ,β) ∈ V × R × (0,+∞); ∣∣(σ ,β) − (σ0, β0)

∣∣ < ρ,
∥∥u − η(σ )

∥∥ < r
}

is a special neighborhood for F̃ .
By Lemma 3.4, there exists a special neighborhood U = B M(u0, σ0, β0; r′,ρ) such that F and F̃

are nonzero for (u, σ ,β) ∈ BM(u0, σ0, β0; r′,ρ) with u �= η(σ ) and |(σ ,β) − (σ0, β0)| = ρ . That is,
(A5) is satisfied.

Let θ be a completing function on U . It follows from Lemma 3.5 that (F , θ) is homotopic to (F̃ , θ)

on U .
It is known that V has the following isotypical direct sum decomposition

V =
∞⊕

k=0

Vk,

where V 0 is the space of all constant mappings from R into R
N+1, and Vk with k > 0, k ∈ N is

the vector space of all mappings of the form x cos k· + y sin k· : R � t → x cos kt + y sin kt ∈ R
N+1,

x, y ∈ R
N+1. It is clear that Vk , k > 0, k ∈ N, are finite dimensional. Then, (A1) is satisfied.

For (σ ,β) ∈ D(σ0, β0), we denote by Ψ (σ ,β) the map Du F̃ (u(σ ),σ ,β) : V → V . By (3.24),
we know that Ψ (σ ,β)(Vk) ⊂ Vk for all k = 0,1,2, . . . . Therefore, we can define Ψk : D(σ0, β0) →
L(Vk, Vk) by

Ψk(σ ,β) := Ψ (σ ,β)|Vk .

We note that Vk , k � 1,k ∈ N, can be endowed with the natural complex structure J : Vk → Vk
defined by (2.1). By extending the linearity of J to the vector space spanned over the field of complex
numbers by eik· · ε j : R � t → eikt · ε j ∈ C

N+1, j = 1,2, . . . , N + 1, we know that
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{
eik· · ε j, J

(
eik· · ε j

)}N+1
j=1 = {

eik· · ε j, ieik· · ε j
}N+1

j=1

is a basis of Vk , where {ε1, ε2, . . . , εN+1} denotes the standard basis of R
N+1. Then we identify Vk

with the vector space over the complex numbers spanned by eik· · ε j , j = 1,2, . . . , N + 1.
Then we have for vk ∈ Vk , k ∈ Z, k � 1,

Ψk(σ ,β)vk = vk − (L0 + K )−1
[

1

β
Du Ñ0

(
u(σ ),σ ,β

) + K

]
vk

= vk − 1

β
(L0 + K )−1

{[
∂1 f (σ ) 0
∂1 g(σ ) ∂2 g(σ )

]
vk +

[
∂2 f (σ ) 0

0 0

]
(vk)βzσ

}
,

where (vk)βzσ = vk(· − βzσ ). By similar calculation for (3.27), we have, for eik·ε j ∈ Vk ,

Ψk(σ ,β)
(
eik·ε j

) = 1

ikβ

[
ikβId − ∂1 f (σ ) − ∂2 f (σ )e−ikβzσ 0

−∂1 g(σ ) ikβ − ∂2 g(σ )

]
· (eik·ε j

)

= 1

ikβ
�(u(σ ),σ )(ikβ) · (eik·ε j

)
,

where the last equality follows from (3.3). Therefore, the matrix representation [Ψk] of Ψk(σ ,β) with
respect to the ordered C-basis {eik·ε j}N+1

j=1 is given by

1

ikβ
�(u(σ ),σ )(ikβ).

For the application of Theorem 2.4, we now show that there exists some k ∈ Z, k � 1, such that
μk(u(σ0),σ0, β0) := degB(detC[Ψk]) �= 0.

Define ΨH : D(σ0, β0) → R
2 � C by

ΨH (σ ,β) = det�(u(σ ),σ )(iβ).

The number μ1(u(σ0),σ0, β0) we defined in Lemma 2.3 can be written as follows:

μ1
(
u(σ0),σ0, β0

) = ε · deg
(
ΨH ,D(σ0, β0)

)
,

where ε = sign detΨ0(σ ,β) for (σ ,β) ∈ D(σ0, β0). For a constant map v0 ∈ V 0,

Ψ0(σ ,β)v0 = − 1

β

[
∂1 f (σ ) + ∂2 f (σ ) 0

∂1 g(σ ) ∂2 g(σ )

]
v0.

