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Abstract. We consider a system of delay differential equations with a delayed excitatory feed-
back loop and instantaneous damping. We develop the Cao–Krisztin–Walther technique and establish
the existence and uniqueness of periodic solutions with prescribed oscillation frequencies (character-
ized by the values of a discrete Lyapunov functional). We then use the Poincaré-Bendixson theorem
due to Mallet-Paret and Sell to show that the global attractor of such a system is the union of the
unstable sets of stationary points and periodic orbits.
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1. Introduction. Consider the following system of delay differential equations:

(1.1)

⎧⎨⎩ẋ
0(t) = −μx0(t) + f(x1(t)),
ẋ1(t) = −μx1(t) + f(x2(t)),
ẋ2(t) = −μx2(t) + f(x0(t− 1)),

where μ > 0 and f : R → R is a strictly increasing continuously differentiable function,
normalized so that f(0) = 0. Such a system describes the computational performance
of a feedback loop of three identical saturating amplifiers (neurons) with excitatory in-
teraction [9, 10], with the delay incorporated to account for the finite switching speed
of amplifiers (see, for example, [17, 24]). In applications to associative information pro-
cessing where the network is triggered by an appropriate external stimulus and relaxes
towards the attractor that encodes previously stored memories [8], it is important to
describe completely the structure of the global attractor and, in particular due to the
monotone feedback structures, to describe the existence, uniqueness/nonuniqueness,
and stability of equilibria and periodic solutions.

So our goal here is to characterize the uniqueness, absence, and existence of
periodic orbits with prescribed oscillation frequencies, and to describe the relationship
between the system’s global attractor and the unstable sets of the stationary points
and periodic orbits. This study is heavily inspired by the previous studies of [3, 15, 4]
for scalar delay differential equations or systems of coupled delay differential equations
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PERIODIC SOLUTIONS AND GLOBAL ATTRACTOR 25

with Z2-symmetry. In particular, the following scalar delay differential equation

(1.2) ẋ(t) = −μx(t) + f(x(t− 1)),

also arising from other biological and/or physical problems, has been discussed ex-
tensively and intensively in the literature (see [3, 11, 12, 13, 14, 15, 16, 18, 21] and
references therein). Cao [3] and Krisztin and Walther [15] established the uniqueness
of periodic solutions with prescribed oscillation frequencies when f represents either
a negative or a positive feedback. Some of their results have then been extended, by
Chen and Wu [4], to the following coupled system of delayed differential equations:

(1.3)

{
ẋ0(t) = −μx0(t) + f(x1(t)),
ẋ1(t) = −μx1(t) + f(x0(t− 1)).

A major observation in [4] is that the characteristic equation of the linearized
system of (1.3) is just the product of the characteristic equation of the linearized
equation of (1.2) with a positive feedback and the characteristic equation of the lin-
earized equation of (1.2) with a negative feedback. This observation seems to be the
key in [4] to apply the results in [3, 15] to obtain the uniqueness and absence of pe-
riodic orbits of (1.3). This observation is no longer true for (1.1). As will be shown
in Appendix A, the characteristic equation of the linearized system of (1.3) is much
more complicated.

A main technical tool to be used in our study is the discrete Lyapunov functional
for a cyclic system of delay differential equations developed by Mallet-Paret and Sell
[19, 20], and some of the properties of such a functional will be summarized in sec-
tion 2. One of our major results is about the existence, uniqueness, and absence of
periodic solutions in a certain level set of the discrete Lyapunov functional, and this
requires the extension of the Cao–Krisztin–Walther technique [3, 15] to systems of
three coupled equations and some continuation arguments (see section 3). We do not
provide much information on the priori estimates of solutions of (1.1) like that in
[1, 2, 4, 15, 18, 23]; we are nevertheless able to describe the global attractor as the
union of the unstable sets of the stationary points and periodic orbits in section 4. In
Appendix A, we present some technical results about the distribution of the roots of
the characteristic equation of the linearized system of (1.1) around 0. One of the main
results is that both the real and imaginary parts of the roots are well ordered. Though
we have modified the phase space for (1.1), the basic theory of (1.1) is unchanged.
For clarity and readers’ convenience, some basic results used in the main body of the
paper are proved in Appendix B.

Unfortunately, as discussed in section 3, we cannot prove the uniqueness of pe-
riodic orbits in the level set where the value of the discrete Lyapunov functional is
2. However, we believe that such a periodic orbit (if exists) should be unique. This
is supported by the results for (1.2) and (1.3) and by the proof for the existence of
such periodic orbits. How to prove the uniqueness of such a periodic orbit seems to
be very challenging.

To conclude this section, we mention that the arguments in sections 2–4 can be
easily modified to study the following general system of delay differential equations:

(1.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ0(t) = −μx0(t) + f(x1(t)),

ẋ1(t) = −μx1(t) + f(x2(t)),
...

ẋn−1 = −μxn−1(t) + f(xn(t)),
ẋn(t) = −μxn(t) + f(x0(t− 1)).
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26 TAISHAN YI, YUMING CHEN, AND JIANHONG WU

Some results on periodic solutions to (1.4) will be listed in section 5. For simplicity
of presentation, we focus only on (1.1) rather than (1.4).

2. Preliminaries. We first introduce some notations. N, Z, R, R+, and C stand
for the sets of all nonnegative integers, integers, reals, nonnegative reals, and complex
numbers, respectively. Simple closed curves are continuous maps c from a compact
interval [a, b] ⊆ R into Rn so that c|[a, b) is injective and c(a) = c(b). The set of
the values of a simple closed curve c, or trace, is denoted by |c| or c for simplicity.
The Jordan curve theorem guarantees that the complement of the trace of a simple
closed curve c in R2 consists of two nonempty connected open sets, one bounded
and the other unbounded, with |c| being the boundary of each of them. We denote
the bounded component by int(c) and the unbounded one by ext(c). The interior
and the boundary of a subset M of a topological space are denoted by M◦ and ∂M ,
respectively.

For μ and f , we make the following assumption:
(H1) f is odd and continuously differentiable, f ′(ξ) > 0 for all ξ ∈ R, f − μId

has exactly one positive zero ξ+, and f ′(ξ+) < μ < f ′(0).
Obviously, assumption (H1) implies that f − μId has exactly one negative zero

−ξ+, which is denoted by ξ−. Moreover, f ′(ξ−) = f ′(ξ+) and |f(ξ)| < μ|ξ| for all
|ξ| > ξ+.

The natural phase space for (1.1) is the Banach space C = C(K,R) equipped with
the supremum norm || · ||, where K = [−1, 0]∪ {1, 2} (see Mallet-Paret and Sell [19]).
Let C1 = {φ ∈ C : φ|[−1,0] is continuously differentiable} be the Banach space with

the C1-norm ||φ||1 = max{sup{|φ̇(θ)| : θ ∈ [−1, 0]}, ||φ||}. The space C is a slight
modification of the standard phase space C([−1, 0],R3) found in Hale and Verduyn
Lunel [7] and is adapted to suit (1.1) in which a time lag appears only in the last
equation.

For a given interval I, let I + [−1, 0] = {t + θ : t ∈ I and θ ∈ [−1, 0]}. We say
that x is a D-type function on I if x = (x0, x1, x2)tr such that x0 ∈ C(I + [−1, 0],R)
and x1, x2 ∈ C(I,R). In particular, if I = (−∞, a) for some a ∈ R, then a D-type
function x on I is just a vector function from I into R3. For a given D-type function
x on the interval I and, for each t ∈ I, xt ∈ C is defined by

xt(θ) =

⎧⎨⎩x
0
t (θ) = x0(t+ θ), θ ∈ [−1, 0],
x1(t), θ = 1,
x2(t), θ = 2.

For a given interval I, a solution of (1.1) on I is a D-type function x = (x0, x1, x2)tr

such that x0|I , x1, x2 ∈ C1(I,R) and they satisfy (1.1) on I. For convenience of
notations, we shall often write x3(t) = x0(t − 1), although we emphasize that x3 is
not one of the coordinate functions in (1.1).

Though the phase space for (1.1) has been modified to be C, the basic theory
will not change. For clarification and the readers’ convenience, some basic results are
summarized below while the proofs are left to Appendix B.

Let E ⊆ C denote the set of equilibria for (1.1). Of course, each element of E is a
constant function on K. For each a = (a0, a1, a2)tr ∈ R3, â ∈ C is defined as â(θ) = a0

for all θ ∈ [−1, 0], â(1) = a1 and â(2) = a2. Clearly, assumption (H1) implies that

E = { ̂(0, 0, 0)tr, ξ̂−, ξ̂+}, where ξ± = (ξ±, ξ±, ξ±)tr. For simplicity of notation, we

shall write η̂ = ̂(η, η, η)tr for any η ∈ R. Thus, E = {0̂, ξ̂−, ξ̂+}.
For each φ ∈ C and t0 ∈ R, there exists a unique solution xφ = (x0φ, x

1
φ, x

2
φ)

tr

of (1.1) on [t0,∞) satisfying (xφ)t0 = φ. The solution depends continuously on the
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initial data. Two solutions x and y of (1.1) must be identical if xt = yt ∈ C for some t
in their common domain. It follows that for every φ ∈ C there is at most one solution
x : R → R3 of (1.1) with x0 = φ. We denote such a solution on R also by xφ.

The map F : R+ × C � (t, φ) �→ (xφ)t ∈ C is a continuous semiflow. All maps
F (t, ·) : C → C are injective whenever t ≥ 0 and are conditionally completely con-
tinuous whenever t ≥ 1 (see [6, p. 13] for the definition of the conditionally completely
continuous map). Thus the semiflow F (t, ·) : C → C is conditionally completely con-
tinuous for t ≥ 1 (see [6, p. 36] for the definition of the conditionally completely
continuous semiflow or semigroup). Moreover, for each t ≥ 1, F (t, ·) : C → C1 is
continuous.

A set B ⊆ C is said to be invariant (respectively, positively invariant) if, for every
ψ ∈ B, F (t, B) ⊆ B for all t ∈ R (respectively, for all t ∈ R+). It is not difficult to
show that B is invariant if and only if for every ψ ∈ B there is a solution x : R → R3

with x0 = ψ and xt ∈ B for all t ∈ R.
For each φ ∈ C, let γ+(φ) = {F (t, φ) : t ∈ R+} be the positive orbit through

φ. For a solution x : R → R3 of (1.1) with x0 = φ, let γ(φ) = {xt : t ∈ R} be the
full orbit through φ. Obviously, γ+(φ) is positively invariant and γ(φ) is invariant
provided that it exists.

By applying Lemma 3.2.1 and Corollary 3.2.2 in [6] and the fact that the semiflow
F (t, ·) : C → C is conditionally completely continuous for each t ≥ 1, we can obtain
that, for every bounded solution xφ, the ω-limit set

ω(φ) �
{
ψ ∈ C :

There exists a sequence {tn} ⊂ R+ such
that tn → ∞ and F (tn, φ) → ψ as n→ ∞

}
is nonempty. In fact, ω(φ) is compact, connected, and invariant. For every bounded
solution x : R → R3, the α-limit set

α(x) =

{
ψ ∈ C :

There exists a sequence {tn} ⊂ (−∞, 0] such
that tn → −∞ and xtn → ψ as n→ ∞

}
is also nonempty, compact, connected, and invariant. In the following, we also write
ω(x0) = ω(x) and α(x0) = α(x) whenever x : R → R3 is a bounded solution of (1.1)
on R.

Let C+ = {φ ∈ C : φ(θ) ≥ 0 for all θ ∈ K}. Then C+ is a positive cone of C and
induces the pointwise ordering ≥ on C; that is, for φ, ψ ∈ C, we say that φ ≥ ψ if
φ − ψ ∈ C+. For −∞ < a < b < ∞, we set Ca,b � {φ ∈ C : a < φ(θ) < b for all θ ∈
K}.

Definition 2.1. For a continuous semiflow H on C, H is said to be a monotone
semiflow provided that H(t, φ)−H(t, ψ) ∈ C+ whenever φ − ψ ∈ C+ and t ∈ [0,∞).
The monotone semiflow H is said to be an eventually strongly monotone semiflow
with respective to the pointwise ordering provided that there exists T > 0 such that
H(t, φ)−H(t, ψ) ∈ (C+)

◦ whenever φ− ψ ∈ C+ \ {0̂} and t ∈ [T,∞).
We can easily show the following proposition.
Proposition 2.2. Assume that x : R → R3 is a solution of (1.1). Then y =

(y0, y1, y2)tr : R � t �→ (x1(t), x2(t), x0(t− 1))tr ∈ R3 is also a solution of (1.1).
Proposition 2.3. Under the assumption (H1), the following statements are true.
(i) The semiflow F is an eventually strongly monotone semiflow with respect to

the pointwise ordering.
(ii) The sets C+ and −C+ are positively invariant, and F (t, C+ \ {0̂}) ⊆ (C+)

◦,
F (t,−C+ \ {0̂}) ⊆ (−C+)

◦ for all t > 4.
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(iii) If −∞ < a < ξ− < ξ+ < b < ∞, then Ca,b is positively invariant and for
each φ ∈ C there exists t∗ > 0 such that F ([t∗,∞), φ) ⊆ Ca,b.

Proof. By Corollary 5.3.5 in Smith [22], we know that the semiflow F is an
eventually strongly monotone semiflow with respect to the pointwise ordering. In
particular, F (t, φ)− F (t, ψ) ∈ (C+)

◦ whenever t > 4 and φ, ψ ∈ C such that φ− ψ ∈
C+ \ {0}. Thus (i) holds.

It follows from the above discussions and 0 ∈ E that (ii) holds.
Finally, (iii) can be proved by applying an argument similar to that of Proposi-

tion 2.1 in [15].
In what follows, we shall always assume that (H1) holds.
Remark 2.1. Consider the scalar delay differential equation

(2.1) u̇ = −μu(t) + f(u(t− r)),

where r > 0. Obviously, for a given real function u defined on some interval, we know

that u satisfies (2.1) if and only if u satisfies the equation d(eμtu(t))
dt = eμtf(u(t− r)).

This, combined with the method of steps, gives that for each ϕ ∈ C([−r, 0],R+), there
exists u : [−r,∞) → R such that u satisfies (2.1) with u|[−r,0] = ϕ. In particular, if ϕ ∈
C([−r, 0],R+) and ϕ �= 0, then, for every solution u of (2.1) defined on [−r,∞) with
u|[−r,0] = ϕ, we have u(t) > 0 for all large t. Analogously, if ϕ ∈ C([−r, 0], (−∞, 0])
and ϕ �= 0, then, for every solution u of (2.1) defined on [−r,∞) with u|[−r,0] = ϕ, we
have u(t) < 0 for all large t.

By applying Proposition 2.3(iii) and a similar argument as those in [16, Chap-
ter 17] or in [15], one can obtain the existence of a global attractor of the semiflow
F . This global attractor is a nonempty compact and invariant set A ⊆ C which
attracts each bounded subset B ⊆ C in the sense that for any ε > 0 there exists
T ∗ = T ∗(ε, A,B) such that F (t, B) belongs to the ε-neighborhood of A for all t ≥ T ∗.
The global attractor A is uniquely determined.

Proposition 2.4. The global attractor A has the following properties:
(i) A =

{
φ ∈ C : There is a bounded solution x : R → R3 of (1.1) with x0 = φ

}
.

(ii) A ⊆ {φ ∈ C : ξ− ≤ φ(θ) ≤ ξ+ for all θ ∈ K}.
(iii) A is a compact subset of C1. Moreover, C and C1 define the same topology

on A.
(iv) The map F : R+ × C � (t, φ) �→ (xφ)t can be extended to a continuous flow

FA : R × A → A such that, for each φ ∈ A and each t ∈ R, FA(t, φ) = xt,
where x : R → R3 is the unique solution of (1.1) satisfying x0 = φ.

Proof. (i) Suppose φ ∈ A. Obviously, there is a bounded solution x : R → R3 with
x0 = φ and xt ∈ A for all t ∈ R since A is a compact and invariant set of C. On the
other hand, if φ ∈ C is given so that there exists a bounded solution x : R → R3 with
x0 = φ, then Cl(γ(φ)) is a compact and invariant subset of C. It follows from the at-
tractivity of A that Cl(γ(φ)) ⊆ A. In particular, φ ∈ A. This proves the statement (i).

(ii) Let an = ξ−− 1
n and bn = ξ++ 1

n for all n ∈ N\{0}. By Proposition 2.3(iii), we
obtain that A ⊆ Can,bn for all n ∈ N\{0}. Letting n tend to ∞, we have A ⊆ Cξ−,ξ+ ,
that is, A ⊆ {φ ∈ C : ξ− ≤ φ(θ) ≤ ξ+ for all θ ∈ K}.

(iii) Let M1 = sup{| − μη + f(ξ)| : η, ξ ∈ [ξ−, ξ+]}, M2 = sup{| − μη + f ′(ξ)ζ| :
ξ ∈ [ξ−, ξ+] and η, ζ ∈ [−M1,M1]} and M∗ = max{M1,M2}. For any φ ∈ A, by the
invariance of A, there exists a full solution xφ : R → R3 of (1.1) with (xφ)0 = φ.
Since f is continuously differentiable, it follows from (1.1) and the choice of M∗ that

|dφ(θ)dθ | ≤M∗ and |d2φ(θ)
dθ2 | ≤M∗ for all θ ∈ [−1, 0]. By the arbitrariness of φ ∈ A and

the Arzèla-Ascoli theorem, we obtain that A is a compact subset of C1.
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Define ι : C1 → C by ι(φ) = φ for all φ ∈ C1. Obviously, ι is a continuous map.
It follows from the compactness of A in C1 that ι|A is a closed map. Then ι|A is a
homeomorphism. This implies that C and C1 define the same topology on A.

(iv) follows from the last assertion in Theorem 3.4.2 in [6].

Proposition 2.5. If φ ∈ C+ \ {0̂}, then ω(φ) = {ξ̂+}. Analogously, if φ ∈
(−C+ \ {0̂}), then ω(φ) = {ξ̂−}.

Proof. We only prove the case where φ ∈ C+ \ {0̂} as the other case can be dealt
with similarly. By Proposition 2.3(ii), there exist t∗ > 4 and η ∈ (0, ξ+) such that
F (t∗, φ) > η̂. It follows from (H1) that there exists η∗ ∈ (0, η) such that f(ξ) >
μη∗ for all ξ ∈ [η∗,∞). Then, by Corollary 5.2.2 in Smith [22], there exists χ =
(χ0, χ1, χ2)tr ∈ R3 such that for all j ∈ {0, 1, 2}, χj ≥ η and limt→∞(x

̂η∗)j(t) = χj .

In view of the definition of ω(η̂∗), we know ω(η̂∗) = {χ̂} ⊆ E. This, combined with

E = {0̂, ξ̂−, ξ̂+}, yields ω(η̂∗) = {ξ̂+}. By the choice of η∗, we have F (t∗, φ) > η̂∗.
Proposition 2.3(i) implies F (t + t∗, φ) ≥ F (t, η̂∗) for all t ∈ R. By letting t → ∞, we

have ω(φ) ≥ ξ̂+. This, combined with Proposition 2.4(ii) and the fact that ω(φ) ⊆ A,

gives ω(φ) = {ξ̂+}.
In the following, we summarize some properties of a discrete Lyapunov functional

V and we refer to [19, 20] for more details.
Let I ⊆ K be a nonempty subset of K and let φ ∈ C such that φ|I is not identically

zero. Define the number of sign changes, sc(φ; I), by sc(φ; I) = 0 if φ|I is nonnegative
or nonpositive and otherwise by

sc(φ; I) = sup

{
k ∈ N \ {0} :

There exists a strictly increasing finite sequence
(θj)k0 in I with φ(θj−1)φ(θj) < 0 for all 1 ≤ j ≤ k

}
.

We denote sc(φ;K) by sc(φ). In particular, sc(φ) = 0 for all φ ∈ (C+ ∪ (−C+)) \
{0̂}. Then, for any φ ∈ C \ {0̂}, define

V (φ) =

{
sc(φ) if sc(φ) ∈ 2N ∪ {∞},
sc(φ) + 1 if sc(φ) ∈ 2N+ 1.

