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Abstract
Neural networks with a non-monotonic activation function have been proposed
to increase their capacity for memory storage and retrieval, but there is still a
lack of rigorous mathematical analysis and detailed discussions of the impact
of time lag. Here we consider a two-neuron recurrent network. We first
show how supercritical pitchfork bifurcations and a saddle-node bifurcation
lead to the coexistence of multiple stable equilibria (multistability) in the
instantaneous updating network. We then study the effect of time delay on
the local stability of these equilibria and show that four equilibria lose their
stability at a certain critical value of time delay, and Hopf bifurcations of these
equilibria occur simultaneously, leading to multiple coexisting periodic orbits.
We apply centre manifold theory and normal form theory to determine the
direction of these Hopf bifurcations and the stability of bifurcated periodic
orbits. Numerical simulations show very interesting global patterns of periodic
solutions as the time delay is varied. In particular, we observe that these four
periodic solutions are glued together along the stable and unstable manifolds
of saddle points to develop a butterfly structure through a complicated process
of gluing bifurcations of periodic solutions.

Mathematics Subject Classification: 34K13, 34K17, 34K18, 37G15, 37G35,
92B20

1. Introduction

Autocorrelation model for associative memory, a major neural network architecture, was
proposed in the early 1970s (see [1, 31, 41]) and has been one of the inspirations for the rapid
development in the theory and applications of both biological and artificial neural networks
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(see [2, 40, 55]). Hopfield [27] showed that a simple discrete nonlinear dynamical system
describing the performance of an additive model with discrete updating can exhibit associative
recall of stored binary patterns through collective computing. Cohen and Grossberg [16] and
Hopfield [28] also obtained powerful convergence results for general additive neural network
models with symmetric synaptic connection matrices of instantaneous feedbacks described
by a system of ordinary differential equations. Their results demonstrate the significance
of understanding the structure and stability of equilibria and their domains of attraction in
connection with neural network applications to associative memory.

Time delay, arising from axonal conduction time, distances of interneurons and finite
switching speeds of amplifiers [20, 21], seems to provide an efficient mechanism for neural
networks to store and retrieve periodic patterns [20, 21, 38] despite the undesirable nonlinear
oscillations in hardware implementation first observed by Marcus and Westervelt [36]. These
delay-induced or delay-enhanced spatiotemporal pattern formation, storage and retrieval have
been intensively studied in [3, 4, 25, 26, 47, 54]. In particular, systems of two coupled delay
differential equations describing the information processing of a network of two neurons with
delayed feedback are considered in [10–15], where the issues of multiple periodic orbits, the
detailed description of the domains of attraction of periodic solutions and the structure of the
global attractor are addressed.

The coexistence of multiple stable patterns such as equilibria and periodic orbits
(multistability) in a neural network is the basis for associative memory storage and retrieval
[20, 27, 28, 35, 38, 40, 52, 53]. Stable equilibria have been proposed as a robust representation
of prototype vectors in associative memory [28, 29]. Indeed, a great deal of work has focused
on the question of how to constrain the weights in a recurrent network so that the network
exhibits only stable states [30, 46, 50, 56]. Stable periodic orbits play an important role in
coding and transmitting information of memories as temporally patterned spike trains in the
nervous system [9, 20, 21, 35, 53]. There are basically three ways in which a neuron model
can switch from a stable steady state to a periodic orbit: (a) Hopf bifurcation, (b) saddle-
node bifurcation on a limit cycle and (c) homoclinic bifurcation. Time delays are commonly
associated with oscillations created by a Hopf bifurcation.

On the other hand, saddle steady states were suggested to play an important role in working
memories operating in non-stationary environments where both long-term maintenance and
quick transitions are desirable [37, 42]. Saddle points were also found to be part of a mechanism
by which recurrent networks induce non-stable representations of large cycles in finite state
machines [49].

The aforementioned stable equilibria, saddle points and periodic orbits provide stretching,
folding and contraction of the semiflows of dynamical systems at the local level. Homoclinic
orbits characterize a recurrent mechanism and heteroclinic orbits provide transition routes for
global folding in the phase space. Their crucial roles in the mechanism originating chaos in
dynamical systems are now widely recognized [19, 43, 48]. The theory of homoclinic and
heteroclinic orbits is well developed for ODE models [19, 32, 51]. In contrast, homoclinic and
heteroclinic orbits in DDEs have not been so well studied, except [33, 34]. In particular, to our
knowledge, the analysis of the effect of the homoclinic and heteroclinic orbits on associative
memory storage and retrieval is still missing.

Potential applications require the dynamical system describing the computational
performance of the network to have as many stable equilibria or stable periodic orbits as
possible. Unfortunately, most of the aforementioned neural network architectures present
major problems as an associative memory device due to the low memory capacity [40].
Motivated by this observation, Morita et al [39, 40] and Yoshizawa et al [55] introduced a non-
monotonic activation function, and showed that the performance of the associative memory
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can be remarkably improved by using a non-monotonic activation function. This improvement
of the network’s capacity for memory storage and retrieval seems to have great potential for
artificial neural network applications. However, as Morita concluded in [39], ‘there still remain
some important problems such as mathematical analysis and biological relevance; we should
further study improved dynamics for developing information processing by neural networks.’

A full mathematical analysis of the dynamics of such a general network may still be
remote until a detailed case study can be attempted, not to mention the additional difficulty by
incorporating time delay. In this paper, we focus on the following simplified recurrent network
of two identical neurons coupled via a non-monotonic activation function with a discrete time
delay

x ′(t) = −αx + Wf (y(t − τ)),

y ′(t) = −αy + Wf (x(t − τ)),
(1.1)

where the activation function f : R → R is given by

f (x) = 1 − exp[−β1x]

1 + exp[−β1x]
× 1 + k exp[β2(|x| − h)]

1 + exp[β2(|x| − h)]
. (1.2)

Here x, y represent the activations of neurons, α > 0 is the ratio of the capacitance to the
resistance, W is the synaptic connection strength, τ � 0 is the time delay, β1 and β2 are
positive constants and h, k are parameters. See the graph of such a function in figure 1.

There is a considerable amount of literature on two-neuron recurrent networks [7, 8, 22, 35,
47]. These previous studies show that two-neuron recurrent networks display similar complex
dynamic behaviours as larger networks and many techniques developed to deal with two-
neuron networks can carry over to large size networks. Moreover, two-neuron networks are
sometimes thought of as systems of two modules, where each module represents the mean
activity of spatially localized neural populations [5, 50].

The purposes of this paper are to provide a rigorous mathematical analysis of the
mechanism for system (1.1) to generate a large number of coexisting stable patterns including
equilibria and periodic orbits, and to understand local bifurcation and global continuation of
periodic solutions for system (1.1). We shall show that within a certain parameter range, model
(1.1) with the instantaneous feedback possesses multiple symmetric steady states, including six
stable equilibria, five unstable equilibria (saddle) and six heteroclinic orbits connecting these
steady states. This coexistence of multiple stable equilibria in the instantaneous updating
network occurs through the mechanisms of supercritical pitchfork bifurcations and saddle-
node bifurcations.