Then, by (S3), we have ε �= 0 and therefore (A6) is satisfied.
Recall that α0, β0, δ and ε are chosen before (3.5). Define the function H : [σ0 − δ,σ0 + δ] × Ω →

R
2 � C by

H(σ ,α,β) := det�(u(σ ),σ )(α + iβ),

where Ω = (0,α0) × (β0 − ε,β0 + ε), α0 = α0(σ0, β0) > 0. By the same argument for (3.4) and (3.5),
we know that H satisfies all the conditions of Lemma 2.1 by the choice of α0, β0, ε and δ. So we have

deg
(
ΨH ,D(σ0, β0)

) = γ
(
u(σ0),σ0, β0

) �= 0.
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Thus, μ1(u(σ0),σ0, β0) �= 0 which, by Theorem 2.4, implies that (u(σ0),σ0, β0) is a bifurcation
point of the system (3.62). Consequently, there exists a sequence of nonconstant periodic solutions
(un, σn, βn) = (xn, τn, σn, βn) such that σn → σ0, βn → β0 as n → ∞, and (xn(t), τn(t)) is a 2π/βn-
periodic solution of (1.1) such that limn→+∞ ‖(xn, τn) − (xσ0 , τσ0 )‖ = 0. �
4. Global bifurcation of FDEs with state-dependent delays

To use Theorem 2.5 to describe the maximal continuation of bifurcated periodic solutions with
large amplitudes when the bifurcation parameter σ is far away from the bifurcation value, we need
to prove that there is a lower bound for the periods of periodic solutions of system (1.1).

Lemma 4.1. (See Vidossich [42].) Let X be a Banach space, v : R → X be a p-periodic function with the
following properties:

(i) v ∈ L1
loc(R, X);

(ii) there exists U ∈ L1([0,
p
2 ];R+) such that |v(t) − v(s)| � U (t − s) for almost every (in the sense of the

Lebesgue measure) s, t ∈ R such that s � t, t − s � p
2 ;

(iii)
∫ p

0 v(t)dt = 0.

Then

p‖v‖L∞ � 2

p
2∫

0

U (t)dt.

We make the following assumption on system (1.1):

(S4) There exist constants L f > 0, Lg > 0 such that

∣∣ f (θ1, θ2,σ ) − f (θ1, θ2,σ )
∣∣ � L f

(|θ1 − θ1| + |θ2 − θ2|
)
,∣∣g(γ1, γ2,σ ) − g(γ 1, γ 2,σ )

∣∣ � Lg
(|γ1 − γ 1| + |γ2 − γ 2|

)
for any θ1, θ2, θ1, θ2, γ1, γ 1 ∈ R

N , γ2, γ 2 ∈ R, σ ∈ R.

Lemma 4.2. Assume that system (1.1) satisfies the assumption (S4). If u = (x, τ ) is a nonconstant periodic
solution of (1.1), then the minimal period of u satisfies

p � 4(|ẋ|L∞ + |τ̇ |L∞)

(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + L f |ẋ|L∞|τ̇ |L∞
.

Moreover, suppose g(x, τ ,σ ) satisfies that

(S5) for every σ ∈ R, there exists L0 > 0 so that −L0 � g(x, τ ,σ ) < 1 for all (x, τ ) ∈ R
N+1 .

Then the minimal period p of u satisfies

p � 4

max{L0,1} + 2(L f + Lg)
.
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Proof. Let v(t) = u̇(t). Then
∫ p

0 v(t)dt = 0 since u(t) is a p-periodic solution. For s � t , by (S4) and
the Integral Mean Value Theorem, we have

∣∣v(t) − v(s)
∣∣ �

∣∣ẋ(t) − ẋ(s)
∣∣ + ∣∣τ̇ (t) − τ̇ (s)

∣∣
� L f

(∣∣x(t) − x(s)
∣∣ + ∣∣x(t − τ (t)

) − x
(
s − τ (s)

)∣∣)
+ Lg

(∣∣x(t) − x(s)
∣∣ + ∣∣τ (t) − τ (s)

∣∣)
� L f |ẋ|L∞(t − s) + L f |ẋ|L∞

(
t − s + ∣∣τ (t) − τ (s)

∣∣)
+ Lg |ẋ|L∞(t − s) + Lg |τ̇ |L∞(t − s)

�
[
(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + L f |ẋ|L∞ · |τ̇ |L∞

]
(t − s).

Let

U (t) = [
(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + |ẋ|L∞ · |τ̇ |L∞

]
t.

Then, by Lemma 4.1, we obtain

p
∣∣(ẋ, τ̇ )

∣∣
L∞ � 2

p
2∫

0

U (t)dt = p2

4

[
(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + |ẋ|L∞ · |τ̇ |L∞

]
.

