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Abstract. In this paper, we study the solvability of abstract hyperbolic equations 
with variable delay and integral Volterra terms. We consider several spectral problems 
in autonomous cases by considering the operator-valued functions as the symbols of the 
equations under investigation. We also present some applications of our results to inte
grodifferential equations of Gurtin-Pipkin type arising from the theory of heat equations 
with memory. 
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1. Introduction. A considerable number of studies have recently 
been devoted to the solvability and asymptotic behaviors of solutions to 
functional differential equations and integrodifferential equations in Banach 
(in particular, Hilbert) spaces. See [1]-[10], [14], [15], [17]-[20] and references 
therein. · 
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part of the equation under consideration is an abstract hyperbolic-type equa
tion, disturbed by terms with delay arguments and terms involving Volterra 
operators. Our work, in comparison with most existing studies in the subject 
area, focuses on the case of variable delays and variable operator coefficients. 
We establish the solvability of the corresponding classical initial value prob
lem in weighted Sobolev spaces on semiaxis. We study several spectral prob
lems in autonomous cases, by considering the operator-valued functions as 
the symbols of the equations under investigation. We also present some ap
plications of our results to the integrodifferential equation of Gurtin-Pipkin 
type arising from the theory of heat equations with memory. 

2. The Problems and Results. Let H be a given separable Hilbert 
space and suppose that A is a positive selfadjoint operator that acts in H 
and has a bounded inverse. Let Hp = Dom(AP·), the domain of AfJ with 
fJ > 0, be equipped with norm ll·llp = IIAP ·II· 

For a Hilbert space X and real number 1?: 0 let L2,7 ((a ,b), X), -oo:::; 
a < b:::; +oo, denote the space of X-valued measurable functions, equipped 
with the norm 

b 

IIJIIL2,-r((a,b),X) = ( J e-2-rtllf(t)llidt)112
. 

a 

Let wr
7
((a, b), Am), mEN, denote the space of H-valuedfunctions such 

that Apmu{(l-p)m) E £ 2,7 ( (a, b), H) (p = 0, 1) with the norm 

fluJiw;,''>'((a,b),Am) = (llu(m) Jll2,-r((a,b),H) + iiAmulllz.-r((a,b),H)) 
112 

· 

A more detailed description of these spaces can be found in [16], Chapter I. 
In what follows, we will omit corresponding index if 'Y = 0. 

Consider the following initial-value problem for functional differential 
equation 

~:~(t) + A2u(t) + 2:;,1 (Bi(t)Au (gi(t)) + Di(t)~~ (gi(t))) 
(1) t t 

+ f K(t- s)Au(s)ds + f Q(t- s)uC1)(s)ds = f(t), t > 0, 
-00 - oo 

subject to 

(2) u(t) = <p(t), tEL = ( -oo, 0]. 

Here Bi(t) and Di(t), j = 1, 2, .. . , are operator-valued functions taking 
values in the ring of bounded operators in H; K(t) and Q(t) are operator
valued functions taking values in the ring of bounded operators in H , Bochner 
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integrable on the semiaxis ll4 with weight e-:oa: 

+oo +oo 

(3) j e-:oaiiK(t)lldt < +oo, j e-.aiiQ(t)lldt < +oo; 
0 0 

g3(t), j = 1, 2, ... , are real valued continuously differentiable functions on 

][4, such that g3(t) ~ t, g]1)(t) > 0 fortE Jl4, gj1 are the inverse functions 
of g3. In addition we assume f E £2,-ro (114, H1), cp E Wi,"Y1 (l!L, A2

) for certain 
/'o and ')'1 E JR. 
Definition 1. A function u is called a strong solution to problem (1)-(2) if 
it belongs to the space Wi,-r(114, A 2), with certain 'Y 2:: 0, satisfies equation 
(1) almost everywhere on li4 and initial condition (2). 

