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a b s t r a c t

In the 1990s, liver transplantation for hepatitis B and C virus (HBV and HCV) related-liver diseases was a
very controversial issue since recurrent infection of the graft was inevitable. Significant progress has been
made in the prophylaxis and treatment of recurrent hepatitis B/C (or HBV/HCV infection) after liver trans-
plantation. In this paper, we propose a mathematical model of ordinary differential equations describing
the dynamics of the HBV/HCV and its interaction with both liver and blood cells. A single model is used to
describe infection of either virus since the dynamics in-host (infected of the liver) are similar. Analyzing
the model, we observe that the system shows either a transcritical or a backward bifurcation. Explicit
conditions on the model parameters are given for the backward bifurcation to be present. Consequently,
we investigate possible factors that are responsible for HBV/HCV infection and assess control strategies to
reduce HBV/HCV reinfection and improve graft survival after liver transplantation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Hepatitis refers to inflammation of the liver. Such inflammation
can be caused by alcohol, certain medications and chemicals or by
viral infection. Hepatitis C virus (HCV) and hepatitis B virus (HBV)
are two such viral pathogens which infect liver cells (hepatocytes).
HBV and HCV account for over 500 million chronic infections
worldwide [36].

Although hepatitis B virus and hepatitis C virus have similar
names, these are distinctly different viruses both genetically and
clinically. HBV is a DNA virus that infects liver cells. It leads to
acute infection, where virus is cleared from the body by the im-
mune response, or chronic infection, where virus persists. Chronic
infection eventually leads to liver disease, i.e. cirrhosis and hepato-
cellular carcinoma [18]. Those with only acute disease still experi-
ence severe symptoms for up to a year, including jaundice, extreme
fatigue, nausea, vomiting and abdominal pain. Approximately 1–
5% of infected adults are unable to clear infection and become
chronically infected, but this proportion is much higher in infants
and children [19]. Chronic hepatitis B is a major cause of cirrhosis
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and hepatocellular carcinoma worldwide. Approximately 30–40%
of hepatitis B patients with persistent liver inflammation progress
to cirrhosis [19]. About 25% of chronic carriers die from liver cancer
induced by the virus [36].

HCV is a small, enveloped, single strand RNA virus that also in-
fects liver cells. In contrast to HBV, a large proportion of hepatitis C
patients become chronically infected (approximately 60–85%), and
approximately one-third of these patients will develop cirrhosis of
the liver [19]. HCV alone affects an estimated 170 million people
worldwide [6].

Drug therapies are used to treat patients with HBV and HCV.
However, the current therapies (such as Peginterferon-aCRibavirin
for HCV and Lamivudine (LMV) and Entecavir for HBV) are ineffec-
tive in eliminating the virus in a large proportion of chronic
patients [11,26,19] and patients may require a liver transplant.

It is believed that liver transplantation prolongs and improves
quality of life for patients with many types of chronic liver disease.
Because the liver is probably the largest reservoir of HBV, it was
hoped that removal of the liver, combined with blood loss and sub-
sequent transfusions that occur with liver transplantation, that the
virus would be cleared from most patients. Unfortunately, the
early results of transplantation for patients with chronic HBV were
discouraging [35]. Survival was poor, and HBV reinfection of the li-
ver graft often resulted in a rapidly progressive course of disease.
Historically, in the absence of prevention, the spontaneous risk
for HBV reinfection after transplantation is approximately 80%
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related to the initial liver disease and the presence of HBV replica-
tion at time of transplantation [13,35].

The result of liver transplantation in chronic HCV carriers has an
equally troubling story. It has been found that recurrent HCV infec-
tion of the new liver occurs in almost all patients and that the nat-
ural history of recurrent HCV after transplantation is significantly
accelerated [2].

The fact that reinfection of the liver after transplantation occurs
suggests that virus is present in other reservoirs. Thus, virus can be
circulating in the blood which ultimately reinfects the new liver if
drug therapies cannot clear it. We have developed a mathematical
model that describes the pathogenesis of HBV or HCV infection
that takes into account free virus in the blood as well as the liver.
Since the dynamics of HBV and HCV are similar in that they infect
liver cells and may infect cells in the blood, only one model is
needed. We use the model to determine conditions that allow ex-
tra-hepatic HBV/HCV DNA to persist in patients who have liver
transplants. We demonstrate that the model produces a transcrit-
ical bifurcation as well as backward bifurcation, both related to the
production of virus from infected cells in the liver and in the blood.
This has clear implications towards drug therapy strategies before,
after and during liver transplantation.