Therefore,

p � 4|(ẋ, τ̇ )|L∞

(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + L f |ẋ|L∞|τ̇ |L∞
.

Moreover, if −L0 � g(x(t), τ (t),σ ) < 1, then

|ẋ|L∞ · |τ̇ |L∞ � max{L0,1}|ẋ|L∞ ,

and hence

p � 4|(ẋ, τ̇ )|L∞

(2L f + Lg)|ẋ|L∞ + Lg |τ̇ |L∞ + max{L0,1}|ẋ|L∞

� 4|(ẋ, τ̇ )|L∞

(2L f + Lg)|(ẋ, τ̇ )|L∞ + Lg |(ẋ, τ̇ )|L∞ + max{L0,1}|(ẋ, τ̇ )|L∞

= 4

max{L0,1} + 2(L f + Lg)
. �

The following result was first established by Mallet-Paret and Yorke [33] for ordinary differential
equations and was extended to neutral equations by Wu [45].

Lemma 4.3. Suppose that system (1.1) satisfies (S1)–(S2) and (S4)–(S5). Assume further that there exists a
sequence of real numbers {σk}∞k=1 such that:

(i) For each k, system (1.1) with σ = σk has a nonconstant periodic solution uk = (xk, τk) ∈ C(R;R
N+1)

with the minimal period Tk > 0;
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(ii) limk→∞ σk = σ0 ∈ R, limk→∞ Tk = T0 < ∞, and limk→∞ ‖uk − u0‖ = 0, where u0 : R → R
N+1 is a

constant map with the value (x0, τ0).

Then (u0, σ0) is a stationary state of (1.1) and there exists m � 1, m ∈ N such that ±im2π/T0 are the roots
of the characteristic equation (3.2) with σ = σ0 .

Proof. By Lemma 4.2 we conclude that Tk � 4
max{L0,1}+2(L f +Lg )

and therefore

T0 � 4

max{L0,1} + 2(L f + Lg)
> 0.

Now we show that (u0, σ0) is a stationary state of (1.1). Since by (ii) limk→∞ σk = σ0 and
limk→∞ ‖uk − u0‖ = 0, we only need show that the derivatives {u̇k}+∞

k=1 converge uniformly to the
right-hand side of system (1.1). That is,

∥∥∥∥
(

f (xk, xk(· − τk),σk)

g(xk, τk,σk)

)
−

(
f (x0, x0,σ0)

g(x0, τ0,σ0)

)∥∥∥∥
�

∥∥ f
(
xk, xk(· − τk),σk

) − f (x0, x0,σ0)
∥∥ + ∥∥g(xk, τk,σk) − g(x0, τ0,σ0)

∥∥
→ 0, as k → +∞. (4.1)

Note that we have used f (xk, xk(· − τk),σk) to denote the function f (xk(·), xk(· − τk),σk).
By (S1) and assumption (ii), we have limk→∞ ‖g(xk, τk, σk) − g(x0, τ0, σ0)‖ = 0. By the Integral

Mean Value Theorem, we have

∥∥ f
(
xk, xk(· − τk),σk

) − f (x0, x0,σ0)

�
∥∥ f

(
xk, xk(· − τk),σk

) − f
(
x0, xk(· − τk),σk

)∥∥
+ ∥∥ f

(
x0, xk(· − τk),σk

) − f (x0, x0,σk)
∥∥ + ∣∣ f (x0, x0,σk) − f (x0, x0,σ0)

∣∣
�

∥∥∂1 f
(
xk + s(xk − x0), xk(· − τk),σk

)∥∥ · ‖xk − x0‖
+ ∥∥∂2 f

(
x0, x0 + s

(
xk(· − τk) − x0

)
,σk

)∥∥ · ‖xk − x0‖
+ ∣∣ f (x0, x0,σk) − f (x0, x0,σ0)

∣∣ (4.2)

for some s ∈ [0,1]. By (S1), assumption (ii) and by an argument similar to that of (3.16) we know that
there exists L̃4 > 0 such that

{∥∥∂1 f
(
xk + s(xk − x0), xk(· − τk),σk

)∥∥ � L̃4,∥∥∂2 f
(
x0, x0 + s

(
xk(· − τk) − x0

)
,σk

)∥∥ � L̃4.
(4.3)

Then by (4.2), (4.3) and assumption (ii), we have

lim
k→∞

∥∥ f
(
xk, xk(· − τk),σk

) − f (x0, x0,σ0)
∥∥

� lim
k→∞

(
2L̃4‖xk − x0‖ + ∣∣ f (x0, x0,σk) − f (x0, x0,σ0)

∣∣)
= 0.
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This completes the proof of (4.1). Therefore, (u0, σ0) = (xσ0 , τσ0 , σ0) is the stationary state of (1.1)
with σ = σ0.

