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Abstract We apply our recently developed global Hopf bifurcation theory to examine
global continuation with respect to the parameter for periodic solutions of functional differ-
ential equations with state-dependent delay. We give sufficient geometric conditions to ensure
the uniform boundedness of periodic solutions, obtain an upper bound of the period of non-
constant periodic solutions in a connected component of Hopf bifurcation, and establish the
existence of rapidly oscillating periodic solutions.
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1 Introduction

In this paper, with the aid of the global Hopf bifurcation theory recently established in [7],
we examine the global continuation of periodic solutions for the following system of delay
differential equations with state-dependent delays:

Dedicated to the 80th birthday of Professor Jack K. Hale.

Q. Hu

Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada

e-mail: ghu@mun.ca

J. Wu (X)

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto,
ON M3J 1P3, Canada

e-mail: wujh@mathstat.yorku.ca

@ Springer



254 J Dyn Diff Equat (2010) 22:253-284

[)%(t) = f(x(@), x(t — (1)), 0),
() =gx(®), t(t), o),

where x e RV, 7 e Rand o € R.
For the sake of simplicity, we assume:

(1.1)

(S1) Themaps f:RY xRN xR 5 (81, 62,0) = f(61,62,0) e RN and g: R¥Y xR xR 3
y1, 2, 0) = g(y1, 2, 0) € Rare C? (twice continuously differentiable).
(S2) There exist L > 0 and My > 0 such that =M, < g(y1, 2, 0) < LLH for every

neRY ek, oeR.

The normalization (x, 7)(¢) = (v, z)(27t/p) by the period p > 0 of a periodic solution
transfers (1.1) into

[y'(r) =27 (v v (1= Z20) o). 12
20 = £8060), 20, o).

So a solution (x, 7) of (1.1) with the parameter o is p-periodic if and only if (y, z) is a
2y -periodic solution of (1.2) with the given o and p. In what follows, we will say that
(x, T, 0, p)is a p-periodic solution of (1.1) and (y, z, o, p) is a 2w-periodic solution of
(1.2). Sometimes we say (x, 7, o) is a solution of (1.1).

The stationary solutions of (1.1) are given by solving the system f(x,x,o0) = 0 and
g(x, 7, 0) = 0. We assume throughout this paper that the stationary solution of (1.1) at given
o is given by (x4, 7,) and the mapping R 3 ¢ > (x4, 7,) € R¥ T is continuous.

Freezing the state-dependent delay of the term y (z — 2%z(t)) in (1.2) at 2w t,/p and

then linearizing the resulting nonlinear system, we obtain the formal linearization of (1.2) at
the stationary point (x4, 7o) as follows:

(y'(t))zi[alf(a) 0 ](y(t)—xa)
z(t) 27 | 018(0) d2g(0) |\ 2(F) — T

2
1 — =T — X
c2 [mf@ 0] (30 =T ) s
2r 0 0 Z([_jfo)_fo
where
d
aif(U) = 7f(017 925 0) 01=xq5,00=xq >
a0;
d
8ig(a) = aiyig(yl’ Y2, o) YI=Xg, V2=Tg "
fori =1, 2.
Let
detc Ay, 7. 00 (A) =0 (1.4)

be the characteristic equation of the linear system

{/(z) _ s l[af@ o0 Y (1) s W) o [Y t—%’r(, s
zw) 7 Laig) g [\zw ) T 0 0| z(1 -2z, :

corresponding to (1.3). The stationary solution (x*, *, 0*) = (x5*, o+, 0*)issaidtobea

center of (1.1), if (1.4) with ¢ = ¢* has a pair of purely imaginary roots £i8* with g* > 0.
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In this case, p* = 27 /B* is called the virtual period associated with the center (x*, t*, o*).
We say that (x*, %, 0*) is an isolated center if it is the only center in some neighborhood
of (x*, t*, 0*) in R¥*! x R, that is, detc A, %, o) (if*) = 0 and for § > 0 sufficiently
small,

det A(x,.1,.0)(iB) #0, (1.6)

forany (o, B) € ((6* =48, 0*)U (0%, 0" +6)) x (0, +o0) anddet A(y . . o (iB) #0
forany g € (B* — 4, p*) U (B*, B* +9).

We can then choose constants b = b(c*, B*) > 0 and ¢ = c(c*, B*) > 0 such that
the closure of  := (0, b) x (B* — ¢, B* + ¢) € R?> = C contains no other zero of
detc A, «, 7,4, 0%)(A) = 0. Then we can define the numbers

Ve Xor, Tox, 0%, B*) = deg(detc A vy, 1045, 0748 (), ),

where deg(detc Ay, .y, 7,45, o*£8)(+), 2) is the usual Brouwer degree of the determinant

detc A(x,iyy, 7,005, o*£8) (-) on Q. The crossing number of (x*, t*, o*) is defined as

y(x*, T 0%, BT) = v (o, Tox, 07, B) — i (Xox, Tox, 07, B). (1.7)
To state the local and global Hopf bifurcation theory developed in [7], we further assume
that
(S3) There exists op so that (xq,, Tsy, 00) iS a center of the linearized system (1.3),
(% + 3‘%2) f61, 62, 0)lo=0y, 6 —th=xq, is non-singular (determinant is nonzero)
and

a
Eg()/l» V2, U)|a:ao,y|:x(,0,y2=rgo # 0.

(S4) There exist constants L ; > 0 and Lg > 0 such that
|f(61, 62, 0) — f (61, 62, 0) | < Ly (161 — 61|+ 162 — 62])
g1, v2. 0) — 8 (V1. V2. 0) | < Lg(ly1 = V1l + 12 — 72D)
forall 81, 62, 81, 02, 1, 7, €RY, »2, 7, €R, 0 € R.
In what follows, we will also write u = (x, ) for the state variable. We now recall the

local and global Hopf bifurcation theorems in [7].

Theorem 1 Assume (S1)—(S3) hold. Let (X, Toy, 00) be an isolated center of system
(1.3) with the virtual period 2m/Bo. If the crossing number defined by (1.7) satisfies
Y (Xoy> Tog» 00, Bo) # 0, then there exists a bifurcation of non-constant periodic solutions
of (1.1) near (x4, T5,, 00). More precisely, (xq,, Ty, 00) is a Hopf bifurcation point, that
is, there exists a sequence {(x,, Tn, On, Bn)} such that o, — o9, B — Po as n — oo, and
limy,— 00 [[Xn — Xo0 | = 0, limy— 00 [T — Te | = O, where

(Xp, Th, oy) € C (IR; RN“) x R
is a non-constant 2m / B, -periodic solution of system (1.1) and || - || is the supremum norm

for the Banach space of bounded continuous functions from R to RN and from R to R,
respectively.
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Let Sp be the closure of the set of all the non-constant periodic solutions of system (1.1)
in the Fuller space

C (R; RN+1) x R? = [(x, T,0,p):(x,t)eC (R; ]RN'H), (o, p) € Rz}.

Theorem 1 shows that y (x*, t*, o*, B*) # 0 implies that (x*, *, o*) is a Hopf bifur-
cation point, namely, there exists a connected component C(x*, 7%, o™, p*) C Sy of Sp.
By the period normalization (x, 7)(¢t) = (y, z)(27t/p), we obtain a connected component
C(y*, z*, o*, p*) in the Fuller space

C (R/er; RNH) x R? = {(y, z,0,p):(y,z2)eC (R/271;RN+1), (o, p) € Rz}.

The (y, z)-component of a 2 -periodic solution (y, z, o, p) of (1.2) gives an element in
C (R/27; R¥*1) and in this sense, we say that (y, z, o, p) € C (R/2m; RVT) x R2.

Theorem 2 Suppose that system (1.1) satisfies (S1-S4). Let .4 be the set of constant solu-
tions of the system (1.2) and S denote the closure of the set of all non-constant 2w -periodic
solutions of (1.2) in the Fuller space C (]R/QJT; RN‘H) x R2. Assume that all the centers of
(1.3) are isolated and A is complete. If (ug, 00, po) = (Xoy. Toy, 00, P0) € A is a bifur-
cation point, then either the connected component C (ug, oo, po) of the center (ugy, oo, po)
in S is unbounded, or

C(ug, 00, po) N = {(uo, 0o, po), (U1, o1, p1), ..., (Ug, 04, Pg)},

where p; € Ry, (u;, 0;, pi) = (Xo;, To;, 0i, pi) € A fori =0, 1, 2,..., q. Moreover,
in the latter case, the crossing numbers y (u;, o;, 21w/ p;i) satisfy

q
> eayui, oi, 2m/pi) =0,

i=0
where €; = sgn det [alf(aéfg—i(_sz)f(m) ) gO(Ui)] .

Definition 1 Let ¢ be a connected component of the closure of all non-constant periodic
solutions of (1.1) in the Fuller space C(R; RN*1) x R2, We call ¢ a continuum of slowly
oscillating periodic solutions, if for every (x, t, o, p) € ¥, there exists #p € R so that
p > t(tp) > 0. Similarly, we call ¢ a continuum of rapidly oscillating periodic solutions, if
for every (x, 7, 0, p) € ¥, there exists ) € Rso that 0 < p < 7(¢).

Note that the period normalization of a solution (x, t, o, p) does not change its norm in the
Fuller space. Theorem 2 shows that for a given trivial solution (x*, ¥, ¢*) with the virtual
period p*, the connected component C (x*, t*, o*, p*) either has finitely many bifurcation
points with the sum of S'-equivariant degrees being zero or C (x*, t*, o*, p*)is unbounded
in the Fuller space C (R; RN “) x R?. Therefore, if global persistence of periodic solutions
when the parameter is far away from the local Hopf bifurcation value o* is desired, we
should find conditions to ensure that the connected component C (x*, t*, o*, p*) of Hopf
bifurcation is unbounded in the Fuller space C(RR; RN x R? and C(x*, t*, o*, p*) will
not blow up to infinity at any given o in the norm of the Fuller space C(R; RV 1) x R2.
That is, there exists a continuous function M : R 3 ¢ — M (o) > 0 such that for every

(x,7,0, p) € C(x*, %, 0*, p*) we have

lx, T, P lem: r¥+yxr < M(0). (1.8)
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To achieve this goal, we shall give some sufficient geometric conditions ensuring the uniform
boundedness of all possible periodic solutions (x, 7, o) of (1.1), that is, we show that there
exists a continuous function M; : R 3 0 — Mj(o) > 0 such that for every (x, 7,0, p) €
C(x*, t*, o*, p*) we have

106, Dllernsn < Mi(@). (19)

Then we seek for a continuous function My : R 5 0 — M»>(o) > 0 such that for every

(x,t,0, p) € C(x*, ¥, o*, p*) we have

Ipl < M>(o). (1.10)

Remark 1 In Lemma 4.2 of [7] we have shown that if (S2) and (S4) are satisfied, then p has
a positive lower bound. In the following, we assume that p > 0 for every (x, 7, 0, p) €
C(x*, t*, o*, p*), or correspondingly (y, z, o, p) € C(y*, z*, o*, p*).