Time delay has a profound impact on the global dynamics of system (1.1). In particular,
increasing time delay to a critical value, the occurrence of Hopf bifurcations of the four
equilibria results in four periodic orbits simultaneously, which have a reflection symmetry
about the heteroclinic orbits, which are segments in the lines y = x and y = −x in the
projected (x, y)-plane of the phase space. As the delay increases, the corresponding periodic
orbits with such a reflection symmetry evolve in a similar manner and approach the separatrix of
the saddle points. A butterfly configuration arises from a gluing bifurcation in which the saddle
points experience homoclinicity on both sides of their stable manifolds simultaneously. In the
gluing process, two homoclinic orbits are generated on opposite sides of the stable manifold
of the saddle-focus point and the periods of the periodic orbits increase monotonically towards
infinity as the time delay reaches the bifurcation value. With the reflection symmetry, the
gluing bifurcation has codimension one since only one parameter, the delay, is required to
control the homoclinic connection of periodic orbits.
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Gluing together two periodic orbits is a special process of global continuation during
which two periodic orbits living on the opposite sides of a saddle separatrix are destroyed
and a new attractor is created occupying the loci in the phase space of the previous ones.
The gluing bifurcation seems to have first been introduced by Coullet et al [17] in 1984
and has been studied in the literature for two-dimensional and three-dimensional dynamical
systems [6, 17, 24, 44]. In particular, Borisyuk et al [6] found a torus gluing bifurcation in two
coupled neural oscillators with connections between mutual excitatory neural populations. In
a two-dimensional system, the gluing process is simple, where two limit cycles are glued
together to a two-lobed limit cycle. In a three-dimensional system, the possibility of different
homoclinic connections increases indefinitely and a large variety of hybrid periodic orbits may
be created. In a three-dimensional system with a reflection symmetry, a gluing bifurcation
can occur in one of three configurations: figure-of-eight, butterfly configuration and spiral
configuration (a pair of orbits homoclinic to a saddle-focus).

Here, we observe a gluing bifurcation which possesses both spiral configuration and
butterfly configuration in the delay differential system (1.1) as the time delay increases passing
through certain values. We also note gluing processes of periodic solutions which cross the
stable manifolds of the saddle points in the projected (x, y)-plane several times. Furthermore,
we find an interesting bifurcation process, called an inverse gluing bifurcation, where a large
periodic orbit approaches a saddle point along both sides of the saddle separatrix to generate
two homoclinic orbits (at the inverse gluing bifurcation point), and then two smaller periodic
orbits emerge near the homoclinic orbits when the delay is further increased.

The paper is organized as follows. In section 2, we normalize our model (1.1) and discuss
some basic properties of the non-monotonic activation function (1.2). In section 3, we study
the normalized model with the instantaneous feedback (τ = 0) to locate all possible equilibria
in the parameter space, to describe the local stability of these equilibria and to investigate
pitchfork and saddle-node bifurcations which result in multistability in the form of stable
equilibria. In sections 4 and 5, we analyse the effect of time delay on the stability of equilibria,
examine Hopf bifurcations of these equilibria, and apply centre manifold theory and normal
form theory to study the direction of the Hopf bifurcations and the stability of bifurcated
periodic orbits. In section 6, we investigate the global dynamical behaviours of system (1.1)
and illustrate the butterfly phenomena via a sequence of gluing and inverse gluing bifurcations.
In the final section, we discuss some implications of our results in the context of associative
memory.

2. Preliminaries

We first re-scale system (1.1), using the following variables: x̄(t) = x(t/W), ȳ(t) = y(t/W),
ᾱ = α/W , τ̄ = Wτ . Dropping the bar on x, y, α and τ without any notational confusion, we
obtain the following system:

x ′(t) = −αx + f (y(t − τ)),

y ′(t) = −αy + f (x(t − τ)).
(2.3)

In what follows, we shall focus on the above normalized model to discuss the long-term
dynamical behaviours of system (1.1). Equilibrium solutions of system (2.3) must satisfy

αx = f (y), αy = f (x). (2.4)

We rewrite f (x) = σ1(x)σ2(x) where

σ1(x) = 1 − exp[−β1x]

1 + exp[−β1x]
, σ2(x) = 1 + k exp[β2(|x| − h)]

1 + exp[β2(|x| − h)]
.



Multistability and gluing bifurcation to butterflies 1387

x

f(x)

x
0
+x

0
–

k

–k

Figure 1. A nonmonotonic activation function f (x) when k < 0, h > 0, β1, β2 > 0.

Function σ1 : R → R is a sigmoid function which satisfies σ1(0) = 0, 0 � σ1 < 1,
σ1 ∈ C∞(R) and

σ1(−x) = 1 − exp[β1x]

1 + exp[β1x]
= −1 − exp[−β1x]

1 + exp[−β1x]
= −σ1(x).

The origin (0, 0) satisfies equation (2.4), hence it is always an equilibrium. On the other hand,
function σ2 : R → R is an even function, σ2 ∈ C∞(R\{0}). This function has no zero root if
k � 0, and has two zeros if k < 0: x+

0 and x−
0 given by

x+
0 = h +

log(−1/k)

β2
, x−

0 = −h − log(−1/k)

β2
.

The derivatives of σ1(x) and σ2(x) are given by

σ ′
1(x) = 1

2
β1(1 + σ1)(1 − σ1),

σ ′
2(x) = sgn(x)

β2(σ2 − 1)(k − σ2)

k − 1
for x �= 0,

where sgn(x) is the sign of x. Hence, σ ′
1(x) is an even function and σ ′

2(x) is an odd function.
We list some properties of f , for the sake of later usage in discussing the stability of

equilibria and computing the centre manifold when a Hopf bifurcation occurs:

(i) limx→+∞ f (x) = k and limx→−∞ f (x) = −k;
(ii) For k < 0, f (x) = 0 has three roots: x0 = 0, x+

0 , x−
0 ;

(iii) f is an odd function, f ′ is a continuous even function on x ∈ R and

f ′(x) =




1

2
β1(1 + σ1)(1 − σ1)σ2 + sgn(x)

β2σ1(σ2 − 1)(k − σ2)

k − 1
if x �= 0,

1

2
β1

1 + k exp[−β2h]

1 + exp[−β2h]
if x = 0;

(2.5)

(iv) f ∈ C∞(R\{0});
(v) If k < 0, there exist x−

M ∈ (x−
0 , 0) and x+

M ∈ (0, x+
0 ) such that f ′(x−

M) = f ′(x+
M) = 0.

Figure 1 illustrates the shape of a non-monotonic function f when β1, β2 > 0, k < 0 and
h > 0.
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Lemma 2.1.

(i) (x̃, ỹ) = (0, 0) is an equilibrium;
(ii) If (x̃, ỹ) is an equilibrium, then so is (ỹ, x̃);

(iii) If (x̃, ỹ) is an equilibrium, then so is (−x̃, −ỹ).