In order to state the properties of V , we set

R =

(
2⋂

i=−1

Si

)
∩ S∗,

where

S−1 = {φ ∈ C1 : if φ(−1) = 0, then φ(2)φ̇(−1) < 0},
S0 = {φ ∈ C1 : if φ(0) = 0, then φ̇(0)φ(1) > 0},
S1 = {φ ∈ C1 : if φ(1) = 0, then φ(0)φ(2) < 0},
S2 = {φ ∈ C1 : if φ(2) = 0, then φ(1)φ(−1) < 0},
S∗ = {φ ∈ C1 : if φ(θ) = 0 for some θ ∈ [−1, 0], then φ̇(θ) �= 0},

and define several maps as follows: for each j ∈ {0, 1, 2}, πj : C � φ �→ (φ(j), φ(j + 1))tr

∈ R2. Notice that φ(3) = φ(−1).
Proposition 2.6.
(i) For every φ ∈ C \ {0̂} and for every sequence (φn)

∞
0 in C \ {0̂} with φn → φ

as n→ ∞, V (φ) ≤ lim infn→∞ V (φn).
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(ii) For every φ ∈ R and for every sequence (φn)
∞
0 in C1\{0̂} with ‖φn−φ‖C1 → 0

as n→ ∞, V (φ) = limn→∞ V (φn) <∞.
(iii) Let I ⊂ R be an interval, μ ∈ R+, and b0, b1, b2 : I → (0,∞) be continuous.

Suppose that z = (z0, z1, z2)tr is such that z0 : I + [−1, 0] → R and z1,
z2 : I → R so that z|I is continuously differentiable with

(2.2)

⎧⎨⎩ż
0(t) = −μz0(t) + b0(t)z

1(t),
ż1(t) = −μz1(t) + b1(t)z

2(t),
ż2(t) = −μz2(t) + b2(t)z

0(t− 1)

for inf I < t ∈ I, and z(t) �= 0 for some t ∈ I + [−1, 0]. Then the map
I � t �→ V (zt) ∈ 2N ∪ {∞} is decreasing. Furthermore, we have
(a) if t ∈ I, t− 3 ∈ I and either zj(t) = zj+1(t) = 0 for some j ∈ {0, 1, 2}

or zj(t) = 0, zj−1(t)zj+1(t) > 0 for some j ∈ {1, 2}, then V (zt) = ∞ or
V (zt−3) > V (zt);

(b) if t ∈ I with t− 4 ∈ I and V (zt−4) = V (zt), then zt ∈ R.
Observe that the linear variational systems⎧⎨⎩v̇

0(t) = −μv0(t) + f ′(x1(t))v1(t),
v̇1(t) = −μv1(t) + f ′(x2(t))v2(t),
v̇2(t) = −μv2(t) + f ′(x0(t− 1))v0(t− 1),

along solutions x of (1.1) are of the form of (2.2) as well as the systems satisfied
by the weighted differences y = (1/c)(x − x̂), where c �= 0, on a common domain of
solutions x, x̂ of (1.1),⎧⎪⎨⎪⎩

ẏ0(t) = −μy0(t) + (
∫ 1
0
f ′((1 − s)x̂1(t) + sx1(t))ds)y1(t),

ẏ1(t) = −μy1(t) + (
∫ 1
0
f ′((1 − s)x̂2(t) + sx2(t))ds)y2(t),

ẏ2(t) = −μy2(t) + (
∫ 1
0 f

′((1 − s)x̂0(t− 1) + sx0(t− 1))ds)y0(t− 1).

Remark 2.2. Assume that x : R → R3 is a solution of (1.1). Then by Propo-
sition 2.4 (i) and (iii), for each sequence {tn} with limn→∞ tn = ∞, there exist a
subsequence {sn} of {tn} and ψ ∈ ω(x) such that xsn tends to ψ in C1 as n → ∞.
Moreover, if there exists k ∈ N such that V (xt) = 2k for all t ∈ R, then, by Propo-
sition 2.6(iii)(b), xt ∈ R for all t ∈ R, and hence V (ψ) = 2k for all ψ ∈ ω(x) \ {0̂}
follows from Proposition 2.6(ii).

Remark 2.3. For each m ∈ N, assume that xm : R → R3 is a continuously
differentiable map. If, for any compact interval I of R, {xm|I}m∈N, { ˙xm|I}m∈N, and
{ẍm|I}m∈N are all bounded maps on I, then by the Arzèla-Ascoli theorem and the
Cantor diagonalization process, there exist a subsequence of {xm}m∈N, say {xmk

}k∈N,
and a map x : R → R3 such that xmk

→ x and ˙xmk
→ ẋ uniformly in any compact

interval of R as k → ∞.
We conclude this section with the following corollary of the general Poincaré-

Bendixson theorem for monotone cyclic feedback systems due to Mallet-Paret and
Sell [20].

Proposition 2.7. For each φ ∈ C, ω(φ) is either a single nonconstant periodic
orbit or for each solution y : R → R3 of (1.1) in ω(φ), the sets ω(y) and α(y) consist
of equilibria of F . An analogous statement holds for α-limit sets of bounded solutions
of (1.1) on R.
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3. Uniqueness, absence, and existence of periodic orbits. In this section,
we first focus on the uniqueness and absence of periodic orbits with prescribed oscil-
lation frequencies, i.e., in given level sets of the discrete Lyapunov functional V . Our
approach uses the techniques in [3, 15], where oscillating periodic solutions of scalar
delay equations are studied. For this purpose, it is necessary to consider the following
system

(3.1)

⎧⎨⎩ż
0(t) = −μz0(t) + g(z1(t)),
ż1(t) = −μz1(t) + g(z2(t)),
ż2(t) = −μz2(t) + g(z0(t− τ)),

where μ > 0, τ > 0 and the C1-function g : R → R is odd and satisfies g′(x) > 0 for
all x ∈ R. If z is a solution of (3.1), then the function w given by w(t) = z(τt) is a
solution of

(3.2)

⎧⎨⎩ẇ
0(t) = −τμw0(t) + τg(w1(t)),

ẇ1(t) = −τμw1(t) + τg(w2(t)),
ẇ2(t) = −τμw2(t) + τg(w0(t− 1)).

Proposition 3.1. Let w : R → R3 be a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. Then one of the following statements is true:

(i) wj(t) > 0 for all j ∈ {0, 1, 2} and t ∈ R.
(ii) wj(t) < 0 for all j ∈ {0, 1, 2} and t ∈ R.
(iii) For each j ∈ {0, 1, 2}, wj has a zero.

Additionally, if g − μId has exactly one zero η− ∈ (−∞, 0) and exactly one zero
η+ ∈ (0,∞), g′(η−) < μ and g′(η+) < μ, then, for each j ∈ {0, 1, 2}, wj has a zero.

Proof. Suppose that statement (iii) is not true. Then there exists j0 ∈ {0, 1, 2}
such that wj0 has no zero. By Proposition 2.2, without loss of generality, we can
assume j = 0. We shall finish the proof by distinguishing two cases.

Case 1. w0(t) > 0 for all t ∈ R. It follows from the third equation of (3.2) that

(3.3) ẇ2(t) > −τμw2(t).

Pick up t∗ ∈ [0, Tw] such that w2(t∗) = inf{w2(t) : t ∈ R}. Obviously, ẇ2(t∗) = 0.
Then, by (3.3), w2(t∗) > 0, and hence w2(t) ≥ w2(t∗) > 0 for all t ∈ R. Similarly,
with the help of w2(t) > 0 for all t ∈ R and the second equation of (3.2), we can show
that w1(t) > 0 for all t ∈ R. Therefore, statement (i) holds.

Case 2. w0(t) < 0 for all t ∈ R. Similar arguments to those in Case 1 will show
that statement (ii) holds.

Now, suppose that g − μId has exactly one zero η− ∈ (−∞, 0) and exactly one
zero η+ ∈ (0,∞), g′(η−) < μ and g′(η+) < μ. We show that neither statement
(i) nor statement (ii) holds. By way of contradiction, if statement (i) holds, then,

by Proposition 2.5, ω(w0) = {η̂+}, a contradiction as w is a nonconstant periodic
solution of (3.2). Thus statement (i) is not true. Similarly, statement (ii) cannot be
true. Therefore, wj has a zero for all j ∈ {0, 1, 2}.

We now give a priori information on periodic solutions of (3.2) which follows from
the general results in [20] for certain systems of delay differential equations.

Proposition 3.2. Let w : R → R3 be a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. Then the following statements are true.

(i) For each j ∈ {0, 1, 2}, cjw : [0, Tw] � t �→ πj(wt) ∈ R2 and Cj
w : [0, Tw] � t �→

(wj(t), ẇj(t))tr ∈ R2 are two simple closed curves.
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(ii) For each j ∈ {0, 1, 2}, there are tj0 ∈ R and tj1 ∈ (tj0, t
j
0 + Tw) such that

0 < ẇj(t) for all tj0 < t < tj1, w
j(R) = [wj(tj0), w

j(tj1)], ẇ
j(t) < 0 for all

tj1 < t < tj0 + Tw.
(iii) If w0 has a zero, then w(t+ Tw

2 ) = −w(t) for all t ∈ R. Moreover, 0 ∈ int(cjw)
and 0 ∈ int(Cj

w) for all j ∈ {0, 1, 2}.
(iv) There exists k ∈ N such that {wt : t ∈ R} ⊂ V −1(2k).
(v) For every nonconstant periodic solution y : R → R3 of (3.2) with the minimal

period Ty > 0 and yt �= ws for all t, s in R, we have |cjy| ∩ |cjw| = ∅ and

|Cj
y | ∩ |Cj

w| = ∅ for all j ∈ {0, 1, 2}.
Remark 3.1. For j ∈ {0, 1, 2} and tj0 and tj1 in Proposition 3.2(ii), we have

wj(tj0) �= 0 and wj(tj1) �= 0. This follows from Proposition 3.2(iv) in combination with
the last statement in Proposition 2.6 and the definition of R.

Remark 3.2. Assume that w : R → R3 is a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. If w0 has a zero, then for each j ∈ {0, 1, 2}, by
Proposition 3.1 and Proposition 3.2(ii) and (iii), there exists a tj2 ∈ [0, Tw] such that

wj(tj2) = 0 and ẇj(tj2) > 0. Moreover, the following statements are true.

(i) (−1)lwj(t) > 0 for all l ∈ Z and t ∈ (tj2 +
l
2Tw, t

j
2 +

l+1
2 Tw).

(ii) {t ∈ R : wj(t) = 0} = {tj2 + l
2Tw : l ∈ Z}.

(iii) All zeros of wj are simple, in particular, (−1)lẇj(tj2 +
l
2Tw) > 0 for all l ∈ Z.

Remark 3.3. Assume that w : R → R3 is a nonconstant periodic solution of
(3.2) with the minimal period Tw > 0. For each j ∈ {0, 1, 2}, choose tj3 ∈ [0, Tw]

such that wj(tj3) = max{wj(t) : t ∈ R}. If w0 has a zero, then by Proposition 3.1,

Proposition 3.2(ii) and (iii), (−1)lẇj(t) < 0 for all l ∈ Z and t ∈ (tj3+
l
2Tw, t

j
3+

l+1
2 Tw).

Observe that for every solution z : R → R3 of (3.1) and for the corresponding
solution w : R � t �→ z(τt) ∈ R3 of (3.2) and for every j ∈ {0, 1, 2}, we have

{(zj(t), żj(t))tr : t ∈ R} =

{(
wj(t)
1
τ ẇ

j(t)

)
: t ∈ R

}
.

Note that for every solution w : R → R3 of (3.2) and for every t ∈ R, the values

wj(t) and ẇj(t)/τ uniquely determine wj+1(t). Here, as before, w3(t) = w0(t − 1).
Proposition 3.2 combined with these facts yields the following result.

Corollary 3.3. Let z : R → R3 be a nonconstant periodic solution of (3.1) with
the minimal period Tz > 0. Then the following statements are true.

(i) For each j ∈ {0, 1, 2}, the map Zj : [0, Tz] � t �→ (wj(t), ẇj(t))tr ∈ R2 is a
simple closed curve.

(ii) If z0 has a zero, then 0 ∈ int(Zj) for all j ∈ {0, 1, 2}.
(iii) Let x : R → R3 be a nonconstant periodic solution of (3.1) with the min-

imal period Tx > 0. Suppose that the functions w : R � t �→ z(τt) ∈ R3

and y : R � t �→ x(τt) ∈ R3 satisfy yt �= ws for all t, s ∈ R. Then,
for every j ∈ {0, 1, 2}, the traces of Zj and of the simple closed curve

Xj : [0, Tx] � t �→ (xj(t), ẋj(t))tr ∈ R2 are disjoint. An analogous state-

ment holds if (zj(t), żj(t))tr and (xj(t), ẋj(t))tr are replaced with πj(zt) and
πj(xt), respectively.

Proposition 3.4. Let w : R → R3 be a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. If V (wt) = 2k+2 for some k ∈ N and for all t ∈ R,
then there exists α ∈ [0, Tw) such that (w1(t), w2(t), w0(t − 1)) = (w0(t + α), w1(t +
α), w2(t+ α)) for all t ∈ R.

D
ow

nl
oa

de
d 

11
/0

9/
15

 to
 1

30
.6

3.
17

4.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PERIODIC SOLUTIONS AND GLOBAL ATTRACTOR 33

Proof. Define v : R � t �→ (w1(t), w2(t), w0(t − 1))tr ∈ R3. By Proposition 2.2,
v is also a nonconstant periodic solution of (3.2) with the minimal period Tw. By
Proposition 3.1 and the fact that V (wt) = 2k + 2 > 0, we know that, for any j ∈
{0, 1, 2}, wj and vj have a zero. Suppose the desired result is not true. Then ws �=
vt for all s, t ∈ R. By Proposition 3.2(iii), 0 ∈ int(cjv) and 0 ∈ int(cjw) for each
j ∈ {0, 1, 2}. Then by Proposition 3.2(v), for each j ∈ {0, 1, 2}, either cjw � int(cjv)
or cjv � int(cjw). Without loss of generality, we may assume that c0w � int(c0v). It
follows from the definitions of c0w and c0v that w0(R) � v0(R) = w1(R) and w1(R) �
v1(R) = w2(R). The latter, combined with the fact that either c1w � int(c1v) or
c1v � int(c1w), implies c1w � int(c1v). Otherwise, we have c1v � int(c1w), which implies
that v1(R) = w2(R) � w1(R), a contradiction. It follows from c1w � int(c1v) that
w2(R) � v2(R) = w0(R). Therefore, we have obtained that w0(R) � w1(R) �
w2(R) � w0(R). This is a contradiction and hence the proof is complete.

Proposition 3.5. Let w : R → R3 be a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. If V (wt) = 2k+2 for some k ∈ N and for all t ∈ R,
then there exists δ ∈ (− 1

2 , 1] such that the following results are true.
(i) 1 = kTw + δTw.
(ii) (w1(t), w2(t), w0(t − 1)) = (w0(t + α), w1(t + α), w2(t + α)) for all t ∈ R,

where α = 1−δ
3 Tw.

Proof. By Proposition 3.1 and the definition of V , we know that wj has a zero
for all j ∈ {0, 1, 2} since V (wt) = 2k + 2 > 0 for all t ∈ R.

First, we show (i) by way of contradiction. Suppose that there is no δ ∈ (− 1
2 , 1]

such that 1 = kTw+ δTw. Then it is easy to see that either 1
Tw

> k+1 or 1
Tw

≤ k− 1
2 .

If the former holds, then 1 > (k + 1)Tw. By Proposition 3.2(ii), we may pick up

s∗ ∈ R such that w0(s∗) = 0 and ẇ0(s∗) > 0. Let t∗ = s∗ +min{Tw

2 ,
1−(k+1)Tw

2 } and

t∗∗ = max{t∗−1, s∗−(k+1+ 1
2 )Tw}. Then t∗ ∈ (s∗, s∗+ Tw

2 ], t∗−1 ≤ s∗− 1+(k+1)Tw

2 ≤
s∗ − (k + 1)Tw and thus max{t∗ − 1, s∗ − (k + 1 + 1

2 )Tw} = t∗∗ < s∗ − (k + 1)Tw.
It follows from Proposition 3.2(ii)–(iii) that w0(t) > 0 for all t ∈ (s∗, t∗), w0(t) < 0
for all t ∈ (s∗ − (l + 1

2 )Tw, s
∗ − lTw) and all l ∈ {0, 1, 2, . . . , k}, w0(t) > 0 for all

t ∈ (s∗ − (l + 1)Tw, s
∗ − (l + 1

2 )Tw) and all l ∈ {0, 1, 2, . . . , k}, and w0(t) < 0 for

all t ∈ (t∗∗, s∗ − (k + 1)Tw). Then w0(min{t∗, s∗ + Tw

4 }) > 0, w0(t∗∗) < 0 and

(−1)l+1w0(s∗ − (2l+1)Tw

4 ) > 0 for all l ∈ {0, 1, 2, . . . , 2k + 1}. By the definitions of sc
and V , sc(wt∗ ; [−1, 0]) ≥ 2k + 3 and hence V (wt∗) ≥ 2k + 4, a contradiction. If the
latter holds, then, by a similar argument with obvious modifications, we can obtain
V (wt̃) ≤ 2k for some t̃ ∈ R, a contradiction. Therefore, 1 = kTw + δTw for some
δ ∈ (− 1

2 , 1] and (i) is proved.
Now, we prove (ii). By Proposition 3.4, there exists α ∈ [0, Tw) such that w1(t) =

w0(t+ α), w2(t) = w1(t+ α), and w0(t− 1) = w2(t+ α) for all t ∈ R. It follows that
w0(t − 1) = w0(t + 3α) for all t ∈ R. Since w is periodic with the minimal period
Tw, there exists an integer m such that 3α+ 1 = mTw. We distinguish three cases to
show that m = k + 1.

Case 1. δ ∈ (− 1
2 , 0]. Then m = 1+3α

Tw
= kTw+δTw+3α

Tw
implies that m ∈ {k, k +

1, k + 2}. We now show, by way of contradiction, that m = k + 1. Suppose that
m �= k + 1. Then m = k + 2 or m = k. If m = k + 2, then α = 2−δ

3 Tw and

hence w1(t) = w0(t + 2−δ
3 Tw) = w0(t − 1+δ

3 Tw) for all t ∈ R. From (3.2) we have

ẇ0(t) = −τμw0(t) + τf(w0(t − 1+δ
3 Tw)) for all t ∈ R. By Proposition 3.2(ii)–(iii),

there exists r1 ∈ R such that w0(t) > 0 for all t ∈ (r1, r1 +
1
2Tw). Since 1+δ

3 ∈ [0, 12 ],

we have w0(t) > 0 for all t ∈ (r1, r1+
1+δ
3 Tw). This, combined with Remark 2.1, gives
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that w0(t) > 0 for all large t. It follows from the periodicity of w that w0(t) > 0 for
all t ∈ R, a contradiction. If m = k, then α = − δ

3Tw and hence w1(t) = w0(t− δ
3Tw)

and w2(t) = w0(t − 2δ
3 Tw) for all t ∈ R. By Proposition 3.2(ii)–(iii), there exists

s1 > 0 such that w0(s1) = 0 and ẇ0(s1) > 0. Let s2 = s1 + 1+2δ
4 Tw. Then, by

Proposition 3.2(ii)–(iii) and the choices of s1 and s2, we know that w0(t) > 0 for
all t ∈ (s1, s2), w

0(t) > 0 for all t ∈ (s2 − 1, s1 − 2k−1
2 Tw), (−1)lw0(t) < 0 for all

t ∈ (s1 − ( l+1
2 )Tw, s1 − lTw

2 ) and all l ∈ {0, 1, 2, . . . , 2k − 2}. Moreover, w1(s2) =

w0(s2− δ
3Tw) > 0 and w2(s2) = w0(s2− 2δ

3 Tw) > 0 since s2− δ
3Tw ∈ [s1, s1+

Tw

2 ] and

s2− 2δ
3 Tw ∈ [s1, s1+

Tw

2 ]. It follows from the definitions of sc and V that sc(ws2 ) = 2k
and thus V (ws2 ) = 2k, a contradiction. Therefore, m = k + 1.

Case 2. δ ∈ (0, 12 ]. In this case, as before, we can see thatm ∈ {k+1, k+2, k+3}.
Again, we show by way of contradiction thatm = k+1. Suppose thatm �= k+1. Then
m ∈ {k + 2, k + 3}. It follows from α ∈ { 2−δ

3 Tw,
3−δ
3 Tw} that α − Tw ∈ [− 1

2Tw, 0].
Thus w1(t) = w0(t + α) = w0(t + α − Tw) for all t ∈ R. From (3.2) we have
ẇ0(t) = −τμw0(t) + τf(w0(t − (Tw − α))) for all t ∈ R. By an argument similar to
that in excluding m = k + 2 in Case 1, we can get wj(t) > 0 for all j ∈ {0, 1, 2} and
t ∈ R, a contradiction. Therefore, m = k + 1.