The main challenge we are encountering in this study is to seek a uniform upper bound of
the periods of the periodic solutions in a connected Hopf bifurcation branch. For differential
equations with constant delays, Chow and Mallet-Paret [1] and Wu [17] used the idea of
excluding periodic solutions of period twice of the constant delay for some types of scalar
delay differential equations. Earlier results on bounds of periods for periodic solutions of
ordinary differential equations can be found in Diliberto [2], Fuller [3,4], Lau [9], Smith
[14] and Schwartzman [15] and the references therein. Recent studies to rule out periodic
solutions with large periods for delay differential equations with a constant delay have been
linked to circulant matrices in the celebrated paper of Nussbaum [11]. Spectral analysis of
circulant matrices have been used in Xia and Wu [18] and in Wei and Li [16] to rule out
periodic solutions using either a Liapunov functional approach or a compound matrix tech-
nique. See also [12] for additional results on the range of periods of periodic solutions of
scalar equations with a constant delay. However, none of the above mentioned results can
be applied to obtain a uniform bound for the periods of non-constant periodic solutions of
differential equations with a state-dependent delay.

In this paper, we develop a novel approach in obtaining a uniform upper bound of the peri-
ods of the periodic solutions in a connected component C (x*, t*, o*, p*). First, for each
periodic solution (xg, 79, 0o, po) we exclude certain values of the period. More specifically,
we show that this periodic solution satisfies to(fp) # mpo for some 7o and for all m € N.
Then we find an open interval / > f¢ and a small open neighborhood U > (x¢, 0, 00, po)
so that every (x, t, 0, p) € UNCx*, t*, o, p*) satisfies t(¢) # mp forallt € I and
m € N. We then develop a procedure to glue these local exclusions of period values together
to obtain a global exclusion of the period values in the component C(x*, *, o*, p).

We organize the remaining part of the paper as follows. In Sect. 2, we construct a mono-
tonically increasing sequence of connected subsets {A,,}:;’o1 of C(y*, z*, o*, p*) which,
combined with the uniform boundedness of the solutions (x, t) and the global exclusion
of the period values, provides an upper bound of the period, p, for rapidly oscillating peri-
odic solutions of (1.1). In Sect. 3 we follow the idea of Gustafson and Schmit [5] to obtain
sufficient geometric conditions for the uniform boundedness of all the periodic solutions of
(1.1), based on a Razumikhin-type technique. In Sect. 4, we present a detailed case study to
illustrate our general results.
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2 Uniform Bounds for Periods of Periodic Solutions in a Connected Component

We will need the following assumptions to derive some important properties of an interval
map.

(S5) Forevery (o, 1) € R?, g—f(xo, 7, 0) #0.
(S6) g—i(x, 7, 0)f(x, x, o) # 0 for (x, 7, o) € R¥*! x R such that x # x, and

gx, 7,0)=0.
2.1 Properties of an Interval Map

In order, by way of contradiction, to exclude certain values of the period of the periodic solu-
tions in a given connected component, we need some analytic properties of the following
map

(1) =t—1(t)+ 1(tp),

where #p € R is fixed. In this section, to avoid notational complications, we use superscripts
to denote function compositions, e.g., [/ (¢) denotes the j-th composition of [ evaluated at
time ¢.

Lemma 1 Suppose that (1.1) satisfies (S1, 52, S5,56) and (x, t, 09) is a non-constant peri-
odic solution of (1.1). If (x, 1) is T (to)-periodic and if T (ty) # To,, then the function l(t) =
t — t(t) + t(ty) defined on [ty, ty + t(tg)] satisfies the following properties:

(a). I(t) is a self-mapping on [ty, to + T(ty)];

(b). I(t) has only finitely many fixed points {t;}}_, in [to, to + T (to)] with t; < t; 1| for every
ie{l,2,...,n—1}

(c). Foreveryt € (i, ti+1) C [t0, to + T(t0)],

lim (1) =

J—>+0o0

ti, ifthereexistst € [t;, tiy1)suchthatt > (1),
tit1, if thereexistst € [t;, tiy1)suchthatt < I(7);

(d). Let {t,-,{}f’:1 C {t :7:1 be all the fixed points such that lim;_, | oo V@) = ti, for every
t €[ty,, tiy+1). Then for § > 0 small enough

lim sup V(1) — ;] =0,
J= TR telyy 1y 41-8]

lim sup (1) = ti1] =0
J—+

00 ko
telti+38, tiy1], tigln, o, ot N\ iy 12

(e). Let h(t) =t — t(t), then l1(t) = hJ(t) + jt(ty) for every t € [to, to + T(t9)] and
JEN;
(). hi @t + 1)) =hi(t) +1(to) forallt € Rand j € N.

Proof (a). Note that by (82),i(t) = 1—%(t) = 1—g(x(), t(t), o) > 1/(L+1) > Oimplies
that /(¢) is strictly increasing on [fg, fo + T(f9)]. Also, t(¢) is 7(fp)-periodic implies that
I(t0) = to and I(tp + T (tp)) = to + 7 (tp). Therefore, [(¢) is a self-mapping on [tg, o+ T (t)]-
(b). Next, we show that /() has only finitely many fixed points in [#g, o + 7 (#p)]. That is,
I(t) =t—1t(t)+71(tg) =t < 1(t) = 7(p) has only finitely many solutions in [#y, fo+7(t)]-
Indeed, suppose that ¢ty € [to, fo + T(fp)] is a fixed point of [(¢), that is, T(t7) = t(tp),
we then have three possible cases:
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Case 1. T(ty) > 0. By the continuity of 7 (¢), there exists an open interval /7 > 7 such
that 7(¢) > O for all t € I. Then, by the strict monotonicity of () on I, ts is an isolated
fixed point of /(7).

Case 2. ©(tf) < 0. We can similarly show that 7 is an isolated fixed point of /(7).

Case 3. ©(ty) = 0. We have

gx(ty), T(ty), oo) = gx(ty), t(to), o) = 0. 2.2)

By assumption (S5), we have x(¢7) # x4,. By (1.1) and (S1), we have

J 3
i(ty) = %(x(tf), T(tf), og) X(tf) + %(x(tf), T(t5), 00) T (t5)
0
= 53 G, 7). 00) Feltp), x(tp). o). 23)

Then by (2.2), (2.3) and assumption (S6), we have 7(¢7) # 0. Without loss of generality,
we assume 7(t7) > 0. By the continuity of 7(¢) and the fact that 7(ty) = 0, there exists
8 > O small enough so that 7(z) < Oon (tf — 38, ty) and 7(¢) > Oon (¢7, ¢y +6). Therefore,
tr is the unique zero of 7(¢t) — t(fp) in (ty — 8, ty + &), and hence is an isolated zero.

It follows from the isolatedness of ¢y and the compactness of the interval [fy, fo + T(t)]
that / has only finite number of fixed points in [79, fo + T ()]

(c) Since by (b) the number of fixed points of / in [#g, t9 + 7(f9)] is finite, we can order
all of them as

o<t <--- <t <tigy] <--- <ty =19+ t(tp).

Then for every t € [ty, to + T(t0)] \ {ti ?:0’ there exists i € {0, 1, ...n — 1} such that
i <t < tiy1.Itis clear that [(¢) # t and that [||; 1.7 € {0, 1, ..., n — 1}, is a strictly
increasing self-mapping on [#;, t;+1] with ¢; and #;11 the only fixed points.

If there exists 7 € [f;, tj+1] such that 7 > [(7), then ¢t > [(¢) for every t € (f;, tiy1).
Otherwise, by the continuity of / there exists another fixed point of / in (¢, t;4+1), which is
impossible. Therefore, for every ¢t € (#;, ;1) we have,

tivy1 >t >1(t) > lz(t) > > lj(t) > le(t) > o> 1.

Therefore, {I/ (t)};?oz | 18 a strictly decreasing sequence with the lower bound ;. Then there
exists t* € [t;, t;y1) such that lim;_, | o 17(t) = t*, and hence [(+*) = t*. Since ; is the
only fixed point of / in [#;, tj+1), 1™ = 1;.

Similarly, if there exists 7 € [#;, t;+1] such that 7 < [(7), then t < I(¢) for every ¢ €
(t;, ti+1). For, otherwise, by the continuity of / there exists another fixed point of / in (#;, #i+1),
which is impossible. Therefore, for every ¢ € (¢, tj+1), we have

i<t <Il@t)y<?’()<- <U@) <@ < <tiq.

That is, {/ J (1)} = is a strictly increasing sequence with the upper bound #; 1. Then, there
exists t* € (4, t;41] such that lim;_, | o 17(t) = t*, and hence [(t*) = r*. Since #;1 is the
only fixed point of [(¢) in (#;, t;+1], t* = t;41.

(d) Note that I|[;, ] is a strictly increasing self-mapping on [#;, t;11], where {£;}]_, is
the set of fixed points of /. Therefore, I/ is also a strictly increasing self-mapping on [#;, #;+1]
for every j € N. Then, by (c), we have
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lim sup  |(t) =ty | = lim |1 (tj41 —8) — ;| =0,
J= el 1y 41-8] Jj—>+0o
lim sup @) = tipal = lim (1 (6 +8) =t
Jj—+oo Jj—>+oo

kq
telti+8. tip1 ] ielt. b, ot N\t 12

=0.

(e) We prove (e) by mathematical induction. It is clear by the definitions of /(¢) and /(¢)
that/(t) = h(t) + t(to). Thatis, 1/ (¢) = h’/ (t) + jt(tp) holds for j = 1. Suppose, this holds
for j = k. Then, for every t € [tg, to + t(f9)] we have,

) = 10" @)

= I(h* (1) + kT (19))

= h(hk (1) + kT (10)) + 7 (t0)

= h* (1) + kt(19) — T (h* (1) + kT (1)) + T (t0)

= h* (1) — t(h* (1)) + (k + 1)t (19)

= ) + (e + DT to).
That is, I/ (1) = h/(1) + jt(to) holds for j = k + 1. By mathematical induction, I/ (1) =
h'(t) + jt(to) holds for every j € Nand ¢ € [19, to + 7(t0)].

(f) By the definition of /(¢) and the assumption that 7 (¢) is t(fo)-periodic, it is clear that
for every t € R,

h(t +t(to)) =1+ t(to) — Tt + 7(10))
=1+ t(to) — (1))
= h(t) + t(to).
That is, 7 (t + t(t9)) = h'(t) + t(fp) holds for j = 1. Suppose this holds for j = k.
Then for every t € [y, to + T(tp)], we have
W+ T (10)) = h(h* (1 + T(19)))
= h'(t + 7(10) — T (1 + (1))
= h(t) + T (o) — T (1) + T (10))
= h*(t) + T (o) — T (" (1))
= 1) + ().
That is, h’ (t + t(to)) = h’ (t) + t(9) holds for j = k + 1. By mathematical induction,

hi(t + (1)) = h’ (t) + (1) holds for every j € Nand ¢ € R. This completes the proof.
O

2.2 Excluding Certain Periods: Locally

Recall that C(x*, t*, o*, p*) denotes the connected component of the closure of all the non-
constant periodic solutions of system (1.1) bifurcated at (x*, ¥, ¢*, p*) in the Fuller space
C(R; RV*1) x R, In this subsection we exclude, for each periodic solution (xo, o, 00, Po)
certain values of the period. To be specific, we find an open interval / and a small open
neighborhood U > (xo, o, 00, po) so that every (x, 7, o, p) € UNCK*, %, o*, p*)
satisfies 7(#) # mp for all t € I and m € N. In the next subsection, we will glue up
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these local exclusions to a global upper bound for the period along the rescaled (by period
normalization) connected component C (y*, z*, o*, p*).