In Section 2, we describe some early models of HBV and HCV.
We then build on the basic model to describe infection in both
the liver and blood. Section 2 is devoted to the presentation and
the well-posedness of our model, that originally takes the form
of a system of compartmental ordinary differential equations. In
Section 3, we describe the dynamics of the full model such as the
existence of steady states and global asymptotic stability of the
disease-free equilibrium (DFE) using a Lyapunov function. Next,
we demonstrate that the model produces a transcritical bifurcation
as well as backward bifurcation in Section 4. In Section 5 we deter-
mine if there are any effects or phenomena that may eliminate the
existence of the backward bifurcation. Finally, we discuss implica-
tions of the backward bifurcation in terms of drug therapy
strategies.
2. Mathematical models

Mathematical models have aided in the understanding of viral
infections, such as HBV and HCV (see [30,31]). Such models build
on the basic model of in-host infection considering uninfected (x)
and infected (y) cells and free virus (v):

dx
dt
¼ k� bxv � dx;

dy
dt
¼ bxv � ay;

dv
dt
¼ ky� uv :

ð2:1Þ

Here, target cells (cells susceptible to infection, i.e. hepatocytes or
liver cells) are produced at a constant rate k, die at per capita rate
d, and become infected at a rate bxv , proportional to both the target
cell concentration and the virus concentration. Infected cells are
thus produced at rate bxv and are assumed to die at constant rate
a per cell. Upon infection, infected cells produce virus at rate k
per infected cell, and virus is cleared at rate u.

To decrease or eliminate HBV or HCV virus production, ky, or
viral infection in the liver, bxv , must be reduced. Several studies
[23,24,30,35] have modified the system (2.1) to include antiviral
therapy, including a therapy-induced block in virus production
(protease inhibitors (PI)) with efficacy � to obtain ð1� �Þky, and a
block in viral infection (reverse transcriptase (RT) inhibitors) with
efficacy g to obtain ð1� gÞbxv . The models were then fit to viral
load data from patients under therapy and patient specific param-
eters were estimated (see [33] for details). However, even in
patients undergoing drug therapy interventions viral replication
may not be halted and these patients may require a liver trans-
plant. Also, even after a liver transplant HBV or HCV infection
may still persist [12,34] since extra-hepatic viral DNA could not
be cleared by this procedure. Thus, the model (2.1) should be im-
proved by considering another area of infection.

Recently, Dahari et al. [5] extended the basic model (2.1) to in-
clude two compartments of infection. This model demonstrated
that the second compartment could predict the viral kinetics of pa-
tients from the anhepatic phase until first viral increase data,
where the single compartmental model could not. This model,
however, did not determine a quantitative estimation of the
responsible factors of the persistence of the virus and its clearance.
Furthermore, this model did not give a picture of the asymptotic
viral dynamics after transplantation of the liver, and bifurcation
analysis was not made.

Several modeling studies have highlighted the bifurcation
behaviors of compartmental models when reinfection is consid-
ered [9,10,14]. Taking a more abstract approach, van den Driessche
and colleagues have demonstrated the occurrence of backward
bifurcations in a number of general models describing infectious
disease dynamics [9,14]. This type of bifurcation behavior allows
for the existence of multiple positive steady states, leading to dif-
ferent threshold conditions for the onset of an epidemic and its
elimination.

A common drawback of the models mentioned above is that they
neglect that fact a virion is lost when it infects a healthy cell [17].
This may play a major role in HBV/HCV dynamics, especially when
the viral load is small, i.e. when a patient is under drug therapy. Add-
ing �bxv to the virus equation, (v) in the basic model we obtain:

dx
dt
¼ k� bxv � dx;

dy
dt
¼ bxv � ay;

dv
dt
¼ ky� uv � bxv :

ð2:2Þ

In the next section, a compartmental model will be developed to de-
scribe HBV/HCV dynamics in the liver as well as the blood. This model
is an extension of Eq. (2.2). We demonstrate that the model produces
a transcritical bifurcation as well as a backward bifurcation.
3. Full model and basic properties

Our model uses the structure in Eqs. (2.1) and (2.2) with signif-
icant changes. As mentioned in the preceding section, we consider
the infection of both liver and blood cells and the interaction of
these cells through viral particles which are allowed to circulate
freely between the liver and blood compartments. A schematic of
our model is shown in Fig. 1. The liver–virus–blood (LVB) system
is as follows:

dx
dt
¼ kx � bxxv � dxx;

dy
dt
¼ bxxv � ayy;

dv
dt
¼ kxyþ kzw� uv � bxxv � bzzv;

dz
dt
¼ kz � bzzv � dzz;

dw
dt
¼ bzzv � aww;

ð3:3Þ

where x; y and v are defined as before and kx;bx; dx; kx; ax and u are
the associated parameters. Here, the virus interacts with both liver
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Fig. 1. Flow diagram for hepatitis Liver–Virus–Blood model structure.
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cells, x, producing infected cells y, and blood cells, z, producing in-
fected cells w. kz and dz are the birth rate and death rate of healthy
blood cells, respectively. Also, in the blood compartment, bz is the
infection rate, kz is the production rate of virions and aw is the death
rate of infected cells.