The following theorem establishes the solvability of the initial value prob
lem (1)-(2). 
Theorem 1. Suppose that the operator-valued functions Bj(t), Dj(t), 
Bj(t) = AB3(t)A- 1, Dj(t) = AD3(t)A-I, take values in the ring of bounded 
operators over H, are strongly continuous and satisfy the inequalities: 

for a certain 8 2:: 0; functions gj(t) are such that t- g3(t) 2:: a 0 > 0, t 2:: 0, 
j = 1, 2, ... , a0 = const > 0. Suppose also that operator-valued functions 
K(t), Q(t), K(t) = AK(t)A-1, Q(t) = AQ(t)A-1 take values in the ring of 
bounded operators over H and satisfy the conditions (3) and the conditions: 

+oo +oo 

(5) j e-xltiiK(t)ll < +oo, j e-xltiiQ(t)ll < +oo 
0 0 

for certain x 1 2:: 0. Then for any given functions cp E Wi,-r
1 
(L , A 2) and 

f E L2,"Yo (114, H1 ) with some 'Yo, 1'1 2:: 0, there exists 1* > max(lo, 11) such 
that for all/' > 1*, the problem (1)-(2) has a unique solution u satisfying the 
estimate 

with a certain d > 0 independent off and <p. 
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Remark 1. Conditions (4) are necessary to ensure solvability, as shown in 
examples of [7]. See also the example 2 at the end of the second part of the 
article. 

In the case when BJ(t) and DJ(t) are independent oft (i.e. BJ(t) :::: Bj; 
Dj(t) :::: Dj) and where 9J(t) = t- hj, for positive constants hj: 0 < h1 < 
h2 < ... , we consider the following operator-valued function 

00 

(7) £(.-\) = .-\2 I+ A2 + L (BjA + .-\DJ) e->.hi + K(.-\)A + .-\Q(.-\), 
j=l 

where K(.-\) and Q(.-\) are the Laplace transforms of K(t) and Q(t), and I is 
indentity operator in the space H. 

Suppose there exists a constant v0 ~ 0 such that 

00 

(8) L e-vohi (IIBJII + IIDJII) < +oo. 
j=l 

Proposition 1. Suppose the condition (8) is satisfied and K(t) and Q(t) 
satisfy the estimate (3). Then there exists positive x* such that the operator~ 
valued function £(.-\) satisfies the inequalities 

(9) 

Proposition 2. Suppose the conditions of Proposition 1 are satisfied and 
the operator A has a compact inverse. Suppose also that there exist N E N 
and hE ll4 such that Bj = Dj = 0, j = N + l,N + 2, . . . and K(t) = 
Q(t) = 0 for t > h. Then the operator-valued function .c-1

(.-\) is finite 
meromorphic and spectrum of£(.-\) consists of isolated eigenvalues of finite 
algebraic multiplicity that are the finite dimensional poles of .c-1 (.-\). 

We give the proofs of Propositions 1 and 2 at the third part of the article. 
Remark 2. An example shows that it is impossible to substitute the first 
derivative in the third term of equation (1) by the second derivative, and 
replacing operator A by the operator A2 is given at the end of the the third 
part of the article. 

In the case Bj = DJ:::: 0, j = 1, 2, ... operator-valued function .C(.X) was 
investigated in [21], see also [24]. 
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We also consider a similar to (1), (2) initial-valued problem in an au
tonomous case of the following type: 

~:~ (t) + A2u(t) + I:f:1 [BJAu(t - hJ) + Diu(1)(t - hJ) ] 
(10) t t 

+ J K(t- s)A2u(s)ds + J Q(t- s)u(1)(s)ds = f(t), t > 0, 
-oo -oo 

subject to 

(11) u(t) = <p(t), t E L . 

Theorem 2. Suppose operators BJ, Dj, Bi = ABJA-1, Di = ADJA-1 

are bounded in the space H, scalar functions K and Q are given so that 
K E Wl (ll4), Q E L1 (II4) and functions f and <p are given so that 
f E L2,'Yo(JI4 , H1) and <p E Wfm (L,A3

) for certain lo, 11 E R Then 
there exists I* > max("Y0,-'}'1) such that for all 1 > 1* the problem (10)-(11) 
has a unique solution u E Wl"'(II4, A2) satisfying the estimate 

with a constant d1 independent off and <p. 
In the particular case where Q(t) = 0, BJ = DJ = 0 for j = 1, 2, .. . , N, 

the operator A has a compact inverse and the kernel K has the the following 
representation 

m 

K(t) = - L c;e-'Yjt 
j =l 

with real constants Cj and IJ so that Cj > 0 and 0 < 11 < 1 2 < · · · < 'Ym , we 
can give a rather detailed picture of the resolvent set and the spectrum of the 
operator-valued function ..C(A). More precisely we have that the spectrum of 
the operator-valued function £ is: 