Now we consider the periods of the solutions in the neighborhood of a periodic solution
which does not assume a certain period.

Lemma 2 If a solution (xg, 19, 00, po) € C(x*, T, o*, p*) satisfies to(ty) # mpy for

some ty € R and for all m € N, then there exist an open neighborhood I > to and an
open neighborhood U > (xq, to, 009, po) in C(R; RN*) x R2 such that every solution
(x, 7,0, p) e UNCK* t*, o*, p*) satisfies T(t) # mp forallm e Nandt € I.

Proof By way of contradiction, we suppose that for every open interval I > g and every
open neighborhood U > (xo, 19, 00, po) in C(R; RN‘H) x R2, there exist € I, m € Nand
a periodic solution (x, 7, o, p) € UNC(x*, ™, o*, p*) so that 7(¢) = mp. Then there
exist sequences {(x, Tx, Ok, Pk, tk)},jif CUNCE*, t*, o* p*)and {my : my € N};Z?
such that

[ Tk (tk) = my pr, 2.4)

lim (xg, @, ok, pk, &) = (X0, T0, 00, PO, t0).
k—+o00

Without loss of generality, we assume my; — mg € N as k — 400 (otherwise we take a
subsequence). Then it follows from (2.4) and (S2) that

T (%) _% (to)

mo = lim my = lim . 2.5)
k—+00 k—+o00 Pk Po
Therefore, we have to(f9) = mopo which is a contradiction to the assumption. O

We note that for a non-constant periodic solution (x, t, o) of system (1.1), it is allowed
that 7 (¢) assume its stationary value t,, oreven 7 () = t, forall# € R. Ruling out these cases
turns out to be crucial for us to exclude certain values of periods of the periodic solutions.

We first consider the periods of the periodic solutions in a neighborhood of a given non-
constant periodic solution in the Fuller space, for which the delay T-component is not equal
to the corresponding stationary value at some time ¢.

We need the following condition:

(87) i) f@,0,0)=0foralo €R;
(i) xf(x, x, o) is positive (or negative) if f(x, x, o) # 0.
Theorem 3 Suppose that system (1.1) satisfies (S5-S7). Let (xo, to, 60, po) be a noncon-
stant periodic solution in C(x*, ©*, 0*, p*). If ©1o(to) # T, for some to, then there exist
an open interval I and an open neighborhood U of (xg, o, 00, po) in C(R; RVN*T1) x R?
such that every solution (x, t, o, p)in U NC(x*, t*, o*, p*) satisfies T(t) # mp for all
meNandt € 1.

Proof We first show that there exist an open neighborhood U of (xo, 79, 00, po) and an open
neighborhood Ij of #p such that 7(t) # 14, for any (x, 7, o, p) € UNC(x*, t*, ¢*, p*)
and r € Ij.

By way of contradiction, suppose for every neighborhood I of # and neighborhood U
of (xo, 70, 00, po), there exist t € I and a non-constant solution (x,t,0,p) € UN
C(x*, t*, o*, p*) such that 7() = 74,. Then there exist a sequence of periodic solutions
{(xk, T, ok, PO}y and {1}, such that

[ T (k) = Toy» 2.6)

lim (xg, @, ok, px, &) = (X0, T0, 00, Po, t0)-
k—+o00
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Then it follows from (2.6) and (S2) that

It (t) — T0(t0)| < | (tk) — w(to)| + |tk (f0) — T0(t0)|
< |tx — to] + sup ||t — 7ol
teR
— 0 ask — +oo. 2.7

Therefore, by (2.6) and (2.7) we have
T0(to) = i () = 1 = Tgy-
0( O) k 1m k( k) k 1m f{fk o0

This is a contradiction to the assumption that 7o (fy) 7# 7,,, and hence the claim is proved.

If (xo, 0, 00, po) satisfies 7o(tg) # mpo for all m € N, then the existence of / and U
is followed from Lemma 2. Otherwise, (xo, To, 00, po) is To(fo)-periodic. Let I'y, be the
nonempty solution set of the equation f(x, x, o9) = 0 for x € RV, Then by (S5), for every
x € Ty, To, is the unique solution of g(x, 7, 0p) = 0 for T € R. Now we distinguish two
cases:

Case 1. xo(ty) = X, for some x5, € I'y,. Since 19(fp) # To,, by system (1.1) and by
(S5), we have

Xo(to) = f(Xoy, Xoys 00) =0,

#0(t0) = 8(Xop, To(t0). 00) # O. (2.8)

Without loss of generality, we suppose 7o(¢) > 0 for ¢ in some open neighborhood of #,.
Then, by the continuity and local monotonicity of 7o(¢), there exists § > 0 small enough so
that

0 < 1(t) — 10(t0) < Pmin- ! € (to, to +95),

where ppin > 0 is the minimal period of (xq, o). Then, To(¢) # m ppyip for any m € N.
Therefore, (xo, To) is not 7o(t)-periodic for all ¢ € (79, o + §). So we have to(t) # mpg for
all r € (19, 1o+ 6) and m € N.

By Lemma 2, for every t* € (fo, tp + 8), there exist an open interval / of +* and an
open neighborhood U of (x¢, 19, 09, po) in C(R; RV*1) x R? such that every solution
(x, 7,0, p)inUNCK* t*, oF, p*) satisfies 7(t) # mp forallm € Nandt € I.

Case 2. xo(ty) # x, for every x, € I'y,. By Lemma 1 (c), there are finitely many
fixed points {f;}]_, of I(t) =t — 1o(¢) + T0(to) in [to, to + To(fo)] which are in ascend-
ing order (we assume in the proof that all the sequences of the fixed points of [ are in
ascending order). And we can let the subsequence {t,'k}i(’:1 C {#;}7_, be all the fixed points
such that lim;_, 1o 1/ (¢) = t; for every t € [t;, tj+1). Note that 7o(#;) = 70(tp) and

70(t0) # To, implies that 1o(f;) # T4, foralli € {1, 2, ..., n}. If xo(#;;) = x4, for some
ip € {1, 2, ..., n} and for some x4, € I'y,, then the conclusion follows by Case 1 with 7y
replaced by ;.

Now we exclude that xo(t;) # x, forevery i € {0, 1, 2, ..., n} and for every x5 € I'y.

Assume that the contrary is true. We want to obtain a contradiction under the assumption that
(x0, 70) is T (#p)-periodic.
For § > 0 small enough, we consider the following compact subset /5 of [y, fo + To(t0)]:

Is = U et -aY U [t + 6, 1i].

. .4 X k
li €U0y li s figy ) et 12, e i\ 112
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Note that, for each interval [f;, t;1+(], only one of the endpoints is the limit of
lim; 4o 17 (1) for every t € (f;, ti+1). Note also that when § goes to zero, I5 goes to
[0, to + t0(tp)] in the sense of Lebesgue measure.

Now for § > 0 small enough we introduce the following piecewise constant function y (¢)
on the compact subset /5 of [y, to + To(f0)]:

. k
|ty ifr ety tip1r = 81ty € {1yl
x (@) = . ko
tiy1, iftelt +06, izl ti €f{tr, t2, ..., ta} \ {tie 32y

Since the number of intervals with the end points being the fixed points of /(¢) is finite, it
is clear from Lemma 1 (d) that
lim sup |/ (1) — x ()| = 0. (2.10)
Jj—+oo tels
Note that Lx (t), t(t)) is a periodic solution of system (1.1). There exists M > 0 such that
[X(#)] < M forevery t € [tg, to + T(t9)]. Let I; with i € {1, 2, ..., n} be the sub-interval
of Is which is either [t;_1, t; — §] or [t;_1 + &, t;]. Then we have x(t) = t;_j or x(t) = ¢;
for ¢ € I; and hence we have

xo0(x (t)) = xo(ti—1) or xo(x (1)) = xo(t;) forevery t € I;. (2.11)
Since xo(t;) # xo foreveryi € {0, 1, 2, ..., n}and for every x, € I'5,, by (2.11), we have
x0(x (1)) € I'y, forevery t € Is. (2.12)
By (2.10), for every € > 0, there exists Ny > 0 large enough so that
su1p|lj(t) — x ()| <€, forevery j > No. (2.13)
tels

Let (x;(t), 7j(t)) = (xo(h/ (1)), To(h/ (t)) for j =0, 1, 2, ..., where we define h0(t) = 1.
Then by Lemma 1 (e), we have (x(¢), 7;(t)) = (xo (17 (1)), to(l7 (¢)). Note that I; is com-
posed of finitely many sub-intervals. By applying the Integral Mean Value Theorem on each
sub-interval of 5 and by (2.13), we have for every j > Ny that

sup |xo(17 (1)) — x0(x ()| < sup,¢;, [Xo()] sup,ey, [17(1) — x (1) < Me.  (2.14)

tels
Differentiating x;(¢) for j = 1, 2, ..., we can obtain from system (1.1) that
j—1

i) = [ = gGn@). (). 00) f(x;(1), xj41(2). 00). (2.15)

m=0

As g(x, t, 0) < 1, we have

j—1
[T = gGn®. T (@), 00) > 0, t € R. (2.16)
m=0
Also by (ii) of (S7), xf (x, x, 0p) > 0 aslongas x ¢ I',,. Then by (2.12) we have
xo(x () f (xo(x (#)), xo(x (1)), 00) >0 (2.17)

for every t € I5. By (2.14), (2.17) and by the continuity of f, it follows that there exists
N1 > Ny so that

xj(®) f(xj@), xj11(t), og) > O0for j > Nyandt € Is. (2.18)
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Therefore, for every t € I5 and j > Ny, by (2.15), (2.16) and (2.18) we have

j—1
xj(t)-x;(t) = l_—lo(] — 8xm (1), T (1)), 00)x; (1) f(x; (1), xj+1(1), 00) > 0. (2.19)

Since § > 0 is arbitrary and /s goes to I in measure as § — 0, by the continuity of x; - X,
we have x(¢) - X;(t) > O forevery t € I and j > Nj. By (2.19) we know that x; - x; # 0
on I with j > Nj. Therefore, x; - x; is a non-constant increasing continuous function. But
this is impossible since x; - x; is continuous and periodic. This completes the proof. O

‘We now consider the periods of non-constant periodic solutions, where the delay coincides
with the corresponding stationary value for every ¢t € R.