Even when acute infections appear to be lytic, for chronic HBV
and HCV it may not be completely clear whether the virus is intrin-
sically cytopathic. Results suggest that CTL-mediated lysis is suffi-
ciently fast to eliminate a large fraction of productively infected
cells and thereby greatly reduce virus production [31]. Also, based
on previous studies where patient specific parameters were esti-
mated (see [33] for details), it seems reasonable to assume that in-
fected cells in the blood and liver may have shorter lifespans than
their uninfected counterparts. Thus, hereafter, we will assume that
dx 6 ay and dz 6 aw. Note that CTL is not modeled explicitly in (3.3).

Lemma 1. The region

X ¼ ðx; y;v ; z;wÞ 2 R4
þ : xþ y 6

kx

dx
; zþw 6

kz

dz
;v 6 vM

� �
;

where

vM :¼ 1
u

kxkx

dx
þ kzkz

dz

� �
is positively invariant and attracting with respect to the system (3.3).

Proof. For the invariance property it suffices to show that the vec-
tor field, on the boundary, does not point to the exterior.

From Eq. (3.3) we have, on the boundary of X,

d
dt
ðxþ yÞ ¼ kx � dxx� ayy ¼ ðdx � ayÞy 6 0:

Similarly, we get

d
dt
ðzþwÞ 6 ðdz � awÞw 6 0;

and

dv
dt
6

kxkx

dx
þ kzkz

dz
� uv ¼ 0:

Therefore, solutions starting in X will remain there for t P 0.
Attractiveness. Since dx 6 ay and dz 6 aw, we have

d
dt
ðxþ yÞ 6 kx � dxðxþ yÞ;

and

d
dt
ðzþwÞ 6 kz � dzðzþwÞ:

Therefore

lim sup
t!1
ðxþ yÞðtÞ 6 kx

dx
;

lim sup
t!1
ðzþwÞðtÞ 6 kz

dz
:

Similarly, we prove that vðtÞ approaches vM if v > vM . Hence, X is
attracting, that is, all solutions of (3.3) eventually enters X. h

Thus, in X the model (3.3) is well-posed epidemiologically and
mathematically. Hence, it is sufficient to study the dynamics of the
basic model with initial data from X.

4. Existence and stability of equilibria

4.1. Disease-free equilibrium (DFE)

The (LVB) model (3.3) has a DFE given by,

I0 ¼ �x; 0;0; 0;�zð Þ ¼ kx

dx
;0;0;0;

kz

dz

� �
;

in which there is no infection.
Let R0 be given by

R0 ¼
kx

ay

bx�x
uþ bz�zþ bx�x

þ kz

aw

bz�z
uþ bz�zþ bx�x

: ð4:4Þ

The threshold parameter R0 defined by (4.4) is called the basic
reproductive ratio, and is defined as the average number of second-
ary infections produced when one infected individual is introduced
into a host virgin population [8,9,16]. The value of this parameter
plays a central role in the dynamics of system (3.3) with important
implications in the treatment of HBV/HCV. The parameter R0 has an
interesting biological meaning. Assume that one infectious virion is
introduced into a healthy organism with �x healthy liver cells and �z
healthy blood cells. This virion then produces, on average, bx�x

uþbz�zþbx�x

infected liver cells and bz�z
uþbz�zþbx�x infected blood cells during its life-

span. Since each infected liver cell and (respectively) infected blood
cell produces kx

ay
virions and (respectively) kz

aw
virions during its life-

span, ðkx
ay

bxdz�x
udzþkzbzþbxdz�xþ

kz
aw

bzdx�z
udxþkxbxþbzdx�zÞ ¼ R0 is the average number of

new virions produced by an initial virion in a healthy organism.
In what follows, we show the role of R0 in the study of the sta-

bility properties of the uninfected equilibrium I0.

Theorem 2. The disease-free equilibrium is locally asymptotically
stable for R0 < 1 and unstable for R0 > 1.

Proof. The local stability of I0 is governed by the eigenvalues of the
Jacobian matrix, of system (3.3),

JðI0Þ ¼

�dx 0 �bx
kx
dx

0 0

0 �ay �bx
kx
dx

0 0

0 kx u� bx
kx
dx
� bz

kz
dz

0 kz

0 0 �bz
kz
dz

�dz 0

0 0 bz
kz
dz

0 �aw

0BBBBBBBB@

1CCCCCCCCA
; ð4:5Þ
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which clearly are �dx and �dz and the roots of the following
equation:

dðkÞ ¼ k3 þ a1k
2 þ a2kþ a3; ð4:6Þ

where

a1¼
aydxdzþawdxdzþudxdzþbxkxdzþbzkzdx

dxdz
;

a2¼
aydxdzþawdxdz
� �

uþayawdxdzþaybzkzdxþawbxkxdz

dxdz

þðay�kxÞbxkxdzþðaw�kzÞbzkzdx

dxdz
;

a3¼
�kxbxkx0dzaw�kzbzkzdxayþudxdzayawþkxbxdzayawþkzbzdxayaw

dxdz
:

