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WELL-DEFINED SOLVABILITY AND SPECTRAL PROPERTIES
OF ABSTRACT HYPERBOLIC EQUATIONS WITH AFTEREFFECT

V. V. Vlasov, J. Wu, and G. R. Kabirova UDC 517.951

ABSTRACT. We study functional differential equations with unbounded operator coefficients in Hilbert
spaces such that the principal part of the equation is an abstract hyperbolic equation perturbed by
terms with delay and terms containing Volterra integral operators. The well-posed solvability of initial
boundary-value problems for the specified problems in weighted Sobolev spaces on the positive semi-
axis is established.

Our concern is spectra of operator-valued functions that are symbols of the specified equations in
the autonomous case. In particular, the spectra of the Gurtin—Pipkin equation is studied, which is an
integrodifferential equation modelling the heat propagation in media with memory.
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Introduction

Many papers are nowadays devoted to the solvability and asymptotic behavior of functional differ-
ential and integrodifferential equations in Banach and Hilbert spaces (see [2-4, 10, 11, 13-15, 18-25]
and references therein).

In this paper, functional differential and integrodifferential equations with unbounded operator
coefficients are studied in Hilbert spaces. The principal part of the considered equation is an abstract
hyperbolic equation perturbed by terms with delay and terms containing Volterra integral operators.

We study the case of variable delays, while the majority of papers of this direction, known to the
authors, treat the case of constant delays (see [2-4, 10, 11]) and bounded operator coefficients at delay
terms (see [24, 25] and references therein).

We prove that initial boundary-value problems in weighted Sobolev spaces on the positive semi-axis
are well posed for the specified equations and study spectra of operator-valued functions that are
symbols of the specified equations in the autonomous case.

Finally, certain results are applied to the Gurtin—Pipkin equations, which are integrodifferential
equations modelling the finite-speed heat propagation in media with memory. Results of the present
paper are natural generalizations of the corresponding results of [22] (the extension to the case of
Volterra integral operators) and [21, 23] (the extension to the case of series of discrete delays).

Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya (Contemporary Mathematics.
Fundamental Directions), Vol. 35, Proceedings of the Fifth International Conference on Differential and Func-
tional Differential Equations. Part 1, 2010.
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1. Notation, Definitions, and Main Results

Let H be a separable Hilbert space and A be a positive self-adjoint operator acting in H such that
A is invertible and its inverse is bounded. We introduce on Dom(A?), which is the domain of the
operator A%, B > 0, the norm |]||5 = HABH equivalent to the graph norm of A%. Then Dom(A?)
becomes a Hilbert space.

Let Ly ~((a,b), X), —0o < a < b < 400, denote the space of measurable functions that take values
in a Hilbert space X. The norm in Ly ~((a,b), X) is introduced as follows:

b 1/2

I lieoini = | [ (-2l @t | . 920
Let ngfy((a, b),A™), m € N, denote the space of functions that take values in H such that
APy (=PI € Ly ((a,b), H), (p = 0,1). The norm in Wi ((a,b), A™) is introduced as follows:

m m 1/2
ullwgn ((ap),am) = <Hu< )H%gﬁ((a,b),H) + [|A U||%2,7((a,b),H)) :

m

d
We use u(™) (t) to denote dt—mu(t), m € N, throughout the paper. In [12, Chap. 1], a more complete

description of W™ ((a,b), A™) is presented. In the sequel, we omit the corresponding index if v = 0.
Consider the following initial boundary-value problem for the functional differential equation

u®(8) + A%u(t) + Y | B () Aulg; (8)) + Ds(t)u (9,(1))|

Jj=1
t

+/K(t—s)Au(s)ds+/Q(t—s)u(l)(s)ds:f(t), t>0, (1.1)

with the initial condition
u(t) = p(t), teR_ = (—00,0]. (1.2)
Here Bj(t) and Dj(t), j = 1,2,..., are functions with values in the ring of bounded operators acting

in H, while K(t) and Q(t) are functions with values in the ring of bounded operators acting in H and
being Bochner-integrable over R, with the weight e=*:

+00 +o0
[ ewtim @l < oo, [ el < o (13)
0 0

The scalar real-valued functions g;(t) are supposed to be continuously differentiable on Ry and such
that g;(t) <t and ¢\ (t) > 0, t e Ry (j=1,2,...).

The functions inverse to g; are denoted by gj_l, 7 =1,2,.... In the sequel, we assume that there
exist 70,71 € R such that f € Ly o, (R4, H1) and ¢ € W22m (R_, A%).

Definition 1.1. We say that a function u is a strong solution of problem (1.1),(1.2) if there exists
~v > 0 such that u belongs to Wiv(RhAg), u satisfies Eq. (1.1) a.e. on Ry, and u satisfies (1.2).