Equilibria of (2.3) coincide with equilibria of the two-dimensional system x ′(t) = −αx +
f (y), y ′(t) = −αy + f (x). Therefore, in our discussion about the structure of equilibria, we
can think of the phase space as (x, y)-plane, although the phase space for (2.3) is infinitely
dimensional. Lemma 2.1(iii) suggests that equilibria of system (2.3) are symmetric with
respect to the origin in the phase space (x, y)-plane. Furthermore, two symmetric equilibria at
(x̃, ỹ) and (−x̃, −ỹ) have the same stability since the derivative of f is an even function (the
property (iii) of function f ). Hence, we only need to focus on the equilibria with x̃ � 0 (or
x̃ � 0), i.e. in the first and fourth quadrants (or, the second and third quadrants). Lemma 2.1(ii)
suggests that equilibria of system (2.3) are symmetric about the line y = x. With such a
symmetry, we only need to focus on the equilibria with ỹ � |x̃| (or ỹ � |x̃|). In what follows,
we shall focus on the analysis of the existence and stability of equilibria with either ỹ � |x̃|
or ỹ < |x̃| in the first and fourth quadrants, but we shall show equilibria in all quadrants in the
phase portraits.

3. Multistability with instantaneous feedback (τ = 0)

An equilibrium, (x̃, ỹ), is the intersection of the curves y = f (x)/α and x = f (y)/α. The
number of equilibria of system (2.3) depends on values of parameters α, β1, β2, k, h. For the
potential application to associative memory, we wish to have as many equilibria as possible
in the five-dimensional parameter space. In this paper, we restrict to the parameter space in
which h > 0 and −1 � k < 0 as Morita et al did in [39].

In this section, we focus on the case when τ = 0. Stability of an equilibrium, (x̃, ỹ), is
determined by the linearized system

x ′
1(t) = −αx1 + f ′(ỹ)x2 = −αx1 + µ̃x2,

x ′
2(t) = −αx2 + f ′(x̃)x1 = −αx2 + µx1,

(3.6)

where (x1(t), x2(t)) = (x(t) − x̃, y(t) − ỹ), µ̃ = f ′(ỹ) and µ = f ′(x̃). The characteristic
equation is given by

det

(
λ + α −µ̃

−µ λ + α

)
= 0.

This gives rise to two eigenvalues

λ1,2 =
{

−α ± √
µµ̃ if µµ̃ � 0;

−α ± i
√|µµ̃| if µµ̃ < 0.

(3.7)

It is well known that the equilibrium is locally asymptotically stable if both eigenvalues λ1 and
λ2 have negative real parts, and unstable if one or more of the eigenvalues has a positive real
part. Therefore, we have

Theorem 3.1. If µµ̃ < α2, an equilibrium, (x̃, ỹ), is locally asymptotically stable; if µµ̃ > α2,
the equilibrium is unstable. If µµ̃ = α2, one eigenvalue is zero, and hence a bifurcation occurs.
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In what follows, we describe in detail the bifurcation process for system (2.3) to exhibit
one, three, seven and eleven equilibria, and label these equilibria as E1, E2, . . . , E11. Note
that the subindex of each equilibrium will be used only to label the equilibrium for ease of
reference. We know that system (2.3) always has an equilibrium at origin (0, 0), denoted by
E1(0, 0).

One equilibrium E1(0, 0). Let µ1 = f ′(0) be the slope of the curve of y = f (x) at the
origin E1(0, 0). If 0 < µ1 < α, there is only one intersection of the two curves y=f (x)/α

and x = f (y)/α, and this is the origin E1(0, 0). By theorem 3.1 with µ = µ̃ = µ1, the
equilibrium E1(0, 0) is asymptotically stable.

When µ1 = α, the curve y = f (x)/α is tangent to the curve x = f (y)/α at the
origin (0, 0) and one eigenvalue of the characteristic equation at the equilibrium E1 becomes
zero. Equilibrium E1(0, 0) loses its stability and a bifurcation occurs. This is a supercritical
pitchfork bifurcation with the stable manifold W s = {(x, y) : y = −x} and a centre manifold
W c = {(x, y) : y = x}, which results in multistability: the coexistence of two stable equilibria
as discussed in the next part (three equilibria). The bifurcation set for µ1 = α is given by

1

2
β1

1 + k exp[−β2h]

1 + exp[−β2h]
= α,

that is,

e−β2h = β1 − 2α

2α − β1k
. (3.8)

This means β1 > 2α if k = −1; and 2α < β1 � 4α
1+k

if −1 < k < 0. The surface in the
parameter space described by (3.8) is the boundary between the regions where (2.3) has one
equilibrium or three equilibria.

Three equilibria. When µ1 = f ′(0) > α, equilibrium E1(0, 0) becomes a saddle (see
figure 2(a)) since two eigenvalues of the linearization at the equilibrium E1 have opposite
signs. The curves y = f (x)/α and x = f (y)/α have two new intersections symmetric with
respect to the origin: E2(x̃2, ỹ2) and E3(−x̃2, −ỹ2) with ỹ2 = x̃2 > 0. Note that there appear
two heteroclinic orbits: one connecting equilibria E1 and E2, denoted by E1E2, and another
one connecting equilibria E1 and E3, denoted by E1E3.

Let µ2 = f ′(x̃2) be the slope of the curve y = f (x) at E2. It is clear that µ2 < α.
If µ2 > −α, then equilibria E2 and E3 are both stable by theorem 3.1 with µ = µ̃ = µ2.
Figure 2(a) shows the phase portrait in this case where (2.3) has three equilibria and two
heteroclinic orbits: E1 (saddle), E2 and E3 (stable nodes), E1E2 and E2E3 (heteroclinic orbits)
and the dotted curves are graphs of y = f (x)/α and x = f (y)/α.

When µ2 = −α, the curve y = f (x)/α is tangent to the curve x = f (y)/α at the
equilibrium E2(x̃2, ỹ2). Equilibrium E2 then loses its stability and a supercritical pitchfork
bifurcation occurs, which results in the occurrence of coexisting four stable equilibria. To
compute the stable manifold and centre manifold at E2, we use the Taylor series expansion of
the function f at the equilibrium E2 to obtain the following differential equations

x ′
1(t) = −αx1(t) − αx2(t) + 1

2f ′′(ỹ2)x
2
2 (t) + 1

6f ′′′(ỹ2)x
3
2(t) + O(x4

2),

x ′
2(t) = −αx2(t) − αx1(t) + 1

2f ′′(x̃2)x
2
1 (t) + 1

6f ′′′(x̃2)x
3
1(t) + O(x4

1),
(3.9)

where (x1(t), x2(t)) = (x(t) − x̃2, y(t) − ỹ2), f ′′(x̃2) = f ′′(ỹ2) and f ′′′(x̃2) = f ′′′(ỹ2). We
compute the centre manifold in the form of

x2 = h(x1) = ax1 + bx2
1 + cx3

1 + O(x4
1). (3.10)
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Figure 2. Phase portraits of (2.3) with three equilibria (a) and seven equilibria (b), where the dotted
curves are graphs of y = f (x)/α and x = f (y)/α.