Next, we show that the following linear system

v̇(t) =
[

∂1 f (σ0) 0
∂1 g(σ0) ∂2 g(σ0)

]
v(t) +

[
∂2 f (σ0) 0

0 0

]
v(t − τ0) (4.4)

has a nonconstant periodic solution.
For ρ ∈ (0,1), define

εk,ρ = max
t∈R

∣∣uk(t + ρTk) − uk(t)
∣∣, (4.5)

vk(t) = ε−1
k,ρ

[
uk(t + ρTk) − uk(t)

]
. (4.6)

Then, ‖vk‖ = 1 and vk(t) := (yk(t), zk(t)) satisfies

v̇k(t) =
[

∂1 f (σ0) 0
∂1 g(σ0) ∂2 g(σ0)

]
vk(t) +

[
∂2 f (σ0) 0

0 0

]
vk(t − τ0) +

(
δ1k(t)
δ2k(t)

)
(4.7)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1k(t) = ε−1
k,ρ

[
f
(
xk(t + ρTk), xk

(
t + ρTk − τk(t + ρTk)

)
,σk

)
− f

(
xk(t), xk

(
t − τk(t)

)
,σk

) − ∂1 f (σ0)
(
xk(t + ρTk) − xk(t)

)
− ∂2 f (σ0)

(
xk(t + ρTk − τ0) − xk(t − τ0)

)]
,

δ2k(t) = ε−1
k,ρ

[
g
(
xk(t + ρTk), τk(t + ρTk),σk

) − g
(
xk(t), τk(t),σk

)
− ∂1 g(σ0)

(
xk(t + ρTk) − xk(t)

) − ∂2 g(σ0)
(
τk(t + ρTk) − τk(t)

)]
.

We now show that |δ1k(t)| → 0, |δ2k(t)| → 0 as k → +∞ uniformly for t ∈ R. Indeed, by (4.6) and the
Integral Mean Value Theorem, we have

∣∣δ1k(t)
∣∣ = ε−1

k,ρ

∣∣ f
(
xk(t + ρTk), xk

(
t + ρTk − τk(t + ρTk)

)
,σk

)
− f

(
xk(t), xk

(
t − τk(t)

)
,σk

) − ∂1 f (σ0)
(
xk(t + ρTk) − xk(t)

)
− ∂2 f (σ0)

(
xk

(
t + ρTk − τk(t + ρTk)

) − xk
(
t − τk(t)

))
− ∂2 f (σ0)

(
xk(t + ρTk − τ0) − xk(t − τ0)

)
+ ∂2 f (σ0)

(
xk

(
t + ρTk − τk(t + ρTk)

) − xk
(
t − τk(t)

))∣∣
=

∣∣∣∣∣
1∫

0

(
∂1 fk(σk, θ,ρ)(t) − ∂1 f (σ0)

)
dθ yk(t)

+
1∫ (

∂2 fk(σk, θ,ρ)(t) − ∂1 f (σ0)
)

dθ yk
(
t − τk(t)

)

0
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+ ∂2 f (σ0)
(
xk

(
t + ρTk − τk(t + ρTk)

) − xk(t + ρTk − τ0)

− (
xk

(
t − τk(t)

) − xk(t − τ0)
))∣∣∣∣∣

:= |A1 + A2 + A3|,

where

∂1 fk(σk, θ,ρ)(t) = ∂1 f
(
xk(t) + θ

(
xk(t + ρTk) − xk(t)

)
, xk

(
t + ρTk − τk(t + ρTk)

)
,σk

)
,

∂2 fk(σk, θ,ρ)(t) = ∂2 f (xk(t), xk
(
t − τk(t) + θ

(
xk

(
t + ρTk − τk(t + ρTk)

) − xk
(
t − τk(t)

))
,σk

)
,

A1 =
1∫

0

(
∂1 fk(σk, θ,ρ)(t) − ∂1 f (σ0)

)
dθ yk(t),

A2 =
1∫

0

(
∂2 fk(σk, θ,ρ)(t) − ∂2 f (σ0)

)
dθ yk

(
t − τk(t)

)
,

A3 = ∂2 f (σ0)
(
xk

(
t + ρTk − τk(t + ρTk)

) − xk(t + ρTk − τ0) − (
xk

(
t − τk(t)

) − xk(t − τ0)
))

.