Case 3. δ ∈ (12 , 1]. In this case, again we have m ∈ {k + 1, k + 2, k + 3}. We
still use by way of contradiction to show that m = k + 1. Suppose that m �= k + 1.
Then m ∈ {k + 2, k + 3}. First, suppose m = k + 3. Then α = 3−δ

3 Tw and hence

α − 1
2Tw = − δ

3Tw ∈ [−Tw

2 , 0]. Again, an argument similar to that in excluding
m = k + 2 in Case 1 will produce a contradiction. Now, suppose m = k + 2. By
Proposition 3.2(ii)–(iii), there exists t1 > 0 such that w0(t1) = 0 and ẇ0(t1) > 0.
Let t2 = t1 +

δ
2Tw. Then, by the choices of t1 and t2, we know that w0(t) > 0 for

all t ∈ (t1, t2), w
0(t) > 0 for all t ∈ (t2 − 1, t1 − (k + 2)Tw), (−1)lw0(t) < 0 for

all t ∈ (t1 − ( l+1
2 )Tw, t1 − lTw

2 ) and all l ∈ {0, 1, 2, . . . , 2k + 3}. It follows from the
definitions of sc and V that sc(wt2 ; [−1, 0]) ≥ 2k + 5 and thus V (wt2) ≥ 2k + 6, a
contradiction. Therefore, m = k + 1.

Conversely, let w : R → R3 be a nonconstant periodic solution of (3.2) with the
minimal period Tw > 0. Suppose that w0 has a zero and there exists k ∈ N such

that w1(t) = w0(t + α) for all t ∈ R, where α = (k+1)Tw−1
3 ∈ [0, Tw). Then, by

Proposition 3.2(iv) and the fact that w0 has a zero, we can infer V (wt) = 2+2l for all
t ∈ R and some l ∈ N. Thus Proposition 3.5 tells us that (w1(t), w2(t), w0(t− 1)) =

(w0(t+α∗), w1(t+α∗), w2(t+α∗)) for all t ∈ R, where α∗ = (l+1)Tw−1
3 ∈ [0, Tw

2 ]. We
claim that l = k. If not, then |α− α∗| ∈ (0, Tw). It follows from w1(t) = w0(t+ α) =
w0(t+ α∗) for all t ∈ R that w0(t) = w0(t+ |α− α∗|) for all t ∈ R. This implies that
|α−α∗| is also a period of w, which contradicts with the fact that Tw is the minimal
period of w. Therefore, l = k and we have proved the following result.

Corollary 3.6. Let w : R → R3 be a nonconstant periodic solution of (3.2)
with the minimal period Tw > 0. If w0 has a zero and there exists k ∈ N such that

α = (k+1)Tw−1
3 ∈ [0, Tw) and w

1(t) = w0(t+α) for all t ∈ R, then V (wt) = 2k+2 for
all t ∈ R.

For each θ ∈ [0, 2π), define l(θ) = {r(cos θ, sin θ)tr ∈ R2 : r ≥ 0}.
Proposition 3.7. Let z : R → R3 be a nonconstant periodic solution of (3.1)

with the minimal period T > 0. Assume that z0 has a zero. For a given j ∈ {0, 1, 2},
let a maximum a ∈ R of zj be given. Then the functions

ψj : [0, 2π) � θ �→ inf{t ∈ (a, a+ T ] : (zj(t), żj(t))tr ∈ l(θ)} ∈ R
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PERIODIC SOLUTIONS AND GLOBAL ATTRACTOR 35

and

Ψj : [0, 2π) � θ �→ sup{t ∈ (a, a+ T ] : (zj(t), żj(t))tr ∈ l(θ)} ∈ R

are strictly decreasing.
Proof. We only show that ψj is strictly decreasing as the proof for Ψj to be

strictly decreasing is similar. Observe that w : R � t �→ z(τt) ∈ R3 is a nonconstant
periodic solution of (3.2). By Remarks 3.2 and 3.3, there exist reals a1, a2, a3 such
that a < a1 < a2 < a3 < a+ T and

zj(a1) = żj(a2) = zj(a3) = 0,

zj(t) > 0 for a ≤ t < a1 and a3 < t ≤ a+ T ,

zj(t) < 0 for a1 < t < a3,

żj(t) < 0 for a < t < a2, and

żj(t) > 0 for a2 < t < a+ T .

For a given θ ∈ (0, π/2), observe that

(zj(t), żj(t))tr ∈ l(θ) for some t ∈ (a, a+ T ]

if and only if

t ∈ (a3, a+ T ) and θ = arctan
żj(t)

zj(t)
.

Clearly, ψj(0) = a + T , ψj(π/2) = a3, and ψj(θ) ∈ (a3, a + T ) for all θ ∈ (0, π2 ).

The function (a3, a+ T ) � t �→ arctan żj(t)
zj(t) ∈ R is continuous with range in (0, π/2).

Moreover, limt→a+
3
arctan żj(t)

zj(t) =
π
2 and limt→(a+T )− arctan żj(t)

zj(t) = 0. It follows that

ψj(θ) = min

{
t ∈ (a3, a+ T ) : θ = arctan

żj(t)

zj(t)

}
.

Let θ1 and θ2 be given in (0, π/2) with θ1 < θ2. By way of contradiction, we show
ψj(θ1) > ψj(θ2). If not, we have ψj(θ1) ≤ ψj(θ2). Then there exist t1 and t2 in
(a3, a+ T ) such that

tl = ψj(θl) and θl = arctan
żj(tl)

zj(tl)
, l = 1, 2.

Since t1 = ψj(θ1) ≤ ψj(θ2) = t2 and θ1 < θ2, we have t1 < t2. This, combined with

the facts that limt→a+
3
arctan żj(t)

zj(t) = π
2 and 0 < arctan żj(t1)

zj(t1)
< arctan żj(t2)

zj(t2)
< π

2 ,

implies the existence of t3 ∈ (a3, t1) such that arctan żj(t3)
zj(t3)

= arctan żj(t2)
zj(t2)

= θ2. This

contradicts with the choice of ψj(θ2) and t2. It follows that ψj is strictly decreasing
on [0, π/2]. Similarly, one can show that ψj is strictly decreasing on each of the three
intervals, [π/2, π], [π, 3π/2], and [3π/2, 2π). This completes the proof.

The next result is the key to obtaining results on uniqueness of periodic orbits and
results on absence of rapidly oscillating periodic solutions. It is analogous to earlier
results in [3, 15] on periodic solutions of some scalar delay differential equations.

Proposition 3.8. Let k ∈ N \ {0, 1} and τ ≥ 1. Suppose that f satisfies (H1)
and
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(H2) the function (0,∞) � ξ �→ ξf ′(ξ)
f(ξ) is strictly decreasing.

Also suppose g : R → R is an odd and continuously differentiable function satis-
fying

(H3) g′(0) = f ′(0), and g(ξ) > f(ξ) and g′(ξ)
g(ξ) >

f ′(ξ)
f(ξ) for all ξ ∈ (0,∞).

Let x be a nonconstant periodic solution of (1.1) with the minimal period Tx > 0
and let z be a nonconstant periodic solution of (3.1) with the minimal period Tz > 0.
Suppose w : R � t �→ z(τt) ∈ R3 satisfies V (xt) = V (wt) = 2k for all t ∈ R. Define
Xj : [0, Tx] � t �→ (xj(t), ẋj(t))tr ∈ R2 and Zj : [0, Tz] � t �→ (zj(t), żj(t))tr ∈ R2 for
all j ∈ {0, 1, 2}. If |Zj| ⊂ |Xj | ∪ ext(Xj) and r|Zj | ⊂ ext(Xj) for all r ∈ (1,∞) and
for all j ∈ {0, 1, 2}, then |Zj | ∩ |Xj| = ∅ for all j ∈ {0, 1, 2}.

Proof. By applying Proposition 3.4, we remark that there exist α∗ ∈ [0, Tx) and
β∗ ∈ [0, Tz) such that x2(t) = x1(t+α∗) = x0(t+2α∗) and z2(t) = z1(t+β∗) = z0(t+
2β∗) for all t ∈ R. Thus, by the definitions of Xj and Zj, we have |X0| = |X1| = |X2|
and |Z0| = |Z1| = |Z2|.

By way of contradiction, we may assume that |Zj |∩|Xj| �= ∅ for some j ∈ {0, 1, 2}.
This, combined with the above discussions, implies |Z0| ∩ |X0| �= ∅.

First, it follows from Proposition 3.1 and the facts that k ∈ N\{0, 1} and V (xt) =
V (wt) = 2k (≥ 4) for all t ∈ R that x0(t∗) = 0 for some t∗ ∈ R and z0(s∗) = 0 for
some s∗ ∈ R; i.e., x0 and z0 have zeros. Then Corollary 3.3(ii) implies 0 ∈ int(X0)
and 0 ∈ int(Z0). Note that |Z0| ⊆ |X0| ∪ ext(X0) implies that |X0| ⊆ |Z0| ∪ int(Z0).
Thus, for each θ ∈ [0, 2π), any point of l(θ) ∩ |Z0| is not closer to 0 ∈ R2 than any
point of l(θ)∩ |X0|. Using |Z0| ∩ |X0| �= ∅ and a translation if necessary, without loss
of generality, we may assume X0(0) = Z0(0), i.e.,

(3.4) x0(0) = z0(0) and ẋ0(0) = ż0(0).

We distinguish two cases to complete the proof.
Case 1. ẋ0(0) = ż0(0) = 0. Then c = x0(0) = z0(0) �= 0 since 0 ∈ int(X0)

and 0 ∈ int(Z0). Without loss of generality, we assume c > 0 as the proof for the
case where c < 0 is similar. Proposition 3.2(iii) yields that x and z have the special
symmetry x0(t + Tx/2) = −x0(t) and z0(t + Tz/2) = −z0(t) for all t ∈ R. This,
combined with Remarks 3.2 and 3.3, implies

c = max
t∈R

x0(t) = max
t∈R

z0(t), −c = min
t∈R

x0(t) = min
t∈R

z0(t),

ẋ0(t) > 0 for −Tx

2 < t < 0, ż0(t) > 0 for −Tz

2 < t < 0,

x0(−Tx

2 ) = −c and ẋ0(−Tx

2 ) = 0, and z0(−Tz

2 ) = −c and ż0(−Tz

2 ) = 0.

Let T ∗ = min{Tx, Tz}. We claim that z0(s) ≤ x0(s) for −T ∗/2 ≤ s ≤ 0.

We now prove the claim. Let (x0)
−1

and (z0)
−1

be the inverses of the functions
[−Tx

2 , 0] � t �→ x0(t) ∈ R and [−Tz

2 , 0] � t �→ z0(t) ∈ R, respectively. Then the

domain of (x0)
−1

is the same as that of (z0)
−1

, which is [−c, c]. The functions

φ0x : [−c, c] � u �→ ẋ0((x0)
−1

(u)) ∈ R

and

φ0z : [−c, c] � u �→ ż0((z0)
−1

(u)) ∈ R

satisfy φ0x(−c) = φ0x(c) = φ0z(−c) = φ0z(c) = 0, and φ0x(u) > 0 and φ0z(u) > 0 for all
u ∈ (−c, c). The arcs Ωx = {X0(t) : t ∈ [−Tx

2 , 0]} and Ωz = {Z0(t) : t ∈ [−Tz

2 , 0]}
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coincide with the graphs {(u, φ0x(u))tr : u ∈ [−c, c]} and {(u, φ0z(u))tr : u ∈ [−c, c]},
respectively. From the special symmetry of x and z we obtain |X0| = Ωx∪ (−Ωx) and
|Z0| = Ωz ∪ (−Ωz). Hence

int(X0) = {(u, v)tr : u ∈ (−c, c),−φ0x(−u) < v < φ0x(u)}.

From |Z0| ⊂ |X0| ∪ ext(X0), we conclude

(3.5) φ0x(u) ≤ φ0z(u) for −c ≤ u ≤ c.

The functions x and z satisfy

ẋ0(t) = φ0x(x
0(t)) for all t ∈ [−Tx

2 , 0]

and

ż0(t) = φ0z(z
0(t)) for all t ∈ [−Tz

2 , 0].

For −Tz/2 < s1 < s2 < 0, the last equation and the inequality ż0(t) > 0 for −Tz/2 <
t < 0 combined yield∫ z0(s2)

z0(s1)

du

φ0z(u)
=

∫ s2

s1

ż0(t)

φ0z(z
0(t))

dt = s2 − s1.

Similarly, ∫ x0(s2)

x0(s1)

du

φ0x(u)
= s2 − s1 for −Tx

2 < s1 < s2 < 0.

By the continuity of z and x at 0, we have∫ c

z0(s)

du

φ0z(u)
= −s for −Tz

2 < s ≤ 0

and ∫ c

x0(s)

du

φ0x(u)
= −s for −Tx

2 < s ≤ 0.

Thus, for −T ∗/2 < s ≤ 0, we obtain immediately that∫ c

z0(s)

du

φ0z(u)
=

∫ c

x0(s)

du

φ0x(u)
.

With the help of (3.5), we know z0(s) ≤ x0(s) for −T∗
2 < s ≤ 0. Because of continuity,

we easily see that the claim holds.
If Tz > Tx, then from the claim above and from x0(−Tx/2) = −c we obtain

z0(−Tx/2) ≤ x0(−Tx/2) = −c. This is impossible since −Tz/2 < −Tx/2 < 0,

z0(−Tz/2) = −c, and ż0(t) > 0 for −Tz/2 < t < 0. Thus Tz ≤ Tx.
Proposition 3.5 and the facts that V (xt) = V (wt) = 2k for all t ∈ R imply that

there exist δx, δz ∈ (− 1
2 , 1] such that 1 = (k − 1)Tx + δxTx = (k − 1)Tz

τ + δz
Tz

τ ,

and x1(t) = x0(t + αx), and z1(t) = z0(t + αz) for all t ∈ R, where αx = 1−δx
3 Tx
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and αz = 1−δz
3 Tz. Let α∗

x = αx − Tx

2 and α∗
z = αz − Tz

2 . Then α∗
x = (2k−3)Tx−2

6

and α∗
z = (2k−3)Tz−2τ

6 . Thus 0 ≥ α∗
x ≥ α∗

z ≥ −T∗
2 since k belongs to N \ {0, 1}.

Consequently,

(3.6) z1(0) = z0(αz) = −z0(α∗
z) ≥ −x0(α∗

z) ≥ −x0(α∗
x) = x0(αx) = x1(0).

Using (1.1), (3.1), ż0(0) = ẋ0(0) = 0, and z0(0) = x0(0) = c > 0, we obtain z1(0) > 0,
x1(0) > 0, and g(z1(0)) = f(x1(0)). It follows from (H3) that

f(x1(0)) = g(z1(0)) > f(z1(0)).

As f is monotone, this implies z1(0) < x1(0), which contradicts (3.6).

Case 2. ż0(0) = ẋ0(0) �= 0. Without loss of generality, we may assume ż0(0) =

ẋ0(0) > 0 as the proof for the case where ż0(0) = ẋ0(0) < 0 is similar. Then there

exists ε > 0 such that ż0(t) �= 0 and ẋ0(t) �= 0 for t ∈ (−ε, ε), and hence there is δ > 0

such that there are inverses (z0)
−1

: (d− δ, d+ δ) → R and (x0)
−1

: (d− δ, d+ δ) → R
of the restrictions of z0 and x0 to the open intervals in (−ε, ε), respectively, where
d = z0(0) = x0(0). The maps

ηz : (d− δ, d+ δ) � u �→ ż0((z0)
−1

(u)) ∈ R

and

ηx : (d− δ, d+ δ) � u �→ ẋ0((x0)
−1

(u)) ∈ R

are C1-smooth since x and z are C2-smooth by (1.1) and (3.1). We have ηz(d) =

ż0(0) = ẋ0(0) = ηx(d) �= 0 and, for all u ∈ (d− δ, d+ δ),

η′x(u) = ẍ0((x0)
−1

(u))
d

du
(x0)

−1
(u) = ẍ0((x0)

−1
(u))

1

ẋ0((x0)
−1

(u))
,

η′z(u) = z̈0((z0)
−1

(u))
d

du
(z0)

−1
(u) = z̈0((z0)

−1
(u))

1

ż0((z0)
−1

(u))
.

In particular,

(3.7) η′x(d) =
ẍ0(0)

ẋ0(0)
and η′z(d) =

z̈0(0)

ż0(0)
.

The sets {(u, ηx(u))tr : u ∈ (d − δ, d + δ)} and {(u, ηz(u))tr : u ∈ (d − δ, d + δ)} are
graph representations of pieces of |X0| and |Z0|, respectively. It is not difficult to show
that there exists γ > 0 such that the sets {(u, v)tr : u ∈ (d − δ

2 , d +
δ
2 ), ηx(u) − γ <

v < ηx(u)} and {(u, v)tr : u ∈ (d − δ
2 , d + δ

2 ), ηx(u) < v < ηx(u) + γ} belong to
different connected components of R2 \ |X0|. Hence, using |Z0| ⊂ |X0| ∪ ext(X0) and

(d, ηz(d)) = (d, ηx(d)), we obtain η
′
z(d) = η′x(d). This, combined with ż0(0) = ẋ0(0) �=

0 and (3.7), implies z̈0(0) = ẍ0(0). Differentiating (1.1) and (3.1) yields

ẍ0(t) = −μẋ0(t) + f ′(x1(t))ẋ1(t),

z̈0(t) = −μż0(t) + g′(z1(t))ż1(t).

From z̈0(0) = ẍ0(0) and ż0(0) = ẋ0(0), we get

(3.8) g′(z1(0))ż1(0) = f ′(x1(0))ẋ1(0).
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Evaluating (1.1) and (3.1) at t = 0 and using (3.4), one has g(z1(0)) = f(x1(0)).
It follows that either (z1(0) > 0 and x1(0) > 0) or (z1(0) < 0 and x1(0) < 0) or
(z1(0) = x1(0) = 0). In the following, we continue our case by case discussions.

Case 2.1. z1(0) > 0 and x1(0) > 0. Then f(x1(0)) = g(z1(0)) > f(z1(0)) gives

(3.9) 0 < z1(0) < x1(0).

This, combined with (H2) and (H3), gives

(3.10) z1(0)
g′(z1(0))
g(z1(0))

> z1(0)
f ′(z1(0))
f(z1(0))

> x1(0)
f ′(x1(0))
f(x1(0))

> 0.

On the other hand, (3.9) combined with (3.8) and g(z1(0)) = f(x1(0)) produces

(3.11) z1(0)
g′(z1(0))ż1(0)
g(z1(0))z1(0)

= x1(0)
f ′(x1(0))ẋ1(0)
f(x1(0))x1(0)

.

According to (3.10) and (3.11), we can distinguish three subsubcases to finish the
discussion on Case 2.1.

Case 2.1.1. ż1(0) = ẋ1(0) = 0. Then we have Z1(0) /∈ int(X1) and Z1(0) ∈
{(u, 0)tr ∈ R2 : u > 0}. It is easy to see from Proposition 3.2 that {(u, 0)tr ∈ R2 : 0 ≤
u < x1(0)} ⊂ int(X1). Consequently, z1(0) ≥ x1(0), a contradiction to (3.9).

Case 2.1.2. 0 < ż1(0)/z1(0) < ẋ1(0)/x1(0). First, choose a ∈ R so that z1(a) =
maxt∈R z

1(t) and 0 ∈ (a, a+ Tz]. Select a1, a2, a3 so that a < a1 < a2 < a3 < a+ Tz
and

z1(t) > 0 for a < t < a1 and for a3 < t ≤ a+ Tz,

z1(a1) = ż1(a2) = z1(a3) = 0, ż1(t) < 0 for a < t < a2,

z1(t) < 0 for a1 < t < a3, ż1(t) > 0 for a2 < t < a+ Tz.

Define θz = arctan ż1(0)
z1(0) and θx = arctan ẋ1(0)

x1(0) . Then 0 < θz < θx < π/2, Z1(0) ∈
l(θz) and X1(0) ∈ l(θx). Let t∗ = ψ1(θx). Observe t∗ ∈ [a3, a + Tz). Recall that,
for θ ∈ [0, 2π), any point of |Z1| ∩ l(θ) is not closer to the origin than any point
of |X1| ∩ l(θ). Consequently, z1(t∗) ≥ x1(0) > 0. The monotonicity of ψ1 and the

fact (z1(0), ż1(0))tr ∈ |Z1| ∩ l(θz) yield 0 ≥ ψ1(θz) > ψ1(θx) = t∗. As z1 is strictly
increasing on [a3, a + Tz] and a3 ≤ t∗ < 0 ≤ a + Tz, we infer z1(t∗) < z1(0). The
last inequality and z1(t∗) ≥ x1(0) > 0 together imply z1(0) > x1(0), a contradiction
to (3.9).