The following theorem on the well-posed solvability of problem (1.1),(1.2) is one of the main results
of the present paper.

Theorem 1.1. Let B;(t), D;(t), Bj(t) = AB;(t)A™", and D;(t) = AD;(t)A™" be strongly continuous
functions with values in the ring of bounded operators acting in H. Let there exist a nonnegative §
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such that the following inequalities hold:

—§(t — g s MBI D5l ~
;tseﬁ exp(—d(t — g;(t))) LeRp oD 1)1 +t€Rp (g§1)( N <+ (1.4)
and
. w MBOI D)) o
;tg& exp(—4(t — g;(1))) LRIZ ( j( e +t€R11 (gj(.l)(t))l/?] < +oo. (1.5)
Lett — gj(t) > ap = const > 0, t > 0, j = 1,2,.... Let K(t), Q(t), K(t) = AK(t)A™!, and

Q(t) = AQ(t)A~" be strongly continuous functions with values in the ring of bounded operators acting
in H and satisfying (1.3), and let there exist a nonnegative s such that

“+o0o +o0

/ exp(—sant) | K ()] dt < +oo, / exp(—sa1) | Q)| dt < +oo. (1.6)

0 0

Then there exist nonnegative vo and 1 such that, for all ¢ € W22m (R_,A?) and f € Lo, (Ry, Hy),
there exists a constant v* > max(vp,v1) such that, for any v > ~v*, problem (1.1),(1.2) has a unique
solution u € WQQ’,Y(R+,A2) satisfying the inequality

1/2
lllwz e 42) < d (1AL, ) + 10002 @ n) (17)
where the constant d depends neither on f nor on .

Remark 1.1. Conditions (1.4),(1.5) are essential for the well-posed solvability of problem (1.1),(1.2).
In [22], corresponding examples are presented.

If the coefficients B;(t) and D;(t) do not depend on ¢ (i.e., Bj(t) = B; and D;(t) = D;) and the
delays g;(t) are of the form g;(t) = t — h; with constants 0 < h1 < hs then we consider the
operator-valued function

> A~ A~
LA) = NT+ A%+ (BjA+ AD)) exp(—Ahy) + K(AN)A + AQ(N), (1.8)
j=1

where K(\) and Q()\) are the Laplace transforms of the operator-valued functions K (t) and Q(t),
while I is the identity operator in H. Note that the operator-valued function £()\) is the symbol (an
analog of the characteristic polynomial) of Eq. (1.1) in the autonomous case.

Suppose that there exists a constant 1y such that

> exo(—vohy)(IBjll + 1 D;ll) < +oo. (1.9)
j=1

The operator-valued function £(\) is estimated as follows.

Proposition 1.1. Let condition (1.9) be satisfied and the operator-valued functions K(t) and Q(t)
satisfy condition (1.3). Then there exists a positive »* such that the operator-valued function L£(X)
satisfies the inequality

const

AT+ [[ALTE V|| < =—, Rel > " (1.10)
Re A

We consider the autonomous case in more detail.
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Together with problem (1.1), (1.2), we consider the functional differential equation

u® (1) + A%u( +Z[B Au(t )+Dju<1>(tfhj)}

t

+/Kt—sA2 ds+/Q yuM (s)ds = f(t), t>0, (1.11)

with the initial condition
u(t) =(t), teR_=(—00,0. (1.12)

Theorem 1.2. Let the operators Bj, Dj, Bj = ABjA7!, and D~j = AD;A7l, j=1,2,...,N, be
bounded in H. Let K € Wi (Ry) and Q € L1(Ry) be scalar complex-valued functions. Let there exist
real o and 1 such that the vector-valued functions f and ¢ belong to Lo . (R4, H1) and W23;yl (R_, A%),
respectively. Then there exists v* > max(yo,71) such that, for any v > ~v*, problem (1.11),(1.12) has
a unique solution u € WQ%W(RJ'_, A?) satisfying the estimate

1/2
2 2
iz e, a2y < d (JAFI, iy + 160 ) (1.13)
where the constant di depends neither on f nor on .

Note that there are differences in the setting of problems (1.1),(1.2) and (1.11),(1.12). In particular,
the integral terms are different: in Eq. (1.1), only the operator A to the power one is allowed under
quite general assumptions for the operator-valued function K(t), while in Eq. (1.11), the operator A
to the power two is allowed, but the restrictions for the kernel K (¢) are much stricter.

Equation (1.11) is related to applications: if B; = D; =0, j =1,2,..., N, then it is an abstract
form of the Gurtin—Pipkin integrodifferential equation modelling the finite-speed heat propagation in
media with memory. That integrodifferential equation is deduced in [6].

Equations of the above type are currently investigated by many authors (see [7, 17| and references
therein).