Differentiating equation (3.10), substituting the second equation into the first equation of (3.9)

and comparing the coefficients, we obtain

−α − aα = −aα − a2α,

1
2f ′′(x̃2) − bα = −2bα − 3abα + 1

2a3f ′′(x̃2),

1
6f ′′′(x̃2) − cα = −3cα − 4acα + 2a2bf ′′(x̃2) + 1

6a4f ′′′(x̃2) − 2b2α.

The first equation gives rise to a = ±1. When a = 1, two other equations yield b = 0,
c = 0; when a = −1, b = 1

2α
f ′′(x̃2), c = − 1

4α2 [f ′′(x̃2)]2. We know that the linearized
equations of (3.9) have the stable subspace Es = {(x, y) : y = x} and centre subspace
Ec = {(x, y) : y = −x}. Hence, the stable manifold and centre manifold of this pitchfork
bifurcation are given by

W s = {(x, y) : y = x},

W c =
{
(x, y) : y = −x +

1

2α
(x − x̃2)

2f ′′(x̃2) − 1

4α2
(x − x̃2)

3[f ′′(x̃2)]
2 + O((x − x̃2)

4)

}
.

The bifurcation set is given by

αx̃2 = σ1(x̃2)σ2(x̃2),

1

2
β1(1 + σ1)(1 − σ1)σ2 +

β2σ1(σ2 − 1)(k − σ2)

k − 1
= −α.

(3.11)

In particular, we can compute the limit value of β2 as β1 → ∞. Specifically, as β1 → ∞,
σ1 → 1, σ ′

1 → 0 and x̃2 → σ2/α > 0. Therefore, the limit value β̄2 must satisfy

β̄2(σ2 − 1)(k − σ2)

k − 1
= −α, σ2 = 1 + k exp[β̄2(σ2/α − h)]

1 + exp[β̄2(σ2/α − h)]
. (3.12)

When α = 1, k = −0.8, h = 0.5, we obtain β̄2 = 2.341 96. The surface in the parameter
space described by (3.11) is the boundary between the regions where (2.3) has three or seven
equilibria.
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Seven equilibria. When µ2 = f ′(x̃2) < −α, equilibrium E2 becomes a saddle (see figure 2(b))
since two eigenvalues of the characteristic equation have opposite signs. In addition to
three equilibria E1, E2, E3 and two heteroclinic orbits E1E2 and E1E3, there appear four
new intersections of the curves y = f (x)/α and x = f (y)/α: E4(x̃4, ỹ4), E5(ỹ4, x̃4),
E6(−x̃4, −ỹ4), E7(−ỹ4, −x̃4) with ỹ4 > x̃4 > 0.

Let µ3 = f ′(x̃4), µ4 = f ′(ỹ4) with ỹ4 > x̃4 > 0. It is clear that µ3 > −α, µ4 < −α

and µ3µ4 < α2. Equilibrium E4 is a stable node when 0 � µ3µ4 < α2 and a stable focus
when µ3µ4 < 0. Figure 2(b) shows the phase portrait where (2.3) has seven equilibria: three
saddles E1, E2, E3 and four stable foci E4, E5, E6, E7.

If two curves y = f (x)/α and x = f (x)/α intersect in the second and fourth quadrants
and are tangent to each other, we see the appearance of two new steady states symmetric
with respect to the origin and two new heteroclinic orbits: E8(x̃8, ỹ8) and E9(−x̃8, −ỹ8) with
x8 > 0 and y8 = −x8, and E1E8, E1E9 (heteroclinic orbits). Let µ5 = f ′(x̃8). In such a case,
µ5 = −α. Since one eigenvalue of the characteristic equation at E8 is zero, a saddle-node
bifurcation occurs. The stable manifold and centre manifold of this saddle-node bifurcation
are given by

W c = {(x, y) : y = −x},

W s =
{
(x, y) : y = x − 1

4α
(x − x̃8)

2f ′′(x̃8) +
1

16α2
(x − x̃8)

3[f ′′(x̃8)]
2 + O((x − x̃8)

4)

}
.

This saddle-node bifurcation increases the number of stable equilibria to six. The bifurcation
set is given by

−αx̃8 = σ1(x̃8)σ2(x̃8),

1

2
β1(1 + σ1)(1 − σ1)σ2 +

β2σ1(σ2 − 1)(k − σ2)

k − 1
= −α.

(3.13)

In particular, we can compute the limit value of β2 as β1 → ∞. Specifically, as β1 → ∞,
σ1 → 1, σ ′

1 → 0, x̃8 → −σ2/α and σ2 < 0. Therefore, the limit value β̄2 must satisfy

β̄2(σ2 − 1)(k − σ2)

k − 1
= −α, σ2 = 1 + k exp[β̄2(−σ2/α − h)]

1 + exp[β̄2(−σ2/α − h)]
.

When α = 1, k = −0.8, h = 0.5, we obtain β̄2 = 13.9355. The surface in the parameter
space described by (3.13) is the boundary between the regions where (2.3) has seven equilibria
or eleven equilibria. Figure 3(a) shows the phase portrait in this case where (2.3) undergoes
saddle-node bifurcations at E8 and E9.

Eleven equilibria. As µ5 < −α, the two curves y = f (x)/α and x = f (y)/α have now
two intersections E10(x̃10, ỹ10) and E11(−x̃10, −ỹ10) with x̃10 > 0 and ỹ10 = −x̃10 in each of
the second and fourth quadrants, as well as two new heteroclinic orbits E8E10 and E9E11, as
shown in figure 3(b). By theorem 3.1 with µ = µ̃ = µ5, equilibrium E8 becomes a saddle
since two eigenvalues of the characteristic equation have opposite signs.

Let µ6 = f ′(x̃10) be the slope of the curve y = f (x) at E10(x̃10, ỹ10). It is clear that
−α < µ6 < 0. By theorem 3.1 with µ = µ̃ = µ6, equilibrium E10 is asymptotically stable.
Figure 3(b) shows the phase portrait in this case where (2.3) has five saddles E1, E2, E3, E8, E9,
four stable foci E4, E5, E6, E7 and two stable nodes E10, E11.

