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We obtain full information about the existence and non-existence of travelling wave
solutions for a general class of diffusive Kermack–McKendrick SIR models with non-
local and delayed disease transmission. We show that this information is determined by
the basic reproduction number of the corresponding ordinary differential model, and the
minimal wave speed is explicitly determined by the delay (such as the latent period) and
non-locality in disease transmission, and the spatial movement pattern of the infected
individuals. The difficulty is the lack of order-preserving property of the general system,
and we obtain the threshold dynamics for spatial spread of the disease by constructing
an invariant cone and applying Schauder’s fixed point theorem.
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1. Introduction

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W. O. Kermack and
A. G. McKendrick (1927, 1932, 1933) (Anderson 1991; Brauer 2008), where the
SIR model

d
dt

S(t) = −βS(t)I (t),

d
dt

I (t) = βS(t)I (t) − γ I (t)

and
d
dt

R(t) = γ I (t)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.1)

was formulated and analysed, where S(t), I (t) and R(t) denote the sizes of the
susceptible, infected and removed individuals, respectively. The constant β is the
transmission coefficient, and γ is the recovery rate. Let S0 = S(0) be the density
of the population at the beginning of the epidemic with everyone susceptible,
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then it is well known that the so-called basic reproduction number R0 = βS0/γ
completely determines the transmission dynamics and epidemic potential: if R0 >
1, the I (t) first increases to its maximum and then decreases to zero and hence
an epidemic occurs; if R0 < 1, then I (t) decreases to zero and epidemic does not
happen.

Such a model and the aforementioned threshold result have been playing a
pivotal role in subsequent developments in the mathematical modelling-assisted
study of infectious disease transmission dynamics. This model is based on the
assumption of a high degree of homogeneity in the population, including
the mobility. In reality, however, individuals can be exposed to the infection
from contact with infectives in different spatial locations. This consideration
led to the Kendall non-local model in 1957 that involves space-dependent
integro-differential equations

∂

∂t
S(x , t) = −βS(x , t)

∫+∞

−∞
I (y, t)K (x − y) dy,

∂

∂t
I (x , t) = βS(x , t)

∫+∞

−∞
I (y, t)K (x − y) dy − γ I (x , t)

and
∂

∂t
R(x , t) = γ I (x , t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.2)

where the kernel K (x − y) ≥ 0 weights the contributions of the infected
individuals at location y to the infection of susceptible individuals at location x ,
with

∫+∞
−∞ K (y) dy = 1. Disease propagation in space is relevant to the so-called

travelling waves, solutions of the form (S(x + ct), I (x + ct), R(x + ct)) for which
c is called the wave speed. In the case where R0 > 1, Kendall (1965) proved that
there exists c∗ > 0 such that equation (1.2) admits non-trivial travelling wave
solutions for all speeds c ≥ c∗ and no non-trivial travelling wave solution with
speeds less than c∗. Aronson (1977) later showed that equation (1.2) can be
reduced to a scalar integro-differential equation, and this reduction enabled him
to formally link the wave speed to the asymptotic speed of propagation. Similar
reductions can be done for more general situations, for example, the nonlinear
(double) integral equation model

u(x , t) =
∫ t

0

∫
Ω

g(u(y, t − θ))k(θ , x , y) dy dθ + f (x , t) (1.3)

was used to include the incubation period in Diekmann (1978, 1979) and Thieme
(1977a,b, 1979). When Ω = R

N , the existence of travelling wave solutions and
the asymptotic speed of propagation were considered in Diekmann (1979) and
Thieme (1979) for equation (1.3), see also Thieme and Zhao (2003), Ruan
(2007) and references therein for other subsequent works in the subject area.
An important feature of the reduced model is a certain order-preserving property
that permits the applications of the powerful monotone dynamical systems and
comparison arguments.
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Random movement of individuals in space was further incorporated into the
Kendall model by De Mottoni et al. (1979) by adding some diffusion terms as
follows:

∂

∂t
S(x , t) = �S(x , t) + μ − σS(x , t) − S(x , t)

∫
Ω

I (y, t)K (x , y) dy

and
∂

∂t
I (x , t) = d�I (x , t) + S(x , t)

∫
Ω

I (y, t)K (x , y) dy − γ I (x , t),

⎫⎪⎪⎬⎪⎪⎭ (1.4)

subject to the Neumannn boundary condition. When the space is unbounded,
μ = σ = 0 and K (·) is a constant (β) multiple of the delta function, system (1.4)
reduces to the following reaction–diffusion model:

∂

∂t
S(x , t) = �S(x , t) − βS(x , t)I (x , t)

and
∂

∂t
I (x , t) = d�I (x , t) + βS(x , t)I (x , t) − γ I (x , t).

⎫⎪⎪⎬⎪⎪⎭ (1.5)

This equation was considered by Hosono and Ilyas (1994), where it is proved
that if S(0, x) = S0 is a constant and if γ /βS0 < 1, then for each c ≥ c∗ =
2
√

βS0d(1 − γ /βS0) there exists a positive constant ε < S0 such that system
(1.5) has a travelling wave solution (S(x + ct), I (x + ct)) satisfying S(+∞) =
S0, S(−∞) = ε, I (±∞) = 0.

Extension of the above result for system (1.4) with a general kernel K (·), even if
μ = σ = 0, is difficult due to the fundamental issue that the system of equations
governing the wave solutions is no longer an ordinary differential system: it is
a system of functional differential equations with both advanced and delayed
arguments and it is a system without any obvious order-preserving property. In
addition, if we wish to consider, as pointed out in Ruan (2007), the effect of
spatial heterogeneity (geographical movement), non-local interaction and time
delay such as latent period on the spread of the disease, we need to examine an
even more general model of the following form:

∂

∂t
S(x , t) = d1�S(x , t) − βS(x , t)

∫ t

−∞

∫+∞

−∞
I (y, s)K (x − y, t − s) dy ds,

∂

∂t
I (x , t) = d2�I (x , t)

+ βS(x , t)
∫ t

−∞

∫+∞

−∞
I (y, s)K (x − y, t − s) dy ds − γ I (x , t)

and
∂

∂t
R(x , t) = d3�R(x , t) + γ I (x , t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.6)

where d1, d2 and d3 are the diffusion rates for the susceptible, infective and
removed individuals, respectively. The kernel K (x − y, t − s) ≥ 0 describes the
interaction between the infective and the susceptible individuals at location x
Proc. R. Soc. A
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and the present t which occurred at location y and at earlier instance s, which
throughout this paper is assumed to satisfy the following conditions:

(K1) K is non-negative and integrable, and satisfies
∫∞

0

∫∞

−∞
K (x , t) dx dt = 1 and K (x , t) = K (−x , t), (x , t) ∈ R × [0, ∞);

(K2) For every c ≥ 0, there exists λc ∈ (0, +∞] such that
∫∞

0

∫∞
−∞ K (x , t) e−λ(x+ct)

dx dt < +∞ for any λ ∈ [0, λc), and
∫∞

0

∫∞
−∞ K (x , t) e−λ(x+ct) dx dt → +∞ as

λ → λc − 0.