--------------------·· -·--····---------------··---- -u~1F~JJU(Q~·:-~-- -· -··--

where Pn~o}::1 , 1 :::; k:::; mare real eigenvalues Ank E R. with cluster points 
(J"k = lim Ank' where O"k (am < O"m-l < · · · < u1) are the solutions of the 

n__,oo 
equations 

m 

L: _5_!:_ = 1. 
k=l X+ rk 
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In addition, the complex eigenvalues .A~ = Pn ± illn with P,n, lin E lR satisfy 

li!Iln_.oo Pn = -~ f Ck and lin= an+Q (;2) with an being the eigenvalues of 
k=l n 

the operator A: Aen = an en; and {en} ::::::l the orthonormal basis of the corre
sponding eigenvectors. The eigenvalues { an}::::::l are numerated in increasing 
order (0 < a1 :5 a2 ~ a3 :5 ... ) counting its multiplicities. 

The result describing the structure of the spectrum of operator-valued 
function .C(.A) may be obtained in the following way. Using the fact that 
{en}~=l is the orthonormal basis of the space H we can divide the integrod
ifferential equation (10) (where Q( t) = 0, Bj = Dj = 0, j = 1, 2, ... , N) 
into infinite number of scalar integrodifferential equations (projections on 
one-dimensional spaces formed by vectors en): 

where 
Un(t) = (u(t), en), fn(t) = (f(t), en), n = 1, 2, . . . . 

Then using Laplace transform we have the following problem for determina-
m 

tion eigenvalues{-\~} U{ U {-\nk}} 
k= l 

m 

ln(.A) = -\2 +a!- a! ( L ~) = 0, n = 1, 2, .. .. 
k=l + /k 

On the base of Vieta theorem we find the spectrum of these scalar prob
lems and the spectrum o-(.C) of operator-valued function .C(.A) like closure of 
union of spectrum of these scalar problems. 

It is important to underline that the spectrum of operator-valued func
tion .C(.A) is lying in left half-plane, if the following inequality 

(12) 

is valid. If the inequality 

m 

(13) LCj > 1 
j=l /j 

holds then there is the cluster-point o-1 of eigenvalues of operator-valued 
function C which is lying in right half-plane. Thus if the inequality (13) 
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holds the problem (10)-(11) (where Q(t) =: 0, Bj = Dj = 0, j = 1, 2, ... , N) 
is unstable. 

We note that in the case where Bj = 0 and Dj = 0 for j = 1, 2, .. . , N; 
equation (10) is the abstract form of the heat equation with memory intro
duced by Gurtin and Pipkin in [11], and there have been extensive studies 
of this equation (see (11] - [13] and references therein) . 

3. The proofs of certain results and examples. 

Example 1. Now, consider the operator pencil 

When s = 1, it corresponds to the special case of the pencil .C(A) with 
n = h = 1, D 1 = D, and B1 = 0. When s = 2, ... , the estimate in 
Proposition 1 is not valid; moreover, one can show that .C}1(A) may not 
exist at the points A with arbitrarily large real parts. 

Indeed, let D = I and s = 2. Consider a sequence of real numbers 
Ym = 3; + 21rm, m = 0, 1, . . .. For a given y = Ym, the equation 

(14) 

defines a bijectionx toy: ll4--+ JR,_. Usingym, we define a sequence {xm}:=o 
such that the pairs (xm, Ym) satisfy (14). Define a positive operator A by the 
rule 

00 1 

Af = L aln(f, em) em, 
m::::l 

where { em}:=l is an orthonormal basis in the separable space H and am = 
4XmYm coshxm. Since A has a discrete spectrum, the problem of the existence 
of £}1

(.\) splits into a countable set scalar problems: 

·-··························· ........ .. (.~.?.2 .... . A2(1 + e-A) + a.n = 0, m = 1, 2, .... 
· -··· ···· ·······················¥--••····-------------~----······---.. ······-·--------~---------------·-·················-· --------------------·····-············-·~······ ·-· ····¥ •¥ •••·•-····-·············-···-······ ··· · ·-···-···-···-·-·····-····-

Obviously, Am = Xm + iym is a solution to the mth scalar problem in (15), 
so that ..C}1(A) does not exist at the points Am· Moreover, mAm --+ +oo 
as m -t oo. Thus, the solvability result cannot be extended to equations 
with deviating argument that involve terms with the second derivative with 
respect to t. 

A similar situation occurs for the operator pencil 
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Following a procedure analogous to the describe above, we can construct an 
operator A for which the operator-valued function £21 (.A) is not holomorphic 
in the half-plane 3i.A > 'Y for any 1 and 8 > 1. 