In summary, one equilibrium, three equilibria with two heteroclinic orbits, seven equilibria
with two heteroclinic orbits or eleven equilibria with six heteroclinic orbits can coexist in
system (2.3), depending on values of the parameters α, β1, β2, k, h. Figure 4 shows the
bifurcation sets of (2.3) in the (β1, β2)-plane and different regions where (2.3) has one, three,
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Figure 3. Phase portrait of (2.3) with saddle-node bifurcations (a) and eleven equilibria (b), where
the dotted curves are graphs of y = f (x)/α and x = f (y)/α.
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Figure 4. The bifurcation sets of (2.3) in the (β1, β2)-plane and different regions where (2.3) has
one, three, seven and eleven equilibria when τ = 0, α = 1, k = −0.8 and h = 0.5. Curves AB,
CD and EF represent bifurcation sets corresponding to equations (3.8), (3.11), (3.13), respectively.
The dotted curve between CD and EF is where µ3µ4 = 0, which separates the region (c) into
two areas. In the area between CD and the dotted curve, E4, E5, E6, E7 are stable nodes, and
in the area between the dotted curve and EF these equilibria are stable foci. There is one stable
equilibrium in the region (a); three equilibria in the region (b); seven equilibria in the region (c);
eleven equilibria in the region (d).

seven and eleven equilibria when τ = 0, α = 1, k = −0.8 and h = 0.5. Curves AB,
CD and EF represent bifurcation sets corresponding to equations (3.8), (3.11), (3.13), and
they are boundaries between the regions with different numbers of equilibria in the parameter
space. The limit value of β2 is 2.341 96 for the curve CD, and 13.9355 for the curve EF as
β1 → ∞. The dotted curve between CD and EF corresponds to µ3µ4 = 0, which separates
the region (c) into two areas. In the area between CD and the dotted curve, E4, E5, E6, E7 are
stable nodes, and in the area between the dotted curve and EF these equilibria are stable foci.
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Table 1. Stability of equilibria of system (2.3) in different regions of Figure 4.

Region Curve Region Curve Region Curve Region
Equilibria (a) AB (b) CD (c) EF (d)

E1 Stable Pitchfork Unstable Unstable Unstable Unstable Unstable
E2, E3 — — Stable Pitchfork Unstable Unstable Unstable
E4, E5, E6, E7 — — — — Stable Stable Stable
E8, E9 — — — — — Saddlenode Unstable
E10, E11 — — — — — — Stable
No of equilibria 1 1 3 3 7 9 11
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Figure 5. The bifurcation diagram in the (x̃, β2)-plane when α = 1, β1 = 7.5, k = −0.8 and
h = 0.5. Solid curves correspond to stable equilibria; dashed curves correspond to unstable
equilibria (saddles). Bifurcation values are β2 = 0.749 387 (G), β2 = 4.124 125 (H) and
β2 = 14.343 59 (I).

There is one stable equilibrium E1(0, 0) in the region (a); three equilibria in the region (b): one
saddle E1, two stable nodes E2, E3; seven equilibria in the region (c): three saddles E1, E2, E3,
four stable nodes or four stable foci; and eleven equilibria in the region (d): five saddles, four
stable foci and two stable nodes E10, E11. Table 1 lists the stability of equilibria of system (2.3)
in different regions of figure 4.

Figure 5 shows the bifurcation diagram in the (x̃, β2)-plane when τ = 0, α = 1, β1 = 7.5,
k = −0.8 and h = 0.5. There exist three bifurcations: a supercritical pitchfork bifurcation
at β2 = 0.749 387 (labelled as G in the Figure), a supercritical pitchfork bifurcation at
β2 = 4.124 125 (labelled as H) and a saddle-node bifurcation at β2 = 14.343 59 (labelled as I).

Multistability in the form of the coexistence of multiple stable equilibria occurs when
β2 > 0.749 387, as shown in figure 5: when 0.749 387 < β2 < 4.124 125, there are two
stable equilibria; when 4.124 125 < β2 < 14.343 59, there are four stable equilibria; when
β2 > 14.343 59, there are six stable equilibria.

4. Effect of τ on stability and multistability

We now address the impact of time lag τ on the stability of the equilibria. When τ > 0, the
linearized system of (2.3) at an equilibrium, (x̃, ỹ), is given by

x ′
1(t) = −αx1 + f ′(ỹ)x2(t − τ) = −αx1 + µ̃x2(t − τ),

x ′
2(t) = −αx2 + f ′(x̃)x1(t − τ) = −αx2 + µx1(t − τ),
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where (x1(t), x2(t)) = (x(t) − x̃, y(t) − ỹ), µ = f ′(x̃) and µ̃ = f ′(ỹ). The characteristic
equation is given by

det

(
λ + α −µ̃e−λτ

−µe−λτ λ + α

)
= 0.

That is,

(λ + α)2 − µµ̃e−2λτ = 0. (4.14)

Since µ = µ̃ if and only if the equilibrium is on the line y = x or y = −x, we shall distinguish
two cases: for those on the lines y = x and y = −x, and for those off the lines.

Stability of equilibria on the lines y = x and y = −x. Obviously, equilibria on the lines y = x

and y = −x are E1, E2, E3, E8, E9, E10, E11. Let λ = γ + iω, γ, ω ∈ R. Equation (4.14)
with µ = µ̃ gives rise to

(γ + α)2 − ω2 = µ2e−2γ τ cos(2ωτ), 2ω(γ + α) = −µ2e−2γ τ sin(2ωτ). (4.15)

Squaring and adding two equations of (4.15), we obtain

(γ + α)2 + ω2 = µ2e−2γ τ . (4.16)

Adding the first equation in (4.15) to equation (4.16) yields

γ = −α ± |µ|e−γ τ cos(ωτ). (4.17)

It is straightforward to verify that

Theorem 4.1. If parameters satisfy |µ| < α, all eigenvalues λ of equation (4.14) have negative
real parts.

As an immediate consequence, we obtain

Lemma 4.2. Stable equilibria on the lines y = x and y = −x with the instantaneous feedback
remain to be stable when τ > 0.

Hence, equilibrium E1 in the region (a) of figure 4, equilibria E2 and E3 in the region (b) of
figure 4, equilibria E10 and E11 in the region (d) of figure 4 are all stable when τ > 0.

Theorem 4.3. If parameters satisfy |µ| = α, equation (4.14) always has one eigenvalue λ = 0
for all τ � 0, and all other eigenvalues have negative real parts.

Proof. It is easy to check that λ = 0 is one solution of equation (4.14) for all τ � 0. Under
the condition of the theorem, equation (4.17) becomes

γ

α
= −1 ± e−γ τ cos(ωτ). (4.18)

Suppose γ > 0. Then
γ

α
= −1 ± e−γ τ cos(ωτ) � −1 + e−γ τ � 0,

a contradiction to our assumption. Hence, γ � 0. Equation (4.16) leads to (γ + α)2 + ω2 =
α2e−2γ τ . When γ = 0, it yields ω = 0, i.e. λ = 0. Hence for λ �= 0, the real part γ must
satisfy γ < 0. �

Lemma 4.4. Steady-state bifurcations occurring in the instantaneous feedback case also take
place when τ > 0.
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Thus, the supercritical pitchfork bifurcations on the curve AB, CD and the saddle-node
bifurcation on the curve EF of figure 4 also take place when τ > 0.

The following two theorems suggest that Hopf bifurcations can occur when |µ| > α,
creating unstable periodic solutions:

Theorem 4.5. If parameters satisfy |µ| > α, the characteristic equation (4.14) has a pair of
purely imaginary eigenvalues λ = ±iω satisfying

ω =
√

µ2 − α2, (4.19)

when τ takes the following values

τj = 1

2
√

µ2 − α2




[
arctan

(
2α

√
µ2 − α2

µ2 − 2α2

)
+ 2jπ

]
if α < |µ| �

√
2α,

[
arctan

(
2α

√
µ2 − α2

µ2 − 2α2

)
+ (2j + 1)π

]
if |µ| >

√
2α

(4.20)

for j = 0, 1, 2, . . ., where arctan is the principal branch of the inverse tangent function.