It is not difficult to verify that λc is non-decreasing on c ≥ 0.
We focus here on the existence and non-existence of travelling wave

solutions of system (1.6). We shall prove that if R0 = βS0/γ > 1, then
there exists c∗ > 0 such that for every c > c∗, system (1.6) admits a non-
trivial travelling wave solution with wave speed c, and if R0 = βS0/γ <
1, then for any c ≥ 0, system (1.6) admits no non-trivial travelling wave
solutions with wave speed c. Therefore, the existence and non-existence of
travelling wave solutions is determined completely by the basic reproduction
number and the condition R0 = βS0/γ = 1 coincides with the threshold for
the existence of wavefronts. Furthermore, when βS0/γ > 1 we show that
equation (1.6) admits no non-trivial travelling wave solutions with wave speed
c ∈ [0, c∗). Therefore, we confirm that c∗ > 0 is indeed the minimal wave speed.
We do anticipate that c∗ is the asymptotic speed of propagation for equation (1.6),
following the work described in Murray (1989), though verification of this
requires some additional work. Our approach for the existence of travelling wave
solutions is to construct a suitable invariant set and then apply Schauder’s fixed
point theorem, see also Li et al. (2006) and Ma (2001). Our construction of
the invariant set is motivated by the work of Ducrot and Magal (2009). For
c ∈ [0, c∗), we conclude the non-existence of non-trivial travelling wave solutions
by an argument applying the Laplace transform to the I (x + ct) component, this
argument was first introduced by Carr and Chmaj (2004) and further used by
Wang et al. (2008, 2009).

We should point out that when K (x , t) = δ(t − τ)1/(
√

4πd2τ)e(−x2)/(4d2τ),
the existence and non-existence of non-trivial travelling wave solutions of
equation (1.6) were proved by Ducrot and Magal (2009) (see also Ducrot et al.
2009). These studies considered the following infection-age structured model with
diffusion:

∂

∂t
S(x , t) = d1�xS − S(x , t)

∫ a+

0
β(a)i(x , a, t) da,

∂

∂t
i(x , a, t) + ∂

∂a
i(x , a, t) = d2�x i − γ (a)i(x , a, t), a ∈ (0, a+)

i(x , 0, t) = S(x , t)
∫ a+

0
β(a)i(x , a, t) da, x ∈ R, t ≥ 0

and S(x , 0) = S0(x), i(x , a, 0) = i0(x , a),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.7)
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with a being the time since the infection and a+ ∈ (0, +∞] the maximum
attainable age of infection. When the incubation is exactly equal to τ > 0, then
the function β(a) takes the form β(a) = β̂1[τ ,+∞)(a), a ≥ 0. So, if we further
assume that a+ = ∞ and γ (a) ≡ γ , then equation (1.7) reduces to the two former
equations of (1.6) with β = β̂ e−γ τ and K (x , t) = δ(t − τ)1/(

√
4πd2τ)e(−x2)/(4d2τ).

However, the aforementioned papers did not prove the existence of the minimal
wave speed. We also refer to Faria et al. (2006), Gourley et al. (2004), Li & Zou
(in press), Ou & Wu (2007), Wang et al. (2006, 2008) and references therein
for some relevant progress on the existence of travelling wave solutions of
reaction–diffusion equations with non-local interaction and time delay.

Our analytic study about the minimal speed permits discussion of the effect
on the minimal wave speed c∗ of (i) the diffusion rate d2 of infective individuals,
(ii) non-local interaction between the infective and the susceptible individuals
and (iii) the latent period of disease. We confirm that the latent period of disease
can slow down the speed of the disease, the non-local interaction between the
infective and the susceptible individuals and the spatial movement of infective
individuals can increase the speed of the spread of the disease.

2. Main results

In this section, we will state precisely and prove the main results of this paper. In
the sequel, we always assume that the initial disease free equilibrium is (S0, 0, 0).

Because the first equation and the second equation of system (1.6) form a
closed system, we consider only the following system:

∂

∂t
S(x , t) = d1�S(x , t) − βS(x , t)

∫ t

−∞

∫+∞

−∞
I (y, s)K (x − y, t − s) dy ds

and
∂

∂t
I (x , t) = d2�I (x , t)

+ βS(x , t)
∫ t

−∞

∫+∞

−∞
I (y, s)K (x − y, t − s) dy ds − γ I (x , t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

We look for the non-trivial travelling wave solutions (Sc(x + ct), Ic(x + ct)) of
(2.1) satisfying the following conditions:

Sc(−∞) = S0, Sc(+∞) = S∞
c , I (±∞) = 0 (2.2)

and
S(·) is decreasing and I (·) ≥ 0, S0 > S∞

c ≥ 0.

Let ξ = x + ct. Then the system describing travelling wave solutions is as follows:

cS ′
c = d1S ′′

c − βSc(ξ)

∫∞

0

∫+∞

−∞
Ic(ξ − y − cs)K (y, s) dy ds

and cI ′
c = d2I ′′

c + βSc(ξ)

∫∞

0

∫+∞

−∞
Ic(ξ − y − cs)K (y, s) dy ds − γ Ic(ξ).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)
Proc. R. Soc. A
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Linearizing the second equation of (2.3) at the initial disease free point (S0, 0),
we have

cJ ′ = d2J ′′ + βS0

∫∞

0

∫+∞

−∞
J (ξ − y − cs)K (y, s) dy ds − γ J (ξ). (2.4)

Let J (ξ) = eλξ , then we get a characteristic equation

Θ(λ, c) := d2λ
2 − cλ + βS0

∫∞

0

∫+∞

−∞
e−λy−cλsK (y, s) dy ds − γ . (2.5)

For the sake of convenience, we set

G(λ, c) :=
∫∞

0

∫+∞

−∞
e−λy−cλsK (y, s) dy ds.

It is easy to prove the following lemma, see also Li et al. (2007, lemma 3.27) and
Wang et al. (2006, lemma 2.2).

Lemma 2.1. Assume that S0 > γ/β. Then there exists c∗ > 0 and λ∗ > 0 such
that ∂/∂λΘ(λ, c)|(λ∗,c∗) = 0 and Θ(λ∗, c∗) = 0. Furthermore,

(i) if 0 < c < c∗, then Θ(λ, c) > 0 for all λ ∈ [0, λc);
(ii) if c > c∗, then the equation Θ(λ, c) = 0 has two positive real roots λ1(c) and

λ2(c) with 0 < λ1(c) < λ∗ < λ2(c) < λc such that λ′
1(c) < 0, λ′

2(c) > 0 and

Θ(λ, c)

{
> 0 for λ ∈ [0, λ1(c)) ∪ (λ2(c), λc)

< 0 for λ ∈ (λ1(c)λ2(c)).

In the following, we always assume that S0 > γ/β. In addition, we fix c > c∗
and always denote λi(c) by λi , i = 1, 2.

Lemma 2.2. The function I +(ξ) = eλ1ξ satisfies the following linear equation:

cI ′ = d2I ′′ + βS0

∫∞

0

∫+∞

−∞
I (ξ − y − cs)K (y, s) dy ds − γ I (ξ). (2.6)

Lemma 2.3. For α > 0 sufficiently small and σ > S0 large enough, the function
S−(ξ) := max{S0 − σeαξ , 0} satisfies

cS ′ ≤ d1S ′′ − βS(ξ) eλ1ξ

∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds (2.7)

for any ξ �= 1/α ln S0/σ .
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Proof. When ξ > (1/α) ln(S0/σ), we have S−(ξ) = 0, which implies that
equation (2.7) holds.

When ξ < (1/α) ln(S0/σ), namely S−(ξ) = S0 − σ eαξ > 0, we need to prove that

−cασ + d1α
2σ + β(S0 − σ eαξ ) e(λ1−α)ξ

∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds ≤ 0.

(2.8)

Obviously, it is sufficient to ensure

−cασ + d1α
2σ + βS0 e((λ1−α)/α) ln(S0/σ)

∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds ≤ 0.

That is,

−cασ + d1α
2σ + βS0

(
S0

σ

)(λ1−α)/α ∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds ≤ 0. (2.9)

Keeping ασ = 1 and letting σ → ∞, for some σ large enough we have that
equation (2.9) holds. This completes the proof. �

Lemma 2.4. Let ε > 0 satisfy ε < α/2 and ε < λ2 − λ1. Then for M > 0
sufficiently large, the function I −(ξ) := eλ1ξ (1 − M eεξ ) satisfies

cI ≤ d2I ′′ + βS−(ξ)

∫∞

0

∫+∞

−∞
I (ξ − y − cs)K (y, s) dy ds − γ I (ξ).