We impose the following assumptions.

(1) The operators B; and D; are identically zeros, j =1,2,..., N, and Q(t) =0
(2) the operator A has a compact inverse A~1;
(3) the real-valued function K (t) admits the representation

(o]
K(t)= - cjexp(—ajt),
j=1
where ¢; >0, a; >0,j=1,2,...,0<ay <ag---<a,<...,a = +00as j — +00, and
) -1
ch < +o0, Zaj <1. (1.14)
7=1 J=1

Note that a detailed structure of the spectrum of the operator-valued function £(\) can be described
under the above assumptions.

We also note that conditions (1.14) imply that K € W} (Ry) and [|K||,®,) < 1.

Let {aj};-‘;l be eigenvalues of the operator A (Ae; = aje;) numbered according to the increasing
order (the multiplicity is taken into account): 0 < a; < ay < --- <a, < ..., a, — +00 as n — +oo.
The corresponding eigenvectors {e]} ; form an orthonormal ba81s of the space H.

Now we consider the structure of the spectrum of the operator-valued function

L1(N) = N1 + A% + K(\) A2,
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where K'(\) is the Laplace transform of the function K.
In the considered case, Eq. (1.10) can be decomposed into a countable set of scalar integrodifferential
equations

t oo
ul?) () + a2 un (t) — / Z cre a2y, (s) ds = fu(t), t >0, (1.15)
k=1

—00

where wu, (t) = (u(t),e,) and f,, = (f(t),en), n = 1,2,... Those equations are projections of Eq (1.10)
onto the one-dimensional spaces spanned by vectors {e,}.

Using the Laplace transform, we naturally arrive at the countable set of meromorphic functions

fn(N):

(A = A2+ a2 — a2 k —1.92. ... 1.16
fuh) = Nt a an@H% =12 (1.16)

which are symbols of the integrodifferential equations given by (1.15).
The spectrum of the operator-valued function £;(A) is described as follows.

Theorem 1.3. The spectrum of the operator-function L£1(\) coincides with the closure of the union

of the sets of zeros for the functions {fn,(X\)}22,. The zeros of the meromorphic function f,(X\) form

a countable set of real roots {)‘n,k} . satisfying the inequalities
n

—ap < App < Tp < —ap—1 (ag = 0),

1
)\n,k =2+ 0 <612> , keN, k>1, a,— 4oo, (1'17)

n

where xp are the real zeros of the function

00 ch
A)=1- 1.1
90 =13 (113)

0o _
and a pair of complex-conjugate roots {)\f}l , AP =\, such that
1 & 1
Arjf:—Qgck:tian—i—O(%%) ,  ap — +o0o. (1.19)

Thus, the spectrum o(L1) of the operator-valued function L£1(\) is representable as

o(L1) = (G G{W) U @1 A?f) :

k=1n=1

where lim A\ =xp, k=1,2,....
n—o0
The proof of Theorem 1.3 is given in the third part of this paper.
Remark 1.2. The spectrum of the operator-valued function £()) is located in the left-hand semi-
plane {\: Re A < 0} if
Y L<u
=1 Y

If

392



then the accumulation point z; of the poles, which are eigenvalues {\,1}72; of the operator-valued
function L, is located in the right-hand semi-plane {\ : Re A > 0}; this corresponds to the instability
case.

2. Main Results: Proofs

Several auxiliary assertions precede the proofs of the main results.
In the sequel, norms of operators acting in La(Ry, H) and 1/1/2%(]1@+7 A?) are denoted by || - ||| and
Il - lw, respectively.

Lemma 2.1. Let operators L and M be defined as follows:

(Lz)(t) = /exp(—’y(t —s))A L sin(A(t — 5))2(s)ds, t>0,
0

and
t

(Mz)(t) = /exp(—v(t —s))cos(A(t —s))z(s)ds, t>0.
0
Then their norms satisfy the estimates

1
IALIN < 5~

)

1
Ml < 5 0z 0. (2.1)

The proof of Lemma 2.1 is given in [22]. Consider the following operators:

| u(gj(t)) fortsuch that g;(t) > 0,
(Sg;u)(t) = { 0 for t such that g;(t) <0

and
. 0 for ¢ such that g,(¢) >0
g — i )
(THu)(t) = { u(gj(t)) for ¢ such that g;(t) < 0.

Obviously, the following relation holds:
u(g;(t)) = (Sg;u)(t) + (THu)(t), t=>0.