Lemma 3 Suppose system (1.1) satisfies (S6). Let (x, T, o, p)beanon-constant p-periodic
solution of system (1.1). If T(t) = 1, for every t € R, then (x, t, 0, p) is not t,-periodic.

Proof Suppose, by way of contradiction, that (x, t, o, p) is ty-periodic. If 7(¢) = 7, for
every t € R, then we have

x(t) = f(x(@), x(1), o),
[0 =1(t) =gx(), 15, 0). (2.20)
It follows from (2.20) that
T(t) = g—i(x(t), 5, 0) - f(x(), x(t), o) =0. (2.21)

Then by (S6) and (2.21), x(t) = x4 forevery t € R. Thus, (x, 7, o, p)is aconstant periodic
solution of (1.1). This is a contradiction. ]

We now formulate the next assumption:

(S8) For every Hopf bifurcation point (x, 7, o, p) € C(x*, t*, o*, p*), mp # t for any
m € N.

Theorem 4 Assume that system (1.1) satisfies (S5-S8). Then for every solution (xg, 7o,
00, po) € C(x*, ¥, o*, p*), there exist an open interval I and an open neighborhood

U > (xg, 10, 00, po) such that every solution

(x, 7,0, p)cUNCK* % c*, p)
satisfies T(t) # mp forallm € Nandt € I.
Proof For a given og € R, if (x¢, 19, 00, po) € C(x*, %, 0, p*) is a constant periodic
solution, then it is a Hopf bifurcation point of system (1.1) (See Lemma 4.3 of [7]). Thus
the existence of an open interval / and an open neighborhood U > (x¢, 19, 00, po) follows
immediately from (S8) and Lemma 2.

If (x0, 70, 00, po) € C(x*, T*, 0¥, p*) is a non-constant periodic solution and 7 (t) =
T, for all t € R, then by Lemma 3, (xo, 7o, 00, po) is not 74,-periodic. The conclusion is
implied by Lemma 2.

If (xo, 70, 00, po) is a non-constant periodic solution and to(t) # 14, for some ¢ € R.
The conclusion follows from Theorem 3. m]
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2.3 Uniform Boundedness of Periods: Globally

We now start the process that uses the local exclusion of periods developed in the last
subsection to construct a uniform upper bound for periods of solutions in the Fuller space.
To achieve this goal, we need to “glue” the local exclusion of periods along the connected
component.

We will show in the next section the validness of (1.9). The purpose of this subsection is
to show that (1.10) is valid provided that (1.9) holds.

Theorem 5 Ler C(y*, z*, o™, p*) be a connected component of the closure of all the non-
constant periodic solutions of system (1.2), bifurcated from (y*, z*, o*, p*) in the Fuller
space C(R/2m; RNt x R2. Suppose that system (1.1) satisfies (S5-S8). Then for every
(y0, 20, 00, po) € C(y*, z*, o*, p*), there exist an open interval I and an open neigh-
borhood U > (yo, zo, 00, po) such that mp # z(t) for every solution (v, z, o, p) €
UNCy*, z* o* p*)ymeNandt € I.

Proof Note that p > 0 for every solution (y, z, o, p)in C(y*, z*, o*, p*). We show that
the mapping

*

L:COY*, 2%, 0, p*) — CWx*, %, 0¥, p¥)
2w 2
e, z@), o, p)=\yl— ). z2{\— ), 0o p (2.22)
p p
is continuous, where C (x*, t*, o*, p*) € C(R; R¥t!) x R2. Indeed, if
HETOO 1)y 20 ()s oy Pu) — (Yo (), z0(+), o0, pO)”C(R/zn;]RN+1)><]R2 =0,
then we have
leyn()s 20()s Ony Pn) — t(yo(+), zo(-), 00, pO)”C(R; RN+1)xR
2 2 2 2
o\ —)=Yo|—)lc+lzam|—])—20 )l
Dn Po Dn Po

+ low — ool + [ pn — pol

1

Pn Po

IA

[yn — Yolc + 27 [ Yol

1 1 .
— = ’ + lzn — zolc + 27|20l
Pn Po

+ low — ool + [ pn — pol

— Qasn — 400,

where | - |c denotes the supremum norm in either C(R/2r; RY) or C(R/2m; R). Therefore,
C(x*, t*, o*, p*)is aconnected component of periodic solutions of (1.1).

Let (xo, 0, 00, po) = t(yo, 20, 00, po) € C(x*, t*, o*, p*). Then, by Theorem 4,
there exist an open interval I’ and an open neighborhood U’ > (xq, 19, 00, po) such that
every solution (x, 7, o, p) € U N C(x*, t*, o*, p*) satisfies () # mp forallm € N
andr e I'.

Since ¢ is continuous, we can choose an open set U € C(R/2m; RN+ x R? small
enough so that (yo, zo, 00, po) € U C ~U") and the open set

)4 ’
1 := | | — .1
2
{p:(y,z,0, peU}

is nonempty. Then, by the definition of (,mp # z(t) for every (y, z, o, p) € U N
COy*, z*, o* p*),meNandrt € I. o
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Lemma 4 (The generalized intermediate value theorem, [10]) Let f : X — Y be a
continuous map from a connected space X to a linearly ordered set Y with order topology. If
a,b e Xandy €Y lies between f(a) and f (b), then there exists x € X suchthat f(x) = y.

Definition 2 Let C(y*, z*, o™, p*) be a connected component of the closure of all the
nonconstant periodic solutions of system (1.2), bifurcated from (y*, z*, o*, p*) in the
Fuller space C(R/27; RV*T!) x R%. Let I C R be an interval and U be a subset in
C(y*, z*, o*, p*). We call I x (U N C(y*, z*, o*, p*)) a delay-period disparity set if
every solution

(y,z,0, peUNCH*, ¥ o, p

satisfies mp # z(¢) forevery t € I and m € N. We call I x (U N C(y*, z*, o*, p*))
a delay-period disparity set at (fp, Yo, zo, 00, po) if (fo, Yo, 20, 00, po) € I x (U N
CWy*, 2%, o*, p™).

In the remaining part of this subsection, the following assumption is sometimes needed:

(S9) Every periodic solution (x, 7, o) of (1.1) satisfies 7(¢) > O for every ¢ € R.

Lemma 5 Suppose that system (1.1) satisfies ($5-S6) and (x, T, o) is a non-constant peri-
odic solution. If

(i) T # 15 and there exists ty € R such that t(ty) = 1, and
(ii) (x, 1) is T,-periodic,

then there exists t| € R such that t(t;) > t,.

Proof We prove by way of contradiction. Suppose that
7(t) < 1, forevery t € R. (2.23)

Then, since T # t,, there exists t* € R such that t(*) < t,. We can choose a maximal
interval [a, b] C R which contains ¢* in the sense that

w(t) <1, foranyt € (a, b)

1(t)=1, foranyt=aandr=bh. (2.24a)

If t(a) # 0 or ©(b) # O, then it follows from the local monotonicity of t(¢) (at a or b)
that there exists #; € R in some neighborhood of a or b such that t(¢;) > 7,. This is a
contradiction to (2.23).

If 7(a) = 1(b) = 0, then we have

g(x(a), 15, 0) = gx(b), 175, 0) =0. (2.25)

We distinguish the following two cases:
Case 1. x(a) # x4 or x(b) # x,. Without loss of generality we suppose x(a) # x,. Then
by (ii), we have

a
T(a) = %(x(a), 5, 0) f(x(a), x(a), o). (2.26)

It follows from (S6), (2.25) and (2.26) that 7 (a) 7 0 holds. Therefore, we have 7 (¢) is strictly
monotonic in some neighborhood of a. Hence there exists #; € R such that t(¢1) > t,. This
is also a contradiction to (2.23).
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Case 2. x(a) = x(b) = x,. By (S5), we have g—f(x(,, 5, 0) # 0. Without loss of
generality we assume that

ad
28 (. Ty, 0) < 0. 2.27)
T
Then by (2.24a), (2.25), (2.27) and the continuity of x(#) and t(¢), we can choose € > 0
small enough so that

(1) = g(x(t), t(t), 0) > 0 forevery t € (a, a+¢€)U (b —¢€, b). (2.28)

Therefore, we have t(a) < 7(a + €). That is, there exists f; = a + € such that t(a) =
T, < 7(t1). This is a contradiction to (2.23). The proof is complete. ]

Lemma 6 Suppose that (1.1) satisfies (S5-S9). Let C(y*, z*, o*, p*) be a connected com-
ponent of the closure of all the nonconstant periodic solutions of system (1.2), bifurcated
from (y*, 2, o*, p*) in the Fuller space C(R/2m; RNt x R2. Let I C R be an open
interval and v := (y, z, 6, p) € C(y*, z¥, o™, p*). If there is no delay-period disparity
set at (t, u) foranyt € I, then

(i) there exists m € N such thatm p = 7(t) = z5 foreveryt € I;
(i) v is a non-constant solution with 7(t) = z5 for everyt € I;
(iii) there existan openinterval I' C R and an open neighorhood U’ of v so that I’ x (U’ N
C(y*, z*, 0%, p*)) is a delay-period disparity set with v € U' N C(y*, z* o*, p*),
and the inequality z5 < Z(t) holds for every t € I'.

Proof (i) By Definition 2, for every ¢ € I, there exists m € N such that zZ(t) = m p. Note
that z(r) is continuous, z(t) = m p for every t € I. Then, for every ¢ € I, we have

§0) = 5= F @), 50). 5). (2.29)
T
20) = zig(&(t), mp, &) = 0. (2.30)
T
By (2.30), we have
(1) = %g—f(ﬁ(t), mp), o) f(y@), y(), o) =0. (2.31)

By (S6), (2.30) and (2.31), we have y(t) = ys on I. Hence, by (S5) and by (2.30), we have
7(t) = zs = mp on I. This finishes the proof of (i).

(ii) Note that the stationary solutions of (1.1) and (1.2) are equal. That is, (x5, 7o) =
(Yo, 20) forevery o € R.

If v is a constant solution, then by (i) we have z(t) = zz = mp and y(t) = ys for
all r € R. Then (y5, z5, 0, p) is a bifurcation point in C(y*, z*, o*, p*) which satisfies
zs = mp for some m € N. This contradicts with assumption (S8). So v is a non-constant
solution with z(t) = z5 forallt € I.

(iii)) Now we show that there exists #p € R such that z(#9) # z5. If not, 7(¢) = z5 for all
t € R, then

() 1) ) 65) )
_ (y (27”) %, a)
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is a solution of (1.1). Then, by Lemma 3, (x, 7) is not t5-periodic. Then we have mp # z5
for any m e N. This is a contradiction to (i). )
Therefore, there exists 7y € R such that z(f9) # z5. That is, f(%to) # 75. Note that, by

(i), (x, 7) is 75-periodic and T (t) = 75 on %I . Then, by Lemma 5, there exists #; € R such
that

() > 5. (2.32)

By the continuity of T and by (2.32), there exists a finite interval (a, b) > t; so that for every
te(a,b)

T(t) > 15. (2.33)

We claim that there exists 7o € (a, b) so that v is not T(fp)-periodic. Indeed, if not, v is
7(t)-periodic for every t € (a, b). Then by the continuity of T and by (2.33), there exist
t1, tp € (a, b) and an interval (7 (¢1), T(t2)) with T(f2) > T(¢1), so that T is p-periodic for
all p € (z(t1), t(t2)). Hence v is a constant solution. This is a contradiction with (ii) and
the claim is proved.