Case 2.1.3. ẋ1(0)/x1(0) < ż1(0)/z1(0) < 0. Define θz = arctan ż1(0)
z1(0) + 2π and

θx = arctan ẋ1(0)
x1(0) + 2π. Then 3π/2 < θx < θz < 2π, Z1(0) ∈ l(θz) and X

1(0) ∈ l(θx).

We now choose a, a1, a2, a3 as in Case 2.1.2 and apply Proposition 3.7 to z1 as in
Case 2.1.2. Let t∗ = Ψ1(θx). Then t∗ ∈ (a, a1]. Analogously to Case 2.1.2, we find
z1(t∗) ≥ x1(0) > 0. The monotonicity of Ψ1 and Z1(0) ∈ |Z1| ∩ l(θz) combined
yield t∗ = Ψ1(θx) > Ψ1(θz) ≥ 0. Now we can use the inequality a < 0 < t∗ ≤ a1
and the fact that z1 is strictly decreasing on (a, a1] to obtain z1(0) > z1(t∗). Thus
z1(0) > x1(0), a contradiction to (3.9).

Case 2.2. z1(0) < 0 and x1(0) < 0. Arguments similar to those used in Case 2.1
will lead to a contradiction.
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Case 2.3. z1(0) = x1(0) = 0. Then (3.8) and g′(0) = f ′(0) �= 0 combined imply

ż1(0) = ẋ1(0). Note that ż1(0) = ẋ1(0) �= 0 since 0 ∈ int(Z1) and 0 ∈ int(X1). This,
combined with (1.1) and (3.1), gives z2(0)x2(0) > 0.

Define v = (v0, v1, v2)
tr

: R � t �→ (x1(t), x2(t), x0(t − 1))tr ∈ R3 and w =

(w0, w1, w2)
tr

: R � t �→ (z1(t), z2(t), z0(t − 1))tr ∈ R3. Then (v0(0), v̇0(0))tr =

(w0(0), ẇ0(0))tr, v̇0(0) = ẇ0(0) �= 0 and w1(0)v1(0) > 0. By replacing z and x with
w and v, respectively, we easily check that all the conditions of Proposition 3.8 hold.
Moreover, by applying the same discussions as those in Cases 2.1 and 2.2, we shall
also arrive at a contradiction in Case 2.3. This completes the proof.

Recall from Proposition 3.2 that for any nonconstant periodic solution x : R → R3

of (1.1) there exists k ∈ N such that V (xt) = 2k for all t ∈ R. For a given k ∈ N, we
say that (1.1) has a periodic orbit in V −1(2k) if it has a nonconstant periodic solution
x : R → R3 with V (xt) = 2k for all t ∈ R.

In order to introduce quantities, expressed explicitly in terms of μ and f ′(0),
that characterize the uniqueness and absence of periodic solutions of (1.1), we need
information on the distribution of the solutions to the characteristic equation

(3.12) (λ+ τμ)
3 − (τf ′(0))3e−λ = 0

of the linear system

(3.13)

⎧⎨⎩
ẋ0(t) = −τμx0(t) + τf ′(0)x1(t)
ẋ1(t) = −τμx1(t) + τf ′(0)x2(t)
ẋ2(t) = −τμx2(t) + τf ′(0)x0(t− 1)

with parameter τ > 0. The discussion is given in Appendix A.
Proposition 3.9. Suppose that f satisfies the assumptions (H1) and (H2). Let

β > 1 and x : R → R3 be a solution of (1.1). Define g : R � ξ �→ βf( ξ
β ) ∈ R. Then g

satisfies the assumption (H3) and z : R � t �→ βx(t) ∈ R3 is a solution of (3.1) with
τ = 1.

Proof. It is easy to see that z is a solution of (3.1), g is an odd continuously
differentiable function, and g′(0) = f ′(0). By limξ→0(ξf

′(ξ)/f(ξ)) = 1 and (H2), we
obtain

(3.14)
ξf ′(ξ)
f(ξ)

< 1 for all ξ ∈ (0,∞).

For each given ξ > 0, the function (0,∞) � u �→ uf( ξu ) ∈ R is strictly increasing since

its derivative, f( ξu )[1− (ξ/u)f ′(ξ/u)
f(ξ/u) ], is larger than 0 by (3.14). Thus g(ξ) = βf( ξ

β ) >

f(ξ) for all ξ ∈ (0,∞) as β > 1. Moreover, using (H2) and β > 1, we obtain

g′(ξ)
g(ξ)

=
1

ξ

(ξ/β)f ′(ξ/β)
f(ξ/β)

>
1

ξ

ξf ′(ξ)
f(ξ)

=
f ′(ξ)
f(ξ)

for all ξ ∈ (0,∞). Therefore, g satisfies (H3).

For each (k, j) ∈ (N× {0, 1, 2}) \ {(0, 0)}, let τk,j =
6kπ+2jπ−3 arccos μ

f′(0)√
[f ′(0)]2−μ2

.

Now we are ready to present the first main result of this section.
Theorem 3.10. Suppose (H1) and (H2) hold. Then the following two statements

are true.
(i) For every k ∈ N \ {0, 1}, system (1.1) has at most one periodic orbit in

V −1(2k).
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(ii) If (k, j) ∈ {(0, 0)} ∪ {(k, j) ∈ (N × {0, 1, 2}) \ {(0, 0), (0, 1)} : τk,j ≥ 1}, then
system (1.1) has no periodic orbit in V −1(6k + 2j).

Proof. (i) By way of contradiction, suppose that there exist two nonconstant
periodic solutions x : R → R3 and y : R → R3 of (1.1) with the minimal periods
Tx > 0 and Ty > 0, respectively, satisfying {xt : t ∈ [0, Tx]}∩{yt : t ∈ [0, Ty]} = ∅ and
V (xt) = V (yt) = 2k > 0 for all t ∈ R. Then, by Proposition 3.1 and the definition of
V , xj and yj have a zero for all j ∈ {0, 1, 2}.

For each j ∈ {0, 1, 2}, define Xj : [0, Tx] � t �→ (xj(t), ẋj(t))tr ∈ R2 and Y j :
[0, Ty] � t �→ (yj(t), ẏj(t))tr ∈ R2. We remark that Proposition 3.4 implies |X0| =
|X1| = |X2| and |Y 0| = |Y 1| = |Y 2|. Since x0 and y0 have zeros, by Corollary 3.3(ii),
0 ∈ int(X0) and 0 ∈ int(Y 0). Moreover, the last statement of Corollary 3.3(iii) implies
|X0| ∩ |Y 0| = ∅. Thus either |X0| ⊂ int(Y 0) or |Y 0| ⊂ int(X0). It suffices to consider
the case where |Y 0| ⊂ int(X0) since the other case can be handled similarly. Suppose
|Y 0| ⊂ int(X0). Then ρ|Y 0| ⊂ ext(X0) for all sufficiently large ρ > 0. Let

β = inf{ρ ≥ 0 : ρ′|Y 0| ⊂ ext(X0) for all ρ′ ∈ (ρ,∞)}.
Then β > 1, ρ|Y 0| ⊂ ext(X0) for all ρ ∈ (β,∞), β|Y 0| ⊂ |X0| ∪ ext(X0), and
β|Y 0| ∩ |X0| �= ∅. This, combined with the facts that |X0| = |X1| = |X2| and
|Y 0| = |Y 1| = |Y 2|, implies that β|Y j | ⊂ |Xj | ∪ ext(Xj) and ρ|Y j | ⊂ ext(Xj) for all
ρ ∈ (β,∞) and j ∈ {0, 1, 2}. By Proposition 3.9, the function g : R � ξ �→ βf( ξβ ) ∈ R
satisfies (H3) and z : R � t �→ βy(t) ∈ R3 is a Ty-periodic solution of (3.1) with
τ = 1. Clearly, V (zt) = 2k for all t ∈ R. By applying Proposition 3.8, we obtain that
β|Y j | ∩ |Xj | = ∅ for all j ∈ {0, 1, 2}. This contradicts with β|Y 0| ∩ |X0| �= ∅ and
hence we have proved (i).

(ii) We finish the proof of statement (ii) by distinguishing two cases.
Case 1. (k, j) = (0, 0). By way of contradiction, we show that (1.1) has no

nonconstant periodic solutions in V −1(0). Suppose that there exists a nonconstant
periodic solution x : R → R3 of (1.1) such that V (xt) = 0 for all t ∈ R. It follows
from the definition of V that x0(t) �= 0 for all t ∈ R. Then, by Proposition 3.1, either
(xj(t) > 0 for all j ∈ {0, 1, 2} and t ∈ R) or (xj(t) < 0 for all j ∈ {0, 1, 2} and t ∈ R).
Therefore, Proposition 2.5 implies that either xt ≡ ξ̂+ or xt ≡ ξ̂−, a contradiction
with the fact that x : R → R3 is a nonconstant periodic solution of (1.1).

Case 2. (k, j) ∈ N× {0, 1, 2} \ {(0, 0), (0, 1)} such that τk,j ≥ 1. Again, we show
by way of contradiction that (1.1) has no periodic solutions in V −1(6k+2j). Suppose
that x : R → R3 is a nonconstant periodic solution of (1.1) with the minimal period
Tx > 0 and V (xt) = 6k + 2j (≥ 4) for all t ∈ R. Define w : R → R3 such that
w(t) = X(k, j, 1, 0, τk,j)(t) for all t ∈ R (see Appendix A, p. 59 for the definition
of X(k, j, 1, 0, τk,j)). Then, by Theorems A.13 and A.16, w is a nontrivial periodic
solution of (3.2) with τ = τk,j and g(ξ) = f ′(0)ξ for all ξ ∈ R, and V (wt) = 6k + 2j
for all t ∈ R. It follows that y : R � t �→ w( t

τk,j
) ∈ R is a nontrivial periodic solution

of (3.1) with τ = τk,j and g(ξ) = f ′(0)ξ for all ξ ∈ R. Denote the minimal period

of y by Ty. For each j ∈ {0, 1, 2}, define Xj : [0, Tx] � t �→ (xj(t), ẋj(t))tr ∈ R2 and

Y j : [0, Ty] � t �→ (yj(t), ẏj(t))tr ∈ R2. From Proposition 3.1 and the definition of V ,
we know that x0 and y0 have zeros. By Corollary 3.3(ii), 0 ∈ int(X0) and 0 ∈ int(Y 0).
Let

β = inf{ρ ≥ 0 : ρ′|Y 0| ⊂ ext(X0) for all ρ′ ∈ (ρ,∞)}.
Note that Proposition 3.4 yields |X0| = |X1| = |X2| and |Y 0| = |Y 1| = |Y 2|. This,
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combined with the definition of β, implies that for all j ∈ {0, 1, 2},

β|Y j | ⊂ |Xj| ∪ ext(Xj) and rβ|Y j | ⊂ ext(Xj) for r > 1,

and β|Y 0| ∩ |X0| �= ∅. Clearly, g′(0) = f ′(0). The fact that limξ→0
ξf ′(ξ)
f(ξ) = 1 and

(H2) combined yield ξf ′(ξ)
f(ξ) < 1 for ξ > 0, or equivalently, (f(ξ)ξ )′ < 0 for ξ > 0.

Using this and the equation limξ→0
f(ξ)
ξ = f ′(0), we obtain g(ξ) = f ′(0)ξ > f(ξ) for

ξ > 0. Moreover, g′(ξ)
g(ξ) = 1

ξ >
f ′(ξ)
f(ξ) for ξ > 0. Applying Proposition 3.8 with τ = τk,j ,

g(ξ) = f ′(0)ξ and z(t) = βy(t), we get a contradiction.
In the remaining part of this section, we study the existence of periodic orbits

of (1.1). For this purpose, we introduce the following parameterized scalar delay
differential equation

(3.15) ẋ(t) = −τμx(t) + τf(x(t − 1))

and parameterized system of delay differential equations

(3.16)

⎧⎨⎩ẋ
0(t) = −τμx0(t) + τf(x1(t)),
ẋ1(t) = −τμx1(t) + τf(x2(t)),
ẋ2(t) = −τμx2(t) + τf(x0(t− 1))

with parameter τ (> 0), where μ > 0 and f : R → R is a strictly increasing and
continuously differentiable function satisfying assumptions (H1) and (H2).

The following result comes from [15].
Proposition 3.11. If τ >

τ1,0
3 , then there exists a nonconstant periodic orbit

O(τ) of (3.15) such that the minimal period T (τ) of O(τ) belongs to (1, 2).
Proposition 3.12. If τ > τ1,0, then there exists a unique nonconstant periodic

orbit O1,0(τ) of (3.16) such that V (ψ) = 6 for all ψ ∈ O1,0(τ) and the minimal period
T1,0(τ) of O1,0(τ) belongs to (13 ,

2
3 ).

Proof. For each τ ∈ (
τ1,0
3 ,∞), by Proposition 3.11, we may choose a nonconstant

periodic solution p(τ) : R → R of (3.15) such that (p(τ))t ∈ O(τ) for all t ∈ R and
the minimal period T (τ) of p(τ) belongs to (1, 2).

For a given τ > τ1,0, define p1,0(τ) : R → R3 by (p1,0(τ))
j(t) = p( τ3 )(3t− j) for all

(t, j) ∈ R×{0, 1, 2}. It is easy to check that p1,0(τ) is a nonconstant periodic solution

of (3.16) with the minimal period T1,0(τ) = T (τ)
3 ∈ (13 ,

2
3 ). Then (p1,0(τ))

1(t) =

(p1,0(τ))
0(t − 1

3 ) = (p1,0(τ))
0(t +

3T1,0(τ)−1
3 ) and

3T1,0(τ)−1
3 ∈ (0, T1,0(τ)). Moreover,

by Proposition 3.1 and (H1), (p1,0(τ))
0 has a zero. By applying Corollary 3.6, we

know that V ((p1,0(τ))t) = 6 for all t ∈ R. On the other hand, the uniqueness of
a nonconstant periodic orbit in V −1(6) follows from Theorem 3.10. Let O1,0(τ) =
{(p1,0(τ))t : t ∈ R}. Then τ > τ1,0, O1,0(τ) is the unique nonconstant periodic orbit
of (3.16) such that V (ψ) = 6 for all ψ ∈ O1,0(τ) and the minimal period T1,0(τ) of
O1,0(τ) belongs to (13 ,

2
3 ). This completes the proof.

Proposition 3.13. T1,0 : (τ1,0,∞) → (0,∞) is a continuous function. Moreover,
T1,0(τ) → 2π

b1,0
as τ → (τ1,0)

+.

Proof. Define T : [τ1,0,∞) → R by T (τ1,0) = 2π
b1,0

and T (τ) = T1,0(τ) for all

τ ∈ (τ1,0,∞). We claim that T is a continuous function on [τ1,0,∞). If the claim
is true, then it follows immediately that T1,0 is continuous and T1,0(τ) → 2π

b1,0
as

τ → (τ1,0)
+.
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In the following, we will prove the claim by way of contradiction. Suppose that
the claim is not true. Then there exists a sequence {τm} ⊂ [τ1,0,∞) such that
limm→∞ τm = τ∗ ∈ [τ1,0,∞) and T (τm) does not tend to T (τ∗) as m→ ∞. Note that
T ([τ1,0,∞)) ⊆ [ 13 ,

2
3 ] as T ((τ1,0,∞)) ⊂ (13 ,

2
3 ) by Proposition 3.12 and 2π

b1,0
∈ (13 ,

4
9 ).

By taking a subsequence if necessary, without loss of generality, we assume that
{τm} ⊂ (τ1,0,∞) and there exists T0 �= T (τ∗) such that T0 ∈ [ 13 ,

2
3 ] and T (τm) → T0

as m → ∞. By Propositions 3.1 and 3.12, for each m ∈ N, we choose the solution
xm : R → R3 of (3.16) such that (xm)0 ∈ O1,0(τm) and (xm)0(0) = max{x0m(t) : t ∈
R}. By Proposition 2.4 (ii), for each m ∈ N, (xm)j(t) ∈ [ξ−, ξ+] for all j ∈ {0, 1, 2}
and t ∈ R. Let a∗ = sup{| − τmμa + τmf(b)| : a, b ∈ [ξ−, ξ+] and m ∈ N} and
b∗ = sup{| − τmμa + τmf

′(d)b| : d ∈ [ξ−, ξ+] and a, b ∈ [−a∗, a∗] and m ∈ N}. It
follows from (3.16) that |( ˙xm)j(t)| ≤ a∗ and |(ẍm)j(t)| ≤ b∗ for allm ∈ N, j ∈ {0, 1, 2}
and t ∈ R. Thus, by Remark 2.3, by passing to a subsequence if necessary, we can
assume that there exists a map x : R → R3 such that xm → x and ˙xm → ẋ uniformly
in any compact interval of R as m → ∞. We shall finish the proof by distinguishing
two cases.

Case 1. x is not zero. Obviously, x0(0) = max{x0(t) : t ∈ R} �= 0 follows from
the fact that x0m(0) = max{x0m(t) : t ∈ R} for all m ∈ N. We first prove the following
statements:

(i) x(t) = x(t− T0) and x(t) = −x(t− T0

2 ) for all t ∈ R.
(ii) x is a nonconstant periodic solution of (3.16) with τ = τ∗.
(iii) ẋ0(t) < 0 for all t ∈ (0, T0

2 ) and ẋ0(t) > 0 for all t ∈ (T0

2 , T0).
(iv) The minimal period of x is T0.
To verify (i), for any t ∈ R, let I∗ = [t − 1 − 2T0, t]. Then the above discussions

imply that {xm|I∗}m∈N is equicontinuous on I∗ and xm|I∗ tends uniformly to x|I∗

as m → ∞. Thus, for any ε > 0, there exists n1 ∈ N such that |xm(t − T (τm)) −
xm(t− T0)| < ε

3 and |xm(t− T0) − x(t − T0)| < ε
3 whenever m > n1. It follows that

|xm(t)− x(t − T0)| = |xm(t− T (τm))− x(t− T0)| ≤ |xm(t− T (τm))− xm(t− T0)|+
|xm(t − T0) − x(t − T0)| < ε whenever m > n1. This means that xm(t) → x(t − T0)

as m → ∞ and hence x(t) = x(t− T0). Similarly, by using xm(t) = −xm(t+ T (τm)
2 ),

we can show that x(t) = −x(t− T0

2 ). Since t is arbitrary, we have proved (i).
From statement (i) and the fact that x is not zero, we know that x is a nonconstant

periodic map. Moreover, since xm → x and ˙xm → ẋ uniformly in any compact interval
of R as m→ ∞, we easily see that x is a nonconstant periodic solution of (3.16) with
τ = τ∗. This proves (ii).

Observe that ˙xm|I∗ tends uniformly to ẋ|I∗ as m → ∞, where I∗ = [0, T0].

By Remark 2.3, we have ˙xm
0(t) < 0 for all t ∈ (0, T (τm)

2 ) and ˙xm
0(t) > 0 for all

t ∈ (T (τm)
2 , T (τm)). These facts, combined with the fact T (τm) → T0 as m → ∞,

show that ẋ0(t) ≤ 0 for all t ∈ (0, T0

2 ) and ẋ0(t) ≥ 0 for all t ∈ (T0

2 , T0). Again

by statement (ii) and Remark 2.3, we obtain that ẋ0(t) < 0 for all t ∈ (0, T0

2 ) and

ẋ0(t) > 0 for all t ∈ (T0

2 , T0), verifying (iii).
By statements (i) and (iii), we know that the minimal period of x is T0.
Statements (ii) and (iv) imply that x is a nonconstant periodic solution of (3.16)

with τ = τ∗ such that the minimal period of x is T0.
By Proposition 3.2(iv) and statement (ii), we know V (xt) = 2k for some k ∈ N

and all t ∈ R. This, combined with Proposition 2.6(iii)(b), implies that xt ∈ R for
all t ∈ R. Thus, for each t ∈ R, by Proposition 2.6(ii), we obtain that V (xt) =
limm→∞ V ((xm)t) = 6 since (xm)t → xt and ( ˙xm)t → (ẋ)t as m → ∞. Thus by
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Theorem 3.10 and Proposition 3.12, we obtain that τ∗ > τ1,0 and the minimal period
T0 = T (τ∗), a contradiction.