Using the introduced operators, we represent Eq. (1.1) as follows:

u®(t) + A%u( +§:[ Sy, Au()—i—Dj(t)ng(u(l))(t)]

J=1

t t
—I—O/Kt—sAu ds—i—o/Qt—s (s)ds = fi(t), t>0, (2.2)

where f1(t) = f(t) — q1(t) — g2(t), while

@ (t) = ft) - 21 [B;(t)T% (Ag)(t) + D; (8)T% (M) (1)),
= (2.3)
q2(t) fj)ths)Acp dsfotfs M(s)ds, t>0,

because u(t) = p(t) for ¢ < 0.
The next step is to study the well-posed solvability of Eq. (2.2) with the initial conditions

u(+0) = p(—0) = o,  uM(+0) = M (-0) = ¢1. (2.4)
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It is important that Eq. (2.2) is a linear equation containing the Volterra operators. Such objects were
discussed in [1, Chap. I].

To pass from Problem (2.2)-(2.4) to a problem with homogeneous (zero) initial conditions, we
introduce a new unknown function w(t) as follows:

u(t) = cos(At)po + A7 sin(At)p1 + w(t).

Then, taking into account that Eq. (2.2) is linear, we obtain the following problem for the function
w(t):

(1) + A2(0) + 3 [B (08, (A) (1) + Dy(0)5,, (V) (0)]

J=1

where fa(t) = f1(t) — h(t),

= = > [Bi(t)Sy,(Ap) (1) + D;(#) Sy, (0 (1)] —/K(t—S)Ap(S) d8+/Q(t—8)p(1)(8) ds, (2.6)
0 0

j=1
and
p(t) = A~ sin(At)p; 4 cos(At) o,
with the initial conditions
w(+0) =0, wM(40)=0. (2.7)
We seek a solution of problem (2.5)—(2.7) in the form w(t) = exp(yt)v(t) with new unknown func-
tion v(¢). Then we obtain the following problem for the function v(¢):

@ (t) + 290V (1) + (A2 +421)o(t) + / exp(—y(t — 8)) K (t — s)Av(s) ds
0

4 / exp(—(t — $)Q(t — 5) (v (s) + 7v(s)) ds
0

+ Y exp(=(t = ;1) | By (S, (Av)(t) + Dy (8)Sy, (v +70)(1)

j=1
= eXp<_7t)f2(t)a t>0, (2'8)

v(+0) =0, v(+0) = 0. (2.9)
The solution of problem (2.8),(2.9) is sought in the form v = Lz with a new unknown function z.
Substituting that function into (2.8), we obtain the integrodifferential equation

z(t) + /exp(—v(t —$))K(t — s)A(Lz)(s)ds + /exp(—’y(t —35))Q(t — s)(Mz)(s)ds
0 0

+ Y exp(=y(t = g;(1))) [B(£)Sg, (AL2)(t) + D;(1)Sy, (M2)(t)] = exp(—vt) fo(t), t € Ry, (2.10)
which is solvable if and only if problem (2.8),(2.9) is solvable.
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Our aim is to prove that Eq. (2.10) is well posed in the space Ly(R4, Hi). To do so, we prove
that the norms of integral operators on the left-hand side of (2.10) can be made small by selecting
sufficiently large v > 0.

To prove that result, we need the following assertion.

Proposition 2.1. Let g(t) be a continuously differentiable real-valued function such that g(t) <t and
gV (t) >0 fort € Ry. Let B(t) be a strongly continuous function with values in the ring of bounded
operators in H such that

1
sp (B0 ) — by < +o0. (2.11)
telg=1(0),+00] ( gW(t)

Then the operator (Sv)(t) = B(t)(Sqv)(t), where Sy is the operator of internal superposition

(S,0)(t) = v(g(t)) fort such that g(t) > 0,
g? 10 fort such that g(t) < 0,
is bounded in the space La(R4, H) and its norm satisfies the estimate
I1SII < /bo. (2.12)

Proof. The proof of Proposition 2.1 is given in [18]. Actually, it is reduced to a change of variables.
In [1, Chap. I, pp. 20-28|, similar assertions are presented. Now we pass from Eq. (2.10) to the
following equation with respect to the new unknown function y(t) = Az(¢):

)+ /exp (t —s)AK(t — s) A7 (Ly)(s) ds + /exp(—fy(t — 5))AQ(t — s) A~ (My)(s) ds
0

0
Y exp(A(t - a5(0)) [B15, (AL + By, (Mi)(0)] = exp(-10AR(D), 1Ry, (213

This equation is studied in the space Lo(R4, H).
By virtue of Proposition 2.1, Lemma 2.1, and conditions (1.4) and (1.5), we obtain the estimate

=1 LQ(R-HH)
1B;(®)] ID;@l | 1
< ) sup exp(—y(t — g;(1))) | sup —g3————+ sup Iyl , (214)
;tER+ ! teRy (gj(.l)(t))l/Q teR ( ](1)( Nw2| LR+ H)
v>6>0.
For the second and third terms on the left-hand side of (2.13), we obtain the inequalities
t
. _ . 1
/eXp(—v(t — ) K(t = 5)(Ly)(s) ds < sup [|K(y + i)l oolylleaee 7> 24, (219)
ve
0 L2(R+7H)
and
/ 1
/exp( V(= 9)Q(t = 5)(My)(s) ds < sup 1Q(y + )]l - Ml m, 7> 2. (216)
ve
0 LQ(R+7H)