Recall that ∂i f (σ0) and ∂i g(σ0), i = 1,2, are defined in (3.1). By assumption (ii), we know that
(xk(t) + θ(xk(t +ρTk) − xk(t)), xk(t +ρTk − τk(t +ρTk)),σk) converges to (xσ0 , xσ0 , σ0) in C(R;R

N ) ×
C(R;R

N )×R uniformly for all θ ∈ [0,1], ρ ∈ (0,1). By (S1) we know that the map f : R
N ×R

N ×R �
(θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R

N is C2 in (θ1, θ2), and ∂1 f : R
N ×R

N ×R � (θ1, θ2, σ ) → ∂1 f (θ1, θ2, σ ) ∈
L(RN ,R

N ) is C1 in σ . Then there exists a constant L̃5 > 0 so that

∣∣∂1 fk(σk, θ,ρ)(t) − ∂1 f (σ0)
∣∣

� L̃5
∣∣(xk(t) + θ

(
xk(t + ρTk) − xk(t)

)
, xk

(
t + ρTk − τk(t + ρTk)

)
,σk

) − (xσ0 , τσ0 ,σ0)
∣∣

for all t ∈ R, k ∈ N, θ ∈ [0,1] and ρ ∈ (0,1). Therefore, we have

lim
k→+∞

∥∥∂1 fk(σk, θ,ρ) − ∂1 f (σ0)
∥∥ = 0, (4.8)

uniformly for θ ∈ [0,1], ρ ∈ (0,1). Then by (4.6), (4.8) and the fact that ‖yk‖ = 1, we have

‖A1‖ → 0 as k → +∞. (4.9)

Similarly we have

‖A2‖ → 0 as k → +∞. (4.10)

Also, by the Integral Mean Value Theorem, we have

|A3| �
∥∥∂2 f (σ0)

∥∥‖ẋk‖ · ∣∣τk(t + ρTk) − τ0)
∣∣ + ∥∥∂2 f (σ0)

∥∥‖ẋk‖ · ∣∣τk(t) − τ0
∣∣. (4.11)
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By assumption (ii) and system (1.1) we know that ‖ẋk‖ is uniformly bounded for all k ∈ N and
‖τk − τ0‖ → 0 as k → +∞. Then it follows from (4.11) that

‖A3‖ → 0 as k → +∞. (4.12)

Therefore, we have from (4.9), (4.10) and (4.12) that

‖δ1k‖ → 0 as k → +∞. (4.13)

Similarly, we have

‖δ2k‖ → 0 as k → +∞. (4.14)

By (4.7), (4.13), (4.14) and the fact that ‖vk‖ = 1, we know that there exists L̃6 > 0 such that ‖v̇k‖ � L̃6
for all k ∈ N. Also, by assumption (ii), the set of periods {Tk}+∞

k=1 is bounded. Then by the Arzela–Ascoli
Theorem, {vk}+∞

k=1 has a convergent subsequence, denoted by {vk j }+∞
j=1 . Let

vρ(t) = lim
j→+∞

vk j (t). (4.15)

Then vρ is a periodic solution of (4.4) with period T0. Since ‖vk‖ = 1 and the average value of each
vk is zero, the same is true for vρ . So vρ is a nonconstant T0-periodic solution of (4.4). Then by
Lemma 3.3, there exists m � 1, m ∈ N, such that ±im2π/T0 are characteristic values of (3.2). This
completes the proof. �

Now we can describe the relation between 2π/βk and the minimal period of uk in Theorem 3.6.

Theorem 4.4. Assume (S1)–(S5) hold. In Theorem 3.6, every limit point of the minimal period of uk = (xk, τk)

as k → +∞ is contained in the set

{
2π

(nβ0)
: ±imnβ0 are characteristic values of (u0,σ0), m,n � 1, m,n ∈ N

}
.

Moreover, if ±imnβ0 are not characteristic values of (u0, σ0) for any integers m,n ∈ N such that mn > 1, then
2π/βk is the minimal period of uk(t) and 2π/βk → 2π/β0 as k → ∞.

Proof. Let Tk denote the minimal period of uk(t). Then there exists a positive integer nk such that
2π/βk = nk Tk . Since Tk � 2π/βk → 2π/β0 as k → ∞, there exists a subsequence {Tk j }∞j=1 and T0

such that T0 = lim j→∞ Tk j . Since 2π/βk j → 2π/β0, Tk j → T0 as j → ∞, nk j is identical to a con-
stant n for k large enough. Therefore, 2π/β0 = nT0. Thus Tk j → 2π/(nβ0) as j → ∞. By Lemma 4.3,
±im2π/T0 = ±imnβ0 are characteristic values of (u0, σ0) for some m � 1, m ∈ N.