Case 2. x ≡ 0. In this case, xm uniformly tends to zero in any compact subset

of R as m→ ∞. Let Mm = max{|(xm)0(t)| : t ∈ R} and ym(t) = xm(t)
Mm

for all m ∈ N
and t ∈ R. Then |(ym)j(t)| ≤ 1 for all m ∈ N and t ∈ R. We can easily check that
limm→∞Mm = 0, and V ((ym)t) = 6 for all m ∈ N and t ∈ R. It follows from (3.16)
that, for each m ∈ N, ym satisfies the following equation:

(3.17)

⎧⎪⎨⎪⎩
ẏ0(t) = −τmμy0(t) + τm

f(Mmy1(t))
Mm

,

ẏ1(t) = −τmμy1(t) + τm
f(Mmy2(t))

Mm
,

ẏ2(t) = −τmμy2(t) + τm
f(Mmy0(t−1))

Mm
.

For each m ∈ N, define fm : R → R by fm(y) = f(Mmy)
Mm

for all y ∈ R and define
f0 : R → R by f0(y) = f ′(0)y for all y ∈ R. Thus, fm → f0 and f ′

m → f ′
0 uniformly

in any compact subset of R as m→ ∞.
Let a∗∗ = sup{| − τmμa + τmfm(b)| : a, b ∈ [−1, 1] and m ∈ N} and b∗∗ =

sup{| − τmμa + τf ′
m(d)b| : d ∈ [−1, 1] and a, b ∈ [−a∗∗, a∗∗] and m ∈ N}. It follows

from (3.16) that |( ˙ym)j(t)| ≤ a∗∗ and |(ÿm)j(t)| ≤ b∗∗ for all m ∈ N, j ∈ {0, 1, 2} and
t ∈ R. Then, by passing to a subsequence if necessary, Remark 2.3 shows there exists
a function y : R → R3 such that ym → y and ẏm → ẏ uniformly in any compact
subset of R as m → ∞. Thus, y is a nonconstant periodic solution of (3.13) with
τ = τ∗, and the minimal period of y is T0. Again, by Proposition 2.6 (ii), we obtain
that V (yt) = limm→∞ V ((ym)t) = 6 for all t ∈ R. By Theorems A.13 and A.16 and
the fact that V (xt) = 6 for all t ∈ R, we know that τ∗ = τ1,0 and T0 = 2π

b1,0
, which

contradict with T0 �= T (τ∗).
Therefore, we have proved the claim. This completes the proof.
Proposition 3.14. lim infτ→∞ T1,0(τ) =

1
3 .

Proof. By way of contradiction, assume lim infτ→∞ T1,0(τ) �= 1
3 . Then, by Propo-

sition 3.12, lim infτ→∞ T1,0(τ) >
1
3 . Thus there exist T ∗ ∈ (13 ,

2
3 ) and τ

∗∗ > τ1,0 such
that T1,0(τ) > T ∗ for all τ ∈ (τ∗∗,∞).

Let M = sup{f ′(x) : x ∈ R}. By (H2), for ξ > ξ+, we have f ′(ξ+)
μ = ξ+f ′(ξ+)

f(ξ+) >

ξf ′(ξ)
f(ξ) , which implies that f ′(ξ) < f ′(ξ+)

μ
f(ξ)
ξ < f ′(ξ+)

μ · μ = f ′(ξ+). It follows that

M ∈ (0,∞) and |f(x)| ≤ M |x| for all x ∈ R. Furthermore, let k = f ′(0)+μ
2 . Then

k > μ as f ′(0) > μ. It follows from f ′(0) > μ and f ′(x) > 0 that there exists

y∗ ∈ (0, ξ+

2(1+M
μ )

) such that |f(x)| ≥ k|x| for all x ∈ [−y∗, y∗] and |f(x)| ≥ ky∗ for all

x ∈ (−∞,−y∗] ∪ [y∗,∞). Let A∗ = 1
μ ln(ky

∗+ξ+(2μ+2M)
(k−μ)y∗ ) and τ∗ = max{ 2A∗

T∗− 1
3

, 1 +

τ1,0, 1 + τ∗∗}.
Assume that p : R → R3 is a periodic solution of (3.16) with τ = τ∗ such that

p0(0) = max{|(p0(t)| : t ∈ R} and V (pt) = 6 for all t ∈ R. Then by Proposition 3.12,
we have p(t) = p1,0(τ

∗)(t+ t∗) for all t ∈ R and some t∗ ∈ R, and the minimal period
of p is T1,0(τ

∗). Define z : R → R by z(t) = p0(t) for all t ∈ R. Let T = T1,0(τ
∗).

Then z(0) = max{|(z(t)| : t ∈ R}, T ∈ (T ∗, 23 ) and the minimal period of z is T . By
Proposition 3.5, we infer that z satisfies the following equation:

(3.18) ż(t) = −τ∗μz(t) + τ∗f
(
z

(
t− 1

3

))
.
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Let ξ∗ = μy∗z(0)
(2μ+2M)ξ+ . Since z(0) ≤ ξ+ (by Proposition 2.4(ii)) and y∗ < ξ+, we know

that ξ∗ < min{y∗, z(0)}. It follows that |f(x)| ≥ k|x| for all x ∈ [−ξ∗, ξ∗] and |f(x)| ≥
kξ∗ for all x ∈ (−∞,−ξ∗] ∪ [ξ∗,∞). By the fact that ξ∗ < z(0), there exist T1 and
T2 such that T1 = sup{t ∈ (−∞, 0) : z(t) = ξ∗} and T2 = inf{t ∈ (0,∞) : z(t) = ξ∗}.
Using Remark 3.3, we know that z(t) ≥ ξ∗ for all t ∈ [T1, T2] and z(t) ≤ ξ∗ for all
t ∈ [T2, T1 + T ]. Moreover, T2 < T1 +

T
2 since z(T1 +

T
2 ) = −z(T1) = −ξ∗.

We now prove that T2 − T1 ≥ T − 1
3 . If this is not true, then T2 − T1 < T − 1

3 . It
follows that −T1 < T − 1

3 <
1
3 and T2 +

1
3 < T + T1 < T . Thus − 1

3 + [T2 +
1
3 , T ] ⊆

[T2, T1 + T ], which implies that z(t − 1
3 ) ≤ ξ∗ for all t ∈ [T2 + 1

3 , T ]. It follows
from (3.18) that

ż(t) = −τ∗μz(t) + τ∗f(z(t− 1
3 )) ≤ −τ∗μz(t) +Mτ∗ξ∗,

or

d(z(t)eμτ
∗t)

dt
≤ Mξ∗

μ

d(eμτ
∗t)

dt

for all t ∈ [T2 +
1
3 , T ]. Integrating this differential inequality gives us

z(T ) ≤ z(T2 +
1
3 )e

−μτ∗(T−T2− 1
3 ) + Mξ∗

μ − Mξ∗

μ e−μτ∗(T−T2− 1
3 )

≤ z(T2 +
1
3 )e

−μτ∗(T−T2− 1
3 ) + Mξ∗

μ

≤ ξ∗e−μτ∗(T−T2− 1
3 ) +

Mξ∗

μ

≤ (1 + M
μ )ξ∗

=
y∗z(0)
2ξ+

≤ z(0)

2
,

a contradiction to z(T ) = z(0) > 0. This proves T2−T1 ≥ T − 1
3 and hence T2−T1 ≥

T ∗ − 1
3 .

Let S∗ = A∗
τ∗ + T1 + 1

3 . Note that T ∗ + 1
3 ≤ 2T and T < 2

3 . Also recall that

T2 ≤ T1 +
T
2 . By a simple computation, we obtain that S∗ > T1 +

1
3 > T1 +

T
2 ≥ T2

and S∗ ≤ T∗− 1
3

2 + T1 +
1
3 ≤ 2T− 1

3− 1
3

2 + T1 +
1
3 = T + T1 ≤ T2 +

1
3 . In particular,

S∗ ∈ [T1 +
1
3 , T2 +

1
3 ]. Using (3.18), for all t ∈ [T1 +

1
3 , T2 +

1
3 ], we have

ż(t) = −τ∗μz(t) + τ∗f(z(t− 1
3 )) ≥ −τ∗μz(t) + kτ∗ξ∗

and hence

d(z(t)eμτ
∗t)

dt
≥ kξ∗

μ

d(eμτ
∗t)

dt
.

Integrating the above differential inequality yields, for all t ∈ [T1 +
1
3 , T2 +

1
3 ], that

z(t) ≥ z
(
T1 +

1
3

)
e−μτ∗(t−T1− 1

3 ) + kξ∗

μ − kξ∗

μ e−μτ∗(t−T1− 1
3 )

≥ −
(
z(0) + kξ∗

μ

)
e−μτ∗(t−T1− 1

3 ) + kξ∗

μ .
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In particular,

z(S∗) ≥ −
(
z(0) + kξ∗

μ

)
e−μτ∗(S∗−T1− 1

3 ) + kξ∗

μ

= −
(
z(0) + kξ∗

μ

)
e−μA∗

+ kξ∗

μ

= −
(

(2μ+2M)ξ+ξ∗

μy∗ + kξ∗
μ

)
e−μA∗

+ kξ∗
μ .

It follows from the definition of A∗ and the above inequality that z(S∗) = z(A
∗

τ∗ +T1+
1
3 ) ≥ ξ∗. This, combined with the fact that S∗ > T2, implies A∗

τ∗ + T1 +
1
3 ≥ T + T1.

Thus T ≤ A∗
τ∗ + 1

3 < T ∗, a contradiction. This completes the proof.
Proposition 3.15. Assume that τ∗ > 0 and k∗ ∈ N \ {0} satisfy

(H4)
(2k∗+2)π−3 arccos μ

f′(0)√
[f ′(0)]2−μ2

≥ τ∗ >
2k∗π−3 arccos μ

f′(0)√
[f ′(0)]2−μ2

.

Then, for each positive integer l ≤ k∗, we have the following results.
(i) If l ≥ 2, then there exists one and only one nonconstant periodic orbit Ol(τ

∗)
of (3.16) with τ = τ∗ such that V (ψ) = 2l for all ψ ∈ Ol(τ

∗) and the minimal
period Tl(τ

∗) > 0.
(ii) If l = 1, then there exists at least one nonconstant periodic orbit of (3.16) with

τ = τ∗ in the level set V −1(2): that is, for any such orbit O1(τ
∗), V (ψ) = 2

for all ψ ∈ O1(τ
∗) and the minimal period T1(τ

∗) > 0.
Proof. Let κ = {1, 2, . . . , k∗}, D1 = (1,∞), and Dl = (1l ,

2
2l−3 ) for all l ∈ κ \ {1}.

We now claim that there exists k∗ nonconstant periodic orbits {Ol : l ∈ κ} of (3.16)
such that the minimal period of Ol is Tl ∈ Dl, where l ∈ κ.

Now suppose l ∈ κ. Then there exists (kl, jl) ∈ N × {0, 1, 2} such that l =

3kl + jl and τ∗ > τkl,jl . Let ωl(γ) = 1 + (l − 3)T1,0(γ), Tl(γ) =
T1,0(γ)
ωl(γ)

and

pl(γ)(t) = p1,0(γ)(ωl(γ)t) for all t ∈ R and γ > τ1,0. A simple computation shows
that pl(γ) : R → R3 is a periodic solution of (3.16) with τ = γωl(γ). Proposition 3.12
implies that the function h : (τ1,0,∞) � γ �→ γωl(γ) ∈ R is continuous and satisfies
limγ→(τ1,0)+ h(γ) = τkl,jl . Moreover, Proposition 3.14 implies lim supγ→∞ h(γ) = ∞.
Hence, by τ∗ > τkl,jl , there exists a γ∗ ∈ (τ1,0,∞) such that h(γ∗) = τ∗. Then
ωl(γ

∗) > 0. Thus pl(γ
∗) : R → R3 is a periodic solution of (3.16) with τ = τ∗ such

that its minimal period is Tl(γ
∗). Moreover, by Proposition 3.5 and the definition of

pl(γ
∗), we obtain

(pl(γ
∗))1(t) = (p1,0(γ

∗))1(ωl(γ
∗)t)

= (p1,0(γ
∗))0
(
ωl(γ

∗)t+
3T1,0(γ

∗)− 1

3

)
= (p1,0(γ

∗))0
(
ωl(γ

∗)
[
t+

3T1,0(γ
∗)− 1

3ωl(γ∗)

])
= (pl(γ

∗))0
(
t+

3T1,0(γ
∗)− 1

3ωl(γ∗)

)
= (pl(γ

∗))0
(
t+

3T1,0(γ
∗)− (ωl(γ

∗)− (l − 3)T1,0(γ
∗))

3ωl(γ∗)

)
= (pl(γ

∗))0
(
t+

lT1,0(γ
∗)− ωl(γ

∗)
3ωl(γ∗)

)
= (pl(γ

∗))0
(
t+

lTl(γ
∗)− 1

3

)
.
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Obviously, lTl(γ
∗)−1
3 =

3T1,0(γ
∗)−1

3ωl(γ∗) = Tl(γ
∗) − 1

3ωl(γ∗) ∈ (0, Tl(γ
∗)) follows from

ωl(γ
∗) > 0. So, by Corollary 3.6, we have V ((pl(γ

∗))t) = 2l for all t ∈ R. Now,
we show Tl(γ

∗) ∈ Dl. First, by Proposition 3.5 there exists a δ1 ∈ (− 1
2 , 1] such

that 1 = (l − 1)Tl(γ
∗) + δ1Tl(γ

∗), which implies that Tl(γ
∗) ≥ 1

l . If Tl(γ
∗) = 1

l ,

then it follows from Tl(γ
∗) = 1

l =
T1,0(γ

∗)
1+(l−3)T1,0(γ∗) that T1,0(γ

∗) = 1
3 , a contradic-

tion to T1,0(γ
∗) ∈ (13 ,

2
3 ). Thus Tl(γ

∗) > 1
l . On the other hand, by Proposition 3.5

again, there exists δ2 ∈ (− 1
2 , 1] such that 1 = 2T1,0(γ

∗) + δ2T1,0(γ
∗). Then ωl(γ

∗) =
2T1,0(γ

∗) + δ2T1,0(γ
∗) + (l − 3)T1,0(γ

∗) > (2 − 1
2 + l − 3)T1,0(γ

∗) = (l − 3
2 )T1,0(γ

∗).
Thus, Tl(γ

∗) < T1,0(γ
∗)

(l− 3
2 )T1,0(γ∗) = 2

2l−3 for l ≥ 2. It follows that Tl(γ
∗) ∈ Dl for l ≥ 1.

So far we have shown the existence of at least one periodic orbit in V −1(2l) for l ∈ κ.
This, combined with Theorem 3.10 and the arbitrariness of l, shows that statements
(i) and (ii) hold. This completes the proof.

We now present the second main result of this section.
Theorem 3.16. Suppose (H1) and (H2) hold. Then the following statements are

true.
(i) If τ0,1 ∈ (0, 1), then system (1.1) has at least one periodic orbit in V −1(2).
(ii) For every (k, j) ∈ {(k, j) ∈ N × {0, 1, 2} \ {(0, 0), (0, 1)} : τk,j ∈ (0, 1)},

system (1.1) has a unique periodic orbit in V −1(6k + 2j).
(iii) For every (k, j) ∈ {(0, 0)}⋃{(k, j) ∈ N× {0, 1, 2} \ {(0, 0), (0, 1)} : τk,j ≥ 1},

system (1.1) has no nonconstant periodic orbit in V −1(6k + 2j).

Proof. Let τ∗ = 1 and k∗ = sup{k ∈ N : τ∗ >
2kπ−3 arccos μ

f′(0)√
[f ′(0)]2−μ2

}.
(i) Since τ0,1 ∈ (0, 1), we know that l = 1 ≤ k∗. Then conclusion (i) follows from

Proposition 3.15(ii).
(ii) For every (k, j) ∈ {(0, 0)}⋃{(k, j) ∈ N × {0, 1, 2} \ {(0, 0), (0, 1)} : τk,j ∈

(0, 1)}, we have 3k + j ≤ k∗. Then by Proposition 3.15(i), system (1.1) has a unique
periodic orbit in V −1(6k + 2j).

(iii) Obviously, conclusion (iii) follows from Theorem 3.10(ii).
According to Theorems 3.16, A.12, and A.13(ii), we know that the number of the

nonconstant periodic orbits is larger than or equal to the number of the roots with
positive imaginary parts and positive real parts of the characteristic equation (3.12)
with τ = 1.

4. Structure of the global attractor. In this section, we describe the struc-
ture of the global attractor A. For K ⊆ A, define Wu(K) = {φ ∈ A : α(φ) ⊆ K}.

Proposition 4.1. Let x : R → R3 be a nonzero solution of (1.1). If there exists
k ∈ N such that V (xt) = 2k for all t ∈ R, then xt ∈ R for all t ∈ R. In particular,
for any j ∈ {0, 1, 2}, πj(xt) �= (0, 0)tr for all t ∈ R, and if t0 ∈ R is a zero of xj, then
it must be simple.

Proof. It follows from Proposition 2.6(iii)(b) and the fact that V (xt) = 2k for all
t ∈ R that xt ∈ R for all t ∈ R. This, combined with the definition of R, yields the
conclusion and hence the proof is complete.

Proposition 4.2. Let x : R → R3 be a nonzero solution of (1.1) and let χ = {t ∈
R : x0(t) = 0}. If ω(x) = α(x) = {0̂} and there exists k ∈ N such that V (xt) = 2k for
all t ∈ R, then χ �= ∅ and inf{t : t ∈ χ} = −∞.

Proof. First, we claim that, for any j ∈ {0, 1, 2}, there exists no T ∈ R such
that xj(t)xj+1(t) < 0 for all t ∈ (−∞, T ). Recall that x3(t) = x0(t − 1). If the
claim is not true, then there exist j ∈ {0, 1, 2} and T ∈ R such that xj(t)xj+1(t) < 0
for all t ∈ (−∞, T ). It suffices to consider the case where x0(t) > 0 and x1(t) < 0
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for all t ∈ (−∞, T ) since the proofs for other cases are similar. By (1.1), ẋ0(t) =
−μx0(t) + f(x1(t)) < 0 for all t ∈ (−∞, T ). This implies that x0(t) ≥ x0(T − 1) > 0
for all t ∈ (−∞, T − 1], a contradiction to α(x) = {0̂}. This proves the claim.

Now, we prove Proposition 4.2. Obviously, it suffices to show that inf{t : t ∈
χ∪{0}} = −∞. By way of contradiction, suppose inf{t : t ∈ χ∪{0}} = T ∗ ∈ (−∞, 0].
Then either (x0(t) > 0 for all t ∈ (−∞, T ∗)) or (x0(t) < 0 for all t ∈ (−∞, T ∗)).
Since −x satisfies all the conditions of Proposition 4.2, without loss of generality,
we can assume that x0(t) > 0 for all t ∈ (−∞, T ∗). It follows from (1.1) that
dx2(t)eμt

dt = eμtf(x0(t− 1)) > 0 for all t ∈ (−∞, T ∗ +1), which indicates that x2(t)eμt

is strictly increasing on (−∞, T ∗ + 1). If there exists t∗ ∈ (−∞, T ∗ + 1) such that
x2(t∗) = 0 then x2(t) < 0 for all t ∈ (−∞, t∗). It follows that x2(t)x0(t − 1) < 0
for all t ∈ (−∞, t∗), a contradiction to the above claim. Thus, x2(t) > 0 for all

t ∈ (−∞, T ∗ + 1). Then it follows from (1.1) that dx1(t)eμt

dt = eμtf(x2(t)) > 0 for all
t ∈ (−∞, T ∗ + 1), which implies that x1(t)eμt is strictly increasing on (−∞, T ∗ + 1).
Similarly as before, we have x1(t) > 0 for all t ∈ (−∞, T ∗ + 1). Thus xt ∈ (C+)

◦

for all t ∈ (−∞, T ∗). This, combined with Proposition 2.5, gives ω(x) = {ξ̂+}, a
contradiction and hence the proof is complete.

Proposition 4.3. Let x : R → R3 be a nonzero solution of (1.1). If there exists
k ∈ N such that V (xt) = 2k for all t ∈ R and V (xt − xs) = 2k for all t �= s, then
either ω(x) �= {0̂} or α(x) �= {0̂}.