We can see that

a3 ¼
udxdzayaw þ kxbxdzayaw þ kzbzdxayaw

dxdz
1� R0ð Þ; ð4:7Þ

and

ayawa2 � ðay þ awÞa3 ¼
a2

y a2
wdxdz þ a2

ykzbzkzdx þ a2
wkxbxkxdz

dxdz
: ð4:8Þ

It follows that, for R0 < 1, the coefficients of the polynomial (4.6) are
positive. Using the Routh–Hurwitz criteria, the local stability of the
uninfected equilibrium I0 will be established if we show that

a1a2 � a3 > 0: ð4:9Þ

Note that a1 > ay þ aw. Using this and (4.8) we find that

a1a2 > ðay þ awÞa2 >
ðay þ awÞ2

ayaw
a3 > a3:

Therefore I0 is locally asymptotically stable for R0 < 1.
For R0 P 1 or equivalently a3 < 0, we have dð0Þ < 0 and

lim dðkÞ ! þ1 when k 2 R and k! þ1. Then, there exists k� > 0
such that dðk�Þ ¼ 0, which proves the instability of the disease-free
equilibrium. h

A global stability result for the DFE I0 is given below.

Theorem 3. Assume that R0 6 1 and ðkx � ayÞðkz � awÞP 0. Then,
the uninfected steady state I0 of system (3.3) is unique and globally
asymptotically stable in the region X.

Proof. To prove this, we use the Lyapunov function

Uðx; y;v ; z;wÞ ¼ kxyþ ayv þ
aykz

aw
w:

The orbital derivative of U is given by

_U ¼ ðkx � ayÞbxxv þ ay
kz

aw
� 1

� �
bzzv � ayuv

¼ ðkx � ayÞbxxþ ay
kz

aw
� 1

� �
bzz� ayu

� �
v :

Then _U 6 0 when kx � ay 6 0 and kz � aw 6 0. If kx � ay P 0 and
kz � aw P 0, since x 6 kx

dx
and z 6 kz

dz
, we obtain

_U 6 �udxdzayaw þ kxbxdzayaw þ kzbzdxayaw

dxdzaw
ð1� R0Þv ;

which is negative for R0 6 1. Therefore, _U 6 0 in X.
The subset where _U ¼ 0 is defined by the following two cases:

(i) If R0 < 1, then v ¼ 0;
(ii) If R0 ¼ 1, then v ¼ 0 or ðkx � ayÞbxxþ ayðkz

aw
� 1Þbzz� ayu ¼ 0.
From system (3.3), it can be seen that the maximum invariant
set contained in _U ¼ 0 is the plane v ¼ 0; y ¼ 0; w ¼ 0. In this set,
system (3.3) is given by

dx
dt
¼ kx � dxx;

dy
dt
¼ dw

dt
¼ dv

dt
¼ 0;

dz
dt
¼ kz � dzz;

which implies that solutions started at v ¼ 0; y ¼ 0; w ¼ 0 tend to
the equilibrium I0 as t goes to infinity. Therefore, applying the LaS-
alle–Lyapunov Invariance Principal in [15], it follows that I0 is lo-
cally stable and all trajectories starting in X approach I0. h
5. Endemic equilibria and bifurcation behavior

In order to find endemic equilibria of the (LVB) system (that is,
equilibria where at least one of the infected components of the
model (3.3) is non-zero), the following steps are taken.

Let I� ¼ ðx�; y�;v�; z�;w�Þ represent any arbitrary endemic equi-
librium of the model (3.3). Solving the equations in (3.3) at steady
state gives

x� ¼ kx�

bxv� þ dx
; y� ¼ bxkx�v�

ðbxv� þ dzÞay
; z� ¼ kz�

bzv� þ dz
;

w� ¼ bzkz�v�
ðbzv� þ dzÞaw

:

If v�–0, then substituting x�; y�; z� and w� in the third equation of
(3.3) at steady state, we obtain after some calculations that v� must
satisfy the following quadratic equation:

hðv�Þ ¼ Av�2 þ Bv� þ C ¼ 0; ð5:10Þ

where

A ¼ ubxbz; ð5:11Þ

B ¼ udzbx þ udxbz þ kxbxbz 1� kx

ay

� �
þ kzbxbz 1� kz

aw

� �
; ð5:12Þ

C ¼ udxdz þ kxbxdz 1� kx

ay

� �
þ kzbzdx 1� kz

aw

� �
: ð5:13Þ

We state the following Lemma.

Lemma 4. The endemic equilibrium, when it exists, belongs to the
positively invariant subset X.