Taking into account the relations

sup ||K('y +iv)|| = 0, sup ||Q(7 +iav)|| -0, ~v— 400 (2.17)
rveR veR
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(they are well-known properties of the Laplace transforms of the functions K (t) and Q(t)), as well as
inequalities (2.1) and (2.14), we obtain the unique solvability of Eq. (2.13) in the space La(Ry, H) for
sufficiently large v > 0 because the norms of all operators (apart from the first one) at the left-hand
side of Eq. (2.13) can be made strictly less than one. It follows from the conditions imposed on the
right-hand side f(t) of Eq. (1.1), from the representations given by (2.3) and (2.6), and conditions
imposed on the initial function ¢ that the vector-valued function exp(—~t)Af(t) belongs to Lo(R, H)
for v > ~*, where v* > max (79, 71)-
Using (1.4)—(1.6), one can directly check that

VA2l oty < const (1AS |z i+ 1€lwz. @i ) (2.18)

where the constant depends neither on f nor on .
Indeed, by virtue of the representation

0 0
M An(t) =~ [ Rt - e N Ape)ds — [ Qe -9 A0 () ds,

by conditions (1.6), and by the Hausdorff-Young inequality, we obtain the estimate

92|z, (R 11,) < const HQOHWQQN(]R_,A?)? v > i, (2.19)

where the constant does not depend on ¢.
On the other hand, using (1.5) and a change of variables, one can easily check that

a1l , v, 2y) < const H‘P”WQQN(R_,AQV v >0, (2.20)

where the constant does not depend on ¢. Hence, by virtue of (2.19), (2.20), and (2.3), we see that
f1 belongs to Lo (R4, Hy) and

1Ly i) < cOnSt(([fllLy, ey + I0llwz @ a2))s v > max(é, ), (2.21)

where the constant depends neither on f nor on ¢.
Using (2.6), the trace theorem, and (1.5), (1.6), one can directly check that the function h(t) belongs
to Lo~ (R4, Hy) and satisfies the inequality

1Al Ly . (&, i) < const ||‘P”W22W(R,,A2)a v > max(d, 1), (2.22)

where the constant does not depend on ¢. Combining that with estimates given by (2.21) and (2.22),
we obtain the desired estimate (2.18). On the other hand, by virtue of inequality (2.18) and the
well-posed solvability of Eq. (2.13), we obtain the estimate

90 s sy < A(NAF Lo e i) + Iellwz, @ a2)) (2.23)

where the constant ¢; depends neither on f nor on ¢.
Finally, by virtue of the representations v = Lz and y = Az and Lemma 2.1, we see that (under
the above assumptions) the function v belongs to W2(R, A?) and the estimate

lllwz_ (®,,42) < 2([Af |y g i) + H()OHWQQW(R_,A?)) (2.24)
is valid, where the constant co depends neither on f nor on . The latter estimate immediately
implies (1.7), which is the desired estimate. O

We pass to the proof of Proposition 2.1.

Proof of proposition 2.1. The spectrum of the operator A lies in the semi-axis R;. Applying the well-
known resolvent estimate in terms of the distances to the spectra of the normal operators +iA, we
obtain

IAMNZT 4+ A2) 7| < N[+ i A) Y[ —iA) 7Y < (Re )L, ReA > 0. (2.25)
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Then, by virtue of the previous inequality, we have
AT + AH 7Y < || 43 A) 7Y 4+ N[V + A 7Y < 2(ReX)™, ReX > 0. (2.26)
Using inequalities (2.25) and (2.26), we arrive at the inequality (valid for Re A > vy > 0)
i exp(—Ah;)[BjA + AD;](A\*T + A?)|| < const iexp(VOhj)(HBjH +ID;[NReN) L] . (2.27)
j=1 J=1
Using the relations
K] =0, Q)| =0 (ReA = +00),
which are well-known properties of the Laplace transform, and estimates (2.25) and (2.26), we obtain
1K (NA+AQN)]NT + A% 7Y = 0, Rel — +oc. (2.28)
Taking sufficiently large sy > 0 and using (2.27) and (2.28), we obtain the estimate
ILO)NT+ A% =T <1, Rel> " (2.29)
Now, using (2.29), the representation
L7YN) = (N 4+ A 7HT + (L) — (V2T + A?))(N2T + A~ H L

and the estimates in (2.25) and (2.26), we obtain (1.10), which is the desired inequality. The propo-
sition is proved. 0

Theorem 1.2 is proved under the following additional assumption: ¢(t) =0,¢ <0, and B; = D; =0,
j=1,2,...,N. Asit was shown in the proof of Theorem 1.1, this leads to no loss of generality. Indeed,
Problem (1.11),(1.12) is reduced to problem (2.30) and (2.31) (see below) exactly as in the proof of
Theorem 1.1 (see also [23]).