Example 2. The following example shows the importance of condi
tions (4). Consider the initial value problem 

d2u(t) 
(f£2 + u(t)- 4(t2 + t + 1)e2tu(t- 1) = 0, t E R,., 

u(t) = et
2 +t, t E ( -1, 0], 

which is a special case of the problem (1)-(2) (here, H = <C, n = 1, h1 = 1, 
D1(t) = 0, and A = I). This problem has a unique solution u(t) = et

2
+t, 

which does not belong to W:f,7 ((-l,+oo),A2) for any 'Y > 0. In this case, 
suptE[O,+oo) IIB1(t)ll = +oo; i.e., conditions (4) is violated. 

We give now the proofs of Propositions 1 and 2, and Theorem 2. 
Proof of the proposition 1. The spectrum of A is contained in ll4. 

Applying the well-known estimate of the resolvent in term of distance from 
the spectrum of the normal operators ±iA we obtain 

(16) 
IJ.A(.A2I + A2

) -
1 11::; 1-XI II(.AI + iA)-1 1111(-XI- iAt1 ll ~ (3i.A)-1

, ~.A> 0. 

Hence we have 

(17) 
IJA(.A2 I+ A2

)-
1

11 ::; II (.AI + iA)- 1
11 + I .A lii (.A2 I+ A2t 1

11 ::; 2(~-X)-1, ~.A > 0. 

On the base of estimates (16), (17) we obtain the estimate 

00 

II L e- >-hi [B;A + .ADj](.A2 I+ A2
)-

1 IJ ::; 
j = l 

00 

(18) ::; const(z:::e-vohj (IIBi II + IID;II)(llf.A)-I, ~.A > vo > 0. 
j = l 

Using the well-known properties of the Laplace transform 

(19) 

and estimates (16), (17) , we deduce 
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Choosing suitable x+ and using (18), (20), we obtain the first estimate (9) 
for 1R>. > x+. The second inequality (9) is the corollary of the first one. 

From the representation 

first inequality (9), and (16), (17) we obtain the second inequality (9). 0 
Proof of the proposition 2. The proof of this result follows from 

M.V.Keldys lemma (see [22]) in view of the fact that (.C(>.)A-2 -I) takes 
values in the ring of compact operators, .C(>.)A-2 -is entire operator-valued 
function and .C(>.)A-2 is invertible (by Proposition 1) for>. with a sufficiently 
large real part. 0 

The proof of the Theorem 2. 
We will give the proof of the theorem 2 under the following additional 

assumptions: <p(t) = 0, t :::; 0, and operators Bi = Di = 0, j = 1, 2, ... N. 
Let us introduce the function v(t) = e-'Ytu(t). Hence the equation (10) 

for the function u is equivalent to the following equation for the function v: 

t 
v<2>(t) + 2')'v(l>(t) + (A2 + ')'2l)v(t) + J e--r(t- s)K(t- s)A2v(s) ds+ 

0 
t t 

(21) + J e-'Y(t-s)Q(t- s)v(l>(s) ds + 1 J e--y(t-s)Q(t- s)v(s) ds, = 
0 0 

=e-1tf(t), t>O; 

v( +0) = 0, v<1
)( +0) = 0. 

We look for a solution of the equation (21) in the form 

t 

v(t) = .Cz(t) = J e-'Y(t-s)A- 1sin(A(t- s))z(s)ds, t > 0; 

0 

with new unknown fiiiict10n z. Tlien we have 

t 

v<1)(t) = -')' J e - 'Y(t- s) A-1sin(A(t- s))z(s) ds+ 

0 

t 

+ J e--y(t-s)cos(A(t- s))z(s) ds, 

0 
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t 
'l I e--y(t-s)A-1sin(A(t- s))z(s)ds-

0 
t 

-21 I e-,(t-s)cos(A(t- s))z(s) ds+ 
0 

t 
+z(t) - I e--y(t-s) Asin(A(t- s) )z(s) ds, t > 0. 

0 

Substituting v = Cz into the equation (21) we obtain that the equation (21) 
is equivalent to the following integral equation for the function z: 

t s 
z(t) +I e-,(t-s)K(t- s)A2(f e--y(s-O)A-1sin(A(s- O))z(O)dO)ds+ 

0 0 
t 8 

(22) +I e-,(t-s)Q(t- s)(f e-,(s-o)cos(A(s- O))z(O) dO) ds = 
0 0 

= e- -yt f( t), t > 0. 