Proof. If S0 − σeαξ ≤ 0, that is, ξ ≥ (1/α) ln(S0/σ), it is needed to prove that

cI −′ ≤ d2I −′′ − γ I −(ξ). (2.10)

Namely

cλ1 eλ1ξ − cM (λ1 + ε) e(λ1+ε)ξ

≤ d2λ
2
1 eλ1ξ − d2M (λ1 + ε)2 e(λ1+ε)ξ − γ eλ1ξ + Mγ e(λ1+ε)ξ .

Consequently, we need to verify that

βS0

∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds ≤ M [c(λ1 + ε) − d2(λ1 + ε)2 + γ ] eεξ .

Since ξ ≥ (1/α) ln(S0/σ), it is sufficient to prove

βS0

∫∞

0

∫+∞

−∞
e−λ1y−cλ1sK (y, s) dy ds ≤ M [c(λ1 + ε) − d2(λ1 + ε)2 + γ ] e(ε/α) ln(S0/σ).

Then, for sufficiently large M > 0 with

M ≥ βS0
∫∞

0

∫+∞
−∞ e−λ1y−cλ1sK (y, s) dy ds

M [c(λ1 + ε) − d2(λ1 + ε)2 + γ ] e(ε/α) ln(S0/σ)
,

we have that equation (2.10) holds.
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If S0 − σ eαξ > 0, that is, ξ < (1/α) ln(S0/σ), it is sufficient to prove that

cλ1 eλ1ξ − cM (λ1 + ε) e(λ1+ε)ξ

≤ d2λ
2
1 eλ1ξ − d2M (λ1 + ε)2 e(λ1+ε)ξ

+ β(S0 − σ eαξ )(G(λ1, c) eλ1ξ − MG(λ1 + ε, c) e(λ1+ε)ξ )

− γ eλ1ξ + Mγ e(λ1+ε)ξ .

that is,

0 ≤ M [c(λ1 + ε) − d2(λ1 + ε)2 − βS0G(λ1 + ε, c) + γ ] eεξ

− σβG(λ1, c) eαξ + MσβG(λ1 + ε, c) e(α+ε)ξ

= −MΘ(λ1 + ε, c) eεξ − σβG(λ1, c) eαξ + MσβG(λ1 + ε, c) e(α+ε)ξ .

Consequently, we need only to show that

−MΘ(λ1 + ε, c) − σβG(λ1, c) e(α−ε)ξ ≥ 0.

Since ξ < (1/α) ln(S0/σ) < 0 (see lemma 2.3, σ > S0), we have σ e(α−ε)ξ ≤
σ e(α/2)ξ ≤ √

σS0. Therefore, we have

−MΘ(λ1 + ε, c) − σβG(λ1, c) e(α−ε)ξ ≥ 0

if M ≥ −(β
√

σS0G(λ1, c))/(Θ(λ1 + ε, c)). Thus, the proof is completed. �

Define

Γ =
{
(S(·), I (·)) ∈ C (R, R2)

∣∣∣∣ S−(x) ≤ S(x) ≤ S0,
max{I −(x), 0} ≤ I (x) ≤ I +(x)

}
and

Λ11 = c − √
c2 + 4d1βα1

2d1
, Λ12 = c + √

c2 + 4d1βα1

2d1
, ρ1 = d1(Λ12 − Λ11),

Λ21 = c − √
c2 + 4d2α2

2d2
, Λ22 = c + √

c2 + 4d2α2

2d2
, ρ2 = d2(Λ22 − Λ21),

where α1 ≥ S0 and α2 ≥ γ satisfy −Λ11 > 2λ1 and −Λ21 > 2λ1. Furthermore, define
an operator F : Γ → C (R, R2) by

F [S(·), I (·)](ξ) =
(

F1[S(·), I (·)](ξ)
F2[S(·), I (·)](ξ)

)
,
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where

F1[S(·), I (·)](ξ) = β

ρ1

∫ ξ

−∞
eΛ11(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

+ β

ρ1

∫∞

ξ

eΛ12(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx ,

F2[S(·), I (·)](ξ) = β

ρ2

∫ ξ

−∞
eΛ21(ξ−x)

[
S(x)(K ∗ I )(x) + α2 − γ

β
I (x)

]
dx

+ β

ρ2

∫∞

ξ

eΛ22(ξ−x)

[
S(x)(K ∗ I )(x) + α2 − γ

β
I (x)

]
dx .

In the following, for u ∈ Γ we denote

(K ∗ u)(ξ) :=
∫+∞

0

∫+∞

−∞
K (y, s)u(ξ − y − cs) dy ds, ∀ξ ∈ R. (2.11)

Lemma 2.5. The set Γ is closed and convex in C (R, R2).

The proof is very easy and we omit it.

Lemma 2.6. The operator F maps Γ into Γ .

Proof. Give (S(·), I (·)) ∈ Γ . It is obvious that we only need to prove that

S−(x) ≤ F1[S(·), I (·)](x) ≤ S0

and

max{I −(x), 0} ≤ F2[S(·), I (·)](x) ≤ I +(x)

for all x ∈ R.
First, we consider F1[S(·), I (·)](x). Since α1S(x) − S(x)(K ∗ I )(x) ≤ α1S0, for

any x ∈ R we have

F1[S(·), I (·)](ξ) = β

ρ1

∫ ξ

−∞
eΛ11(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

+ β

ρ1

∫∞

ξ

eΛ12(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

≤ βα1S0

ρ1

[∫ ξ

−∞
eΛ11(ξ−x) dx +

∫∞

ξ

e Λ12(ξ−x) dx
]

= βα1S0

ρ1

(
1

Λ12
− 1

Λ11

)
= S0.
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Since S−(ξ) := max{S0 − σ eαξ , 0} satisfies

cS−′(ξ) ≤ d1S−′′(ξ) − βS−(ξ) eλ1ξ

∫∞

0

∫+∞

−∞
e−λ1y−cλsK (y, s) dy ds

≤ d1S−′′(ξ) − βS−(ξ)(K ∗ I )(ξ)

= d1S−′′(ξ) − βα1S−(ξ) + βS−(ξ)[α1 − (K ∗ I )(ξ)]
≤ d1S−′′(ξ) − βα1S−(ξ) + βS(ξ)[α1 − (K ∗ I )(ξ)]

for ξ �= (1/α) ln(S0/σ), we have

βS(ξ)[α1 − (K ∗ I )(ξ)] ≥ −d1S−′′(ξ) + cS−′(ξ) + βα1S−(ξ).

It follows that

F1[S(·), I (·)](ξ) = β

ρ1

∫ ξ

−∞
eΛ11(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

+ β

ρ1

∫∞

ξ

eΛ12(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

≥ 1
ρ1

∫ ξ

−∞
eΛ11(ξ−x)[−d1S−′′(x) + cS−′(x) + βα1S−(x)] dx

+ 1
ρ1

∫∞

ξ

eΛ12(ξ−x)[−d1S−′′(x) + cS−′(x) + βα1S−(x)] dx .

When ξ ≥ ξ0 := (1/α) ln(S0/σ), we have

F1[S(·), I (·)](ξ) ≥ 1
ρ1

∫ ξ

ξ0

eΛ11(ξ−x)[−d1S−′′(x) + cS−′(x) + βα1S−(x)] dx

× 1
ρ1

∫ ξ0

−∞
eΛ11(ξ−x)[−d1S−′′(x) + cS−′(x) + βα1S−(x)] dx

+ 1
ρ1

∫∞

ξ

eΛ12(ξ−x)[−d1S−′′(x) + cS−′(x) + βα1S−(x)] dx

= S−(ξ) + d1

ρ1
eΛ11(ξ−ξ0)[S−′(ξ0 + 0) − S−′(ξ0 − 0)]

≥ S−(ξ).