Proof. Let λ = iω with ω > 0. Equation (4.16) yields

ω =
√

µ2 − α2.

It easily follows from system (4.15) that sin(2ωτ) is always negative and the sign of cos(2ωτ)

depends on the value of µ2 − 2α2. Dividing the second equation by the first equation of (4.15)
leads to equation (4.20). It is clear that ω is well-defined if and only if |µ| > α. �

Theorem 4.6. If parameters satisfy |µ| > α, equation (4.14) always has a positive eigenvalue.

Proof. We consider the real eigenvalue of equation (4.14). Equation (4.14) yields λ =
−α ± |µ|e−λτ where λ is the real value. Let g(λ) = λ + α − |µ|e−λτ . It is clear that
g(0) = α − |µ| < 0 under the condition of |µ| > α. Furthermore, limλ→∞ g(λ) = +∞.
Hence, there exists λ0 > 0 satisfying g(λ0) = 0. �

Lemma 4.7. An equilibrium on the line y = x or line y = −x remains unstable for τ > 0 if
it is unstable in the instantaneous feedback case.

Stability of equilibria E4, E5, E6, E7. Let (x̃, ỹ) be one of equilibria E4, E5, E6 E7 and
µ = f ′(x̃), µ̃ = f ′(ỹ). It follows from the bifurcation process discussed in section 3 that
µµ̃ < α2. Let λ = γ + iω, γ, ω ∈ R. For the equilibria E4, E5, E6, E7, equation (4.14) gives
rise to

(γ + α)2 − ω2 = µµ̃e−2γ τ cos(2ωτ), 2ω(γ + α) = −µµ̃e−2γ τ sin(2ωτ). (4.21)

Squaring and adding two equations of (4.21), we obtain

(γ + α)2 + ω2 = |µµ̃|e−2γ τ . (4.22)

Adding the first equation in (4.21) to equation (4.22) yields

γ =
{

−α ± √|µµ̃|e−γ τ cos(ωτ) if µµ̃ � 0;
−α ± √|µµ̃|e−γ τ sin(ωτ) if µµ̃ < 0.

(4.23)
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In case where 0 � µµ̃ < α2, applying theorem 4.1 with µ replaced by
√

µµ̃, we obtain the
following

Lemma 4.8. If parameters satisfy 0 � µµ̃ < α2, equilibria E4, E5, E6, E7 preserve their
stability when τ > 0.

Theorem 4.9. If parameters satisfy −α2 � µµ̃ < 0, all eigenvalues λ of equation (4.14) have
negative real parts.

Proof. Under the condition −α2 � µµ̃ < 0, it easily follows from equation (4.14) that λ �= 0.
We first prove that the real part γ of λ must be negative when −α2 < µµ̃ < 0. Suppose that
γ > 0. Equation (4.23) becomes

γ = −α ±
√

|µµ̃|e−γ τ sin(ωτ) � −α +
√

|µµ̃|e−γ τ � −α +
√

|µµ̃| < 0, (4.24)

a contradiction to our assumption. Then suppose γ = 0. Equation (4.22) yields α2 + ω2 =
|µµ̃|, a contradiction to the condition −α2 < µµ̃ < 0. Hence, γ must be negative for
−α2 < µµ̃ < 0.

Now we consider µµ̃ = −α2. Equation (4.22) leads to (γ + α)2 + ω2 = α2e−2γ τ . It
follows from λ �= 0 that γ �= 0. Suppose γ > 0. The above equation (4.24) yields γ � 0,
a contradiction to our assumption. Thus γ must be negative for µµ̃ = −α2. This completes
our proof. �

Lemma 4.10. If parameters satisfy −α2 � µµ̃ < α2, equilibria E4, E5, E6, E7 preserve their
stability when τ > 0.

Theorem 4.11. For µµ̃ < −α2, we have the following:

(i) Equation (4.14) has a pair of purely imaginary eigenvalues λ = ±iω satisfying

ω =
√

|µµ̃| − α2, (4.25)

when τ takes the following values

τj = 1

2
√

|µµ̃| − α2

×




[
arctan

(
2α

√
|µµ̃| − α2

|µµ̃| − 2α2

)
+ (2j + 1)π

]
if − 2α2 � µµ̃ < −α2,

[
arctan

(
2α

√
|µµ̃| − α2

|µµ̃| − 2α2

)
+ 2jπ

]
if µµ̃ < −2α2

(4.26)

for j = 0, 1, 2, . . ., where arctan is the principal branch of the inverse tangent function;
(ii) For τ ∈ [0, τ0), all eigenvalues of the characteristic equation (4.14) have negative real

parts;
(iii) When τ = τ0, except λ = ±iω, all other eigenvalues of equation (4.14) have negative

real parts;
(iv) When τ ∈ (τj−1, τj ) with j = 1, 2, . . ., equation (4.14) has 2j eigenvalues with positive

real parts.

Proof. Equation (4.22) with λ = iω immediately leads to (4.25). Since µµ̃ < 0, it easily
follows from system (4.21) that sin(2ωτ) is always positive and the sign of cos(2ωτ) depends
on the value of |µµ̃| − 2α2. Dividing the second equation by the first equation of (4.21)
yields (4.26).
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Let λ(τ) = γ (τ) + iω(τ) be a solution of (4.14). Since the roots of (4.14) continuously
depend on the parameter τ , γ (τ) is a continuous function with respect to τ . It follows from
equation (4.23) with µµ̃ < 0 that γ (0) = −α is always negative. Furthermore, τ0 is the first
time that a pair of conjugate complex eigenvalues crosses the imaginary axis in the complex
plane. This implies that γ (τ) < 0 on the interval τ ∈ [0, τ0) for all eigenvalues λ. Hence, (ii)
and (iii) hold.

Differentiating equation (4.14) with respect to τ gives rise to

dλ

dτ
= −µµ̃λe−2λτ

λ + α + µµ̃τe−2λτ
= −λ(λ + α)

1 + τ(λ + α)

= − (γ + iω)(γ + α + iω)(1 + τα + τγ − iτω)

(1 + τα + τγ )2 + (τω)2
.

It follows

d Re λ

dτ
= − (γ 2 + γα − ω2)(1 + τα + τγ ) + τω2(2γ + α)

(1 + τα + τγ )2 + (τω)2
.

At λ = ±iω, we have

d Re λ

dτ

∣∣∣∣
λ=±iω

= ω2

(1 + τα)2 + (τω)2
> 0.