Proof. Using relations dx 6 ay and dz 6 aw, we see that if (5.10) has
a solution, v�, then 0 < v� < vM . In fact,

hðvMÞ ¼ Av2
M þ BvM þ C > 0; ð5:14Þ

and

_hðvMÞ ¼ 2AvM þ B > 0: ð5:15Þ

Thus, the endemic equilibrium, whenever there exists, is given by

I� ¼ x�; y�; v�; z�;w�ð Þ

¼ kx

bxv� þ dx
;

bxkxv�
ðbxv� þ dxÞax

;v�; kz

bzv� þ dz
;

bzkzv�
ðbzv� þ dzÞaz

� �
:

and belongs to the positively invariant subset X. h

Since A > 0, the existence of the positive solutions of Eq. (5.10) will
depend on the signs of B and C. Note that C is given by

C ¼ udxdz þ kxbxdz þ kzbzdx

dxdz
ð1� R0Þ ð5:16Þ



Fig. 3. Backward bifurcation. Bifurcation branch with turning point. Endemic states
exist below the critical basic reproduction number R0 ¼ 1.
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and, thus, C < 0 is equivalent to R0 > 1.
One can show that C > 0 and B < 0 can occur for some param-

eter values and thus, we have the following result.

Theorem 5. The system (3.3) has:

(i) a unique endemic equilibrium in X if C < 0 () R0 > 1;
(ii) a unique endemic equilibrium in X if B < 0, and C ¼ 0 or

B2 � 4AC ¼ 0;
(iii) two endemic equilibria in X if C > 0, B < 0 and B2 � 4AC > 0;
(iv) no endemic equilibrium otherwise.

Remark 6. Notice that

ayawdxdzB ¼ ayaw bxdz þ bzdxð ÞC þ bxd2
z kx

kx

ay
� 1

� �
þ bzd

2
xkz

kz

aw
� 1

� �
:

Thus, B P 0 when C P 0; kx � ay P 0 and kz � aw P 0. Further-
more, from (5.12) and (5.13), B P 0 and C P 0 for kx � ay 6 0 and
kz � aw 6 0. Hence, system (3.3) has no endemic equilibrium if
R0 6 1 and ðkx � ayÞðkz � awÞP 0.

Many epidemiological models have defined a threshold condi-
tion that indicates whether an infection introduced into a popula-
tion will be eliminated or become endemic [1]. In models with only
two steady states and a transcritical bifurcation, R0 > 1 implies
that the endemic state is stable (i.e., the infection persists), and
R0 6 1 implies that the uninfected state is stable (i.e., the infection
is eliminated).

Bifurcation analysis of the basic model (2.2) exhibits only the
usual transcritical bifurcation. However, since multiple non-nega-
tive steady states occur for values of R0 6 1 and close to one for
(3.3) this may not be the case (see case (iii) in Theorem 5). In the
following, we show that system (3.3) undergoes two possible op-
tions of bifurcation, shown in Figs. 2 and 3, depending on the
parameters chosen.

5.1. Transcritical bifurcation of the endemic equilibrium

Remark 6 indicates the uniqueness of the DFE when
kx P ay; kz P aw and R0 6 1. For R0 > 1, the equilibrium I0 be-
comes an unstable hyperbolic point, and the endemically infected
Fig. 2. Forward (transcritical) bifurcation. Endemic states exist only above the
critical basic reproduction number R0 ¼ 1.
equilibrium, I� emerges in the region X. The local stability of I� is
given by the Jacobian, JðI�Þ, of (3.3) evaluated in this point

JðI�Þ ¼

� kx
x� 0 �bxx� 0 0

bxv� �ay �bxx� 0 0
�bxv� kx

1
v� kxy� þ kzw�ð Þ �bzz� kz

0 0 bzz� � kz
z� 0

0 0 bzz� bzv� �aw

0BBBBBB@

1CCCCCCA:

In the following, we discuss the existence of a transcritical bifurca-
tion of the positive steady state when kx P ay; kz P aw and
R0 ¼ 1.

Note that, when kx P ay and kz P aw; R0 > 1 is equivalent to

0 < u < �u :¼
kxbxdz 1� kx

ay

� 	
þ kzbzdx 1� kz

aw

� 	
dxdz

: ð5:17Þ

The next lemma will be useful to analyze the eigenvalues of JðI�Þ.

Lemma 7. Let M be an n� n square matrix. Write M as

M ¼
N Q

R e

� �
;

where N is an ðn� 1Þ � ðn� 1Þ square matrix, Q is a column vector, R
is a row vector and e 2 R. If e–0, then

detðMÞ ¼ 1

eð Þn�2 detð eMÞ;
where eM is the ðn� 1Þ � ðn� 1Þ matrix

eM ¼ eN � QR:

Proof. The result follows from the formula

N Q

R e

� �
eIn�1 0
�R 1

� �
¼

eM Q
0 e

 !
: �

Applying Lemma 7 twice to matrix kI � JðI�Þ, the associated
characteristic equation, denoted by Dðk;uÞ, is given by

Dðk;uÞ ¼ �Q1
kx

x�
þ k

� �
ðay þ kÞðaw þ kÞ

� Q 2 ðay þ kÞbxv� þ dykx þ kkx
� �

; ð5:18Þ
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where

Q1 ¼ ðaw þ kÞ 1
v� ðkxyþ kzwÞ
� �

� z�bzkz

� �
kz

z�
þ k

� ��
þðaw þ k� kzÞb2

z z�v�
�
;