Then, we have 7(f9) # mp for all m € N. By Lemma 2, there exists an open interval
I} > tp and an open neighborhood U; > (X, 7, &, p) such that every solution (x, 7, o, p)
of (1.1) in Uy N C(x*, t*, o*, p*) satisfies t(¢t) # mp forallm € Nand ¢ € I,. Note that
T is continuous at t = . We can therefore choose /; small enough so that (2.33) holds for
allt € 1.

Let ¢ be the continuous mapping defined by (2.22). Then we can choose an open set
U' € C(R/2m; RN x R? small enough so that o € U’ € .~ (U;) and

p
I = — . ]
N 5 n
{p:(y, 2,0, p)eU’}

is nonempty. It follows from the definition of ¢ that mp # z(t) for every solution
v, z,0,p) €U NCH* z*, 0% p*),m € Nand ¢t € I'. In particular, noting that (2.33)
holds forall 7 € Iy and I’ € £ 11, we have

z(t) > z5 (2.34)
for every ¢ € I'. This completes the proof. m}

Now we are able to state our main result in this subsection.

Theorem 6 Ler C(y*, z*, o™, p*) be a connected component of the closure of all the non-
constant periodic solutions of system (1.2), bifurcated from (y*, z*, o*, p*) in the Fuller
space C(R/2m; RNTY) x R2. Suppose that (1.1) satisfies (S5-S9). If p* < z*, then, for
every (v, z, o, p) € C(y*, z*, o*, p*), p < z(t) for some t € R.

Proof By Theorem 5 and (S8), there exist an open interval /* C R and an open set U* in
C(R/2m; RNt x R? such that I* x (U* N C(y*, z*, o*, p*)) is a delay-period disparity
set with (y*, z*, o*, p*) e U*.

Let A* > (y*, z*, o*, p*)beaconnected componentof (U*NC(y*, z*, o*, p*)).Then,
I*x A*is connected in Rx C(R/2m; RV+1) xR% Define § : Rx C(R/27; RVt)xR? - R
by

S(L y, 2, 0, P) =p _Z(t)-
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*

Note that we have p* < z*. Then it follows that S(¢, y*, z*, o
that § is continuous. By Lemma 4, we have

, p*) = p* —z* < 0. Note

S(t, y,z,0,p)=p—201) <0 (2.35)

forevery (¢, y, z, o, p) € I x A*, for otherwise, there exists (¢, o, 20, 00, po) € I*x A*
such that pg = zo(#p) which contradicts the fact that I* x A™* is a subset of the forbidden
range of delay I* x (U* N C(y*, z*, o*, p™)).

Now we show that there exists a sequence of connected subsets of C(y*, z*, o
denoted by {A,,}"° |, np € N or ng = 400, which satisfies that

n=1°

*

. D),

(i) A*C A CAy C-- CApand U2 A, = C(y*, 2, o, p*);
(ii) forevery (y, z, o, p) € A, withn € {1, 2, ..., no}, p < z(t) at some ¢t € R.

Let A := A*. If Ay = C(y*, z*, o*, p*)) then we are done by (2.35). If not,
since the only sets that are both closed and open in the connected topological space
C(y*, z*, o™, p*) are the empty set and the connected component C (y*, z*, o*, p*) itself,
A1 2 (y*, z%, o*, p*)isnotboth closed and open. Then the boundary of A in the sense of
the relative topology induced by C(y*, z*, o*, p*) is nonempty. That is,

0A] # 0. (2.36)

Letv = (y, z, 6, p) € dA;. If there exists #; € I} := I* and a delay-period disparity
set I’ x (U' N C(y*, z*, o*, p*)) such that (11, 0) € I’ x (U'NC(y*, z*, o*, p*), and if
Ay > v is the connected component of U’ N C(y*, z*, o*, p*), then itis clear that A U Aj
is connected. As Aj is closed we have p < z(#1). Then, by Lemma 4 we have

S(t, y, z, 0, p) = p—z(t) <0 forevery (¢, y, z, o, p) € I' x Aj. 2.37)

If, for any ¢ € I, there is no delay-period disparity set at (¢, u#), then by Lemma 6,
there exists a delay-period disparity set I” x (U” N C(y*, z*, o*, p*) with ¥ € U’ N
C(y* z*, o*, p*) and

mp =z < 7(t) foreveryt € I” and m € N. (2.38)

*

Let A; > ¥ be the connected component of U” N C(y*, z*, o*, p*). It is clear that

A1 U Aj is connected. Then, by (2.38) and Lemma 4,
S(t, y,z,0, p)=p—2z(@) <0 forany (¢, y, z, 0, p) € I" x Aj. (2.39)

By (2.37) and (2.39) we know that if v € 3Aj, then there exists a delay-period dis-
Harity set I x (UNC®u* z* o* p*)) with A; > v being the connected component of
UNCy*, z* o*, p*) sothat

S, y,z,0, p)=p—z(@t) <0 forany (¢, y, z, 0, p) € I x Aj. (2.40)

For every v € A1, we find a Aj satisfying (2.40). Then we define

Ay =AU U Aj.
VEIA]

It follows from (2.35), (2.37) and (2.39) that, for any (y, z, o, p) € A2, p < z(t) for some
t € R. Note that for any v € dA1, A1 U Aj is connected. Therefore, A is connected.
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Note that the existence of A, only depends on the fact that 0A; # @, in the sense of
the relative topology induced by C(y*, z*, o*, p*). Beginning with n = 1, we can always
recursively construct a connected subset foreachn > 1,n € N, with 0A,, # 0

A=A, U | 45 (2.41)

VENA,
satisfying that for every (y, z, o, p) € Ap+1,
p < z(t) forsomet € R, (2.42)

where I, x (U, N C(y*, z*, o*, p*)) is a delay-period disparity set at (t, v) € I, X A,
and Aj is the connected component of Uj,.

If the construction in (2.41) stops at some nyp € N with dA,, = @. Then A,, =
C(y*, z*, o*, p*) and we are done. If not, then np = +o0o and we obtain a sequence
of sets {An}:{g which is a totally ordered family of sets with respect to set inclusion relation
“C”. Note that U::‘X]’ A, is the upper bound of {A, };l":‘xl’ Then by Zorn’s lemma, there exists
a maximal element A, for the sequence {A,,}:;Xf.

Now we show that dA, = #J, in the sense of the relative topology induced by
C(y*, z%, o*, p*). Suppose not, then there exist v € d A, and Aj, which is the connected
component of Us, Where Ioo X (Uso X C(¥*, z*, 0, p*)) is a delay-period disparity set
at (t, v) € I, X 0As. We distinguish two cases:

Case 1. A; \ Ac = ¥ for all v € dA. Then A is a connected component of
C(y*, 7%, o*, p*). Recall that C(y*, z*, o*, p*) itself is a connected component of the
closure of all the nonconstant periodic solutions of system (1.2). So we have Ay, =
C(y*, z*, o*, p*). Thatis dAx = @. This is a contradiction.

Case 2. Ay \ Axo # . But this means Aoc C Ao U Ay which contradicts the maximality
of Axo.

The contradictions show that d A, = @, and hence Ao, = C(y*, z*, o*, p*). Therefore,
(2.42) holds for all (v, z, o, p) € C(y*, z*, o*, p*). This completes the proof. O

Theorem 7 Let C(y*, z*, o*, p*) be a connected component of the closure of all the non-
constant periodic solutions of system (1.2), bifurcated at (y*, z*, o*, p*) inthe Fuller space
C(R/2m; RN+ X R2. Suppose that (1.1) satisfies (S5-S9). If there exists a continuous func-
tion M1 : R > 0 — Mj(0) > 0 such that for every (y, z,0, p) € C(y*, z*, o*, p*) we
have

1, Dl ry+1y < Mi(o), (2.43)
then p* < z* implies that p < M1(0) for every (v, z, o, p) € C(y*, z*, o*, p™).

Proof By Theorem 6, we have, for every (y, z, o, p) € C(y*, z¥, o, p*), that p < z(r)
for some ¢ € R. Then, by (2.43), we have p < M/ (o). O

3 Uniform Boundedness of Periodic Solutions

We refer to [13] for the concepts of balanced, convex and absorbing subsets and the Min-
kowski functional.

Lemma 7 Let G be a convex absorbing subset of a locally convex linear topological space
X which defines a Minkowski functional pg : X — R with pg(x) = inf{a > 0: o~ 'x :=

x/a € G}. Foreach y > 0 define
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G” = {x: pa(x) < y). 3.1)
Then x € 0GY if and only if pg(x) = y.
Proof 1t is clear that G = yG. By linearity, the Minkowski functional pgr : X — R
determined by G? is well-defined. By (3.1) and by the definition of Minkowski functional,
we have
x €0GY < pgor(x) =1
— infla >0:x/a € G'} =1
<— inf{a > 0: pgx/a) <y}=1
<— inf{a >0: pgx)/y <a}=1
— pcx) =vy.
]

Lemma 8 Ler G and G, be convex absorbing subsets of locally convex linear topological
spaces X1 and X», respectively. Let the Minkowski functionals associated with G| and G, be
PG, (x) and pg, (1), respectively. Then the Minkowski functional defined by G = G| x G2
exists and satisfies

pG(x, ©) = max{pg, (x), pG,(T)}.

Proof The existence of pg(x, 1) is clear from the definition of a Minkowski functional. Let
A={a:x/a € G1},B = {a : t/a € G3}. Then it is clear that inf AN B > inf A and
inf AN B > inf B. It follows that inf A N B > max{inf A, inf B}, thatis

pc(x, ©) = max{pg, (x), pG,(7)}. (3.2)

On the other hand, if ¢4 = inf A > ap = inf B, since G| and G, are absorbing, we have
for every € > 0,04 + € € A, a4 + € € B. Therefore, inf AN B < oy + €. Similarly, if
oy = inf A < ap = inf B, we have inf AN B < ap + €. Hence we obtaininf AN B <
max{oa, ap} + €. By the arbitrariness of € > 0, we getinf A N B < max{o4, ap}, thatis

pc(x, 1) < max{pg, (x), pG,(7)}. (3.3)

By (3.2) and (3.3), we have

pG(x, T) = max{pg, (x), pG,(T)}.