Similarly, when ξ < ξ0 := (1/α) ln(S0/σ), we have

F1[S(·), I (·)](ξ) ≥ S−(ξ).

Secondly, we consider F2[S(·), I (·)](x). Since S(x)(K ∗ I )(x) + ((α2 − γ )/
β)I (x) ≥ 0 for all x ∈ R, we have F2[(S(·), I (·))](x) ≥ 0 for all x ∈ R. Because
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S(ξ) ≥ S−(ξ) = max{S0 − σ eγ ξ , 0} and I (ξ) ≥ max{I −(ξ), 0}, we have that
I −(ξ) := eλ1ξ (1 − M eεξ ) satisfies

cI −′(ξ) ≤ d2I −′′(ξ) + βS−(ξ)

∫∞

0

∫+∞

−∞
I −(ξ − y − cs)K (y, s) dy ds − γ I −(ξ)

≤ d2I −′′(ξ) − α2I −(ξ)

+ βS(ξ)

∫∞

0

∫+∞

−∞
I (ξ − y − cs)K (y, s) dy ds + (α2 − γ )I (ξ).

Hence, we have

F2[S(·), I (·)](ξ) = 1
ρ2

∫ ξ

−∞
eΛ21(ξ−x)[βS(x)(K ∗ I )(x) + (α2 − γ )I (x)] dx

+ 1
ρ2

∫∞

ξ

eΛ22(ξ−x)[βS(x)(K ∗ I )(x) + (α2 − γ )I (x)] dx

≥ 1
ρ2

∫ ξ

−∞
eΛ21(ξ−x)[−d2I −′′(x) + cI −′(x) + α2I −(x)] dx

+ 1
ρ2

∫∞

ξ

eΛ22(ξ−x)[−d2I −′′(x) + cI −′(x) + α2I −(x)] dx

= I −(ξ).

Because I (ξ) ≤ I +(ξ) and S(ξ) ≤ S0, by equation (2.6) we have

cI +′(ξ) = d2I +′′(ξ) + βS0

∫∞

0

∫+∞

−∞
I +(ξ − y − cs)K (y, s) dy ds − γ I +(ξ)

≥ d2I +′′(ξ) − α2I +(ξ)

+ βS(ξ)

∫∞

0

∫+∞

−∞
I (ξ − y − cs)K (y, s) dy ds + (α2 − γ )I (ξ).

Consequently, we have

F2[S(·), I (·)](ξ) = 1
ρ2

∫ ξ

−∞
eΛ21(ξ−x)[βS(x)(K ∗ I )(x) + (α2 − γ )I (x)] dx

+ 1
ρ2

∫∞

ξ

eΛ22(ξ−x)[βS(x)(K ∗ I )(x) + (α2 − γ )I (x)] dx

≤ 1
ρ2

∫ ξ

−∞
eΛ21(ξ−x)[−d2I +′′(x) + cI +′(x) + α2I +(x)] dx

+ 1
ρ2

∫∞

ξ

eΛ22(ξ−x)[−d2I +′′(x) + cI +′(x) + α2I +(x)] dx

= I +(ξ).

This completes the proof. �
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Define

Bμ(R, R2) :=
{
Φ = (φ1, φ2) ∈ C (R, R2)

∣∣∣∣ supξ∈R |φ1(ξ)| e−μ|ξ | < +∞,
supξ∈R |φ2(ξ)| e−μ|ξ | < +∞

}
with norm

|Φ|μ = max

{
sup
ξ∈R

|φ1(ξ)| e−μ|ξ |, sup
ξ∈R

|φ2(ξ)| e−μ|ξ |
}

,

where μ > 0 is a constant and satisfies 2λ1 < μ < min{−Λ11, −Λ21}.
Lemma 2.7. The map F : Γ → C (R, R2) is continuous with respect to the norm

| · |μ in Bμ(R, R2).

Proof. For any (S1(·), I1(·)) ∈ Γ and (S2(·), I2(·)) ∈ Γ , we have

|F1[S1(·), I1(·)](ξ) − F1[S2(·), I2(·)](ξ)| e−μ|ξ |

≤ β

ρ1
e−μ|ξ |

∫ ξ

−∞
eΛ11(ξ−x)|[α1S1(x) − S1(x)(K ∗ I1)(x)]

− [α1S2(x) − S2(x)(K ∗ I2)(x)]| dx

+ β

ρ1
e−μ|ξ |

∫∞

ξ

eΛ12(ξ−x)|[α1S1(x) − S1(x)(K ∗ I1)(x)]

− [α1S2(x) − S2(x)(K ∗ I2)(x)]| dx .

Note that (K ∗ I )(x) ≤ G(λ1, c) eλ1x . When ξ ≥ 0, we have

|F1[S1(·), I1(·)](ξ) − F1[S2(·), I2(·)](ξ)| e−μ|ξ |

≤ β

ρ1
e−μξ

∫ ξ

−∞
eΛ11(ξ−x)[α1|S1(x) − S2(x)|

+ |S1(x)(K ∗ I1)(x) − S2(x)(K ∗ I2)(x)|] dx

+ β

ρ1
e−μξ

∫∞

ξ

eΛ12(ξ−x)[α1|S1(x) − S2(x)|

+ |S1(x)(K ∗ I1)(x) − S2(x)(K ∗ I2)(x)|] dx

≤ βα1

ρ1
e−μξ [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ]

∫ ξ

−∞
eΛ11(ξ−x) eμ|x | dx

+ βα1

ρ1
e−μξ [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ]

∫∞

ξ

eΛ12(ξ−x) eμ|x | dx

+ βG(λ1, c)

ρ1
|S1(·) − S2(·)|μ/2 e−μξ

×
[∫ ξ

−∞
eΛ11(ξ−x) eλ1x+(μ|x |)/2 dx +

∫∞

ξ

eΛ12(ξ−x) eλ1x+(μ|x |)/2 dx
]

Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Travelling waves of an epidemic model 13

 on November 11, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
= βα1

ρ1
e−μξ [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ]

×
[∫ 0

−∞
eΛ11(ξ−x) e−μx dx +

∫ ξ

0
eΛ11(ξ−x) eμx dx +

∫∞

ξ

eΛ12(ξ−x) eμx dx
]

+ βG(λ1, c)

ρ1
|S1(·) − S2(·)|μ/2 e−μξ

×
[∫ 0

−∞
eΛ11(ξ−x) e(λ1−μ/2)x dx +

∫ ξ

0
eΛ11(ξ−x) e(λ1+μ/2)x dx

+
∫∞

ξ

eΛ12(ξ−x) e(λ1+μ/2)x dx
]

= βα1

ρ1
e−μξ [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ]

×
[

Λ12 − Λ11

(μ − Λ11)(Λ12 − μ)
eμξ + 2μ

Λ2
11 − μ2

eΛ11ξ

]
+ βG(λ1, c)

ρ1
|S1(·)

− S2(·)|μ/2

[
μ e(Λ11−μ)ξ

(λ1 − Λ11)2 − μ2/4
+ (Λ12 − Λ11) e(λ1−μ/2)ξ

(λ1 − Λ11 + μ/2)(Λ12 − λ1 − μ/2)

]
≤ βα1

ρ1

[
Λ12 − Λ11

(μ − Λ11)(Λ12 − μ)
+ 2μ

Λ2
11 − μ2

]
× [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ] + βG(λ1, c)

ρ1
|S1(·)

− S2(·)|μ/2

[
μ

(λ1 − Λ11)2 − μ2/4
+ Λ12 − Λ11

(λ1 − Λ11 + μ/2)(Λ12 − λ1 − μ/2)

]
.