Q2 ¼ ðaw þ kÞ kz

z�
þ k

� �
bxx�:

Taking account of the third equation of system (3.3) evaluated at
the equilibrium I�, we obtain

aw
kxy� þ kzw�

v� ¼ awkxbxkx

ay bxv� þ dy
� �þ z�bzkz:

Then

aw
kxy� þ kzw�

v� � z�bzkz ¼
awkxbx

ay
x�

and Q1 becomes

Q 1 ¼ k
kzbz

aw
z� þ kxbx

ay
x� þ kþ aw

� �
kz

z�
þ k

� �
þ k

awkxbx

ay
x�

þ kb2
z z�v� þ awkxbxkz

ay

x�

z�
þ ðaw � kzÞb2

z z�v�
� �

: ð5:19Þ

Next, we will show that, for positive parameter u and close to �u,
which is defined in (5.17), the endemic equilibrium is stable. To
prove this, the following lemma is used, which is the consequence
the of continuity of principal eigenvalues of the matrices on the
parameters.

Lemma 8. Let ZðlÞ be a 2n� 2n real matrix satisfying the following
conditions:

(i) ZðlÞ is continuous fo l close to l0;
(ii) Zðl0Þ has a zero eigenvalue, which is simple, and all other

eigenvalues of Zðl0Þ have negative real parts.

If detðZðlÞÞ > 0, then all eigenvalues of ZðlÞ have negative real
parts, while if detðZðlÞÞ < 0, then ZðlÞ has a positive eigenvalue,
where jl� l0j is sufficiently small.

It follows from Lemma 7 that

detðkI � JðI�ÞÞ ¼ ðkþ awÞdetðkI � ZðuÞÞ; ð5:20Þ

where ZðuÞ is the following 4 � 4 square submatrix

ZðuÞ ¼

� kx
x� 0 �bxx� 0

bxv� �ay �bxx� 0

�bxv� kx
kxy�kzw�

v� þ z�bzkz �bzv� þ kzbzv�

0 0 �bzz� � kz
z�

0BBBB@
1CCCCA:

Then one eigenvalue of JðI�Þ is �aw and the rest of the eigenvalues
are those of the matrix Z. Now we will use Lemma 8 to determine
the sign of the eigenvalues of Z.

The matrix Zð�uÞ is given by

Zð�uÞ ¼

�dx 0 �bx
kx
dx

0

0 �ay �bx
kx
dx

0

0 kx
bxkxkx
aydx

0

0 0 �bz
kz
dz
�dz

0BBBBB@

1CCCCCA;

and its eigenvalues satisfy

dðkÞ ¼ k dx þ kð Þ dx þ kð Þ bxkxkx

aydx
þ k

� �
: ð5:21Þ

Then k ¼ 0 is a simple eigenvalue for the matrix Zð�uÞ and all other
eigenvalues have negative real parts. Then, Lemma 8implies the
local stability of I� if detðZðuÞÞ > 0. From (5.20) is equivalent to
det JðI�Þ < 0. Notice that v� converges to zero when u converge to
�u. Hence, Q1 given by (5.19) is positive. Furthermore, for R0 near
1, we deduce from (5.18) that det JðI�Þ ¼ Dð0;uÞ < 0. Therefore, the
local stability of I� is given by the following theorem.

Theorem 9. Assume that kx P ay and kz P aw. When R0 ¼ 1, the
endemically infected state I� undergoes a transcritical bifurcation, that
is for R0 > 1;R0 close to 1, the positive steady state is locally
asymptotically stable whereas the trivial steady state (DFE) is
unstable, and for R0 6 1 the trivial steady state (DFE) is locally
asymptotically stable and is the only steady state of (3.3).

The epidemiological implication of Theorem 9 is that, in gen-
eral, when R0 is less than unity, a small influx of virus particles into
the liver and the blood will not generate a large outbreak, and the
disease will die out in time (since the DFE is globally asymptoti-
cally stable). Furthermore, the will disease persist when R0 is larger
then unity (Fig. 2). However, we show in the next subsection that
the disease may still persist even when R0 < 1.

5.2. Backward bifurcation

Case (iii) of Theorem 6 indicates the possibility of a backward
bifurcation (where the locally-asymptotically stable DFE co-exists
with a locally-asymptotically endemic equilibrium when R0 < 1).
To check for this, the discriminant B2 � 4AC is set to be zero and
solved for the critical value of R0, denoted Rc , given by

Rc ¼ 1� ayawB2

4A udxdz þ kzbzdx þ kxbxdzð Þ :

Thus, Rc < R0 is equivalent to B2 � 4AC > 0 and, therefore, backward
bifurcation would occur for values of R0 such that Rc < R0 < 1.

Consider the case when R0 ¼ 1. Let kx be given by

kx :¼ ay udxdzaw þ kxbzdxðaw � kzÞ þ kxbxdzawð Þ
kxbxdzaw

:

We state and prove the following result.