Moreover, if ±imnβ0 are not characteristic values of (u0, σ0) for any integers m ∈ N and n ∈ N

with mn > 1, then m = n = 1. Therefore, for k large enough nk j = 1 and 2π/βk = Tk is the minimal
period of uk(t) and 2π/βk → 2π/β0 as k → ∞. This completes the proof. �

The following lemma shows that we can locate all the possible Hopf bifurcation points of sys-
tem (1.1) with state-dependent delay at the centers of its corresponding formal linearization.

Lemma 4.5. Assume (S1)–(S3) hold. If (u0, σ0) is a Hopf bifurcation point of system (1.1), then it is a center
of (3.1).
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Proof. If (u0, σ0) is a Hopf bifurcation point of system (1.1), then there exist a sequence

{
(uk,σk, Tk)

}+∞
k=1 ⊆ C

(
R;R

N+1) × R
2

and T0 � 0 such that limk→+∞ ‖(uk, σk, Tk) − (u0, σ0, T0)‖ = 0, where (uk, σk) is a nonconstant Tk-
periodic solution of system (1.1). Our strategy here is to show that the system

v̇(t) =
[

∂1 f (σ0) 0
∂1 g(σ0) ∂2 g(σ0)

]
v(t) +

[
∂2 f (σ0) 0

0 0

]
v(t − τσ0) (4.16)

has a nonconstant periodic solution, and hence u0 = (xσ0 , τσ0 ) is a center of (3.1).
By (S1) and the Integral Mean Value Theorem we have

u̇k(t) =
1∫

0

[
∂1 fk(σk, s)(t) 0
∂1 gk(σk, s)(t) ∂2 gk(σk, s)(t)

]
ds

(
xk(t) − xσk

τk(t) − τσk

)

+
1∫

0

[
∂2 fk(σk, s)(t) 0

0 0

]
ds

(
xk(t − τk(t)) − xσk

τk(t − τk(t)) − τσk

)
, (4.17)

where

∂1 fk(σk, s)(t) := ∂1 f
(
xσk + s

(
xk(t) − xσk

)
, xσk + s

(
xk

(
t − τk(t)

) − xσk ,σk
))

,

∂2 fk(σk, s)(t) := ∂2 f
(
xσk + s

(
xk(t) − xσk

)
, xσk + s

(
xk

(
t − τk(t)

) − xσk ,σk
))

,

∂1 gk(σk, s)(t) := ∂1 g
(
xσk + s

(
xk(t) − xσk

)
, τσk + s

(
τk(t) − τσk

)
,σk

)
,

∂2 gk(σk, s)(t) := ∂2 g
(
xσk + s

(
xk(t) − xσk

)
, τσk + s

(
τk(t) − τσk

)
,σk

)
.

Put

vk(t) = uk(t) − η(σk)

‖uk − η(σk)‖ . (4.18)

Then we have

vk
(
t − τk(t)

) = uk(t − τk(t)) − η(σk)

‖uk − η(σk)‖ . (4.19)

By (4.17) and (4.19) we have

v̇k(t) =
1∫

0

[
∂1 fk(σk, s)(t) 0

∂1 gk(σk, s)(t) ∂2 gk(σk, s)(t)

]
ds vk(t)

+
1∫ [

∂2 fk(σk, s)(t) 0

0 0

]
ds vk

(
t − τk(t)

)
. (4.20)
0
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We claim that there exists a convergent subsequence of {vk}+∞
k=1 . Indeed, note that by (S2) τ̇k(t) =

g(xk(t), τk(t),σk) < L
L+1 < 1 implies that limt→+∞[t − τk(t)] = +∞. Then by (4.18) and (4.19), we

have ‖vk‖ = 1, ‖vk(· − τk(·))‖ = 1. Note that by (S1) and a similar argument to (3.38), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
k→+∞