Similarly, for ξ < 0 we have

|F1[S1(·), I1(·)](ξ) − F1[S2(·), I2(·)](ξ)|e−μ|ξ |

≤ βα1

ρ1

[
Λ11 − Λ12

(Λ11 + μ)(Λ12 + μ)
+ 2μ

Λ2
12 − μ2

]
× [|S1(·) − S2(·)|μ + |(K ∗ I1)(·) − (K ∗ I2)(·)|μ] + βG(λ1, c)

ρ1
|S1(·)

− S2(·)|μ/2

[
μ

(Λ11 − λ1)2 − μ2/4
+ Λ12 − Λ11

(λ1 − Λ11 − μ/2)(Λ12 − λ1 + μ/2)

]
.

Then, it is sufficient to prove that |S1(·) − S2(·)|μ → 0 and |I1(·) − I2(·)|μ →
0 imply |S1(·) − S2(·)|μ/2 → 0 and |(K ∗ I1)(·) − (K ∗ I2)(·)|μ → 0, respectively.
Given ε > 0 sufficiently small. Note that |S1(x) − S2(x)| ≤ S0 for any x ∈ R. Then
there exists N > 0 such that |S1(x) − S2(x)|e−μ|x |/2 ≤ S0e−μN /2 ≤ ε for any |x | ≥ N .
Furthermore, when |S1(·) − S2(·)|μ < εe−μN /2, for |x | < N we have

|S1(x) − S2(x)| e−μ|x |/2 ≤ |S1(x) − S2(x)| e−μ|x |eμN /2 ≤ ε.
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Thus, we conclude that |S1(·) − S2(·)|μ/2 → 0 as |S1(·) − S2(·)|μ → 0. Consider

|(K ∗ I1)(·) − (K ∗ I2)(·)|μ.

Since e−λ1(y+cs)K (y, s) ∈ L(R × R
+), then there exists N ∗ > 0 such that∫∫

(R×R+)∗([0,N ∗]×[−N ∗,N ∗])
e−λ1(y+cs)K (y, s) dy ds < ε.

Furthermore, when |I1(·) − I2(·)|μ ≤ ε e−μ(1+c)N ∗
, we have

e−μ|x |
∫N ∗

0

∫N ∗

−N ∗
|I1(x − y − cs) − I2(x − y − cs)|K (y, s) dy ds

≤ |I1(·) − I2(·)|μ e−μ|x | eμ(|x |+N ∗+cN ∗)
∫N ∗

0

∫N ∗

−N ∗
K (y, s) dy ds

≤ ε.

Combining the above arguments and the fact |I1(x) − I2(x)| ≤ eλ1x for any x ∈ R,
we have that

|(K ∗ I1)(·) − (K ∗ I2)(·)|μ → 0 as |I1(·) − I2(·)|μ → 0.

Thus, we conclude that F1 : Γ → C (R, R) is continuous with respect to the norm
| · |μ in Bμ(R, R). Similarly, we can prove that F2 : Γ → C (R, R) is continuous
with respect to the norm | · |μ in Bμ(R, R). This completes the proof. �

Lemma 2.8. The map F : Γ → Γ is compact with respect to the norm | · |μ in
Bμ(R, R2).

Proof. For any (S , I ) ∈ Γ , we have

d
dξ

F1[S(·), I (·)](ξ) = βΛ11

ρ1

∫ ξ

−∞
eΛ11(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx

+ βΛ12

ρ1

∫+∞

ξ

eΛ12(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx .

Therefore, for any ξ ∈ R we have∣∣∣∣ d
dξ

F1[S(·), I (·)](ξ)

∣∣∣∣ ≤ β|Λ11|S0

ρ1

∫ ξ

−∞
eΛ11(ξ−x)[α1 + G(λ1, c)eλ1x ] dx

+ βΛ12S0

ρ1

∫+∞

ξ

eΛ12(ξ−x)[α1 + G(λ1, c)eλ1x ] dx

= 2βS0α1

ρ1
+

[
βΛ12S0G(λ1, c)

ρ1(Λ12 − λ1)
− βΛ11S0G(λ1, c)

ρ1(λ1 − Λ11)

]
eλ1ξ .

Similarly, for any ξ ∈ R we have∣∣∣∣ d
dξ

F2[S(·), I (·)](ξ)

∣∣∣∣ ≤
[

Λ22

ρ2(Λ22 − λ1)
− Λ21

ρ2(λ1 − Λ21)

]
[βS0G(λ1, c) + α2 − γ ]eλ1ξ .
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For each integer n ∈ N, define an operator Fn by

Fn[S(·), I (·)](ξ) =

⎧⎪⎪⎨⎪⎪⎩
F [(S(·), I (·))](ξ), ξ ∈ [−n, n],
F [(S(·), I (·))](−n), ξ ∈ (−∞, −n]
F [(S(·), I (·))](n), ξ ∈ [n, +∞).

By Ascoli–Arzela lemma, we have that Fn : Γ → Γ is compact with respect to
supremum norm in C (R, R2) because Fn[S(·), I (·)](·) is also uniformly bounded
and equicontinuous for (S , I ) ∈ Γ . Consequently, we have that Fn : Γ → Γ is
compact with respect to the norm | · |μ in Bμ(R, R2). Furthermore, since {Fn}∞0
is a compact series and

|Fn[S(·), I (·)](·) − F [S(·), I (·)](·)|μ
= sup

ξ∈R

|Fn[S(·), I (·)](ξ) − F [S(·), I (·)](ξ)| e−μ|ξ |

= sup
ξ∈(−∞,−n]∪[n,∞)

|Fn[S(·), I (·)](ξ) − F [S(·), I (·)](ξ)| e−μ|ξ |

≤ sup
ξ∈(−∞,−n]∪[n,∞)

max{S0, e−λ1n , eλ1ξ }e−μ|ξ |

≤ max{S0e−μn , e−(μ−λ1)n} → 0 as n → +∞,

by proposition 2.1 in Zeilder (1986) we have that {Fn}∞0 converges to F in Γ with
respect to the norm | · |μ and hence, F : Γ → Γ is compact with respect to the
norm | · |μ in Bμ(R, R2). The proof is completed. �

Theorem 2.9. Assume that S0 > γ/β. For every c > c∗, system (2.1 ) admits a
travelling wave solution (Sc(x + ct), Ic(x + ct)) such that (2.2 ), 0 ≤ Ic(ξ) ≤ S0 −
S∞

c for any ξ ∈ R and Sc(·) is non-increasing in R. In addition, we have

lim
ξ→−∞ e−λ1ξ I (ξ) = 1 and

∫∞

−∞
Ic(x) dx = c

γ
[S0 − S∞

c ].

Proof. When c > c∗, Schauder’s fixed point theorem implies that there exists a
pair of (Sc(·), Ic(·)) ∈ Γ , which is a fixed point of the operator F . Consequently,
the solution (Sc(x + ct), Ic(x + ct)) is a non-negative travelling wave solution
of equation (2.1). It is obvious that Sc(−∞) = S0, limξ→−∞ e−λ1ξ Ic(ξ) = 1, 0 ≤
Sc(ξ) ≤ S0 and 0 ≤ Ic(ξ) ≤ eλ1ξ for any ξ ∈ R. In the following, we first prove that
Sc(ξ) is non-increasing and equation (2.2) holds.

Note that (Sc(·), Ic(·)) ∈ Γ is a fixed point of the operator F . Applying the
L’Hospital theorem to the maps F1 and F2, it is easy to show that

S ′
c(−∞) = 0 and I ′

c(−∞) = 0.