Proof. We introduce the function v(¢) = exp(—~vt)u(t). Then Eq. (1.11) for the function u is equivalent

to the following equation for the function v:

t
@ (t) + 290V (1) + (A% +42T)o(t) + / e VK (t — 5)A%0(s) ds
0

¢ t
- / eV E=90Q(t — s)vMW(s) ds + 7/6_7“_5)@(75 —s)u(s)ds = e ' f(t), t>0, (2.30)
/ 0

with the initial condition
v(+0) =0, vB(+0) = 0. (2.31)
The solution of problem (2.30), (2.31) is sought in the form

v(t) = Lz(t) = /exp(—’y(t —5))A L sin(A(t — s))z(s) ds, (2.32)
0

where z is a new unknown function.
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Substituting v = Lz into Eq. (2.30), we obtain the following integral equation for the function z:

t s
)+ [ K= )2 [0 sinA(s - 0))2(6)db | ds
0 t 0 .
b [eQu—s) | [t D cos(als - 0)z0)a0 | ds = (0, >0, (233)
0 0

We introduce the function y(¢) = Az(t). Then the function y satisfies the following integral equation:

s

y(t) + / e MK (t—s)A / e 7679 Asin(A(s — 0))y(0)do | ds
0

0
t s

+ / e 1E=9Q(t — 5) / e 7670 cos(A(s — 0))y(0)dl | ds = e PF(t), t>0, (2.34)
0 0

where F(t) = Af(t).

By virtue of the conditions imposed on the kernel K, its Laplace transform

+00
K(\) = /exp(—)\t)K(t) dt, = p+iv,
0

satisfies the estimate

A const
K ) <

> 0. (2.35)

On the other hand, the Laplace transform Q of the function () satisfies the inequality

A~

|Q((p + ) +iv)| < const, — p>0. (2.36)
Applying the Laplace transform to Eq. (2.34), we obtain
(T + RO+ 1) A2+ 7T+ 427+ (A 1)Q+ 1)+ 22T + 42) D50 = F\ +7), (2.37)

where A = 4 iv, Re A > 0, and () is the Laplace transform of the function y.
We set 7 = p + 7 and estimate the norm of the operator K (7 + iv) A%((7 + iv)?I + A%)~1. To do
so, we consider the function

a(|(7 +i)? +a?) T+ )T,
where a € [ag,+00), ag = | inf (Au,u) > 0, and v € R. Let d € (0,1]. We estimate the function

lull =1

fla,v,7) = (|(T +iv)? + a?|)*(7? + v?) from below:

fla,v,7) = ((77 + a® = v*)* + 47%0%)(7* + V)

>min| min f(a,v,7), min  f(a,v,7)| > min[(7? + (1 — d)a?®)*7?, (7* + da®)*4da’72).
v2€[0,da?] v2€lda?,+o00]
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Using the latter estimate, inequality (2.35), and the theorem on spectral decomposition for the self-
adjoint positive operator A, we obtain the following chain of inequalities:

a? a?
(12 4+ (1 = d)a®)7’ 2a7(d(12 + da?))¥/2 | —

| K (7 + iv) A% ((1 4 iv)] + A%)71|| < const max [

1 1

(G+a-a)r o (4 (;‘ZM))W

1
Assigning d = 3’ we arrive at the following estimate:

< const max

1 1
< £ —_, .
< const max [(1 — ) 2Td:|

. 3 t
1K (7 4+ iv) A2((r + iv)2T + A%) Y| < const -~ < 0L
2T wEy

(2.38)

Now we estimate the expression
1Q(r +iv)(r + iv)((r + )T + A%) 7"

To do so, consider the function

(r+iv) |?