Proof. By way of contradiction, suppose ω(x) = α(x) = {0̂}. Proposition 4.1
and Proposition 4.2 ensure that x0 have zeros and all zeros are simple. Moreover,
inf{t ∈ R : x0(t) = 0} = −∞. Choose t0 ∈ (−∞, 0] such that x0(t0) = 0 and
ẋ0(t0) > 0. Note that {t ∈ (−∞, t0] : x

0(t) = 0} is a discrete set of R. Arranging
these zeros of x0 in a decreasing order gives a strictly decreasing sequence {tn}n∈N

such that limn→∞ tn = −∞ and ẋ0(t2n)ẋ
0(t2n+1) < 0 for all n ∈ N. As ẋ0(t0) > 0,

it follows from (1.1) and ẋ0(t2n)ẋ
0(t2n+1) < 0 for all n ∈ N that x1(t2n+1) < 0 and

x1(t2n) > 0 for all n ∈ N.
Define c : R � t �→ π0(xt) ∈ R2. Proposition 4.1 and the facts that V (xt) = 2k

for all t ∈ R and V (xt − xs) = 2k for t �= s imply that xt ∈ R for all t ∈ R and
xt − xs ∈ R for t �= s, and thus c(t) �= c(s) �= 0 for t �= s. Choose ρ > 0 so that
||c(0)|| > ρ. It follows from ω(x) = α(x) = {0̂} that limt→∞ c(t) = limt→−∞ c(t) = 0.
Then there exists a positive integer n0 such that x1(t2n0) > x1(t2n0−2) and ||c(t)|| < ρ
for t ≤ t2n0 . Let a = t2n0−2, b = t2n0 and C : [a− 1, b] → R2 be such that C(t) = c(t)
for all t ∈ [a, b] and C(t) = (a − t)c(b) + (t − a + 1)c(a) for all t ∈ [a − 1, a]. Then
C is a simple closed curve in R2. In fact, in the (x, y)-plane, C consists of the line
segment C([a − 1, a]) on the positive y-axis, the curve C([a, t2n0−1]) is completely
on the right-hand side of the y-axis and the curve C([t2n0−1, b]) is completely on the
left-hand side of the y-axis. By the definition of C, we have 0 ∈ int(C). On the other
hand, from limt→∞ c(t) = 0 and ||c(0)|| > ρ, we can deduce that there exists s1 > 0
such that c(s1) ∈ C((a − 1, a)) because c(s1) /∈ c([a, b]). Let t∗ = sup{t ∈ R : c(t) ∈
C((a − 1, a))}. Then t∗ ≥ s1 and t∗ < ∞ as limt→∞ c(t) = 0. Moreover, t∗ ≥ s1 > 0
implies that t∗ �∈ [a, b] and hence c(t∗) ∈ C((a−1, a)). Let δ = mint∈[a,b] ‖c(t)−c(t∗)‖.
Then δ > 0 and N δ

2
(c(t∗)) ∩ {(ξ1, ξ2)tr ∈ R2 : ξ1 > 0, ξ2 > 0} ⊂ ext(C), where

N δ
2
(c(t∗)) = {(ξ1, ξ2)tr ∈ R2 : ‖(ξ1, ξ2)tr − c(t∗)‖ ≤ δ

2}. Moreover, it follows from the

definition of C that x0(t∗) = 0 and x1(t∗) > 0. By (1.1), we have ẋ0(t∗) > 0. Then
there exists ε > 0 such that x0(t) > 0, x1(t) > 0 and (x0(t), x1(t))tr ∈ N δ

2
(c(t∗)) for

all t ∈ (t∗, t∗ + ε). That is, c(t) ∈ ext(C) for all t ∈ (t∗, t∗ + ε). This, combined with
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limt→∞ c(t) = 0, implies that there exists t∗∗ ≥ t∗+ε such that c(t∗∗) ∈ C((a−1, a)),
a contradiction with the choice of t∗.

Proposition 4.4. Let x : R → R3 and y : R → R3 be two nonzero solutions
of (1.1) with yt ∈ α(x) for all t ∈ R. If α(y) = {0̂}, then there exists k ∈ N such that
V (yt) = 2k for all t ∈ R and V (yt − ys) = 2k for t �= s.

Proof. Clearly, y is not a periodic solution of (1.1). Let kσ =
supt∈R

V (yt+σ−yt)

2 ,
where σ > 0. We claim kσ <∞ for all σ ∈ (0,∞). Otherwise, there exist a σ0 > 0 and
a sequence {tn}∞0 with limn→∞ tn = −∞ such that limn→∞ V (yσ0+tn − ytn) = ∞.
On the other hand, it follows from y0 ∈ α(x) that there exists a sequence {sm}∞0
with limm→∞ sm = −∞ such that limm→∞ xsm = y0. Thus, for each t ∈ R, by
Proposition 2.4(iii), xt+sm → yt in C1 as m → ∞. Then limm→∞(xσ0+sm+tn −
xsm+tn) = yσ0+tn − ytn and Proposition 2.6(i) implies

V (yσ0+tn − ytn) ≤ lim inf
m→∞ V (xσ0+sm+tn − xsm+tn).

Therefore, limt→−∞ V (xσ0+t−xt) = ∞. However, by Corollary 4.6 in [20] and Propo-
sition 2.6(iii), V (yσ0+t−yt) is constant for all large t and thus yσ0+t∗−yt∗ ∈ R for some
large t∗ > 0. Hence by Proposition 2.6(ii), V (yσ0+t∗ − yt∗) = limm→∞ V (xσ0+t∗+sm −
xt∗+sm) = limt→−∞ V (xσ0+t − xt) = ∞, a contradiction to V (yσ0+t∗ − yt∗) < ∞.
This proves the claim.

For a given σ > 0, it follows from Proposition 2.6 (iii) and the above claim that
there exists t1 > 0 such that V (yσ+t − yt) = 2kσ for t < −t1 and V (yσ+t − yt) is con-
stant for t > t1. Hence, by Proposition 2.6 (iii)(b), we have yσ+t−yt ∈ R for |t| > t1+
4. Let {sm}∞0 be a sequence as in the above paragraph. Applying Proposition 2.6 (ii),
we obtain limm→∞ V (xσ+sm+t −xsm+t) = V (yσ+t − yt) for |t| > t1 +4. On the other
hand, by Proposition 2.6 (iii), we can also obtain that for each σ > 0, V (xσ+s − xs)
is nonincreasing and thus lims→−∞ V (xσ+s − xs) = limm→∞ V (xσ+sm+t − xsm+t) =
V (yσ+t − yt) for |t| > t1 + 4. Hence V (yσ+t − yt) = lims→−∞ V (xσ+s − xs) for
|t| > t1+4. Again, Proposition 2.6(iii) implies that V (yσ+t− yt) is nonincreasing and
thus for each σ > 0, V (yσ+t − yt) = lims→−∞ V (xσ+s − xs) = 2kσ for all t ∈ R. This,
combined with Proposition 2.6(iii)(b), implies yσ+t − yt ∈ R for all t ∈ R and σ > 0.
By Proposition 2.4(iii), we know that yσ − y0 varies continuously in σ ∈ (0,∞), in
the C1 topology. So, by Proposition 2.6(ii), we infer that kσ varies continuously in
σ ∈ (0,∞). This, combined with the fact that kσ ∈ N for all σ ∈ (0,∞), yields that kσ
is independent of σ. Let k = kσ for some σ ∈ (0,∞). In view of 0̂ ∈ α(y) and Propo-
sition 2.6(i), V (yt) ≤ 2k for all t ∈ R. On the other hand, since V (yt) is constant
for all large t, we can deduce yt ∈ R for all large t and thus, by Proposition 2.6(ii),
V (yt) = lims→−∞ V (yt − yt+s) = 2k for all large t. Therefore, by Proposition 2.6(iii),
we have V (yt) = 2k, for all t ∈ R.

Theorem 4.5. A = {ξ̂−, ξ̂+}∪Wu({0̂})∪{Wu(O) : O is a nonconstant periodic
orbit of (1.1)}.

Proof. Note that 0̂, ξ̂−, ξ̂+ are the only stationary points of (1.1) with ξ̂− and

ξ̂+ being locally asymptotically stable (see Theorem B.5). Let φ ∈ A \ {ξ̂−, ξ̂+}.
Then there is a solution x : R → R3 such that x0 = φ and xt ∈ A for all t ∈ R. By
Proposition 2.7, we can deduce that either α(x) is a periodic orbitO of (1.1) or for each

solution y : R → R3 with yt ∈ α(x), the sets α(y), ω(y) ⊆ {0̂, ξ̂−, ξ̂+}. If the former
holds, then φ ∈ Wu(O). If the latter holds, then by the locally asymptotical stability

of ξ̂− and ξ̂+, we have α(x) ∩ {0̂, ξ̂−, ξ̂+} = {0̂}. We claim α(x) = {0̂}. Otherwise,
there exists a nonzero solution z : R → R3 in α(x) such that α(z) = ω(z) = {0̂}. Note
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that, by Proposition 4.4, there exists k ∈ N such that V (zt) = V (zt−zs) = 2k for t �= s,
a contradiction to Proposition 4.3. Therefore, α(x) = {0̂}, that is, φ ∈ Wu({0̂}). This
completes the proof.

5. Discussion and generalization. In sections 2–4, we studied the cyclic sys-
tem (1.1) and obtained results on the existence, absence, and uniqueness of periodic
orbits in the level sets of a discrete Lyapunov functional V , and we described the
structure of the global attractor. Unfortunately, we cannot prove the uniqueness of
periodic orbits in V −1(2). This is due to the fact that we can only prove Proposi-
tion 3.8 for k ∈ N \ {0, 1}. The proof of Proposition 3.8 is quite similar to that of
Proposition 3.4 in Krisztin and Walther [15]. When proving Proposition 3.8, we need
k ∈ N\ {0, 1} to guarantee that α∗

x ≥ α∗
z in Case 1. Unlike in the proof of Proposition

3.4 in Krisztin and Walther [15], instead of

(5.1)
(
k − 1

2

)
Tx < 1 < kTx and

(
k − 1

2

)
Tz < α < kTz,

we can only have

(5.2)
(
k − 3

2

)
Tx < 1 < kTx and

(
k − 3

2

)
Tz < α < kTz.

The inequalities (5.1) play a key role in the proof of Proposition 3.4 in [15] to get a
contradiction in Case 1. The weaker version (5.2) we obtained forced us to modify
the argument in [15] in order. Unfortunately, this modification does not allow us to
obtain the contradiction for the case where k = 1. We thus leave the following as a
future project.

Conjecture 5.1. System (1.1) has at most one periodic orbit in V −1(2).
To conclude this section, we mention that the arguments in this paper can be

modified to study the general system (1.4), that is, the system

(5.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ0(t) = −μx0(t) + f(x1(t)),
ẋ1(t) = −μx1(t) + f(x2(t)),

...
ẋn−1(t) = −μxn−1(t) + f(xn(t)),
ẋn(t) = −μxn(t) + f(x0(t− 1)),

where f satisfies the same assumptions as those in sections 2–4 and n ∈ N with
x1(t) = x0(t− 1) if n = 0.

Let Kn = [−1, 0] ∪ {1, 2, . . . , n} and Cn = C(Kn,R). Note that K0 = [−1, 0].
Define scn, Vn : Cn \ {0} → N ∪ {∞}, respectively, by

scn(φ) =

⎧⎪⎪⎨⎪⎪⎩
0 if φ is nonnegative or nonpositive

sup

⎧⎨⎩k ∈ N \ {0} :
there exists a strictly increasing
finite sequence (θj)k0 ⊂ Kn

with φ(θj−1)φ(θj) < 0 for all 1 ≤ j ≤ k

⎫⎬⎭
and

Vn(φ) =

{
scn(φ) if scn(φ) ∈ 2N ∪ {∞},
scn(φ) + 1 if scn(φ) ∈ 2N+ 1

for φ ∈ Cn \ {0}.
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The only challenge in generalizing the arguments to (5.3) is to establish an ana-
logue of Proposition 3.5, that is, to establish the following result: Let w : R → Rn+1

be a nonconstant periodic solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ0(t) = −μx0(t) + f(x1(t)),
ẋ1(t) = −μx1(t) + f(x2(t)),

...
ẋn−1(t) = −μxn−1(t) + f(xn(t)),
ẋn(t) = −μxn(t) + f(x0(t− 1))

with the minimal period Tw > 0, where μ > 0, τ > 0, and the C1-function g : R → R
is odd and g′(ξ) > 0 for all ξ ∈ R. If Vn(wt) = 2k + 2 for some k ∈ N and for all
t ∈ R, then there exists δ ∈ (1−n

2 , 1] such that the following results are true.
(i) 1 = kTw + δTw.
(ii) (w1(t), w2(t), . . . , wn(t), w0(t − 1)) = (w0(t + α), w1(t + α), . . . , wn−1(t +

α), wn(t+ α)) for all t ∈ R, where α = 1−δ
n+1Tw.

The difficult part in establishing the above result is determining how to keep track
of the sign changes due to the large number of coordinates. The modification for the
proofs of other results is minor. We list some results for (5.3) without detailed proofs.

Proposition 5.1. Let x : R → Rn+1 be a nonconstant periodic solution of (5.3)
with the minimal period Tx > 0.

(i) For each j ∈ {0, 1, 2, . . . , n}, there exist tj0 ∈ R and tj1 ∈ (tj0, t
j
0 + Tx) such

that 0 < ẋj(t) for all tj0 < t < tj1, x
j(R) = [xj(tj0), x

j(tj1)], ẋ
j(t) < 0 for all

tj1 < t < tj0 + Tx.
(ii) If x0 has a zero, then x(t+ Tx

2 ) = −x(t) for all t ∈ R.
(iii) There exists k ∈ N such that {xt : t ∈ R} ⊂ V −1

n (2k).
Proposition 5.2. Let x : R → Rn+1 be a nonconstant periodic solution of (5.3)

with the minimal period Tx > 0. If Vn(xt) = 2k + 2 for some k ∈ N, then there
exists δx ∈ (1−n

2 , 1] such that 1 = kTx+ δxTx and (x1(t), x2(t), . . . , xn(t), x0(t− 1)) =

(x0(t+αx), x
1(t+αx), . . . , x

n−1(t+αx), x
n(t+αx)) for all t ∈ R, where αx = 1−δx

n+1 Tx.
LetAn = (N×{0, 1, 2, . . . , n})\{(0, 0)}, Bn = {(k, j) ∈ An : 2(n+1)k+2j < n+1},

and τk,j;n =
2(n+1)kπ+2jπ−(n+1) arccos μ

f′(0)√
[f ′(0)]2−μ2

for each (k, j) ∈ An.

Then the generalization of Theorem 3.16 to (5.3) is as follows.
Theorem 5.3.
(i) If (k, j) ∈ Bn is given so that τk,j;n < 1, then system (5.3) has at least one

periodic orbit in V −1
n (2(n+ 1)k + 2j).

(ii) For every (k, j) ∈ {(k, j) ∈ An \ Bn : τk,j;n ∈ (0, 1)}, system (5.3) has a
unique periodic orbit in V −1

n (2(n+ 1)k + 2j).
(iii) For every (k, j) ∈ {(0, 0)} ∪ {(k, j) ∈ An : τk,j;n ≥ 1}, system (5.3) has no

nonconstant periodic orbit in V −1
n (2(n+ 1)k + 2j).

Appendix A. Zeros of the characteristic equation. The purpose of this
appendix is to analyze the distribution of the roots of

(A.1) (ζ + τμ)3 − (τf ′(0))3e−ζ = 0,

where τ > 0 and f ′(0) > μ. Our main results, among others, claim that the real parts
and imaginary parts of roots of (A.1) are well ordered. Let λ = ζ+τμ

3 . Then (A.1)
reduces to

(A.2) λ3 − β3e−3λ = 0,
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where β = τf ′(0)e
τμ
3

3 > 0. In the remaining part of this appendix, we study the general
case of (A.2), namely, we only assume β > 0.

Lemma A.1. Any root of (A.2) is simple.
Proof. By way of contradiction, suppose that (A.2) has a root λ0, which is not

simple. Then we have

(A.3) λ30 − β3e−3λ0 = 0

and

(A.4) 3λ20 + 3β3e−3λ0 = 0.

Multiply (A.3) by 3 and add it to (A.4) to obtain 3λ30 + 3λ20 = 0. Then λ0 = 0 or
λ0 = −1. However, it is easy to see that neither λ0 = 0 nor λ0 = −1 satisfies (A.3),
a contradiction. This completes the proof.

Observe that if λ is a root of (A.2), then so is λ. Thus, in the remaining part
of this appendix, we shall focus on roots of (A.2) with nonnegative imaginary parts.
Also observe that λ is a root of (A.2) if and only if λ is a root of one of the following
three equations:

λ− βe−λ = 0,(A.5)

λ− βe−λ+ 2π
3 i = 0,(A.6)

λ− βe−λ+ 4π
3 i = 0.(A.7)

Lemma A.2. Equation (A.2) has a root λ = iv with v ≥ 0 if and only if there
exists k ∈ N such that β = 2kπ

3 + π
6 and v = β.

Proof. If β = 2kπ
3 + π

6 for some k ∈ N, then we can easily check that iβ is a
root of (A.2). On the other hand, if λ = iv with v ≥ 0 is a root of (A.2), then
−iv3 = β3e−3iv. Separating the real and imaginary parts gives cos(3v) = 0 and
v3 = β3 sin(3v). It follows that v = β and there exists a k ∈ N such that 3v = 2kπ+ π

2

as sin(3v) = 1, that is, v = β = 2kπ
3 + π

6 .
Lemma A.3. Suppose β < π

6 . If λ with Im(λ) > 0 is a root of (A.2), then
Re(λ) < 0.

Proof. By way of contradiction, suppose Re(λ) ≥ 0. Write λ = u + iv. Then,
from |λ|3 = β3|e−3λ| = β3e−3u, we have (u2 + v2)e2u = β2. It follows that 0 ≤ u ≤ β
and 0 ≤ v ≤ β. First, assume that λ satisfies (A.5). Then v + βe−u sin v = 0 and
hence 1 ≤ eu = −β sin v

v < 0, a contradiction. Next, assume that λ satisfies (A.6).
Then u = βe−u cos(v − 2π

3 ) < 0, a contradiction. Similarly, if λ satisfies (A.7), then
we shall have u < 0, a contradiction again. This completes the proof.

Lemma A.4. If m ∈ R+ is given then, for every β ≥
√
m2 + 1

e2 , (A.2) has no

roots in the strip Bm ≡ {u+ iv : 0 ≤ v ≤ m,u < 0}.
Proof. Suppose that the result is not true. Then there exist β ≥

√
m2 + 1

e2

and λ = u + iv ∈ Bm such that λ satisfies (A.2). Thus, β =
√
(v2 + u2)e2u <√

v2 + u2e2u ≤√m2 + sup{u2e2u : u ≤ 0} =
√
m2 + 1

e2 . This contradicts the choice

of β.
Lemma A.5. Let I be a compact subset of (0,∞) and B be a horizontal strip in

the complex plane. Then the real parts of roots of (A.2) in B are bounded from above
and below for all β ∈ I.
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Proof. Otherwise, there exist a sequence {βn}n∈N in I and a sequence {λn =
un+ivn : un, vn ∈ R, n ∈ N} in B such that λn satisfies (A.2) with β = βn, and either
limn→∞ un = ∞ or limn→∞ un = −∞. Thus, βn =

√
((vn)2 + (un)2)e2un . Note that

limun→∞
√
((vn)2 + (un)2)e2un = ∞ and limun→−∞

√
((vn)2 + (un)2)e2un = 0, a

contradiction to the facts that βn ∈ I and I ⊆ (0,∞) is compact.

Define
∑0

0 = {u+ iv : v = 0 and u ∈ R} = R,
∑1

0 = {u+ iv : v ∈ (0, 2π3 ) and u ∈
R},∑2

0 = {u+iv : v ∈ (π3 ,
4π
3 ) and u ∈ R},∑0

k = {u+iv : v ∈ ((2k−1)π, 2kπ) and u ∈
R}, ∑1

k = {u+ iv : v ∈ ((2k − 1
3 )π, (2k + 2

3 )π) and u ∈ R}, and ∑2
k = {u+ iv : v ∈

((2k + 1
3 )π, (2k +

4
3 )π) and u ∈ R} for k ∈ N \ {0}.

Lemma A.6. If λ with Im(λ) ≥ 0 is a root of (A.2), then one of the following
statements is true.

(i) If λ satisfies (A.5), then λ ∈∑0
k for some k ∈ N.

(ii) If λ satisfies (A.6), then λ ∈∑1
k for some k ∈ N.

(iii) If λ satisfies (A.7), then λ ∈∑2
k for some k ∈ N.

Proof. If λ satisfies (A.5), then (i) follows directly from Theorem XI.3.1 of Diek-
mann et al. [5]. If λ = u + iv with v ≥ 0 satisfies (A.6), then v = −βe−u sin(v − 2π

3 )

and hence sin(v − 2π
3 ) < 0, which implies that λ ∈ ∑1

k for some k ∈ N. Similarly, if

λ satisfies (A.7), then λ ∈∑2
k for some k ∈ N. This completes the proof.

Lemma A.7. For each given k ∈ N and β ∈ (0,∞), the following statements are
true.