This completes the proof. O
An immediate corollary of Lemma 7 and Lemma 8 is the following

Corollary 1 Let G| and G, be convex absorbing subsets of locally convex linear topolog-
ical spaces X1 and X, respectively. Let pg,(x) and pg,(t) be the Minkowski functionals
associated with G and G, respectively. Let G = G| x G2, and for every y > 0, define
G" ={(x, 1) : pe(x, ) < 7},
Gl ={x: pG,(x) <y}
G = {t: pG,(v) < y}.
Then G¥ = G| x G} and G” = G| x GJ.
In this section, we use “-” to denote the usual inner product of an Euclidean space and use
G¢ and D¢ to denote the complementary sets of G and D, respectively.
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We can now state and prove the geometric conditions for uniform boundedness of the
periodic solutions of (1.1) with o € ¥, where £ C R is a given subset.

Theorem 8 Suppose that G C RN and G, C R are bounded, balanced, convex and
absorbing open subsets with associated Minkowski functionals pg,(x) and pg,(t). Let
G=G xGrand (x, 7T) = ﬁ(x, 7) € 3G for (x, T) # 0. Assume that there exists a
vector-valued function N : 3G \ (3G x dG) — RNH1\ {0} satisfying

@) : G C Uy U U, where

Uy = N {, v): Nx, 1) - (u—x, v —1) <0
(x, 1)€dG\(9G 1 x3G2)

U= (] @ v:ix-@-x<0 1 (v-1) <0k
(x,7)€dG1x3G>

@ii): Nx,7) - (f(x, X, 0), gx, T, 0)) is positive (or negative) for all (x, t) € G°
with (X, T) € 3G x 3Gy, and all (X, 7) € RY x R with pg(¥, T) < pc(x, 7)
ando € X;

@iii) : x- f(x, X, o)and t-g(x, T, 0) are both positive (or negative) for all (x, t) € G¢
with (X, T) € 3G1 X 3G, and all (X, 7) € RN x R with pg(X, 1) < pc(x, 7)
ando € X.

Then the range of all the periodic solutions of (1.1) with o € X is contained in G.

Remark 2 The prototype of the vector-valued function N (x, 7) is the (outer or inner) normal
of G which is not defined on 0G| x dG,. If G is a rectangle in a planar space, 0G| X dG2
are four corner points of G. Conditions (ii)—(iii) of Theorem 8 require that the vector field
determined by the right hand side of system (1.1) has positive (or negative) inner product
with respect to the normal of a given rectangle G, where the vector field is evaluated at
(x, T) € RN*! which satisfies (x, t) € G and pg(X, 1) < pg(x, 1).

Proof Letting (x, t)(t) = (v, z)(Bt) with a normalization parameter 8 > 0. we only need
to consider the 277 -periodic solutions of the following system

( Y1) = 5 F @), ¥t = Bz(0)), 0),

20 = L), ). o). G4

where x € RN and 7 € R. Itis clear that if (x(¢), t(¢)) and (y(1), z()) are solutions of (1.1)
and (3.4), respectively, then (x(¢), 7(¢)) € G forallt € R if and only if (y(¢), z(¢)) € G for
allt € R.

For simplicity, we denote y(t — Bz(t)) by y(¢) for each solution (y(z), z(¢)) of (3.4).
Let (y, z) be the positive constant multiple of (y, z) so that (y, z) € dG. That is, for every
(y, 2) € RVF1\ {0}, there exists (¥, Z) € 3G so that (y, 2) = pG(y, 2)(F, 2).

Suppose there exists a 27 -periodic solution of (3.4) so that (y(fp), z(t)) € G for some
to € [0, 2] and define the map y : R 5 t — pg(y(t), z(t)) € R. Since RN+ 5
v, 2) = pg(y,z2) € Rand R 3 t — (y(t), z(t)) € RN+ are continuous, the map
y it = pc(y(t), z(1)) is continuous and there exist y* > 1 and ¢* € [0, 2] such that

y*=pc(y), z(t) = lg[%a;ﬂlpc(y(l), z(1)). (3.5)

Then, by Lemma 7 and (3.5), we have (y(*), z(t*)) € 8G?" and G¥© € G forallt € R.
Therefore, by Corollary 1, (y(¢), z(t)) € G"' = GJI/ X Gg forallt € [0, 2r]. In particular,
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by periodicity of (y(¢), z(¢)), we obtain (y(t — Bz(t)), z(t)) € G”" forallt e [0, 27] and
B > 0. Therefore, we have

pe(y(t* — Bz(t™), z(t)) < pc(y(t™), z(t™)). (3.6)
We first suppose that (y(t*), z(t*)) = m(y(t*), z(t*)) € Uj. Then, by (3.5),

(3.6) and by assumption (ii), we have (we use the positiveness assumption in the proof. The
proof is similar if we use the negativeness assumption. See Remark 3 for details.)

1 1
N (3, (")) - [Ef(y(t*)’ y(* = Bz(t%)), o), Eg(y(t*), 2(t%), 0)] >0. 3.7)
Let us write

[y o 9* + shyds h

- [z(t*)] * [f(} 2t +sh)dsh:| ’

and choose 4 > 0 small enough so that

|:y(t* +h):|

zZ(t* +h) 3-8)

1 1
NG, 2(t7) - [Ef(y(t), y(t = Bz(1)), 0), Eg(y(t), z(1), 0)} >0 (39

for t* <t < t* + h. Then by (3.4), (3.8) and (3.9), we have
NGE), z(t™) - E* +h) — y(™), z(t* +h) — z(t%)) > 0. (3.10)

Now we distinguish the following two cases in order to deduce contradictions:

Case 1. If (y(t* + h), z(t* + h)) € G, then y* "' (y(t* + h), z(t* + h)) € G since
y* > 1. Also, we have (y(t*), z(t*)) = (y*y(t*), y*z(t*)) with (y(¢*), z(t*)) € dG. Then
by assumption (i), we have

NG, 26 - (v + ) =50, 772" + ) = 269) 0. B11)
On the other hand, we have by (3.10)
0 < NG, Z) - (" + k) = (™), 2"+ ) = 2)
= VINGE, 26 - (v @ 0 =56, v T )~ 269) . (G2)

which contradicts (3.11). B
Case 2. If (y(t* + h), z(t* + h)) € G, then by (3.5), we have

1 <yp=pc(yE* +h), z(t" + b)) < pe(y(™), z(t%) = y*. (3.13)

Also, we have (y(t* + h), z(t* + h)) = yp (Y (" + h), 2™ + h)) with (Y™ + h), z(*
+h)) € 3G. By the convexity of G and by the inequality y;,/y* < 1, we have,

(%y(z* +h), %z(r* + h)) cé.
Then, by assumption (i), we have

NG, 2(t9) - (%ﬁ(t* +h) =3, %Z(t* +h) - Z(t*)) =0. @14
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On the other hand, we have by (3.10)

0 < N, z(™) - (™ + h) — y(™), z(t* +h) — z(t"))
=y NG, () - (%ﬁ(f‘ +h) = y(t), %Z(t* +h) — Z(t*)), (3.15)
which contradicts (3.14).

Secondly, we suppose that (y(¢*), z(t*)) = m(y(t*), z(t*)) € U,. By
assumption (iii), we have

Seeky L L * * *
X(t*) 1,gf(y(t* )s y(i Bz(*)), o) >0, (3.16)
2(r7) - e (y(r?), z(r%), o) > 0.
Therefore, we can choose & > 0 small enough so that for t* <t < t*+h
5%y . L _
f(f*) {;f(y(t), y(t — Bz(1)), o) > 0, (3.17)
2(17) - gg(y(1), 2(1), o) > 0.
Then by (3.4), (3.8) and (3.17), we have
ya*) - (y* +h) — y(")) > 0,
[ 2) - (2 + h) — 2(r%) > 0. (3.18)

We distinguish the following two cases in order to deduce contradictions:

Case I'. If (y(t* + h), z(t* + h)) € G, then y* ' (y(t* + h), z(t* + h)) € G since
y* > 1. Also, we have (y(t*), z(t*)) = (y*y(t*), y*z(t*)) with (¥ (¢*), z(t*)) € dG. Then
by assumption (i), we have

) - (@t + h) — §(1%) <0,
’ 20 - (12 + ) — Z%)) < 0, -19)
On the other hand, we have by (3.18)
[ FA) - 4+ h) — y() = y*3a*) - (T y* + h) — (%) > 0,
() - 2 4 ) — 2(1%) = y*2*) - (et + h) — 2(%)) > 0,

which contradicts (3.19). B .
Case 2'. If (y(t* + h), z(t* + h)) € G, then by (3.13) and the convexity of G, we have,

(3.20)

(y—l:j(t* +h), Pzt + h)) el
y y

where y, = pg(y(t* + h), z(t* 4+ h)). Then, by assumption (i), we have

y*) - (Ly@* +h) —30*) <0,
[ () - (V;—iz(z* Y h)—Z(t%) < 0. (321
On the other hand, we have by (3.18)
Y -y +h) = y(*) = y*y*) - (%ﬁ(t* +h)—y@*) >0, (3.22)
2t - @+ h) — 2(t) = y*I) - (EZE +h) — (%) > 0, :

which contradicts (3.21). Therefore, contradictions are obtained in all the cases and the proof
is complete. o
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Remark 3 1f we use < 0 instead of > 0 in the inequality (3.7), we need to change (3.8) to
be the difference between (y(¢*), z(t*)) and (y(t* — h), z(t* — h)). That is,

[y(f*)} _ [y(r* - h)] | o s = shyds
2(1%) 2(t* = h) Jo 2@* —shydsh |
Then the rest of the proof is similar.

Corollary 2 Suppose that G; C RN and G, C R are bounded, balanced, convex and
absorbing open subsets which define the Minkowski functionals pg,(x) and pg,(t). Sup-
pose N : 3G \ (0G| x 3G2) — RN\ (0} is the outer normal of G. Fix o € ¥ and let
G =G x Gy and
Fnax(x, 0) = max x- fx, x, 0),
{x: pg, (N)=pg, ()}
Fhin(x, 0) = min x- f(x, x, o).
{x: pg, ()=pg, (x)}
Then the range of all the periodic solutions of (1.1) are contained in G if either of the following
conditions (H1) or (H2) holds:

(H1) Fnax(x, 0) <O0foranyx € G{andt -g(x, t) <0foranyt € G5, x € RV,
(H2) Fuin(x, 0) > 0foranyx € G{andt - g(x, ) > 0 foranyt € G5, x € RN,

Proof We prove the conclusions by applying Theorem 8. By Corollary 1, there exist Minkow-
ski functionals pg(x, ), pG, (x) and pg, (t) defined on RN x R, RY and R, respectively.
For every (x, 7) € G, let (x, 7) = (x, 7)/pc(x, T) € dG. Recall that N : G \ (0G| X
9G>) — RNT1\ {0} is the outer normal of the convex set G. Then condition (i) of Theorem 8
is satisfied.