∥∥∂1 fk(σk, s) − ∂1 f (σ0)
∥∥ = 0,

lim
k→+∞

∥∥∂2 fk(σk, s) − ∂1 f (σ0)
∥∥ = 0,

lim
k→+∞

∥∥∂1 gk(σk, s) − ∂1 g(σ0)
∥∥ = 0,

lim
k→+∞

∥∥∂2 gk(σk, s) − ∂1 g(σ0)
∥∥ = 0,

(4.21)

uniformly for s ∈ [0,1]. It is clear from (4.21) that ‖∂1 fk(σk, s)‖, ‖∂2 fk(σk, s)‖, ‖∂1 gk(σk, s)‖ and
‖∂2 gk(σk, s)‖ are all uniformly bounded for any k ∈ N and s ∈ [0,1]. It follows from (4.20) and (4.21)
that there exists L̃7 > 0 such that ‖v̇k‖ < L̃7 for any k ∈ N. Also, we note that the period Tk of (uk, σk)

is uniformly bounded for all k ∈ N. Then by the Arzela–Ascoli Theorem, there exists a convergent
subsequence {vk j }+∞

j=1 of {vk}+∞
k=1 . That is, there exists v∗ ∈ {v ∈ C(R;R

N+1): ‖v‖ = 1} such that

lim
j→+∞

∥∥vk j − v∗∥∥ = 0. (4.22)

By the Integral Mean Value Theorem, we have

∣∣vk j

(
t − τk j (t)

) − vk j (t − τσ0)
∣∣ � ‖v̇k j ‖ · ∣∣τk j (t) − τσ0

∣∣
� L̃7

∣∣τk j (t) − τσ0

∣∣. (4.23)

By assumption we have

lim
j→+∞

‖τk j − τσ0‖ = 0. (4.24)

Then by (4.23) and (4.24) we have

lim
j→+∞

∥∥vk j

(· − τk j (·)
) − vk j (· − τσ0)

∥∥ = 0. (4.25)

From (4.22) and (4.25) we have

lim
j→+∞

∥∥vk j

(· − τk j (·)
) − v∗(· − τσ0)

∥∥ = 0. (4.26)

It follows from (4.21), (4.22) and (4.26) that the right-hand side of (4.20) converges uniformly to the
right-hand side of (4.16). Therefore, we obtain that v∗ is continuously differentiable with

lim
j→+∞

∣∣v̇ j(t) − v̇∗(t)
∣∣ = 0

and

v̇∗(t) =
[

∂1 f (σ0) 0
∂1 g(σ0) ∂2 g(σ0)

]
v∗(t) +

[
∂2 f (σ0) 0

0 0

]
v∗(t − τσ0). (4.27)
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By (S3), we know that the matrix

[
∂1 f (σ0) + ∂2 f (σ0) 0

∂1 g(σ0) ∂2 g(σ0)

]

is nonsingular. Taking integrals on both sides of (4.27) over one period of v∗ , we obtain that v∗ ∈
{v: ‖v‖ = 1} has zero integral average value in one period. So v∗ is a nonconstant periodic solution
of (4.27). Therefore, (v∗ + u0, σ0) is a nonconstant periodic solution of (3.1).

Then, by Lemma 3.3, (u0, σ0) is a center of (3.1). �
Now we are able to consider the global Hopf bifurcation problem of system (1.1). Letting

(x(t), τ (t)) = (y( 2π
p t), z( 2π

p t)), we can reformulate the problem as a problem of finding 2π -period
solutions to the following equation:

u̇(t) = p

2π
N0

(
u(t),σ ,2π/p

)
, (4.28)

where u(t) = (y(t), z(t)). Accordingly, the formal linearization (3.1) becomes

u̇(t) = p

2π
Ñ0

(
u(t),σ ,2π/p

)
. (4.29)

Using the same notations as in the proof of Theorem 3.6, we can define N0(u, σ ,p) = N0(u, σ ,2π/p),
˜N0(u, σ ,p) = Ñ0(u, σ ,2π/p).
Then the following system

L0u = p

2π
N0(u,σ ,p), p > 0, (4.30)

is equivalent to (4.28) and

L0u = p

2π
˜N0(u,σ ,p), p > 0, (4.31)

is equivalent to (4.29). Let S denote the closure of the set of all nontrivial periodic solutions of
system (4.30) in the space V × R × R+ , where R+ is the set of all nonnegative reals. It follows from
Lemma 4.2 that the constant solution (u0, σ0,0) does not belong to this set. Consequently, we can
assume that problem (4.30) is well posed on the whole space V × R

2, in the sense that if S exists in
V × R

2, then it must be contained in V × R × R+ .
On the other hand, assume (S3) holds at every center of (4.31). Then, from the proof of The-

orem 3.6 we know that the assumptions (S1)–(S3) are sufficient for the systems (4.30) and (4.31)
to satisfy the conditions (A1)–(A6). Also, under the same assumptions, Lemma 4.5 implies (A7) and
Lemma 3.5 implies (A8). Then by Theorem 2.5, we obtain the following global Hopf bifurcation theo-
rem for system (4.30) with state-dependent delay.