(i) Equation (A.5) has a simple and unique root λk,0 in
∑0

k.

(ii) Equation (A.6) has a simple and unique root λk,1 in
∑1

k.

(iii) Equation (A.7) has a simple and unique root λk,2 in
∑2

k.
Proof. Because of Lemma A.1, we only need to show the existence and uniqueness

of a root in
∑j

k, k ∈ N and j ∈ {0, 1, 2}.
First, we prove (i). If k ≥ 1, then (i) follows directly from Theorem XI.3.1 of

Diekmann et al. [5]. Now, suppose k = 0. Define ξ : R → R by ξ(λ) = λ − βe−λ.
Then ξ(0) = −β < 0, limλ→∞ ξ(λ) = ∞, and d

dλξ(λ) = 1 + βe−λ > 0 for all λ ∈ R.
According to the definitions of

∑0
0 and ξ, we know that (A.5) has a simple and unique

root λ0,0 in
∑0

0. This proves (i).
Next, we prove (ii) ((iii) can be proved similarly).

In view of Lemma A.6, (A.6) has no roots on the boundary of
∑1

k. We claim that

the number of roots of (A.6) in
∑1

k is finite and independent of β. Indeed, for any
compact interval I1 ⊆ (0,∞), by Lemma A.5, there exist a1, b1 ∈ R such that for each

β ∈ I1, all the roots of (A.6) in
∑1

k shall be in {u+iv ∈∑1
k : u ∈ (a1, b1) and v ∈ R}.

Let B∗ = {u + iv ∈ ∑1
k : u ∈ (a1, b1) and v ∈ R}. It follows from Lemma XI.2.8 of

Diekmann et al. [5] that for any β∗ ∈ I1, there exists an open interval Vβ∗ ⊆ (0,∞)
such that β∗ ∈ Vβ∗ and the number of roots of (A.6) in B∗ is constant for all β ∈ Vβ∗ .
This and the compactness of I imply that the number of roots of (A.6) in B∗ is

constant for all β ∈ I1. Therefore, the number of roots of (A.6) in
∑1

k is constant for
all β ∈ (0,∞). This proves the claim.

Let β̃ = 2kπ + π
6 . Then it follows from Lemma A.2 that (A.6) has a unique root

iβ̃ ∈ ∑1
k on the imaginary axis when β = β̃. Using the above claim, we know that,

for β = β̃, the number of roots of (A.6) in
∑1

k is finite. Then there exists δ > 0 such

that, for β = β̃, any root other than iβ̃ has a real part bigger than δ or smaller than
−δ. It follows that, for β = β̃, the number of the roots of (A.6) in

∑1
k is the sum of

1 and the number of roots in
∑1

k ∩{u+ iv : |u| > δ}.
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Let B− =
∑1

k ∩{u + iv : u < 0}. For any compact interval I2 ⊆ [β̃,∞), by
Lemma A.5, there exist a2, b2 ∈ R such that for each β ∈ I2, all the roots of (A.6) in

B− shall be in {u+ iv ∈ B− : u ∈ (a2, b2) and v ∈ R}. Let B∗∗ = {u+ iv ∈∑1
k : u ∈

(a2, b2) and v ∈ R}. A similar argument as that in the proof of the above claim yields
that the number of roots of (A.6) in B∗∗ is constant for all β ∈ I2. Then the number
of roots of (A.6) in B− is constant for all β ∈ [β̃,∞). This and Lemma A.4 imply
that the number of roots of (A.6) in B− is zero for all β ∈ [β̃,∞). In particular, when

β = β̃, the number of roots of (A.6) in
∑1

k ∩{u + iv : u < −δ} is zero. Similarly,
with the help of Lemma A.3, one can show that the number of roots of (A.6) in∑1

k ∩{u+ iv : u > δ} is zero when β = β̃. Therefore, the number of roots of (A.6) in∑1
k is 1 and this proves (ii).
For every k ∈ N, j ∈ {0, 1, 2} and β ∈ (0,∞), let us denote the unique root in

Lemma A.7 by λk,j(β). Define the functions uk,j , vk,j : (0,∞) → R by uk,j(β) =
Re(λk,j(β)) and vk,j(β) = Im(λk,j(β)) for all β ∈ (0,∞), respectively.

According to Lemmas A.6 and A.7, we know that for each given β ∈ (0,∞), (A.5)
has a simple and unique root λ0,0(β) in {u+ iv : v ∈ (−π, π) and u ∈ R}.

Define D0
0 = (−π, π), D1

0 = (0, 2π3 ), D2
0 = (π3 ,

4π
3 ), and, for every k ∈ N \ {0},

D0
k = ((2k−1)π, 2kπ), D1

k = ((2k− 1
3 )π, (2k+

2
3 )π), and D

2
k = ((2k+ 1

3 )π, (2k+
4
3 )π).

Lemma A.8. For each given (k, j) ∈ N×{0, 1, 2}, the functions uk,j and vk,j are
continuously differentiable functions on (0,∞). Moreover, for all β ∈ (0,∞),

duk,j(β)

dβ
=

(vk,j(β))
2 + uk,j(β)(1 + uk,j(β))

β[(vk,j(β))2 + (1 + uk,j(β))2]

and

dvk,j(β)

dβ
=

vk,j(β)

β[(vk,j(β))2 + (1 + uk,j(β))2]
.

Proof. For j ∈ {0, 1, 2}, let δj = 2jπ
3 . Define G = (G1, G2) : (0,∞)×R×Dj

k → R2

by G1(β, u, v) = u − βe−u cos(v − δj) and G2(β, u, v) = v + βe−u sin(v − δj) for all

(β, u, v) ∈ (0,∞)× R×Dj
k. Simple computations give us

∂G1

∂u
= 1 + βe−ucos(v − δj),

∂G1

∂v
= βe−usin(v − δj),

∂G2

∂u
= −βe−usin(v − δj),

∂G2

∂v
= 1 + βe−ucos(v − δj),

and hence the determinant of the Jacobian ofG is 1+β2e−2u+2βe−u cos(v−δj) > 0 for

all (β, u, v) ∈ (0,∞)×R×Dj
k. Note that G(β, uk,j(β), vk,j(β)) = 0 for all β ∈ (0,∞).

Applying the implicit function theorem, we can deduce that, for each given β̃ ∈ (0,∞),
there exist an open interval V ⊆ (0,∞) and two continuously differentiable functions
p : V → R, q : V → Dj

k such that β̃ ∈ V , p(β̃) = uk,j(β̃), q(β̃) = vk,j(β̃) and
G(β, p(β), q(β)) = 0 for all β ∈ V . This and the definition of G imply that, for

each β ∈ V , p(β) + iq(β) is a root of (A.j+5) in
∑j

k. It follows from Lemma A.7
that p(β) = uk,j(β) and q(β) = vk,j(β). Therefore, uk,j and vk,j are continuously
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differentiable functions on (0,∞). The formulas for
duk,j(β)

dβ and
dvk,j(β)

dβ can be easily
found by using a simple computation. This completes the proof.

Lemma A.9. uk,j(β) > uk+1,j(β) for all β ∈ (0,∞), k ∈ N and j ∈ {0, 1, 2}.
Proof. For the case where j = 0, the conclusion follows from Theorem XI.3.12 of

Diekmann et al. [5].
It suffices to consider the case where j = 1 since the case where j = 2 can be

proved by a similar argument. We first claim that there are no k ∈ N and β ∈ (0,∞)
such that uk,1(β) = uk+1,1(β). If this is not true, then there exist k̃ ∈ N and β̃ ∈ (0,∞)

such that uk̃,1(β̃) = uk̃+1,1(β̃). It follows from (A.6) that

cos

(
vk̃,1(β̃)−

2π

3

)
= cos

(
vk̃+1,1(β̃)−

2π

3

)
and

vk̃+1,1(β̃) sin

(
vk̃,1(β̃)−

2π

3

)
= vk̃,1(β̃) sin

(
vk̃+1,1(β̃)−

2π

3

)
.

Note that sin(vk̃,1(β̃) − 2π
3 ) �= 0 as vk̃,1(β̃) = −βe−uk̃,1(β̃) sin(vk̃,1(β̃) − 2π

3 ) �= 0. It

follows that vk̃,1(β̃) = vk̃+1,1(β̃), a contradiction, and this proves the claim.
Let Mk = {β > 0 : uk,1(β) > uk+1,1(β)} for k ∈ N. Then, by the above claim,

we know that Mk is a closed subset of (0,∞). Indeed, suppose that {β∗
n} ⊂ Mk

and limn→∞ β∗
n = β∗ ∈ (0,∞). Then it follows from uk,1(β

∗
n) > uk+1,1(β

∗
n) and the

continuity of both uk,1 and uk+1,1 that uk,1(β
∗) ≥ uk+1,1(β

∗). This, with the help of
the claim, implies that uk,1(β

∗) > uk+1,1(β
∗), namely, β∗ ∈Mk. This shows that Mk

is a closed subset of (0,∞). On the other hand, also by the continuity of uk,1 and
uk+1,1, we know that Mk is an open subset of (0,∞).

Next we claimMk �= ∅. Let βk = 2kπ+ π
6 for all k ∈ N. It follows from Lemma A.2

that uk,1(βk) = 0 = uk+1,1(βk+1). Moreover, by Lemma A.8, we have

duk+1,1(βk+1)

dβ
=

(vk+1,1(βk+1))
2 + uk+1,1(βk+1)(1 + uk+1,1(βk+1))

βk+1[(vk+1,1(βk+1))2 + (1 + uk+1,1(βk+1))2]
> 0.

Then there exists a∗ ∈ (βk, βk+1) such that uk+1,1(β) < 0 for all β ∈ (a∗, βk+1).
We now prove that uk+1,1(βk) < 0. If this is not true, then uk+1,1(βk) ≥ 0. It
follows that there exists b∗ ∈ [βk, a

∗) such that uk+1,1(b
∗) = 0. This and Lemma A.2

imply that vk+1,1(b
∗) = b∗ ∈ { 2lπ

3 + π
6 : l ∈ N}. Using the definition of

∑1
k, we

have vk+1,1(b
∗) = b∗ = βk+1, a contradiction with the choice of b∗. This proves that

uk+1,1(βk) < 0. Therefore, βk ∈Mk.
To summarize, we have shown that Mk ⊂ (0,∞) is a nonempty, closed and open

subset of (0,∞). As a result, Mk = (0,∞) and hence the proof is complete.
Theorem A.10. uk,0(β) > uk,1(β) > uk,2(β) > uk+1,0(β) for all β ∈ (0,∞) and

k ∈ N.
Proof. First, for each given β ∈ (0,∞), we claim that if λ0, λ1 and λ2 respec-

tively satisfy (A.5), (A.6), and (A.7) with Im(λj) ≥ 0 for all j ∈ {0, 1, 2}, then
Re(λj

∗
) �= Re(λj

∗∗
) for all (j∗, j∗∗) ∈ {(0, 1), (0, 2), (1, 2)}. Otherwise, there exists

(j∗, j∗∗) ∈ {(0, 1), (0, 2), (1, 2)} such that Re(λj
∗
) = Re(λj

∗∗
). It follows from (A.5),

(A.6), and (A.7) that

(A.8) cos

(
−2j∗π

3
+ Im(λj

∗
)

)
= cos

(
−2j∗∗π

3
+ Im(λj

∗∗
)
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and

(A.9) Im(λj
∗∗
) sin

(
−2j∗π

3
+ Im(λj

∗
)

)
= Im(λj

∗
) sin

(
−2j∗∗π

3
+ Im(λj

∗∗
)

)
.

It follows from (A.8) that

(A.10)

∣∣∣∣sin(−2j∗π
3

+ Im(λj
∗
)

)∣∣∣∣ = ∣∣∣∣sin(−2j∗∗π
3

+ Im(λj
∗∗
)

)∣∣∣∣ .
If one of sin(− 2j∗π

3 + Im(λj
∗
)) and sin(− 2j∗∗π

3 + Im(λj
∗∗
)) is zero, then so is the

other and hence it follows from Im(λj
∗
) = −βe−Re(λj∗ ) sin(− 2j∗π

3 + Im(λj
∗
)) and

Im(λj
∗∗
) = −βe−Re(λj∗∗ ) sin(− 2j∗∗π

3 + Im(λj
∗∗
)) that Im(λj

∗
) = Im(λj

∗∗
) = 0. If

neither sin(− 2j∗π
3 + Im(λj

∗
)) nor sin(− 2j∗∗π

3 + Im(λj
∗∗
)) is zero, then it follows from

(A.9) and (A.10) that Im(λj
∗
) = Im(λj

∗∗
). Therefore, we have shown Im(λj

∗
) =

Im(λj
∗∗
) and hence λj

∗
= λj

∗∗
. Then it follows from λj

∗
= βe−λj∗+i 2j∗π

3 and λj
∗∗

=

βe−λj∗∗+i 2j
∗∗π
3 that ei

2(j∗−j∗∗)π
3 = 1, which is impossible as (j∗, j∗∗) ∈ {(0, 1), (0, 2),

(1, 2)}. This proves the claim.
Let N0

k = {β > 0 : uk,0(β) > uk,1(β)}, N1
k = {β > 0 : uk,1(β) > uk,2(β)}, and

N2
k = {β > 0 : uk,2(β) > uk+1,0(β)} for all k ∈ N. Then similar arguments as those

in the proof of Lemma A.9 will yield that, for every (k, j) ∈ N× {0, 1, 2}, N j
k is both

open and closed in (0,∞). We shall show that, for every (k, j) ∈ N×{0, 1, 2}, N j
k �= ∅

and hence N j
k = (0,∞).

Let βj
k = 2kπ + 2jπ

3 − π
2 for all (k, j) ∈ N × {0, 1, 2}. We show that, for every

(k, j) ∈ N× {0, 1, 2}, N j
k �= ∅ by distinguishing three cases.

Case 1. j = 0. First, suppose k = 0. Note that λ0,0(1) ∈ R+. Then, from (A.5)
and (A.6), we have λ0,0(1)−e−λ0,0(1) = 0 and u0,1(1) = e−u0,1(1) cos(− 2π

3 +v0,1(1)) <

e−u0,1(1). Since the curve y = x − e−x is strictly increasing on R, we must have
λ0,0(1) > u0,1(1). In other words, 1 ∈ N0

0 and hence N0
0 �= ∅. Next, suppose

k ≥ 1. Then λk,0(β
0
k) = iβ0

k and uk,0(β
0
k) = 0. On the other hand, it follows from

Lemma A.7 and (A.6) that vk,1(β
0
k) ∈ (2kπ − 1

3π, 2kπ + 2π
3 ) and vk,1(β

0
k) = −(2kπ −

π
2 )e

−uk,1(β
0
k) sin(vk,1(β

0
k) − 2π

3 ) ≤ (2kπ − π
2 )e

−uk,1(β
0
k). Then, euk,1(β

0
k) ≤ 2kπ− π

2

2kπ− π
3
< 1,

and hence uk,1(β
0
k) < 0 = uk,0(β

0
k). This means that β0

k ∈ N0
k , and hence N0

k �= ∅.
Case 2. j = 1. Similar arguments as those for the case where k ≥ 1 in Case 1

will show that β1
k ∈ N1

k , and hence N1
k �= ∅.

Case 3. j = 2. Suppose k ∈ N. Then uk,2(β
2
k) = 0. On the other hand,

it follows from Lemma A.7 and (A.5) that vk+1,0(β
2
k) ∈ (2kπ + π, 2kπ + 2π) and

vk+1,0(β
2
k) = −β2

ke
−uk+1,0(β

2
k) sin(vk+1,0(β

2
k) − 4π

3 ) ≤ β2
ke

−uk+1,0(β
2
k). It follows that

euk+1,0(β
2
k) ≤ β2

k

2kπ+π < 1, and hence uk+1,0(β
2
k) < 0. This means that β2

k ∈ N2
k , and

hence N2
k �= ∅.

To summarize, we have shown that N j
k ⊂ (0,∞) is a nonempty, closed and open

subset of (0,∞). As a result, N j
k = (0,∞) for all (k, j) ∈ N× {0, 1, 2}, and hence the

proof is complete.
As a corollary of Theorem A.10, we present the following theorem.
Theorem A.11. vk,0(β) < vk,1(β) < vk,2(β) < vk+1,0(β) for all β ∈ (0,∞) and

k ∈ N.
Proof. We first claim that, for each given β ∈ (0,∞), if λ∗ and λ∗∗ satisfy

(A.2) with Re(λ∗) > Re(λ∗∗) and Im(λ∗), Im(λ∗∗) ∈ [1,∞), then Im(λ∗) < Im(λ∗∗).
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Suppose that this is not true. Then Im(λ∗) ≥ Im(λ∗∗). It follows from (A.2) that
{[Re(λ∗)]2 + [Im(λ∗)]2}e2Re(λ∗) = β2 and {[Re(λ∗∗)]2 + [Im(λ∗∗)]2}e2Re(λ∗∗) = β2.
Define H : R× [1,∞) → R by H(u, v) = (u2 + v2)e2u − β2 for all (u, v) ∈ R× (1,∞).
Then

∂H(u, v)

∂u
= (2u2 + 2u+ v2)e2u ≥ (2u2 + 2u+ 1)e2u ≥ 1

2
e2u > 0

and

∂H(u, v)

∂v
= 2ve2u > 0

for all (u, v) ∈ R × [1,∞). It follows that 0 = H(Re(λ∗), Im(λ∗)) > H(Re(λ∗∗),
Im(λ∗)) > H(Re(λ∗∗), Im(λ∗∗)) = 0, a contradiction. This proves the claim.

Now, we are ready to finish the proof. Obviously, v0,0(β) < v0,1(β) for all β ∈
(0,∞) by the definitions of v0,0 and v0,1. It is also easy to see that the other inequalities
hold with the help of Theorem A.10, the definitions of vk,j , and the above claim. This
completes the proof.

For each (k, j) ∈ N× {0, 1, 2}, define the function ζk,j : (0,∞) → C by ζk,j(τ) =

−τμ + 3λk,j(
τf ′(0)e

τμ
3

3 ) for all τ ∈ (0,∞). By applying Lemma A.7, Theorems A.10
and A.11, the definitions of all the ζk,j , and the fact that f ′(0) > μ, we have the
following theorem.

Theorem A.12. For each τ ∈ (0,∞), the zeros of (A.1) are given by a positive
real ζ0,0(τ) and a sequence of complex conjugate pairs

{ζk,j(τ), ζk,j(τ)}(k,j)∈N×{0,1,2}\{(0,0)}

with ζk,j(τ) ∈ 3
∑j

k, Re(ζk,0(τ)) > Re(ζk,1(τ)) > Re(ζk,2(τ)) > Re(ζk+1,0(τ)) and
Im(ζk,0(τ)) < Im(ζk,1(τ)) < Im(ζk,2(τ)) < Im(ζk+1,0(τ)) for all k ∈ N and j ∈
{0, 1, 2}. These are all simple zeros and (A.1) has no other zeros.

For each given (k, j) ∈ (N×{0, 1, 2})\{(0, 0)}, let bk,j = 6kπ+2jπ−3 arccos μ
f ′(0)

and τk,j =
bk,j√

[f ′(0)]2−μ2
. Then, by Lemma A.8 and Theorem A.12, we have the

following theorem.
Theorem A.13. Equation (A.1) has a purely imaginary root ζ if and only if

there exists (k, j) ∈ (N×{0, 1, 2})\{(0, 0)} such that τ = τk,j and ζ ∈ {±ζk,j(τk,j)} =
{±ibk,j}. Moreover, For each (k, j) ∈ (N×{0, 1, 2})\{(0, 0)}, the following statements
are true.

(i)
dRe(ζk,j(τ))

dτ |τ=τk,j
> 0.

(ii) Re(ζk,j(τ)) < 0 if and only if τ < τk,j, and Re(ζk,j(τ)) ≥ 0 if and only if
τ ≥ τk,j .