We will consider the equation (22) in the space L2 (R+, H1). Let denote 
w(t) = Az(t). Then function w belongs to the space L 2(R+, H) and satisfies 
the following equation 

t s 
w(t) + J e--r(t-s)K(t- s)A(J e- -y(s-O)Asin(A(s - O))w(O)dB)ds+ 

0 0 
t s 

(23) + J e-'Y(t-s)Q(t- s)(j e-'Y(s- O)cos(A(s- O))w(O) d()) ds = 
0 0 

= e- 1 tF(t), t > 0, 

where F(t) = Af(t). 
Under assumptions on the kernel Kit's Laplace transform: 

+oo 

K(>.) = j e->.tK(t) dt 
0 

satisfies the estimate 

(24) IK((p + 'Y) + iv)l ~ (( co;t 
2
)!, p?: 0. 

P+r +v 2 

In turn the Laplace transform Q of the function Q satisfies the inequality 

(25) 
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Applying the Laplace transform to the equation (25) we obtain 

((I+ K(>. + 'Y)A2((A + 1)2 I+ A2
) -

1+ 
(26) +(A+ 'Y)Q(A + 'Y)( (A + 1)2 I+ A2)-1)w(A) = 

= F(>, + 'Y), ReA> 0, A= J), + iv, 

where w(A) is the Laplace transform of the function w. Let's assume 7 = Jl;+'Y 
and evaluate the norm of operator K(7 + iv)A2((r + iv)2I + A2

)-1). We 
evaluate the function 

a2 (1(7 + iv)2 + a21)-1(r2 + v2)-~ 

where a E [a0 , +oo ), ao = inf (Au, u) > 0 and v E R We choose certain 
!lu!IH=l 

number dE (0, 1) and estimate the function f(a, v, 7) = (l(r+iv)2 +a2 1)2(72 + 
v2) from below: 

f(a, v, 7) = ((72 + a2 - v2) 2 + 472v2)(72 + v2
) ;::: 

;::: min[min112e[O,da2J f(a, v, 7), minv2E[da2,+oo] f(a, v, 7)] ;:::=: 

;::: min[(72 + (1- d)a2 ) 27 2 , (72 + da2) 24da272]. 

Hence using the inequality (24) and the theorem about spectral representa
tion of the selfadjoint operator A we obtain: 

IIK(r + iv)A2((7 + iv)2 I+ A 2t 1
11 S 

< constmax [ a
2 

a
2 

] < 
- (r2+(l-d)a2)r' 2ar(d(r2+da2)); -

< const max [ ~ 1 
] < 

- (~+(1-d))r' 2r(d(~+d))2 -

S const max [ (l_:d)r, 2;d] . 
Choosing d = i we get the following estimate 

-·························- ········ ··c27J······-- · ····11K(+···=F·iv)A2{(7···+··i-z;;)·2I-=FA2)-lll··· ::;--const·t;,~·r·:::;·--~~~·:·-----........................... . 

Now we will obtain the estimate of the following expression: 

IIQ(r + iv)(7 + iv)((r + iv)2 I+ A2
) -

1 11. 

In order to do this we evaluate the scalar function 

I 

(r + iv) 1
2 

g(r,v,a)= (7+iv)2+a2 ' 
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where a E [ao, +oo), r = J.t + { 1 J.t 2 0, v E lit It is rather clear that the 
following chain of the inequalities is valid: 

On the base of the estimates (25), (28) and theorem about the spectral 
representation of the selfadjoint operator A we have 

(29) 

Then choosing big enough 'Yo from the estimates (27), (29) and representa
tion (26) we obtain that function w belongs to Hardy space H2(~JV .. > 0) in 
the right half-plane (~.A> 0). Hence on the base of Hardy theorem we have 
the the unique solvability of the integral equation (23) in the space L2 (lltr , H) 
for arbitrary 'Y 2 'Yo· 

Then the integral equation(22) has a unique solution z E L2(11tr,H1) for 
arbitrary 'Y 2 'Yo· In turn, from the representation v = .Cz and Lemma 1 
from [7] we have the unique solubility of the Cauchy problem (10), (11) in 
the space Wi,-r(~,A2 ) for arbitrary 'Y 2 'Yo· 

In order to make the description more complete and for the convenience 
of the readers we give here the formulation of Lemma 1 from [7]. 