Consequently, it follows from equation (2.3) that S ′′
c (−∞) = 0 and I ′′

c (−∞) = 0.
Integrating the two sides of

cS ′
c(ξ) − d1S ′′

c (ξ) = −βSc(ξ)(K ∗ Ic)(ξ) (2.12)
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from −∞ to ξ , we have

d1S ′
c(ξ) = c[Sc(ξ) − S0] + β

∫ ξ

−∞
Sc(x)(K ∗ Ic)(x) dx .

Since 0 ≤ Sc(ξ) ≤ S0 for any ξ ∈ R, we conclude that
∫+∞

−∞ Sc(x)(K ∗ Ic)(x) dx <

+∞ and hence, S ′
c(ξ) is bounded on x ∈ R. Otherwise, if

∫+∞
−∞ Sc(x)(K ∗

Ic)(x) dx = +∞, then there exists a constant δ0 > 0 such that S ′
c(ξ) ≥ δ0 for

large ξ > 0, which contradicts the fact 0 ≤ Sc(x) ≤ S0. Therefore,
∫+∞

−∞ Sc(x)(K ∗
Ic)(x) dx < +∞ and S ′

c(ξ) is bounded on x ∈ R. Multiplying (1/d1) e−(c/d1)ξ for the
two sides of the equality (2.12), we have

(S ′
c(ξ)e−(c/d1)ξ )′ = β/d1 e−(c/d1)ξSc(ξ)(K ∗ Ic)(ξ), ∀ξ ∈ R.

Integrating the last equality from ξ to +∞, we have

S ′
c(ξ) = − β

d1
e(c/d1)ξ

∫+∞

ξ

e−(c/d1)xSc(x)(K ∗ Ic)(x) dx ≤ 0, ∀ξ ∈ R,

which implies that Sc(ξ) is non-increasing in ξ ∈ R. Because (Sc, Ic) ∈ Γ , for ξ < 0
with |ξ | sufficiently large, we have

∫+∞

ξ

e−(c/d1)xSc(x)(K ∗ Ic)(x) dx > 0.

Hence, there exists ξ ∗ < 0 such that d/dξ(Sc(ξ)) < 0 for ξ < ξ ∗. Therefore, we
have 0 ≤ Sc(+∞) := S∞

c < S0.
Furthermore, since

cI ′
c(ξ) − d2I ′′

c (ξ) = βSc(ξ)(K ∗ Ic)(ξ) − γ Ic(ξ), ∀ξ ∈ R, (2.13)

we have

Ic(ξ) = β

ρ ′
2

∫ ξ

−∞
eΛ′

21(ξ−x)Sc(x)(K ∗ Ic)(x) dx + β

ρ ′
2

∫+∞

ξ

eΛ′
22(ξ−x)Sc(x)(K ∗ Ic)(x) dx

for any ξ ∈ R, where

Λ′
21 = c − √

c2 + 4d2γ

2d2
, Λ′

22 = c + √
c2 + 4d2γ

2d2
, ρ ′

2 = d2(Λ
′
22 − Λ′

21).

In view of
∫+∞

−∞ Sc(x)(K ∗ Ic)(x) dx := A0 < +∞, we have that

∫+∞

−∞
Ic(x) dx < ∞.
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Since

I ′
c(ξ) = Λ′

21β

ρ ′
2

∫ ξ

−∞
eΛ′

21(ξ−x)Sc(x)(K ∗ Ic)(x) dx

+ Λ′
22β

ρ ′
2

∫+∞

ξ

eΛ′
22(ξ−x)Sc(x)(K ∗ Ic)(x) dx

= Λ′
21β

ρ ′
2

∫+∞

0
eΛ′

21xSc(ξ − x)(K ∗ Ic)(ξ − x) dx

+ Λ′
22β

ρ ′
2

∫ 0

−∞
eΛ′

22xSc(ξ − x)(K ∗ Ic)(ξ − x) dx ,

we have

Ic(ξ) =
∫ ξ

−∞
I ′
c(x) dx ≤ −Λ′

21β

ρ ′
2

∫+∞

0
eΛ′

21x
∫ ξ

−∞
Sc(y − x)(K ∗ Ic)(y − x) dy dx

+ Λ′
22β

ρ ′
2

∫ 0

−∞
eΛ′

22x
∫ ξ

−∞
Sc(y − x)(K ∗ Ic)(y − x) dy dx

= 2βA0

ρ ′
2

, ∀ξ ∈ R.

Consequently, it follows that |I ′
c(ξ)| ≤ (4β2A0S0/(ρ

′
2)

2) for any ξ ∈ R. Thus, we
have limξ→+∞ Ic(ξ) = 0 because I ′

c(ξ) is bounded.
Now by lemma 2.3 in Wu & Zou (2001), we have

S ′
c(±∞) = 0, S ′′

c (±∞) = 0, I ′
c(±∞) = 0, I ′′

c (±∞) = 0.

Consequently, integrating equation (2.12) on R yields

β

∫∞

−∞
Sc(ξ)(K ∗ Ic)(ξ) = c[S0 − S∞

c ].

Furthermore, by integrating equation (2.13) on R, we obtain
∫+∞

−∞
Ic(x) dx = c

γ
[S0 − S∞

c ].

To prove that 0 ≤ Ic(ξ) ≤ S0 − S∞
c , we define a function R̂c(ξ) = γ /c∫ξ

−∞ Ic(x)dx + γ /c
∫+∞

ξ
e(c/d2)(ξ−x)Ic(x) dx for any ξ ∈ R which satisfies the

following equation:

cR̂′
c(ξ) = d2R̂′′

c (ξ) + γ Ic(ξ), ∀ξ ∈ R.

Obviously, R̂c(−∞) = 0, R̂c(+∞) = S0 − S∞
c and R̂′

c(±∞) = 0. Furthermore, we
can show that Nc(ξ) := Ic(ξ) + R̂c(ξ) is non-decreasing in R. In fact, Nc(ξ) satisfies

cN ′
c(ξ) = d2N ′′

c (ξ) + βSc(ξ)(K ∗ Ic)(ξ), ∀ξ ∈ R.
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


18 Z.-C. Wang and J. Wu

 on November 11, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
Following this, we have that

N ′
c(ξ) = β

d2
e(c/d2)ξ

∫+∞

ξ

e−(c/d2)xSc(x)(K ∗ Ic)(x) dx ≥ 0, ∀ξ ∈ R.

In view of Nc(+∞) = S0 − S∞
c , we have that 0 ≤ Ic(ξ) ≤ S0 − S∞

c for any ξ ∈ R.
This completes the proof. �

Theorem 2.10. Assume that S0 > γ/β. For c′ ∈ (0, c∗), there exist no non-trivial
travelling wave solutions (Sc′(x + c′t), Ic′(x + c′t)) of equation (2.1 ) such that
equation (2.2 ) and 0 ≤ Sc′(ξ) ≤ S0 and 0 ≤ Ic′(ξ) ≤ S0.