Proof. Suppose that τ = τk,j and ζ ∈ {±ζk,j(τk,j)} = {±ibk,j} for some (k, j) ∈
(N× {0, 1, 2}) \ {(0, 0)}. Then we can easily check that ζ is a purely imaginary root
of (A.1). On the other hand, let ζ be a purely imaginary root of (A.1). Without
loss of generality, we may assume that ζ = ib for some b ≥ 0. Obviously, b > 0.
It follows from (A.1) that μ = f ′(0) cos( b3 − 2jπ

3 ) and b = −τf ′(0) sin( b3 − 2jπ
3 ) for

some j ∈ {0, 1, 2}. Thus there exists k ∈ N such that (k, j) �= (0, 0), b = bk,j =

6kπ + 2jπ − 3 arccos μ
f ′(0) , τ = τk,j =

bk,j√
[f ′(0)]2−μ2

.
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Now, we prove (i). For given (k, j) ∈ (N × {0, 1, 2}) \ {(0, 0)}, it follows from
Lemma A.8 and the definition of ζk,j that

dRe(ζk,j(τ))

dτ
= −μ+3

(vk,j(β))
2 + uk,j(β)(1 + uk,j(β))

β[(vk,j(β))2 + (1 + uk,j(β))2]
×
(
f ′(0)e

τμ
3

3
+
τf ′(0)e

τμ2

3

9

)
,

where β = τf ′(0)e
τμ
3

3 . It follows from the definitions of ζk,j and τk,j that, for τ∗ = τk,j

and β∗ =
τk,jf

′(0)e
τk,jμ

3

3 , we have Re(uk,j(β
∗)) = τ∗μ

3 , and

dRe(ζk,j(τ))

dτ
|τ=τ∗

= −μ+ 3
(vk,j(β

∗))2 + uk,j(β
∗)(1 + uk,j(β

∗))
β∗[(vk,j(β∗))2 + (1 + uk,j(β∗))2]

×
(
f ′(0)e

τ∗μ
3

3
+
τ∗f ′(0)e

τμ2

3

9

)

≥ −μ+
(vk,j(β

∗))2 + τ∗μ
3 (1 + τ∗μ

3 )

β[(vk,j(β∗))2 + (1 + τ∗μ
3 )2]

× (f ′(0)e
τ∗μ
3 + μβ∗)

≥ −μ+min

{
v2 + τ∗μ

3 (1 + τ∗μ
3 )

β[v2 + (1 + τ∗μ
3 )2]

: v ∈ (0,∞)

}
× (f ′(0)e

τ∗μ
3 + μβ)

≥ −μ+
τ∗μ
3

β(1 + τ∗μ
3 )

× (f ′(0)e
τ∗μ
3 + μβ∗)

> 0.

The last inequality comes from the definitions of τ∗ and β∗.
Finally, we prove (ii). Let Re(ζk,j(τ)) < 0. Suppose τk,j ≤ τ . Then τk,j <

τ since Re(ζk,j(τ)) �= 0. From the above discussion, we have Re(ζk,j(τk,j)) = 0

and
dRe(ζk,j(τ))

dτ |τ=τk,j
> 0. It follows that there exists a∗ ∈ (τk,j , τ) such that

Re(ζk,j(a
∗)) = 0. Hence ζk,j(a

∗) is also a purely imaginary root of (A.1), a contra-
diction. On the other hand, if τ < τk,j , then we can also show that Re(ζk,j(τ)) < 0.
Indeed, by way of contradiction, assume that Re(ζk,j(τ)) ≥ 0. Then similarly we can
deduce that there exists a∗∗ ∈ [τ, τk,j) such that Re(ζk,j(a

∗∗)) = 0. Again ζk,j(a
∗∗) is

also a purely imaginary root of (A.1), a contradiction.
This completes the proof.
The following lemma is important to study the value of the discrete Lyapunov

functional for the solution of (3.13).
Lemma A.14. Assume that a : R → R is a continuous periodic function with

minimal period T > 0 such that a(0) = 0, a(t) = −a(t + T
2 ) and a(t) > 0 for all

t ∈ (0, T2 ). Define x = (x0, x1, x2)tr : R → R3 such that x2(t) = x1(t + α) =
x0(t+ 2α) = a(t + 2α) for all t ∈ R and some α ∈ R. If there exists l ∈ N such that
V (xt) = 2l for all t ∈ R, then the following statements are true.

(i) If α = − 1
3 and there exists k ∈ N \ {0} such that 3kT > 1 > (3k − 3

2 )T , then
l = 3k and thus V (xt) = 6k for all t ∈ R.

(ii) If α = − 1
3 + T

3 and there exists k ∈ N such that (3k + 1)T > 1 > (3k − 1
2 )T ,

then l = 3k + 1 and thus V (xt) = 6k + 2 for all t ∈ R.
(iii) If α = − 1

3 +
2T
3 and there exists k ∈ N such that (3k+2)T > 1 > (3k+ 1

2 )T ,
then l = 3k + 2 and thus V (xt) = 6k + 4 for all t ∈ R.

Proof. We only prove (ii) since the other parts can be proved similarly. We
distinguish two cases to finish the proof.
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Case 1. k = 0. In this case, we have T > 1. We distinguish two subcases to finish
the proof.

Case 1.1. T ≥ 2. Then α ∈ (T6 ,
T
3 ). It follows that x1(0) = a(α) > 0. This,

combined with the definition of sc and x0(t) < 0 for all t ∈ (−1, 0), yields sc(x0) ∈
{1, 2}. Thus V (x0) = 2 and l = 1.

Case 1.2. T ∈ (1, 2). Then α ∈ (0, T6 ). It follows that x1(0) > 0 and x2(0) > 0.

This, combined with the definition of sc, x0(t) < 0 for all t ∈ (−T
2 , 0) and x

0(t) > 0

for all t ∈ (−1,−T
2 ), yields sc(x0) = 2. Thus V (x0) = 2 and l = 1.

Case 2. k ≥ 1. Let α∗ = α + kT . Then α∗ ∈ (0, T2 ) and x2(t) = x1(t + α∗) =
x0(t+2α∗) = a(t+2α∗) for all t ∈ R. We distinguish three subcases to complete the
proof.

Case 2.1. 1 ∈ ((3k + 1
2 )T, (3k + 1)T ). In this case, α∗ ∈ (0, T6 ). Then α∗,

2α∗ ∈ (0, T2 ) and hence x1(0) > 0 and x2(0) > 0. A simple computation gives
sc(x0) = 6k + 2. So V (x0) = 6k + 2 and l = 3k + 1.

Case 2.2. 1 ∈ (3kT, (3k + 1
2 )T ]. In this case, α∗ ∈ [T6 ,

T
3 ). Then x0(α∗) > 0

and x2(α∗) ≤ 0. By a simple computation, we get sc(xα∗) ∈ {6k + 1, 6k + 2}. So
V (xα∗) = 6k + 2 and l = 3k + 1.

Case 2.3. 1 ∈ ((3k − 1
2 )T, 3kT ]. In this case, α∗ ∈ [T3 ,

T
2 ). Then α∗ ∈ (0, T2 ),

2α∗ ∈ (T2 , T ), and hence x1(0) > 0 and x2(0) < 0. Again, by a simple computation,
we get sc(x0) = 6k + 1. So V (x0) = 6k + 2 and l = 3k + 1.

Let

A = {(k, j, a, b, τ) ∈ N× {0, 1, 2} × R× R× (0,∞) : (a, b) ∈ Ak,j},
where

Ak,j =

{
R× R, if (k, j) ∈ (N× {0, 1, 2}) \ {(0, 0)},
R× {π

2 }, if (k, j) = (0, 0).

For each (k, j, a, b, τ) ∈ A , define X(k, j, a, b, τ) : R → R3 by

(X(k, j, a, b, τ))0(t) = aeRe(ζk,j(τ))t sin(Im(ζk,j(τ))t + b),

(X(k, j, a, b, τ))1(t) = aeRe(ζk,j(τ))(t− 1
3 ) sin

(
Im(ζk,j(τ))

(
t− 1

3

)
+ b+

2jπ

3

)
,

(X(k, j, a, b, τ))2(t) = aeRe(ζk,j(τ))(t− 1
3 ) sin

(
Im(ζk,j(τ))

(
t− 1

3

)
+ b+

4jπ

3

)
.

In particular, (X(0, 0, a, π2 , τ))
0(t) = ae(ζ0,0(τ))t, (X(0, 0, a, π2 , τ))

1(t) = ae(ζ0,0(τ))(t−
1
3 ),

and (X(0, 0, a, π2 , τ))
2(t) = ae(ζ0,0(τ))(t−

1
3 ) for all τ ∈ (0,∞) and t ∈ R. According to

the above definition, we can easily check that X(k, j, a, b, τ)(·) is a solution of (3.13)
for all (τ, k, j, a, b) ∈ A .

For τ ∈ (0,∞), let P0,0(τ) and Pk,j(τ) ((k, j) ∈ (N × {0, 1, 2}) \ {(0, 0)}) be the
realified generalized eigenspaces of the generator of the semigroup given by the linear
system (3.13) for the spectral sets {ζ0,0(τ)} and {ζk,j(τ), ζk,j(τ)}, respectively. By a
simple computation, we have the following result.

Proposition A.15. For each (τ, k, j) ∈ (0,∞)× N× {0, 1, 2},
Pk,j(τ) = {(X(k, j, a, b, τ))0 : (a, b) ∈ Ak,j}.

Theorem A.16. If (τ, k, j) ∈ (0,∞) × N × {0, 1, 2} and φ ∈ Pk,j(τ) \ {0}, then
there exist a ∈ R \ {0} and b ∈ R such that

(X(k, j, a, b, τ))0 = φ and V ((X(k, j, a, b, τ))t) = 6k + 2j for all t ∈ R.
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Proof. By Proposition A.15, there exist a, b ∈ R such that the solution of (3.13)
through φ is X(k, j, a, b, τ) with (X(k, j, a, b, τ))0 = φ. If k = j = 0, then b = π

2 .
In view of the definition of X(0, 0, a, π2 , τ) and V , V ((X(0, 0, a, π2 , τ))t) = 0 for all
t ∈ R. Now suppose (k, j) �= (0, 0). Since X(k, j, a, b, τ) is the multiplication of
a periodic function with a positive (or negative) function, V ((X(k, j, a, b, τ))t) must
be periodic with a period 2π

Im(ζk,j(τ))
. Moreover, Proposition 2.6 (iii) tells us that

V ((X(k, j, a, b, τ))t) is nonincreasing in t. Thus V ((X(k, j, a, b, τ))t) is constant and
there exists l ∈ N such that V ((X(k, j, a, b, τ))t) = 2l for all t ∈ R. For (k, j, a, b, τ) ∈
A , define X̃(k, j, a, b, τ) : R → R3 by

(X̃(k, j, a, b, τ))0(t) = sin(Im(ζk,j(τ))t+ b),

(X̃(k, j, a, b, τ))1(t) = sin

(
Im(ζk,j(τ))

(
t− 1

3

)
+ b+

2jπ

3

)
,

(X̃(k, j, a, b, τ))2(t) = sin

(
Im(ζk,j(τ))

(
t− 1

3

)
+ b+

4jπ

3

)
.

Then we easily see that V ((X̃(k, j, a, b, τ))t) = V ((X(k, j, a, b, τ))t) = 2l for t ∈ R.
Applying Lemma A.14, we have V ((X̃(k, j, a, b, τ))t) = 6k + 2j and it follows that
V ((X(k, j, a, b, τ))t) = 6k + 2j for t ∈ R. This completes the proof.

Appendix B. Several basic results on (1.1). Though the natural phase space
C([−1, 0],R3) is replaced with C = C(K,R), there is no change in the basic theory
on (1.1) with this obvious modification. In this appendix, for clarification and for
the readers’ convenience, we provide the precise explanations and detailed proofs for
some of the results mentioned in the main text.

A simple computation reveals that x satisfies (1.1) if and only if x satisfies the
following system of equations:

(B.1)

⎧⎪⎨⎪⎩
dx0(t)eμt

dt = eμtf(x1(t)),
dx1(t)eμt

dt = eμtf(x2(t)),
dx2(t)eμt

dt = eμtf(x0(t− 1)).

According to the method of steps, we can easily deduce results on the existence,
uniqueness, and continuous dependence on the initial value φ ∈ C of solutions to (1.1).
Precisely, for each φ ∈ C and t0 ∈ R, there exists a unique solution xφ = (x0φ, x

1
φ, x

2
φ)

tr

to (1.1) on [t0,∞); that is, x0φ ∈ C([t0−1,∞),R) and x0φ|[t0,∞), x
1
φ, x

2
φ ∈ C1([t0,∞),R)

such that (xφ)t0 = φ and ẋiφ (i = 0, 1, 2) satisfy (1.1) on [t0,∞). The solution is also
denoted by x(·, φ, t0). Moreover, x(·, φ, t0) depends continuously on φ ∈ C.

Proposition B.1. Let x and y be two solutions of (1.1) on a closed interval I
with sup I = ∞. If xt∗ = yt∗ for some t∗ ∈ I, then xt = yt for all t ∈ I.

Proof. Obviously, it follows from the uniqueness of solution that xt = yt for all
t ∈ [t∗,∞). We shall distinguish two cases to finish the proof.

Case 1. There exists a ∈ R such that I = [a,∞). Let s∗ = sup{t ∈ [a, t∗), xt �=
yt}. Then xs∗ = ys∗ and hence xt = yt for t ≥ s∗ by the above discussion. We claim
that s∗ = a. If s∗ �= a, then s∗ > a. Let t∗∗ = max{s∗, a + 1}. It follows from
xt = yt for all t ≥ t∗∗ that x0(t) = y0(t) for all t ≥ t∗∗ − 1. Then the first equation of
(B.1) implies that f(x1(t)) = f(y1(t)) for all t ≥ t∗∗ − 1. Thus x1(t) = y1(t) for all
t ≥ t∗∗−1 as f is strictly increasing. Similarly, from the other two equations in (B.1),
we can obtain x2(t) = y2(t) for all t ≥ t∗∗ − 1 and x0(t) = y0(t) for all t ≥ t∗∗ − 2. It
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follows that xt = yt for all t ≥ t∗∗− 1, a contradiction to the choice of t∗. This proves
the claim and hence xt = yt for all t ∈ [a,∞).

Case 2. I = R. For any b ∈ R, from the discussion of Case 1, we know that
xt = yt for all t ∈ [b,∞). Because of the arbitrariness of b, xt = yt for all t ∈ R.

This completes the proof.
Define the map F : R+ × C � (t, φ) �→ (xφ)t ∈ C.
Proposition B.2. The following statements about the map F hold.
(i) The map F : R+ × C � (t, φ) �→ (xφ)t ∈ C is a continuous semiflow on C.
(ii) All maps F (t, ·) : C → C are injective whenever t ≥ 0.
(iii) All maps F (t, ·) : C → C are conditionally completely continuous whenever

t ≥ 1.
(iv) For each t ≥ 1, all maps F (t, ·) : C → C1 are continuous.
Proof. (i) follows immediately from the uniqueness and the continuous dependence

on the initial data of solutions of (1.1).
(ii) follows from Proposition B.1.
(iii) follows from Remark 2.3, and (1.1).
(iv) follows from (1.1), Remark 2.3, and the definition of F (·, ·).
This completes the proof.
In order to derive locally asymptotic stability of the equilibria of (1.1), we intro-

duce the following system of delay differential equations,

(B.2)

⎧⎪⎨⎪⎩
ẏ0(t) = −μy0(t) + f(y1(t− 1

3 )),

ẏ1(t) = −μy1(t) + f(y2(t− 1
3 )),

ẏ2(t) = −μy2(t) + f(y0(t− 1
3 )).

The natural phase space for (B.2) is the Banach space Y = C([− 1
3 , 0],R

3), equipped
with the supremum norm || · ||Y . For a given interval I, let [− 1

3 , 0] + I = {t+ θ : t ∈
I and θ ∈ [− 1

3 , 0]}. For a continuous function y : [− 1
3 , 0] + I → R3 on I and t ∈ I,

define P (y, t) ∈ Y by P (y, t)(θ) = y(t+ θ) for all θ ∈ [− 1
3 , 0].

For a given interval I, we say that a continuous function y : [− 1
3 , 0]+ I → R3 is a

solution of (B.2) on I if y0, y1, and y2 are continuously differentiable on the interval
I and satisfy (B.2) on I. We denote the solution semiflow of (B.2) by G(t, ψ), where
ψ ∈ Y and G(0, ψ) = ψ.

Define M : C → Y by

M(φ)(θ) = (φ0(θ), (xφ)
1(θ + 1

3 ), (xφ)
2(θ + 1

3 ))
tr for θ ∈ [− 1

3 , 0] and φ ∈ C.

Obviously, {M(0̂),M(ξ̂+),M(ξ̂−)} is the set of equilibria of (B.2).
Proposition B.3. For any φ ∈ C and t ∈ R+, we have G(t,M(φ)) =M(F (t, φ)).
Proof. Define x, y : [− 1

3 ,∞) → R3 by

x(t) =

{
M(F (t, φ))(0) t ∈ [0,∞),

M(φ)(t) t ∈ [− 1
3 , 0]

and

y(t) =

{
G(t,M(φ))(0) t ∈ [0,∞),
M(φ)(t) t ∈ [− 1

3 , 0].

It suffices to prove that x(t) = y(t) for all t ∈ [− 1
3 ,∞). Obviously, by the definition

of y, we know that y satisfies (B.2) with the initial value M(φ). On the other hand,
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from the definitions of x, F (t, φ), and M , we obtain that x(t) = ((xφ)
0(t), (xφ)

1(t +
1
3 ), (xφ)

2(t + 2
3 ))

tr for all t ∈ [− 1
3 ,∞). This, combined with the fact that xφ satis-

fies (1.1) with the initial value φ, implies that x also satisfies (B.2) with the initial value
M(φ). Therefore, by the uniqueness of solution to (B.2), we infer that x(t) = y(t) for
all t ∈ [− 1

3 ,∞). This completes the proof.

Proposition B.4. M(ξ̂+) and M(ξ̂−) are locally asymptotically stable.

Proof. Recall that f ′(ξ+) = f ′(ξ−). Then linerization of (B.2) around M(ξ̂±)
yields the delay system⎧⎨⎩

ẏ0(t) = −μy0(t) + f ′(ξ+)y1(t− 1
3 ),

ẏ1(t) = −μy1(t) + f ′(ξ+)y2(t− 1
3 ),

ẏ2(t) = −μy2(t) + f ′(ξ+)y0(t− 1
3 )

with the characteristic equation

(B.3) (ζ + τμ)3 − (τf ′(ξ+))3e−ζ = 0.

Since f ′(ξ+) ∈ (0, μ), it is easy to see that (B.3) has a negative solution. Let λ =
ζ+τμ

3 and β = τf ′(ξ+)e
τμ
3

3 . Then (B.3) becomes (A.2). It follows from Lemma A.7,
Theorems A.10 and A.11, and the fact that (B.3) has a negative root that all the
roots of (B.3) have negative real parts. This and the general results in [7] show that

M(ξ̂±) are locally asymptotically stable. This completes the proof.
Given ε > 0, ϕ∗ ∈ C and ψ∗ ∈ Y , let B(ϕ∗, ε) = {ϕ ∈ C : ||ϕ − ϕ∗|| < ε} and

BY (ψ∗, ε) = {ψ ∈ Y : ||ψ − ψ∗||Y < ε}.
Theorem B.5. The equilibria ξ̂+ and ξ̂− of (1.1) are locally asymptotically

stable.
Proof. We only prove that ξ̂+ is locally asymptotically stable since the proof for

the stability of ξ̂− is similar.

First, we prove that ξ̂+ is locally stable. For any ε > 0, by Proposition B.4, there

exists δ1 > 0 such thatG(t, ψ) ∈ BY (M(ξ̂+), ε) for all t ∈ R+ and ψ ∈ BY (M(ξ̂+), δ1).

From the continuity of M , there exists δ ∈ (0, δ1) such that M(φ) ∈ BY (M(ξ̂+), δ1)

for all φ ∈ B(ξ̂+, δ). This, combined with Proposition B.3, gives us that M(F (t, φ)) ∈
BY (M(ξ̂+), ε) for all t ∈ R+ and φ ∈ B(ξ̂+, δ). It follows from the definition of M

and the continuity of F (·, ·) that F (t, φ) ∈ B(ξ̂+, ε) for all t ∈ R+ and φ ∈ B(ξ̂+, δ);

i.e., ξ̂+ is locally stable.

Next, we show that ξ̂+ is attractive. Proposition B.4 implies that there ex-

ists δ∗ > 0 such that limt→∞ ||G(t, ψ) − M(ξ̂+)|| = 0 for all ψ ∈ BY (M(ξ̂+), δ∗).
From Proposition B.3 and the continuity of M , there exists δ∗∗ ∈ (0, δ∗) such that

limt→∞ ||M(F (t, φ)) −M(ξ̂+)|| = 0 for all φ ∈ B(ξ̂+, δ∗∗). It follows from the def-

inition of M and the continuity of F (·, ·) that limt→∞ ||F (t, φ) − ξ̂+|| = 0 for all

φ ∈ B(ξ̂+, δ∗∗); i.e., ξ̂+ is attractive.

In summary, by the above discussions, we have shown that ξ̂+ is locally asymp-
totically stable.
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