(T +iv)? + a?
where a € [ag,+00), T = pu+ 7y, p > 0, and v € R. It is easy to see that the following chain of
inequalities holds:

g(r,v,a) =

9

o(rv,a) = 2+ 12 (12 +1?)
T (a2 — 12)2 + 74 + 24272 4+ 27202 — 74 + 24202 + 20272
1 [72+02 1 1
—_ | —— < == —. (2.39
- 72 [72+2u2] — 72 (uH4)? ( )
By virtue of (2.36) and (2.39), we obtain that
A t
1O(r + iv) (1 + iv)((r + iv)2] + A2)7Y| < Cois : (2.40)
m=y

Taking sufficiently large ~yp, we conclude from (2.38) and (2.40) that, for v > 7o, the operator-valued
function

(IT+EKXA4+)A2(A+ T+ AT+ A +9)QN+ ) (A +7)2 + 4%)~H! (2.41)

is defined and uniformly bounded in the right-hand semi-plane (Re A > 0). Hence, the vector-valued
function y belongs to the Hardy space Ha(Re A > 0) in the right-hand semi-plane. By virtue of the
Hardy theorem, this implies the unique solvability of Eq. (2.34), which is an integral equation in the
space Lo(R4, H). This yields the unique solvability of Eq. (2.33) in the space La(Ry, Hy). By virtue
of Lemma 2.1, we obtain the unique solvability of problem (2.30),(2.31) in the space W3 (R, A?).
Hence, the original problem is uniquely solvable in the space W2277(R+, A2). O

Note that the following estimate of the operator-valued function El_l()\) established during the
proof of Theorem 1.2 has an independent interest as well.

Lemma 2.2. Let K(t) € W} (Ry) and Q(t) € L1(Ry). Then there exists »* such that the operator-
valued function L7(\), where

L1(A) = NI+ A2+ K(\) A2+ 2Q(N),
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satisfies the following estimate in the semi-plane Re A > ~v*:

const

Re)’

The proof of Lemma 2.2 is based on the following representation for the operator-valued func-
tion £L71(\):

L) = (VT4 AT T 4+ KA2N)ON2T + AH 7L+ QOONNT + A%~ L (2.43)

It is known from the proof of Theorem 1.2 that the second factor on the right-hand side of (2.43) is
a uniformly bounded operator-valued function for Re A > sz,. Therefore, the desired estimate (2.42)
follows from inequalities (2.25) and (2.26) established in the proof of Proposition 2.1.

The proof of Theorem 1.3 is based on the following lemma, which is formulated here (as well as
the proof of Theorem 1.3) under the assumption that the eigenvalues a,, of the operator A satisfy the
strict inequalities 0 < a1 < a9 < -+ < ap < ....

IALT )]+ LT <

(2.42)

Lemma 2.3. The zeros of the function

N
Lan(A) =X +d? (1 -3 X j’“a ) (2.44)
k=1 k

o0
form a real sequence {Mn,k} . such that
n=
— (1
—ag < pn g < Yk < —Ak—1, Pk = Yk + O <ag> , k=1,2,...,N, ap,— +o0, (2.45)
n
where y, are the real zeros of the function
N
Ck
P =1-3 (2.46)
k=1 k

and a pair of complex-conjugate roots y, = ,uT; such that

N

1 1

Hi =3 E ¢, ia, +0 <a,2> ,  ap — +oo. (2.47)
k=1 n

The proof of the lemma is based on the Vieta theorem and is technical. It is given in the diploma
thesis of Kabirova. In [9], close results are contained.
We pass to the proof of Theorem 1.3.

o0

Proof. Tt follows from the convergence of the series ) ¢ that, for any e, there exists N such that
k=1
oo
Yoa< (2.48)
10
k=N+1

Consider the circle of radius € centered at the point p:
De(p) = {X: A= pu,} +ee?,0 < ¢ < 2}

(the reasoning for the root yu,, is entirely the same).
We present the function f,(\) as follows:

fn(A) =l n(A) + mp N (N), (2.49)
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where

N o ¢
Ly n(\) = A2+ 2(1— k )

N (2.50)
mp N (A) = —a? > k .
k=N41 A+ ag

Consider sufficiently small positive € such that the disk B.(u,}) = {\: [A—u;}| < €} contains no other
zeros of the function [, y(X). We estimate the function I, ;¥ (\) on the circle D.(y;}). To do so, we
note that if A € D.(p;}), then

N 2 1/2
1 . 2
A — tnk| = —§ch—un,k+acosgo + (ap + esinp) > a, — ¢,
k=1
A=t =¢, A — p, | > 2a, — €.

By virtue of the above inequalities, we obtain the following estimate from below:

O = H01) <+« O = o)A = 1) = 1) Ly iy > (@0 — )V e, (2.51)

Using the inequalities

N
1 . .
|)\+ak|A€DE(“¢) < ak — 5 g ¢j +esing| + |a, + esing|

j=1
L
SO&N—F2216j+€+(&n+5)§an+0+2€,
]:
1 . .
where C = 3 Zl ¢j + ap, we obtain the estimate
‘7:
A+ a1)... A+ an)| < (an+C+20)Y, X e D()). (2.52)
Therefore,
A—pn1)---(A— A — YN — n — )Nt
‘ln,N(/\)’: ( lu ,1) ( Mn,N)( :un)( Mn) > (a E) €