Suppose (H1) holds. Then we have

{x fx, % 0) <0, forall (x, ¥) € GS x RY with pg, (¥) < pg, (x), (3.232)

{r Cg(x, 7, 0) <0, forall 7 € GS, x € RV, (3.23b)

For every (x, t) € G¢ with pg(x, t) < pg(x, 1), let (x, T) = (x, 7)/pc(x, T) € 0G.
Note that 0G = (G x 3G2) U (0G| x G2) U (0G| x dG7). We distinguish the following
three cases:

Case 1. If (x, T) € G| x 3G, then N(x, T7) = (0, )/ pc(x, ) # 0 is an outer normal
of G. We claim that 7 € G holds.

Indeed, since x € Gi then we have pg,(X) = pg,(x/pc(x, t)) < 1. Therefore,
PG, (x) < pg(x, ). By Lemma 8, we know that pg(x, 7) = max{pg, (x), pc,(7)}.
Then we have pg, (x) < pg,(7) and pg(x, T) = pgG,(r) > 1. Then by Lemma 7, we have
T e GS.

Then by (3.23b) we have

N&x, ) - (f(x, X, 0), glx, 1, 0)) =71-g(x, 7, 0)/pc(x, T) <O.

Case 2. If (x, T) € 0G1 x Gy, then N(x, T) = (x, 0)/pc(x, ) # 0 is an outer normal
of G. We claim that x € G{ and pg, (¥) < pg, (x) hold.

Indeed, since T € G» then we have pg,(T) = pg,(t/pc(x, t)) < 1. Therefore,
PG,(t) < pg(x, t). By Lemma 8, we know that pg(x, 7) = max{pg, (x), pc,(7)}.
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Then we have pg,(t) < pg,(x) and pg(x, T) = pg,(x) > 1. Then by Lemma 7, we
have x € G{. Moreover, it follows again by Lemma 8 that pg (X, ) < pg(x, T) implies
PG, (X) < pg, (x). This proves the claim.

By (3.23a), we have

N(x, ) - (f(x,x,0), gx, 1,0)=x- f(x, X, 0)/pcg(x, T) <O.

From Case | and Case 2, we know that N(x, 7) - (f(x, X, o), g(x, 7, 0)) is negative def-
inite for all (x, 7) € G°and o € ¥ with (X, 7) & 3G1 x G5, and all (X, 7) € RY xR
with pg(x, 1) < pg(x, 7). That is, condition (ii) of Theorem 8 is satisfied.

Case 3. If (x, T) € 0G| x 0G2, we claim that (x, 7) € G| x G5 and pg, (¥) = pg, (x)
hold.

Indeed, since (x, T) € dG; x dGy, then we have pg,(X) = pg,(x/pc(x, 7)) =1
and pg,(T) = pG,(t/pc(x, ©)) = 1. Therefore, pc(x, ) = pg,(x) = pg, (7). Since
(x, ) € G, we have pg,(x) = pg,(t) = pg(x, t) > 1. Then by Lemma 7, we have
(x, 7) € G x G5. Moreover, it follows again by Lemma 8 that pg(X, ) < pc(x, T)
implies pg, (X¥) < pg, (x). This proves the claim.

Then by (3.23a) and (3.23b) we have

x-f(x,X,0)<0and t-g(x, 7, 0) <O0.

>From Case 3, for all (x, t) € G°and o € X with (X, T) € 0G| x 3Gy, and all (X, 1) €
RY x R with pG(x, 1) < pg(x, t). Thatis, condition (iii) of Theorem 8 is satisfied.

It follows from Theorem 8 that the range of all the periodic solutions of (1.1) witho € X is
contained in G. Similarly, if (H2) holds, we can obtain from Theorem 8 the same conclusion.
This completes the proof. O

4 Global Continuation of Rapidly Oscillating Periodic Solutions: An Example

In this section we illustrate our general results by applying them to the study of the global
continua of rapidly oscillating periodic solutions for the following differential equations with
state-dependent delay,

[ X(1) = —px(t) + a?b(x(t — T(1))), @1

T(t) =1 —h(x(t)) - (1 +tanh 7(2)),

where tanh(t) = (¢** — 1)/(¢** + 1) and & > 0 is a constant. We make the following
assumptions:

(1) b, h : R = R are C? functions with '(0) = —1;
(ap) There exist hg < hyin (1/2, 1) such that iy > h(x) > ho for all x € R;
(o3) b is decreasing on R;
(a4) xb(x) < O for x # 0, and there exists a continuous function M : R >0 — M(o) €
(0, 4+00) so that
b(x) jz
— >

X o?

for every x € R with |x| > M (0);
(as) There exists My > 0 such that |’ (x)| < M for every x € R;
(ag) H'(x) = 0 only if x satisfies —pux + o2b(x) = 0.
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Remark 4 We use tanh(t) just for the sake of simplicity. Other types of functions can be
used with minor changes of our arguments below.

We start with the uniform boundedness of periodic solutions (x(¢), t(¢)) of (4.1).

Lemma 9 Assume («1)—(cq) hold. Then the range of every periodic solution (x, ) of (4.1)
with o € R is contained in

In(2hg — 1)
Q) = (—M(o), M(0)) x |0, )
Proof If o = 0, the only periodic solution is (0, —%). By («2) and by («3), we

have 0 < —1CGAOZD - In@ho=D) 354 0 € (—M(0), M(0)). It follows that

In(2R(0) — 1 In(2hg — 1
(0, —%) € (=M (0), M(0)) x (0, —%) 4.2)
Now we assume o # 0. If x > 0, then, by assumption («3), we have
b
max  x-(—ux + 02b(y)) = max —o’x’ (% - ﬂ)
ye{yiyl=lxl} ye{y:lyl=lxl} o X
= —o2x? (i - b(—x)).
o2 X
Then by (a4) we have
b(—
max  x-(—ux —i—ozb(y)) = —ox? (% — ( x)) <0
ye{y:lyl=lxl} o X
for every x € R with x > M (o). It follows that
max  x- (—px 4+ o2b(y)) < 0forx > M(o). (4.3)
yely:lyl=lxl}
Similarly, if x < 0, then by assumption («3), we have
2
b
max  x-(—ux + azb(y)) = max —x’ (u _g (y))
ye{y:lyl=lxl} ye{y:yl=lxl} X
b(—
:—szz(%— ( X)).
o X
By («4) we have
b(—
max  x-(—ux + ozb(y)) = —o2x? (% — ( x)) <0
ye{yilyl=Ixl} o X
for every x withx < —M (o).
Therefore, we have
max  x- (—pux +o2b(y)) < 0forx < —M(o). (4.4)
ye{y:lyl=lxl}
Then by (4.3) and (4.4) we have
max x-(—ux + Uzb(y)) <0 ifx € (=M(o), M(0)). 4.5)

ye{y:yl=lxl}
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It is clear from («y) that for all x € R,

lim t-(1—h(x)(1+tanht)) <O.
T—>+00

To obtain an upper bound for t, where (x, 7) is a periodic solution of (4.1), we introduce
the following change of variable:

() = v+ P 4.6)

Then system (4.1) is transformed to

[)'c(t) = —ux(0) + 0% (x (1 - 20 + 22=DY), @7

2(t) = 1 — h(x(1)) (1 + tanh (z(t) — § In(2ho — 1))).

By («2) and the monotonicity of tanh t, we have, for every z < % < 0 and for all

x €R,
z- (1 —h(x) (1 + tanh (z — i]n(Zho - l))))

<z-(—h(x) (1 + tanh (0)))
<z-(1—"hy)
<0. (4.8)

In(2ho—1)
4

Similarly, by («2) and the monotonicity of tanh t, for every z > — > 0 and for all

x € R, we have
1
z-(1—hx) (1 + tanh (z — —1In(2hy — 1))))

(

z- (1 h(x) (1 + tanh (—7 In(2ho — 1))))
(1 h(x) (1 + l_ho))

(-5)

A

h(x
ho
<0. (4.9)

1—

Then, by (4.8) and (4.9), we have, for any z ¢ (ln(ﬂi{’_l), _1n(2i20—1)) and for all x € R,

z- (l — h(x) (1 + tanh (z — iln(Zho — 1)))) < 0. (4.10)

Thus it follows from Corollary 2, (4.5) and (4.10) that the range of all the periodic solutions
(x, 2) of (4.7) are contained in (—M (@), M(0)) x (M24=D, —In20=D) Then, by (4.6),
all periodic solutions (x, t) of (4.1) with o # 0 are contained in

In(2ho — 1)
)

Q) = (=M(o), M(0)) x (0, - (4.11)
Then by (4.2) and (4.11), the proof is complete. O
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Now we consider the global Hopf bifurcation problem of system (4.1) under the assump-
tions (a1)—(ag). By (@4), (x, 7) = (0, t¥) is the only stationary solution of (4.1), where
= —% In(22(0) — 1) > 0. Freezing the state-dependent delay 7(z) at t* for the term
x(t —t(t)) of (4.1) and linearizing the resulting system with constant delay at the stationary
solution (0, 7*), we obtain the following formal linearization of system (4.1)

X(t) = —puX(t) — X (t — ),
‘ T(t) =—pX (1) —qT (), (4.12)
where
MO, L
"= 00 1T o Y (4.13)

In the following, we regard o as the bifurcation parameter. We obtain the characteristic
equation of the linear system corresponding to (4.12)

A+p+o2e "M +q) =0. (4.14)

Since the zero of A + ¢ = 0 is —g which is real, Hopf bifurcation points are related to zeros
of only the first factor (A 4+ w4+ o2¢~7 *). To locate local Hopf bifurcation points we let
A=iB,B>0,in A+ pu+ oZe”"* =0 and express the resulting equation in terms of its
real and imaginary parts as

[ B = o?sin(z*p), (4.15)

w=—o?cos(t*p).

We illustrate in the following lemma the close relation between (4.15) and the following
equations

xg— _B
[ tan fﬂff A (4.16)
=0"—pu.
Lemma 10 We have the following conclusions:
(i) All the positive solutions of (4.15) can be represented by an infinite sequence {8, };:‘Xl)
which satisfies 0 < B1 < Ba < -+ < By < -+, limy— 400 By = +00 and
(4n —3)r (4n—-2)m
Bn € ( o 7o forn > 1.

(ii) =iy are characteristic values of the stationary solution (0, t*, o0,), where

1/4

on =% (f +1°) "
If o # oy, then the stationary solution (0, t*, o) has no purely imaginary charac-
teristic value.

(iii) Let My(0) = uy(o) + iv, (o) be the root of (4.14) for o close to o, such that
Uy (o) + iv,(on) = iBy. Then

2 (WHB)T R
on (1 + pt9)? + (But*)?

u;, (o) o=0, —
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Proof (i) We first claim that (4.16) has infinitely many solutions 0 < 81 < fr < --- <
Bj < ---suchthatlim;_, ;o B; = +oo and

B e ((Zj — D 2jn

2t% 0 2r*

) for j > 1. 4.17)

Note that the function z = tan t* is a strictly increasing 1-1 mapping from the open inter-
val (M 2jm ) to (~00, 0) with tan(r*3%) = 0 and lim
N

2% 0 2t* 27*

*(2j7,)ﬂ)+ tan(f) = —oo
27%

for every j > 1. Then, it has a unique intersection with the straight line z = —8/u, n > 0,

in the strip area ((2"2% 22’%) X (—o0, 0) on the (B, z)-plane. Thus the claim follows.