Theorem 10. Assume that ðkz � awÞðkx � ayÞ < 0. The LVB model
(3.3) exhibits a backward bifurcation when the coefficient a defined
by

p ¼ kxb
2
x

d2
x

1� kx

ay

 !
þ kzb

2
z

d2
z

1� kz

aw

� �
is negative.

If ðkz � awÞðkx � ayÞP 0, then the LVB model (3.3) does not
undergo a backward bifurcation.

Proof. The proof is based on the center manifold theory. To apply
this method, the following simplification and change of variables
are made on the LVB model (3.3). First of all, let
x1 ¼ x; x2 ¼ y; x3 ¼ v ; x4 ¼ z; x5 ¼ w. Further, by using the vector
notation X ¼ ðx1; x2; x3; x4; x5ÞT , the system (3.3) can be written in
the form dX

dt ¼ ðf 1; f 2; f 3; f 4; f 5Þ
T as follows:

dx1

dt
¼ f1 ¼ kx � bxx1x3 � dxx1;

dx2

dt
¼ f2 ¼ bxx1x3 � ayx2;

dx3

dt
¼ f3 ¼ kxx2 þ kzx5 � ux3 � bxx1x3 � bzx4x3;

dx4

dt
¼ f4 ¼ kz � bzx4x3 � dzx4;

dx5

dt
¼ f5 ¼ bzx4x3 � awx5:

ð5:22Þ
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Assume that ðkz � awÞðkx � ayÞ < 0. Without loss of generality, we
consider the case when kz < aw and kx > ay. Choose kx as a bifurca-
tion parameter (the case when kz < aw and kx > ay is similar by tak-
ing kz as a bifurcation parameter). Solving R0 ¼ 1 gives

kx ¼ kx :¼ ay udxdzaw þ kxbzdxðaw � kzÞ þ kxbxdzawð Þ
kxbxdzaw

:

Let J0 denote the Jacobian of the system (3.3), evaluated at the DFE
I0 with kx ¼ kx,

J0 ¼

�dx 0 �bx
kx
dy

0 0

0 �ay �bx
kx
dy

0 0

0 kx u� bx
kx
dy
� bz

kz
dw

0 kz

0 0 �bz
kz
dw

�dz o

0 0 bz
kz
dw

0 �aw

0BBBBBBBB@

1CCCCCCCCA
:

Let

dðkÞ ¼ kðkþ dzÞðkþ dxÞðk2 þ a1kþ a2Þ; ð5:23Þ

where

a1 ¼
aydxdz þ awdxdz þ udxdz þ bxkxdz þ bzkzdx

dxdz
;

a2 ¼
ðaydxdz þ awdxdzÞuþ ayawdxdz þ aybzkzdx þ awbxkxdz

dxdz

þ ðay � kxÞbxkxdz þ ðaw � kzÞbzkzdx

dxdz
:

Thus, the Jacobian J0 of the linearized system has a simple zero
eigenvalue and all the other eigenvalues have negative real parts.
Hence, the center manifold theory [2,3,6] can be used to analyze
the dynamics of the system (3.3). In particular, a theorem in [4],
reproduced in the appendix for convenience, will be used.

For the case when R0 ¼ 1, it can be shown that the J0 has a right
eigenvector (corresponding to the zero eigenvalue), given by
w ¼ ½w1;w2;w3;w4;w5�T , where

w1 ¼ �
bxkx

d2
x

w3; w2 ¼
bxkx

aydx
w3; w3 ¼ w3;

w4 ¼ �
bzkz

d2
z

w3; w5 ¼
bzkz

awdz
w3: ð5:24Þ

Similarly, the components of the left eigenvector of J0 (correspond-
ing to the zero eigenvalue), denoted by w ¼ ½w1;w2;w3;w4;w5�T , are
given by

v1 ¼ 0; v2 ¼
kx

ay
v3; v3 ¼ v3; v4 ¼ 0; v5 ¼

kz

aw
x3: ð5:25Þ

Let a and b be the coefficients defined as in Theorem 11 (see Appen-
dix A).

Computation of a. For the transformed model (3.3), the associ-
ated non-zero partial derivatives of f (evaluated at the DFE I0) are
given by

@2f1

@x1@x3
¼ �bx;

@2f2

@x1@x3
¼ bx;

@2f3

@x1@x3
¼ �bx;

@2f3

@x3@x4
¼ �bz;

@2f4

@x3@x4
¼ �bz;

@2f5

@x3@x4
¼ bz:

ð5:26Þ

Using the expressions in Eqs. 5.24, 5.25 and 5.26, it follows that

a ¼ � kxkxb
2
x

ayd2
x

þ kxb
2
x

d2
x

� kzkzb
2
x

awd2
z

þ kzb
2
z

d2
z

 !
v3w2

3

¼ kxb
2
x

2 1� kx

a

 !
v3w2

3 þ
kzb

2
z

2 1� kz

a

� �
v3w2

3: ð5:27Þ

dx y dz w
Computation of b. Substituting the vectors v and w and the
respective partial derivatives (evaluated at the DFE I0) into the
expression

b ¼
X5

k;i¼1

vkwi
@2fk

@xi@kx
ð0; 0Þ;

gives b ¼ v3w2 > 0. Since the coefficient b is automatically positive,
it follows from Theorem 11 that the LVB (3.3) will undergo back-
ward bifurcation if the coefficient a, given by (5.27), is negative
(Fig. 3).