Denote by Ill · Ill the norms of operators acting in the space L2 (lltr, H). 
Lemma 1. ( {7}) The operators £ and M defined as 

(.Cz)(t) = { J
0

: e--r(t-s)A- 1sin(A(t - s))z(s)ds, t 2 0 

t < 0; 

(Mz)(t) = { l e4 <'- •Jcos(A(t- s))z(s) ds, 

satisfy the estimates 

for 'Y > 0. 

lJ IA£1 11 ~ 2~, 111M III::;~ , 
'Y 

t20 

t < 0; 
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Thus on the base of Lemma 1 ([7J) it is not difficult to obtain that 
function v = C.z belong to the space Wi(ll4, A2 ) and the following estimate 

is valid (see !7] for more details) with const independent on function z E 
L2(Jl4, H1). 

Now we are going to give another versions of the statement for the initial
value problem of the Gurtin-Pipkin itegrodifferential equation. Suppose that 
operators Bj = Di = 0, for j = 1, 2, ... , N, kernels K E Wf(JI4), Q E 
L1(Jl4). 

Then the initial-value problem (10), (11) may be reduced to the following 
form 

(30) 
t 

u<2
) + A2u(t) + J K(t- s)A2u(s) ds+ 

0 
t 

+ J Q(t- s)u<1>(s)ds = h(t), t > 0 
0 

(31) u(+O) = rp(- 0) = <po, u<1)(+0) = rp<1)(-0) = 1P1 

with new right part 
h(t) = f(t) + h(t), 

where 

0 0 

(32) h(t) = - j K(t- s)A2rp(s) ds- j Q(t- s)rp<1)(s) ds. 
-oo -oo 

On the base of Hausdorf-Young inequality we obtain that vector-function 
h E L2m (ll4, H1) and the following inequalities: 

where 

llhiiL2,"f(IR+,H1) ~ 
v•·•.-••v•··--~·•••·---···-·-·-··~··o•••••o••••••••oyoy••••••v• ·•-• ·o·••·vo•V••••O•••••o••••o••o••••••••• •• • ••••v•••••••••••ov• o• •o••••••••v•••• .. ••o•••v•••••••v --•-••••••••V•••••••••••••••v•v•• •••• •• •••••••••••• •o•••••••••••••••••v•••O•••••• 

-oo 

e- 1tq1 (t) = j e- 'Y(t-s)K(t - s) [e-15A 2rp(s)] ds, 

0 
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-co 

e-Ttq2(t) = J e--y(t-s)Q(t- s) [e--ys<p(1)(s)] ds, 

0 

are valid. 
Owing to the trace theorem (see [16], chapter I, for more details) we have 

rp( -0) E H5; 2, rp<1>( -0) E H3; 2 , and the following estimates 

llrp( -0)115;2 ~ K2111PIIwt,/1R-,A3), K2 = const > 0, 

llrp(1
)( -0)113; 2 ~ Ksii1PIIw!,.y(JIL,A3), Ks = const > 0, 

are satisfied. Introducing the new function y(t) = e-"Ytu(t) we obtain the 
following problem for function y: 

(33) 

(34) 

t 
y<2>(t) + 2/y(1)(t) + (A2 + 12I)y(t) +I e- -y(t-s)K(t- s)A2y(s) ds+ 

0 

t 

t 
+I e- -y(t- s)Q(t - s)y<1>(s) ds+ 

0 

+1 I e--r(t-s)Q(t- s)y(s) ds = e-"Ytfl(t), t > 0. 
0 

y(+O) = <po, y<1)(+0) = f.P1- 11Po· 

In turn using the substitution 

we reduce that function v satisfies the problem (21). Thus the assumption 
rp(t) = 0, t ~ 0 do not restrict the generality of our considerations in the 
proof of the theorem 2. 

Now let us suppose that kernel Q = 0. Then after integrating the equa
tion (30) from 0 till tot we have 

(35) ~ (t) + j A2u(O) dO+ j (j K(s- B)A2u(B) de) ds = 
0 0 0 

t 
=I ft(O) dO+ u<1)(+0). 