By assuming —8/0> = sin @ and —u /0% = cos @ in the second equation of (4.16), then
we have tan = — tan 7™ and hence 9 = km — t*B for k € Z. Depending on whether & is
even or odd, the set of solutions {8 ]} 1 of (4.16) can be categorized into two classes which
solve the following equations (I) and (II) respectively. Note that 8 > 0, ©x > O and o # 0.
There is no common solution for (I) and (II).

2 o * 2 _ : *
(D‘ﬁ/o =sint*B, (II)[ﬂ/U = —sint*8, 4.18)

w/o? = —cost*B, w/o? = cost*B.

It is clear that equation (D) is exactly (4.15). To prove (i), we only need to identify solutions
of (I) from {8 ]} 1 which satisfies (4.17).

If j=2m for some m €N, then by (4.17) we have t*By,, € Qmm — /2, 2mmn), sin(t*
Bam) < 0 and cos(t*Byy,) > 0. Then By, is not the solution of (I) but the solution of (II)
since we have By,/0% > 0 and Ba, /0% # sint*Bo,. If j = 2m — 1 for some m € N,
then by (4.17) we have t*By,,—1 € Qma — 37w /2, 2max — 7) and sin(t*B2,,,—1) > 0. Then
Bom—1 1s not the solution of (II) but the solution of (I) since we have B5,,—1 /U2 > 0 and
Bom—1/0% # — sin(t* Bom—1).

Note that j € Nis an arbitrary odd number. The set of positive solutions of (4.15) can be
represented by the infinite sequence {/3,1}:2? where §, satisfies

((4n -3 (4n—-2)m
Pu € 2t% 2r*

), forn > 1.

This completes the proof of (i).
The conclusion (ii) follows from the second equation of (4.15).
To prove (iii), let F(A, o) = A+ pu + o2e~""*. Then we have
] F
anl
By the implicit function theorem, there exists a differentiable function o — A, (0) = u, (o)
+ iv, (o) which is a root of (4.14) for o close to o, with u, (0,) + iv,(0o,) = iB,. Note

that 1,,(0) — iB, # q as 0 — o,. Now we substitute A by A, (¢) = u,(0) + iv,(c) into
A+ +02e " =0 and obtain

=ifn, U_o'n—l_O' f e Tlﬂ"#o

Un(0) + iV, (0) + 1 + g 2e™ T (@@ —

Differentiating both sides of the above equation with respect to o and then substituting
o = o,, we have

[ (1 — r cos(r*ﬂ,,)) u, (oy) — 0,,21:* sin(t*By) v, (o,) = —20y, cos(t*By).,

a S‘“<T*ﬁn>“n(ﬂn>+<1—o,fr*cos(r*ﬁn))v;(on>=zan sinr*g). 1
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Note that from (i), we have t* > 0, 0, # 0 and 8, > 0 for every n > 1. We combine (4.19)
with (4.15) to obtain

2 (P4

on (14 pt*)? + (Brt*)?

This completes the proof. O

M;, (o) o=0, —

Now we are able to state our main results.

Theorem 9 Assume (aj—ag) hold. Let B, € ((4”2;3)”, (4"2;3)”) ,n > 1, be given in (i) of

Lemma 10. Let o, = £(u* + B)"/* for n > 1. Then

(a) There exists an unbounded connected component C (0, ™, op, %) of the closure of

all the nonconstant periodic solutions of system (4.1), bifurcated from (0, t*, o,, 2—7:)
in the Fuller space where o satisfies sgn(o,)o > 0.

(b) (0, t*, oy, %) ZC (O, ™, o,, %—Z)fore‘veryn > 2.

(c) For every n > 2, the projection of C (0, ™, op, %—7:) onto the parameter space R is

unbounded in (0, +00) if o, > 0 and is unbounded in (—oo, 0) if o, < 0.

Proof (a) We prove by applying Theorem 1. We first verify assumptions (S1-S3). It is clear
that (ap) and («) imply (S1) and (S2). Let us check (S3). Indeed, noticing that o, =
+(u? + Y4, b'(0) = —1 and B, > 0, we have

0 0 2 2
ﬁ * 3792 [_'U“G] +o b(92)] o=0y.01=6,=0 — M7 % = 0. (4.20)
Also, it follows from t* = —% that
3 427"
87)/2 (1 = h(y1)(1 + tanh (2)) o=0,, Y1=0, yp=1* = —h(0) - m < 0. (4.21)

Therefore, condition (S3) is satisfied by system (4.1).

We note from Lemma 10 (i), (ii) and (iii) that every center (including those with o < 0)
of system (4.12) is isolated. We now calculate the crossing number of (0, t*, o,, B8,). Let
u, (o) + iv, (o) be the characteristic value of (4.12) such that u, (0,,) + iv,(o,) = if,. By
(iv) of Lemma 10, we have

—1p(0)| =0, = Uy (0n)|o=0,

do

2 (P HB)TT
o (L4 pt)? + (But™)?

(4.22)

That is, %un (0)‘(,:0” has the same sign as o, since 7* > 0 and u > 0. We note from
(1.7) that the crossing number y (0, T*, on, 126—”) counts the difference, when o varies from

o, to 0,7, of the number of imaginary characteristic values with positive real parts in a
small neighborhood of iB, in the complex plane, where 0,7 < o0, < o, are numbers
in a small neighborhood of o,. Then by (4.22) the crossing number of the isolated center
O, t*, oy, %—’:) in the Fuller space C(R; R?) x R? satisfies

2
y (0, ™, on, ,Bi) = —sgn(o,) for every n € N. (4.23)
n
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Then by Theorem 1, there exists a connected component C (0, ™, on, %) of the

closure of all the nonconstant periodic solutions of system (4.1), bifurcated from the sta-
tionary solution (0, t*, oy, 2—”) in the Fuller space. Note that there is no nonconstant
periodic solution for the systeiin (4.1) if o = 0 since in this case x satisfies a scalar or-
dinary differential equation. Moreover, there is no bifurcation point at ¢ = 0. Therefore,

C (0, ™, o, %—7) is located in the Fuller space where o satisfies sgn(o,)o > 0.

To prove the unboundedness of C (0, ™*, op, %—’:) in the Fuller space, we apply the global
Hopf bifurcation Theorem 2 to exclude the case that there are finitely many bifurcation points

incC (0, ™, o, fg—”)
Now we suppose there are finitely many bifurcation points {(0, t*, o, i é—”)}‘j_ 19 €N,
?lj -

inC (0, T, on, %—:) ‘We know that C (O, T*, oy, %—)’f) is located in the Fuller space where

q
o satisfies sgn(o,)o > 0. Then the bifurcation points l(O, *, on i 2—”)] satisfies

J j=1

sgn(on)on; > Oforall j € {1, 2,..., ¢}.
Let e, i be the value of

sgndet|:(azl 't ii%z) f@r. 6. 0) . 0 i|
7,81, ¥2. 0) 7,81 v2, 0)
evaluated at (01, 65, o) = (0, 0, onj) and (y1, v2, o) = (0, ¥, onj), where
fO1, 02, 0) = [—pb1 +0?b(B2)]. (1. v2. 0) = (1 — h(y1)(1 + tanh (12)).
Then by (4.20 and (4.21) we have
€, =1forallj=1,2,...,q. (4.24)

By (4.23) and (4.24) we have

q

2
Zen;)’(((), T*, Onjs /3) = —gsgn(o,) # 0. (4.25)
j=1 nj

Note that («s) and (o) implies (S4). Then by Theorem 2, (4.25) is a contradiction. The
unboundedness of C (0, t*, o,, %) follows.

(b) In order to verify assumption (S8) we claim that the virtual period p, of every bifur-
cation point (0, t*, o, 27/B,) satisfies

mp, # t* for every m € N. (4.26)
Suppose that there exist mq, no € N so that mopp, = mo - 27/ B,, = v*. We note that

((4}1 -3 (dn -2
Bn €

2t% 2T*

) foralln > 1. (4.27)

Then we have
dng — 3 < 4mg < 4ngy — 2.

This is a contradiction and the claim is proved.
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We note that, by (4.27), a sufficient condition for p, = %—: < 7%, is that %—Z < 4t*/(4n

—3) < t*, that is, n > 7/4. Therefore, every (0, t*, 0, p,) with n > 2 is a bifurcation
point of system (4.1) satisfying

pn < t¥foralln > 2. (4.28)
For the bifurcation point (0, t*, o1, p1) we can conclude from (4.27) that
2t < p; < 4t*. (4.29)

We want to obtain the uniform boundedness of period in C (0, ™, o4, B ) withn > 2. We

only need to check the conditions (S5-S9) for applying Theorem 6 and Theorem 7.
It is clear that (ces), (4.26) and (4.21) imply (S7), (S8) and (S5), respectively. Also we
conclude from (S2), (S4) and Lemma 4.2 in [7] that

p>0 (4.30)

for every (x, 7, o, p) € C(0, T, oy, %—7:). Also, by Lemma 9, we have

0<t(®) < —%ln(Zho -1 (4.31)

for every ¢t € R and hence (S9) is satisfied. To check (S6), we let

[ 1 —h(x)(1+tanht) =0,

(1 + tanh T)A'(x) (—,ux + ozb(x)) —0. (4.32)

Then, by (a1), (@4) and (o), the solutions of (4.32) are stationary solutions of (4.1). This
verifies (S6).

Therefore, we can use Theorem 6, Theorem 7, (4.28), (4.30) and (4.31) to conclude that
there exists some ¢ € R so that

1
O<p<t(®) < ) In(2hg — 1) (4.33)

forevery (x, 7, 0, p) € C (0, T, on, /S )Wlthn > 2. Then by (4.29) and (4.33) we know
that (O, t*, o1, %—7;) ¢ C (0, T*, on, B )for every n > 2. This proves (b).

(c) Let X be the projection of C (O, ™, o4, B ) on the o -parameter space R. By (a), we

know that ¥ € (0, +00) if 0, > 0 and ¥ C (—o0, 0) if 0, < 0. By Lemma 9, we know
that for every o € X, there exists a constant M, (¢) > 0 such that

I, Dlle;ry+1)y < Malo), (4.34)

where (x, t, o, p) is the solution associated with o in C (0, T*, on, ﬂ”) and M, : R >
o — M,(c) € (0, +00) is a continuous function on R.

‘We know from (4.33) that the projection of C (0, ™, oy, B ) on the p-parameter space R
is bounded. If ¥ is bounded, then it follows from (a) that the projection of C (O, T*, on, ﬁ—f)

on the (x, t)-space C(R; RY*1Y must be unbounded in the supremum norm. But by the con-

tinuity of M, on R and by (4.34), the projection of C (0, ™, oy, zﬁ—”) on the (x, 7)-space
C(R; RN*1) is uniformly bounded with respect to o € X. This is a contradiction and the
proof is complete. 0
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