Now, if ðkz � awÞðkx � ayÞP 0 then, for R0 6 1, Theorem 3
indicates that the uninfected steady state I0 of system (3.3) is
unique and globally asymptotically stable and, therefore, no
backward bifurcation occurs in this case. This completes the
proof. h
6. Discussion

In this paper, a mathematical model for HBV/HCV that explores
the interaction of viral particles in both the liver and the blood is
developed. We have found that the LVB model is well-posed and
useful for the description of hepatitis infection dynamics. The anal-
ysis of the LVB model (3.3) is quite extensive and involved. The
model has both a disease-free equilibrium and endemic state, sim-
ilar to the basic model. However, a backward bifurcation can take
place. The existence of a backward bifurcation is an interesting
artifact since this means that the disease cannot be eradicated by
simply reducing the value of the basic reproduction number R0 be-
low 1. This can have important implications on drug therapy pro-
tocols, since it sheds light on possible control mechanisms for
disease eradication.

For example, the conditions for the backward bifurcation
ððkz � awÞðkx � ayÞ < 0Þ demonstrate that variable efficacy of ther-
apy may sustain infection. Suppose that kz ¼ ð1� �zÞkz and that
kx ¼ ð1� �xÞkx, where 0 < �x < 1 and 0 < �z < 1 represent the effi-
cacy of drug therapy on viral production in the liver and the blood
respectively. It is possible that drug therapy may be effective at
reducing kx < ay in the liver, but may not be successful in reducing
kz < aw and therefore, the virus can not be eradicated (see Theo-
rem 10). This demonstrates that drug therapies must be accompa-
nied by testing virus production in both the liver and the blood in
order to fully determine if the drug will be fully effective.

It is well known that HBV or HCV liver transplant patients will
ultimately incur infection in the liver again [21,28]. This may be
due to the variable efficacy of drug therapy in either the liver or
blood compartments as discussed above. Unexpectedly, using
PEGylated IFN drug before liver transplantation and five weeks
after PEG-IFN treatment, clearance of hepatitis C for a patient
was achieved just one month after the successful liver transplanta-
tion [20]. In a future project, we shall use the LVB model to predict
the levels of infection in target cells in the blood that are needed to
reinfect the liver under timescales observed in transplant patients.
This prediction will be helpful to study the impact of antiviral ther-
apy and post-liver transplantation on viral eradication and will aid
in determining the efficacy of drug therapy that is needed in a
transplant patient in both the liver and the blood so that viral
clearance can be achieved.
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Appendix A

Theorem 11 (Castillo-Chavez and Song [3]). Consider the following
general system of ordinary differential equations with a parameter /,

dx
dt
¼ f x;/ð Þ; f : Rn � R! R; and f 2 C2 R;Rð Þ: ð6:28Þ

Without loss of generality, it is assumed that 0 is an equilibrium for sys-
tem (5.22) for all values of the parameter /, (that is f ð0;/Þ ¼ 0 for all
/). Assume

(A1): A ¼ Dxf ð0;0Þ ¼ ð @f
@xj
;0;0Þ is the linearized matrix of system

(5.22) around the equilibrium 0 with / evaluated at 0: zero is
a simple eigenvalue of A and all other eigenvalue of A have neg-
ative real parts;

(A2): Matrix A has a non-negative right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a ¼
Xn

k;i;j¼1

vkwiwj
@f 2

k

@xi@xj
ð0; 0Þ;

b ¼
Xn

k;j¼1

vkwj
@f 2

k

@xi@/
ð0;0Þ:

The local dynamics of system (5.22) around 0 are totally determined by
a and b.

(i) In the case where a > 0; b > 0, we have that when / < 0 with
j/j close to zero, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < /� 1, 0 is
unstable and there exists a negative and locally asymptotically
stable equilibrium;

(ii) In the case where a < 0; b < 0, we have that when / < 0 with
j/j close to zero, 0 is unstable; when 0 < /� 1, 0 is locally
asymptotically stable, and there exists a positive unstable
equilibrium;

(iii) In the case where a > 0; b < 0, we have that when / < 0 with
j/j close to zero, 0 is unstable and there exists a locally asymp-
totically stable negative equilibrium; when 0 < /� 1, 0 is sta-
ble and a positive unstable equilibrium appears;

(iv) In the case where a < 0; b > 0, we have that when / changes
from negative to positive, 0 changes its stability from stable to
unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable. Particularly,
if a > 0 and b > 0, then a backward bifurcation occurs at / ¼ 0.
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