A pair of conjugate complex eigenvalues always crosses the imaginary axis from the left
half plane to the right half plane in the complex plane when τ = τj for j = 0, 1, 2, ....
Thus, the number of eigenvalues with positive real parts increases by 2. This gives the result
of (iv). �

Lemma 4.12. If parameters satisfy µµ̃ < −α2, the four equilibria E4, E5, E6, E7 have the
following properties:

(i) they are asymptotically stable when τ ∈ [0, τ0);
(ii) they are all unstable when τ > τ0;

(iii) there is a pair of purely imaginary eigenvalues λ = ±iω at τ = τj with j = 0, 1, 2, . . .,
for the linearization at these equilibria.

We now summarize our results in figures 6 and 7. Figure 6 shows the areas (labelled by
(c3), (d) and filled by colour) in the (β1, β2)-plane where increasing the delay may affect the
stability of equilibria E4, E5, E6, E7. Note that the curves JK and PQ are the segments of
CD and EF in figure 4, respectively. Two curves NO (thin solid curve, µµ̃ = −α2) and
LM (dotted curve, µµ̃ = 0) separate the region (c) of figure 4 into three parts: (c1), (c2)
and (c3). In areas (c1) and (c2) including the two curves NO and LM , increasing τ does not
change the stability of the four equilibria, i.e. they remain stable. In areas (c3) and (d) where
µµ̃ < −α2, the four equilibria are asymptotically stable when τ ∈ [0, τ0); when τ = τ0, the
four equilibria lose their stability, a pair of purely imaginary eigenvalues λ = ±iω appears and
a Hopf bifurcation may occur; when τ > τ0, the four equilibria become unstable and periodic
limit cycles appear, as will be shown in section 5.

Figure 7 shows the stability diagram in the (µ0, τ )-plane with µ0 = µµ̃ when α = 1. In
the filled area corresponding to either |µµ̃| � α2 or µµ̃ < −α2 but τ < τ0, local asymptotic
stability of equilibria E4, E5, E6, E7 holds. On the other hand, if µµ̃ < −α2 and τ > τ0,
these equilibria lose their stability and become unstable.
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Figure 6. Increasing τ beyond τ0 only affects the stability of equilibria E4, E5, E6, E7 in filled
areas (c3) and (d) in the (β1, β2)-plane of figure 4. Note that the curves JK and PQ are the segments
of CD and EF in figure 4, respectively. Two curves NO (thin solid curve, µµ̃ = −α2) and LM

(dotted curve, µµ̃ = 0) separate the region (c) of figure 4 into three parts: (c1), (c2) and (c3). In
areas (c1) and (c2) including curves NO and LM , increasing τ does not change the stability of
these four equilibria, i.e. they remain stable.
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Figure 7. Stability diagram in the (µ0, τ )-plane with µ0 = µµ̃ when α = 1. Local asymptotic
stability of equilibria E4, E5, E6, E7 holds in the filled area.

5. Hopf bifurcation

In the previous section, we studied the effect of τ on the stability of equilibria obtained in
section 3. We found that if µµ̃ < −α2, as τ increases to τ0, a pair of complex conjugate
eigenvalues associated with equilibria E4, E5, E6, E7 passes through the imaginary axis,
indicating the possibility of a Hopf bifurcation.
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Figure 8. Four stable limit cycles 	4, 	5, 	6, 	7 bifurcated from equilibria E4, E5, E6, E7 coexist
with two stable equilibria E10, E11 when τ > τ0. In this figure, α = 1, β1 = β2 = 10, k = −1,
h = 0.5 and τ = 0.079, and these parameters locate at the region (d) of figure 4 where there exist
eleven equilibria.

It is clear that λ = iω with ω =
√

|µµ̃| − α2 is a simple eigenvalue. Furthermore, in the
proof of theorem 4.11, we have obtained the transversality condition

d Re λ

dτ

∣∣∣∣
λ=±iω

= ω2

(1 + τα)2 + (τω)2
> 0.

Therefore, when τ = τj for j = 0, 1, 2, . . ., system (2.3) undergoes Hopf bifurcations at
equilibria E4, E5, E6, E7 simultaneously, which result in the change of stability of these
equilibria. When τ > τ0, one periodic limit cycle around each equilibrium appears. We
observe six coexisting stable patterns shown in figure 8: two stable nodes E10, E11, four stable
periodic limit cycles 	4, 	5, 	6, 	7 which surround equilibria E4, E5, E6, E7, respectively.

In the remaining part of this section, we use the centre manifold reduction and the normal
form calculation developed in [3, 23] to study the direction of the Hopf bifurcation, stability
and period of the bifurcated periodic solutions around the equilibrium E4, whose coordinate
is denoted by (x̃, ỹ) in this section. Delay τ is restricted to a small neighbourhood of τ0. Let
(x1(t), x2(t)) = (x(τ t) − x̃, y(τ t) − ỹ). Expanding function f at the equilibrium E4(x̃, ỹ),
we obtain the following differential equations:

x ′
1(t) = −ατx1(t) + τ µ̃x2(t − 1) + τ

f ′′(ỹ)

2
x2

2 (t − 1) + τ
f ′′′(ỹ)

6
x3

2(t − 1) + O(x4
2), (5.27)

x ′
2(t) = −ατx2(t) + τµx1(t − 1) + τ

f ′′(x̃)

2
x2

1 (t − 1) + τ
f ′′′(x̃)

6
x3

1(t − 1) + O(x4
1), (5.28)

with µ = f ′(x̃) and µ̃ = f ′(ỹ). Equations (5.27) and (5.28) can also be expressed in the
general setting as follows:

X′(t) = A1X(t) + A2Xt(−1) + F(Xt(−1)),

A1 =
(

−ατ 0

0 −ατ

)
, A2 =

(
0 τ µ̃

τµ 0

)
(5.29)



1400 J Ma and J Wu

with X(t) = (x1(t), x2(t))
T , Xt(s) ∈ C2 := C × C, where C = C([−1, 0]; R), is defined by

Xt(s) = X(t + s) for s ∈ [−1, 0], and

F(Xt(−1)) :=
(

F1(x2,t (−1))

F2(x1,t (−1))

)
=

(
b2x

2
2,t (−1) + b3x

3
2,t (−1)

a2x
2
1,t (−1) + a3x

3
1,t (−1)

)
+ O(||Xt ||4), (5.30)

where

a2 = τ
f ′′(x̃)

2
, a3 = τ

f ′′′(x̃)

6
, b2 = τ

f ′′(ỹ)

2
, b3 = τ

f ′′′(ỹ)

6
.

Let L : C2 → R
2 be a linear operator given by Lϕ = A1ϕ(0)+A2ϕ(−1). There exists a 2 ×2

matrix η : [−1, 0] → R
2×2, whose elements are of bounded variation such that

Lϕ =
∫ 0

−1
[dη(ϑ)]ϕ(ϑ).

In the case of discrete delays, the function η(ϑ) can be expressed in terms of a step function
H(ϑ),

η(ϑ) = A1H(ϑ) + A2H(ϑ + 1), H(ϑ) =
{

0 if ϑ ∈ [−1, 0),

1 if ϑ = 0.