0 
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Changing the order of integrating in the third term of (35) we obtain the 
following equation 

t t 

(36) ~~(t) + f A2u(O) dB+ f Q(t- O)A2u(O) dO= 
0 0 

= f2(0) , 

where 
t t 

Q(t) =I K(() d(, h(t) =I JI(O) dB+ <pl 

0 0 

Hence we obtain that function u satisfies the following integrodifferential 
equation of the first order: 

t 

(37) ~~(t) + f G(t- e)A2u(B) dO= h(t), 
0 

u(+O) = <po, 

where the kernel 
G(t) = 1 + Q(t). 

It is relevant to underline that the equation (37) is an abstract form of 
Gurtin-Pipkin equation proposed by Pandolfi in [11), [13). 
Remark 3 .. In spite the fact that the problem (1), (2) and problem (10), 
(11) looks like the similar problems the perturbations of abstract hyperbolic 
equation in the equation (1) and in the equation (10) are different. So in 
the equation (1) the conditions on the kernel K(t) are more general but it is 
possible to include only first power of operator A in the perturbation term. 
On the order hand in the equation (10) the conditions on the kernel J( are 
more restrictive (K E Wf(JR,.)) but it is possible to include the second power 
of operator A in the perlurbation term. 

4. Comments and remarks. An essential feature of our results 
·· ·· sucl:r-a;s -Tne·orerrcl--is-·"to· -auo~rvariable · delays··-as··well·as··variable·--co-efficients·· ···· .. ···················· ·· ········ 
Bj (t)A and Dj( t), while in [3], [17]-[20] the case of constant delays under 
more stringent constants on coefficients is investigated. 

We also consider unbounded operator coefficients Bj(t)A on the delay 
terms, in comparison with the existing results in hyperbolic case [14]-[15]. 

The method for providing Theorem 1 is different from those adopted in 
[3), [14]-[15], [17]-[20], [26] and is analogous to the method used in [7]-[10], 
[23], [25]. Our results generalize those in [7]. More precisely, the argument 
in our proof of Theorem 1 is similar to that in the proof of Theorem 1 
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from [7]. Like in [7] we use a reduction of the problem (1)-(2) to an equivalent 
functional integral equation in the space L2 (IR,-, H1). The argument, based 
on the fact that this functional integral equation (analogous to equation (29) 
from [7]) has a bounded operator coefficients, enables us to estimate the 
norms of above mentioned operators in the space L2(IR,-, H1). In the process 
of estimating the norms of integral operators, we essentially need to use 
Lemma 1 and Lemma 2 from [7]. 

It is relevant to underline here that our method of proving the correct 
solvability of the initial-value problem (10)-(11) is seriously different in the 
comparison with approach used by L. Pandolfi in [11]. The proof of the 
theorem 2 is based on the reduction of the problem (10), (11) to equivalent 
in the sense of solubility functional integral equation (22) of convolution 
type in the space L2(IR,-, H1). Then in order to prove it's unique solubility 
we estimate the Laplace transforms of the kernels of the integral terms of this 
equations. In particular case Bj :::: Dj :::: 0, Q(t) = 0, j = 1, 2, ... , N, this 
procedure was provided in the work of V. V. Vlasov and D. A. Medvedev [23] 
(Part I). In [11] L. Pandolfi. studied the Gurtin-Pipkin equation having the 
form (37). Using sine and cosine operator-valued functions he reduced the 
problem (37) to the integral equation on function u which is equivalent in the 
sence of solubility to the problem (37). In his investigators L. Pandolfi. studied 
the solvability of the inregral equation functional spaces on finite interval 
(0, T) of the time variable t. In comparison we study the problem (10), (11) 
in weighted So bolev space W£,

1 
(JR,_, A 2) on the semi axis IR,-. 

In our consideration we essentially use the Hilbert structure of the spaces 
Wi,1 (IR,-, A2

), L2,1 (IR,-, H) and Hardy theorem, while L. Pandolfi. works in 
more general Banach spaces. Another results concerned the investigation of 
the equations of Gurtin-Pipkin type are described in [13]. 

Our study here continues the studies of parabolic functional differential 
equations in [2], [8]-[lOL [23], [25] and the most important feature of equation 
(1) considered here is that the unperturbed equation is an abstract hyperbolic 
equation in a Hilbert space, where the unperturbed equation in relevant 
works [17]-[20] is an abstract parabolic equation with the operator A as a 
generator of a bounded holomorphic semigroup. 

It is relevant to underline that problems similar to (10), (11), arising in 
the theory of viscoelasticity, studied in [21], [24]. 

More details of the proofs, the generalization of the results and compar
ison with existing results will be provided elsewhere. 
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