Proof. Now we consider the case c ∈ (0, c∗). Fix c ∈ (0, c∗). We prove the
theorem by way of contradiction. Assume that there exists a non-trivial travelling
wave solutions (Sc(x + ct), Ic(x + ct)) of (2.1) such that equation (2.2). Since
S(−∞) = S0, there exists ξ ′ < 0 such that S(ξ) > (βS0 + γ )/2β for any ξ ≤ ξ ′.
Therefore, we have

cI ′(ξ) = d2I ′′(ξ) + βS(ξ)(K ∗ I )(ξ) − γ I (ξ)

≥ d2I ′′(ξ) + βS0 + γ

2
[(K ∗ I )(ξ) − I (ξ)] + βS0 − γ

2
I (ξ) (2.14)

for any ξ ≤ ξ ′. Let J (ξ) = ∫ξ

−∞ I (η) dη for any ξ ∈ R. It is not difficult to verify∫ξ

−∞(K ∗ I )(η)dη = (K ∗ J )(ξ), see also Wang & Li (2009, theorem 3.5), where the
convolution is defined by equation (2.11). Then, integrating two sides of inequality
(2.14) from −∞ to ξ with ξ ≤ ξ ′, we have

βS0 − γ

2
J (ξ) ≤ cI (ξ) − d2I ′(ξ) − βS0 + γ

2
[(K ∗ J )(ξ) − J (ξ)]. (2.15)

In view of

∫ ξ

−∞
[(K ∗ J )(η) − J (η)] dη

= lim
z→−∞

∫ ξ

z
[(K ∗ J )(η) − J (η)] dη

= lim
z→−∞

∫ ξ

z

∫∞

0

∫∞

−∞
K (y, s)[J (η − y − cs) − J (η)] dy ds dη

= lim
z→−∞ −

∫ ξ

z

∫∞

0

∫∞

−∞
(y + cs)K (y, s)

∫ 1

0
I (η − θ(y + cs)) dθ dy ds dη

= lim
z→−∞ −

∫∞

0

∫∞

−∞
(y + cs)K (y, s)

∫ 1

0

∫ ξ

z
I (η − θ(y + cs)) dη dθ dy ds
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= lim
z→−∞ −

∫∞

0

∫∞

−∞
(y + cs)K (y, s)

∫ 1

0
[J (ξ − θ(y + cs))

− J (z − θ(y + cs))] dθ dy ds

= −
∫∞

0

∫∞

−∞
(y + cs)K (y, s)

∫ 1

0
J (ξ − θ(y + cs)) dθ dy ds,

we have that (K ∗ J )(ξ) − J (ξ) is integrable on (−∞, ξ ] for any ξ ∈ R.
Consequently, from equation (2.15) we have that J (ξ) is integrable on (−∞, ξ ]
for any ξ ∈ R. Now integrating the two sides of inequality (2.15) from −∞ to ξ
with ξ ≤ ξ ′, we have

βS0 − γ

2

∫ ξ

−∞
J (η) dη + d2I (ξ)

≤ cJ (ξ) + βS0 + γ

2

∫∞

0

∫∞

−∞
(y + cs)K (y, s)

∫ 1

0
J (ξ − θ(y + cs)) dθ dy ds.

Since (y + cs)J (ξ − θ(y + cs)) is non-increasing on θ ∈ [0, 1], we have

βS0 − γ

2

∫ ξ

−∞
J (η) dη + d2I (ξ) ≤

[
c + βS0 + γ

2

∫∞

0

∫∞

−∞
(y + cs)K (y, s) dy ds

]
J (ξ).

Let K1 = (βS0 + γ )/2
∫∞

0

∫∞
−∞ sK (y, s) dy ds. Since the kernel K (y, s) is an even

function of y, we have
∫∞

0

∫∞
−∞ yK (y, s) dy ds = 0. Then, we have

βS0 − γ

2

∫ ξ

−∞
J (η) dη + d2I (ξ) ≤ c(1 + K1)J (ξ), ∀ξ ≤ ξ ′. (2.16)

Therefore, for any ξ ≤ ξ ′ we have

βS0 − γ

2

∫ 0

−∞
J (ξ + η) dη ≤ c(1 + K1)J (ξ).

Since J (·) is increasing, then for any ξ ≤ ξ ′ and any η > 0 we have

βS0 − γ

2
ηJ (ξ − η) ≤ c(1 + K1)J (ξ).

Thus, there exists η0 > 0 sufficiently large and some θ0 ∈ (0, 1) such that

J (ξ − η0) ≤ θ0J (ξ), ∀ξ ≤ ξ ′.

Let p(x) = J (x) e−μ0x with μ0 = (1/η0) ln(1/θ0) < λ1. Then,

p(ξ − η0) = J (ξ − η0) e−μ0(ξ−η0) ≤ θ0J (ξ) e−μ0(ξ−η0) = p(ξ), ∀ξ ≤ ξ ′.

By virtue of p(x) → 0 as x → +∞, we have that there exists p0 > 0 such that

p(x) ≤ p0 for any x ∈ R,

which implies that
J (x) ≤ p0eμ0x for any x ∈ R.
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Consequently, there exists q0 > 0 such that
∫x

−∞ J (y) dy ≤ q0 eμ0x for any x ∈ R.
Furthermore, by equations (2.14)–(2.16), we have

sup
x∈R

{I (x) e−μ0x} < ∞, sup
x∈R

{|I ′(x)| e−μ0x} < ∞, sup
x∈R

{|I ′′(x)| e−μ0x} < ∞.

Now consider S0 − S(ξ). By cS ′(ξ) = d1S ′′(ξ) − βS(ξ)(K ∗ I )(ξ), integrating from
−∞ to ξ yields

c[S(ξ) − S0] = d1S ′(ξ) − β

∫ ξ

−∞
S(η)(K ∗ I )(η) dη.

Let f (ξ) = β
∫ξ

−∞ S(η)(K ∗ I )(η) dη. It is obvious that f (x) ≤ C0 eμ0x for any x ∈ R

and some constant C0 > 0. Let R(ξ) = S0 − S(ξ) ≥ 0 for any ξ ∈ R. Then, we have

d1R′(ξ) − cR(ξ) = −f (ξ).

Solving the last ODE yields

R(ξ) = Ĉ0 e(c/d1)ξ + 1
d1

e(c/d1)ξ

∫ 0

ξ

e−(c/d1)ηf (η) dη, ∀ξ ∈ R,

where Ĉ0 = R(0). Since f (ξ) = O(eμ0ξ ) as ξ → −∞, it is easy to see that R(ξ) =
O(eμ′

0ξ ) as ξ → −∞, where μ′
0 = min{μ0, c/d1}. In view of 0 ≤ R(ξ) ≤ S0, we have

sup
x∈R

{R(x) e−μ′
0x} < ∞.

For λ ∈ C with 0 < Reλ < μ0, we can define a two-sided Laplace transform
of I by

L(λ) =
∫+∞

−∞
e−λξ I (ξ) dξ .

Applying the property of Laplace transforms (see Widder 1941), we know that
either there exists a real number α > 0 such that L(λ) is analytic for λ ∈ C

with 0 < Reλ < α and λ = α is singular point of L(λ), or for λ ∈ C with Reλ > 0,
L(λ) is well defined. Now we use this property to conclude that for c ∈ (0, c∗),
equation (2.1) admits no travelling wave solutions (S(x + ct), I (x + ct)) satisfying
equation (2.2).

By Fubini’s theorem, we have∫∞

−∞
e−λξ (K ∗ I )(ξ) dξ

=
∫∞

−∞
e−λξ

∫∞

0

∫∞

−∞
K (y, s)I (ξ − y − cs) dy ds dξ

=
∫∞

0

∫∞

−∞
K (y, s) e−λ(y+cs)

∫∞

−∞
e−λ(ξ−y−cs)I (ξ − y − cs) dξ dy ds

= L(λ)

∫∞

0

∫∞

−∞
K (y, s) e−λ(y+cs) dy ds

= L(λ)G(λ, c),
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where G(λ, c) := ∫∞
0

∫+∞
−∞ e−λy−cλsK (y, s) dy ds. In view of

d2I ′′(ξ) − cI ′(ξ) + βS0(K ∗ I )(ξ) − γ I (ξ) = β[S0 − S(ξ)](K ∗ I )(ξ), ∀ξ ∈ R,

we have

Θ(λ, c)L(λ) = β

∫∞

−∞
e−λξ [S0 − S(ξ)](K ∗ I )(ξ) dξ (2.17)

for λ ∈ C with 0 < Reλ < μ0, where Θ(λ, c) is defined by equation (2.5). Note that
the right-hand side of equation (2.17) is defined for λ ∈ C with 0 < Reλ < μ0 + μ′

0.
For c ∈ (0, c∗), since Θ(λ, c) > 0 for λ ∈ (0, λc), we have that L(λ) is defined for
all λ ∈ C with λc > Reλ > 0 and there are no singularity of L(λ) in λ ∈ [0, λc).
Because equation (2.17) can be re-written as

∫∞

−∞
e−λξ [Θ(λ, c)I (ξ) − β(S0 − S(ξ))(K ∗ I )(ξ)] dξ = 0.