Theorem 4.6. Suppose that system (1.1) satisfies (S1)–(S5) and (S3) holds at every center of (4.31). Assume
that all the centers of (4.31) are isolated. Let M be the set of trivial periodic solutions of (4.30) and M is
complete. If (u0, σ0,p0) ∈ M is a bifurcation point, then either the connected component C(u0, σ0,p0) of
(u0, σ0,p0) in S is unbounded, or

C(u0,σ0,p0) ∩ M = {
(u0,σ0,p0), (u1,σ1,p1), . . . , (uq,σq,pq)

}
,
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where pi ∈ R+ , (ui, σi,pi) ∈ M, i = 0,1,2, . . . ,q. Moreover, in the latter case, we have

q∑
i=0

εiγ (ui,σi,2π/pi) = 0,

where γ (ui, σi,2π/pi) is the crossing number of (ui, σi,pi) defined by (3.5) and

εi = sgn det

[
∂1 f (σi) + ∂2 f (σi) 0

∂1 g(σi) ∂2 g(σi)

]
.

5. Remarks

A local Hopf bifurcation theory for FDEs with state-dependent delays was developed by Eich-
mann [14], where the existence of a local Hopf bifurcation is guaranteed by a transversality condition.
This transversality implies that the crossing number defined in our paper is not zero, and hence the
existence of a local Hopf bifurcation is also established in Theorem 3.6. Note that even in the case of a
constant delay, one can have nontrivial crossing number while the transversality condition is not sat-
isfied. Note also that the work of Eichmann gives more information about the local Hopf bifurcation
such as smoothness of the bifurcation curve with respect to the parameter.

Earlier results on the existence of periodic solutions for FDEs with state-dependent delay include
the work by Smith [40] that considered bifurcations of periodic solutions from a stationary state for
a system of integral equations with state-dependent delay, and the work on the existence of periodic
solutions by Nussbaum, Mallet-Paret and Paraskevopoulos [32]. These studies address the aspect of
global continuation of Hopf bifurcations of periodic solutions, specially the existence of periodic solu-
tions where the bifurcation parameter is away from the critical value where a local Hopf bifurcation
is born. The work of Nussbaum, Mallet-Paret and Paraskevopoulos [32] focuses on a prototype class
of state-dependent delay differential equations with negative feedback, and provides some detailed
information of the so-called slowly oscillating periodic solutions. See [3,7,23,26–31,34–36,39–41,43]
for other relevant studies on periodic solutions of state-dependent delay differential equations. In
comparison, our results here provide a general tool and framework to study the Hopf bifurcation
problem and, in particular, the global continuation of local bifurcation of periodic solutions of dif-
ferential equations with state-dependent delay from an equivariant degree point of view. Our global
bifurcation theory is, in principle, applicable to general system of FDEs with state-dependent delay
and even some neutral equations with appropriate further development (see [15] for some work on
equivalent local Hopf bifurcations of neutral equations with constant delays). How this theory is ap-
plied to specific systems will be illustrated in future studies, and whether this theory can be extended
to other types of state-dependent delay differential equations requires further examination.

Like the work of Nussbaum, Mallet-Paret and Paraskevopoulos [32], our approach is based on a ho-
motopy argument for calculating a topological index—the S1-degree. As such, much of the effort has
been dedicated to justify that the detection of Hopf bifurcation can be achieved through the formal
linearization technique: the state-dependent delay τ (t) in x(t −τ (t)) is first fixed at a given stationary
state, then the resulting nonlinear system with the frozen constant delay is linearized. This lineariza-
tion technique is utilized in the functional analytic setting that converts the Hopf bifurcation problem
of system (1.1) to solving an operator equation (2.2) involving S1-equivariant maps with two param-
eters, in the space of periodic functions with a fixed period. Implicitly used is the C1-smoothness of
the operator defined in Lemma 3.4 in the space V (the space of periodic functions with the fixed
period 2π ). The formal linearization leads to this operator naturally in the space of continuously dif-
ferentiable periodic functions with the period 2π , and the fact that this operator can be extended to a
bounded operator in the space V is essential in our homotopy argument. This technique of extending
the linearized operator of a state-dependent delay differential equations from C1 space to C space has
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previously been used in other contexts, see, for example, Nussbaum, Mallet-Paret and Paraskevopou-
los [32,22,44] and the survey paper [18]. See [9,16,17,20] for additional references on linearization
stability principles.
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