A +ai)...(\+ay) ~ (an +2e+C)N

N@e+C) NN+ (o5 (12) ), an— too. (2.53)

n n

= aan(l —

an

This implies that the following inequality holds for sufficiently large a,,:
€
N (W] 2 Zan,  an = +oc. (2.54)

We estimate |my, n(A)| from above for sufficiently large a,,:

[ (V)] gai( Yy ) <a2 Y < %an, X € D.(u). (2.55)

k=N+1 A+ ol keNg1 O T €

By virtue of inequalities (2.54) and (2.55), we obtain from the Rouché theorem that the function f,(\)
has one simple zero A in the disk D.(p;") if a,, is sufficiently large. O
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We conclude this section by considering another form of the Gurtin—Pipkin equation.
Suppose that Q(t) =0 and B; = D; =0, j = 1,2,... N, and integrate Eq. (1.11) over (0,t) with
respect to the time variable:

t
uM (¢ /A2 d9+/ /K (s — 0)A%u(6) do ds:/f (0)d 0 + uV) (40), (2.56)
0

u(+0) = po. (2.57)
Changing the order of integration in the third term of the left-hand side of Eq. (2.56), we arrive at

the equation
¢

uM (t) + [ A%u(0) dO + f Q(t — s)A%u(0) db = f1(t),
0 0
u(+0) = ¢o,

- / K(E)de,  fult) = / £6)d6 + .
0 0

The latter problem can be written as follows:

where

+ / G(t — 0)A%u(h) do = f1(t), (2.58)

u(+0) = ¥o0, (2.59)
where
G(t) =1+ Q(1).
Note that the Gurtin-Pipkin equation was studied in the above form in [7, 17].
The Darcy law as well as other problems arising by averaging in strongly heterogeneous media can
be represented in the form (2.58), (2.59) as well (see [9] and references therein for more detail).

3. Remarks and Comments

The distinctive property of our results is that we consider the case of variable coefficients B;(t) A
and D;(t) and variable delays g;(t) (see Theorem 1.1), while the papers [2-4, 10, 11, 14, 15, 24, 25]
deal with the case of constant delays and constant operator coefficients at delay terms.

The method of the proof of Theorem 1.1 substantially differs from the methods of proving the
solvability used in [2-5, 10, 11, 14, 15, 17, 24, 25]. On the other hand, it is quite similar to the method
of proving the well-posed solvability used in [21, 22]. Theorem 1.1 generalizes the corresponding result
from [22]. Let us explain this in more detail. Similarly to [22], we reduce the original problem (1.1),(1.2)
to Eq. (2.10) in the space Lo(R4, H), which is a functional-integral equation equivalent (in the sense
of solvability) to the original problem. The distinctive property of the specified functional-integral
equation (cf. [22, Eq. (29)]) is the boundedness of its operator coefficients. This substantially facilitates
its study, especially, obtaining estimates for the norms of the operators in the space Lo(Ry, H).

Note that the method of the proof of Theorem 1.2 on the well-posed solvability of problem (1.11),
(1.12) substantially differs from the approach of [17] as well. To prove Theorem 1.2, we reduce
problem (1.11), (1.12) to an equivalent (in the sense of solvability) convolution-type functional-integral
equation in the space Lo(R4, H) (in [21, 23], the proof of Theorem 1.2 is given under additional
assumptions). Then, to prove the unique solvability of the latter equation, we estimate the Laplace
images of the kernels of integral operators in Hardy spaces.

In [17], the Gurtin—Pipkin equation represented as (2.58), (2.59) is studied. Using the operator-
valued functions sin(At) and cos(At), the author reduces the original problem to an integral equation
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(with respect to the unknown function u) equivalent (in the sense of solvability) to the original problem.
The distinction from the present paper is that the solvability is investigated in function spaces defined
on a finite interval (0,T") of the time variable ¢, while, in the present paper,the solvability is investigated
in the weighted Sobolev spaces W22 LRy, A?) on the semi-axis R .

When proving Theorem 1.2, we substantially use the Hilbert structure of the spaces WQQW(RJF, A?)
and Ly (R4, H) and the Hardy theorem, while the case of Banach function spaces on a finite interval
(0,T) of the time variable ¢ is considered in [17].

As we have noted above, the results of the present paper generalize the results of papers [21, 23]
and naturally continue papers [18-20] devoted to functional differential equations with unbounded
coefficients such that the principal part of the equation is an abstract parabolic equation.

Finally, note that problems of propagation of oscillations in viscoelastic media with memory natu-
rally lead to integrodifferential equations of the kind (1.11) with B; = D; =0, j =1,2,..., N (see [8,
16] and references therein).

Problems arising in the of propagation of theory oscillations in strongly heterogeneous media (the
Darcy law) also lead to equations of the kind (1.11). Problems of that kind are described in [9] (see
references therein as well).
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