However, for c ∈ (0, c∗), we have that Θ(λ, c) → +∞ as λ → λc − 0, which implies
that the last equality is false. This is a contradiction. The proof is complete. �

Theorem 2.11. Assume that S0 < γ/β. Then for any c ≥ 0, there exists no
travelling wave solutions (S(x + ct), I (x + ct)) satisfying

S(−∞) = S0, S(+∞) = S∞ < S0, I (±∞) = 0. (2.18)

Proof. Assume that there exists non-trivial travelling wave solution (S(x + ct),
I (x + ct)) such that equation (2.18). Then, we have

I (ξ) = β

ρ ′
2

∫ ξ

−∞
eΛ′

21(ξ−x)S(x)(K ∗ I )(x) dx + β

ρ ′
2

∫+∞

ξ

eΛ′
22(ξ−x)S(x)(K ∗ I )(x) dx

= β

ρ ′
2

∫+∞

0
eΛ′

21xS(ξ − x)(K ∗ I )(ξ − x) dx

+ β

ρ ′
2

∫ 0

−∞
eΛ′

22xS(ξ − x)(K ∗ I )(ξ − x) dx .

Integrating the two sides of the last equality, we have

∫+∞

−∞
I (ξ) dξ = β

ρ ′
2

∫+∞

0
eΛ′

21x
∫+∞

−∞
S(ξ − x)(K ∗ I )(ξ − x) dξ dx

+ β

ρ ′
2

∫ 0

−∞
eΛ′

22x
∫+∞

−∞
S(ξ − x)(K ∗ I )(ξ − x) dξ dx

= β

ρ ′
2

[∫+∞

0
eΛ′

21x dx +
∫ 0

−∞
eΛ′

22x dx
] ∫+∞

−∞
S(ξ)(K ∗ I )(ξ) dξ
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≤ βS0

ρ ′
2

(
1

Λ′
22

− 1
Λ′

21

) ∫+∞

−∞
(K ∗ I )(ξ) dξ

= βS0

γ

∫+∞

−∞
(K ∗ I )(ξ) dξ

= βS0

γ

∫+∞

−∞
I (ξ) dξ

<

∫+∞

−∞
I (ξ) dξ .

This is a contradiction. This completes the proof. �
Remark 2.12. When d1 · d2 = 0, the conclusions in theorems 2.9, 2.10 and 2.11

remain valid. In fact, if d1 = 0, then it is sufficient to define F1 by

F1[S(·), I (·)] = β

c

∫ ξ

−∞
e−(βα1/c)(ξ−x)[α1S(x) − S(x)(K ∗ I )(x)] dx ,

where α1 ≥ S0 satisfies βα1/c > 2λ1. Similarly, if d2 = 0, then we need only to
redefine F2 by

F2[S(·), I (·)] = β

c

∫ ξ

−∞
e−(α2/c)(ξ−x)

[
S(x)(K ∗ I )(x) + α2 − γ

β
I (x)

]
dx ,

where α2 ≥ γ satisfies α2/c > 2λ1.

3. Discussion

In this paper, we study the existence and non-existence of non-trivial travelling
wave solutions for model (1.6). As the travelling wave solutions obtained or
excluded in this work describe the transition from a disease-free equilibrium to
an endemic equilibrium, the existence and non-existence of non-trivial travelling
wave solutions indicates whether or not the disease can spread.

Theorems 2.9 and 2.11 combined provide a threshold condition for the existence
of travelling wave solutions in terms of the basic reproduction number βS0/γ of
the corresponding ODE system in the absence of non-local interaction, time delays
and spatial diffusion. Therefore, whether disease spreads or not is independent
of the non-local delayed interaction and spatial movement patterns of the
population.

The speed at which the disease spreads (if it does), however, depends on the
aforementioned factors. We have shown that if the basic reproduction number is
larger than one, then system (1.6) admits a non-trivial travelling wave solution
with wave speed c > c∗, where c∗ is the minimal wave speed. As discussed in §1,
this minimal wave speed c∗ should be the asymptotic speed of propagation of
the disease. This minimal wave speed c∗ is defined by lemma 2.1, from which
it is easy to see that c∗ is dependent on the diffusion rate d2 of the infected
individuals, the pattern of non-local interaction between the infected and the
susceptible individuals, and the latent period of disease.
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More specifically, for c > 0 and λ ∈ (0, λc), direct calculations yield that

∂Θ

∂c
= −λ − λβS0

∫∞

0

∫∞

−∞
s e−λ(y+cs)K (y, s) dy ds < 0,

∂2Θ

∂λ2
= 2d2 + βS0

∫∞

0

∫∞

−∞
(y + cs)2 e−λ(y+cs)K (y, s) dy ds > 0

and Θ(0, c) = βS0 − γ > 0 and Θ(λc − 0, c) = +∞.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.1)

In the case where K (x , t) = δ(t − τ)δ(x) with τ > 0, we have

Θ(λ, c; τ) = d2λ
2 − cλ + βS0 e−λcτ − γ ,

∂Θ

∂τ
= −λcβS0 e−λcτ < 0.

Therefore, from equation (3.1), we can conclude that c∗ = c∗(τ ) is a decreasing
function of τ > 0.

In the case where K (x , t) = δ(t)(1/
√

4πρ)e−x2/4ρ , we have

Θ(λ, c; ρ) = d2λ
2 − cλ + βS0 eρλ2 − γ ,

∂Θ

∂ρ
= λ2βS0 eρλ2

> 0.

Consequently, c∗ = c∗(ρ) is an increasing function of ρ > 0. Indeed, direct
calculations also give

dc∗(τ )

dτ
= − c∗βS0 e−λ∗c∗τ

1 + τβS0 e−λ∗c∗τ
< 0 (3.2)

and
dc∗(ρ)

dρ
= λ∗βS0 eρλ∗2

> 0. (3.3)

Hence, we observed that the latent period can reduce the speed of the spread of
the disease, and the non-locality of interaction can increase the speed of disease
spread, an observation in coincidence with those reported by Li et al. (2007) and
Wang et al. (2008).

Similar conclusions can be made for the case where K (x , t) = δ(t − τ)(1/√
4πd2τ) ex2/4d2τ with τ > 0. This case reduces to equation (1.7), and we have

Θ(λ, c, d2, τ) = d2λ
2 − cλ + βS0 e(d2λ

2−λc)τ − γ ,
∂Θ

∂d2
= λ2 + τλ2βS0 e(d2λ

2−λc)τ > 0.

This implies that c∗ is an increasing function of d2 > 0 and hence, we know
that the geographical movement of infected individuals can increase the speed
of the spread of the disease. Now fix d2 > 0, then for any τ0 > 0, there exists
a unique pair of λ∗(τ0) > 0 and c∗(τ0) > 0 such that Θ(λ∗(τ0), c∗(τ0), d2, τ0) =
0 and Θ(λ, c∗(τ0), d2, τ0) ≥ 0 for any λ ≥ 0. It is easy to see that d2λ

2∗(τ0) −
λ∗(τ0)c∗(τ0) < 0. Then we have

d
dε

Θ(λ∗(τ0), c∗(τ0), d2, τ0 + ε)

= (d2λ
2
∗(τ0) − λ∗(τ0)c∗(τ0))βS0 e(d2λ

2∗(τ0)−λ∗(τ0)c∗(τ0))(τ0+ε) < 0,

which implies that c∗ is a decreasing function of τ > 0.
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