For φ ∈ C2([−1, 0] : R
2) and ψ ∈ CT

2 ([0, 1] : (R2)T), we define two infinitesimal generators,
A in phase space C2 and AT in the adjoint space CT

2 , as

Aφ =




φ̇(ϑ) if ϑ ∈ [−1, 0),∫ 0

−1
dη(ϑ)φ(ϑ) if ϑ = 0.

AT ψ =




−ψ̇(s) if s ∈ (0, 1],∫ 0

−1
ψ(−s)dηT(s) if s = 0,

and a bilinear form

〈ψ, φ〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ ϑ

0
ψ̄(ξ − ϑ)[dη(ϑ)]φ(ξ) dξ.

Let

Rϕ =
{

0 if ϑ ∈ [−1, 0),

F (ϕ) if ϑ = 0.

Then system (5.29) is equivalent to

Ẋt = AXt + RXt . (5.31)

The two infinitesimal generators A and AT have the same eigenvalues ±iωτ0. Eigenvector
q of A corresponding to λ = iωτ0 and eigenvector p of AT corresponding to λ = −iωτ0 are
given by

q(ϑ) = eiωτ0ϑ(1, p̄0)
T , p(s) = Deiωτ0s(p0, 1), where p0 = µeiωτ0

α − iω

with ϑ ∈ [−1, 0] and s ∈ [0, 1]. In order that < p, q >= 1, we choose D = 1
2p0+τ0(µ+µ̃p2

0)eiωτ0
.

Note that∫ 0

−1
[dη(ϑ)]eiωτ0ϑ = iωτ0I2×2,

∫ 0

−1
[dη(ϑ)]e−iωτ0ϑ = −iωτ0I2×2. (5.32)

Using equations (5.32), it is easy to check that < p, q̄ >= 0.
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We map real coordinate (x1, x2) into complex coordinate {(z, z̄); z ∈ C} by (x1, x2) 	→
(x1 + ix2, x1 − ix2). Let � = (q, q̄) and � = (p, p̄). The centre manifold for the system
(5.31) is given by

C0 = {zq + z̄q̄ + W(z, z̄, ϑ)},
where z(t) satisfies the following ordinary differential equation

ż(t) = iωτ0z + p̄(0)F (zq + z̄q̄ + W(z, z̄, ϑ)) = iωτ0z + p̄(0)F0(z, z̄) (5.33)

with F0(z, z̄) = F(zq+ z̄q̄+W(z, z̄, ϑ)). For the solution X(t) of (5.31) on the centre manifold
C0, i.e. Xt ∈ C0, W(z, z̄, ϑ) satisfies

Ẇ =
{

AW − p̄(0)F0(z, z̄)q(ϑ) − p(0)F̄0(z, z̄)q̄(ϑ) if ϑ ∈ [−1, 0),

AW − p̄(0)F0(z, z̄)q(0) − p(0)F̄0(z, z̄)q̄(0) + F0(z, z̄) if ϑ = 0.
(5.34)

We denote the above equation as Ẇ = AW + H(z, z̄, ϑ). On the centre manifold C0 around
z = 0, we have Ẇ = Wzż + Wz̄

˙̄z. Hence,

AW + H(z, z̄, ϑ) = Wzż + Wz̄
˙̄z. (5.35)

Our objective is to reformulate the explicit form of (5.33) in higher order terms of z and z̃. To
achieve our goal, we need to know the Taylor series expansion of F0(z, z̄). Hence, we expand
functions W , H in their Taylor series around z = 0,

W(z, z̄, ϑ) = W20(ϑ)
z2

2
+ W11(ϑ)zz̄ + W02(ϑ)

z̄2

2
+ · · · ,

H(z, z̄, ϑ) = H20(ϑ)
z2

2
+ H11(ϑ)zz̄ + H02(ϑ)

z̄2

2
+ · · · .

Let G(z, z̄) = p̄(0)F0(z, z̄). It has the Taylor series expansion as

G(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
· · · .

Noticing that Xt(ϑ) = (x1,t (ϑ), x2,t (ϑ))T = zq(ϑ) + z̄q̄(ϑ) + W(z, z̄, ϑ) and q(ϑ) =
eiωτ0ϑ(1, p̄0)

T, we have

x1,t (−1) = e−iωτ0z + eiωτ0 z̄ + W
(1)
20 (−1)

z2

2
+ W

(1)
11 (−1)zz̄ + W

(1)
02 (−1)

z̄2

2
+ · · ·

x2,t (−1) = p̄0e−iωτ0z + p0eiωτ0 z̄ + W
(2)
20 (−1)

z2

2
+ W

(2)
11 (−1)zz̄ + W

(2)
02 (−1)

z̄2

2
+ · · ·

Substituting x1,t (−1), x2,t (−1) into equation (5.30), we obtain

F1(x2,t (−1)) = b2p̄
2
0e−i2ωτ0z2 + 2b2p0p̄0zz̄ + b2p

2
0ei2ωτ0 z̄2

+ [2W
(2)
11 (−1)b2p̄0e−iωτ0 + W

(2)
20 (−1)b2p0eiωτ0 + 3b3p0p̄

2
0e−iωτ0 ]z2z̄ + · · ·

F2(x1,t (−1)) = a2e−i2ωτ0z2 + 2a2zz̄ + a2ei2ωτ0 z̄2

+ [2W
(1)
11 (−1)a2e−iωτ0 + W

(1)
20 (−1)a2eiωτ0 + 3a3e

−iωτ0 ]z2z̄ + · · · .
Hence,

F0(z, z̄) =
(

b2p̄
2
0e−i2ωτ0

a2e−i2ωτ0

)
z2 +

(
2b2p0p̄0

2a2

)
zz̄ +

(
b2p

2
0ei2ωτ0

a2ei2ωτ0

)
z̄2 + · · ·
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Noticing G(z, z̄) = D̄[p̄0F1(x2,t (−1)) + F2(x1,t (−1))], we obtain

g20 = 2D̄(a2 + b2p̄
3
0)e

−i2ωτ0 ,

g11 = 2D̄(a2 + b2p0p̄
2
0),

g02 = 2D̄(a2 + b2p
2
0p̄0)e

i2ωτ0 ,

g21 = 2D̄{[2W
(2)
11 (−1)b2p̄

2
0 + 2W

(1)
11 (−1)a2 + 3b3p0p̄

3
0 + 3a3]e−iωτ0

+ [W(2)
20 (−1)b2p0p̄0 + W

(1)
20 (−1)a2]eiωτ0}.

Next, we compute W11 and W20. Substituting W , H and (5.33) into equation (5.35) and
comparing coefficients, we obtain

AW20(ϑ) = i2ωτ0W20(ϑ) − H20(ϑ), AW11(ϑ) = −H11(ϑ). (5.36)

It is clear that

H(z, z̄, ϑ) =
{

−G(z, z̄)q(ϑ) − Ḡ(z, z̄)q̄(ϑ) if ϑ ∈ [−1, 0);
−G(z, z̄)q(0) − Ḡ(z, z̄)q̄(0) + F0(z, z̄) if ϑ = 0.

This yields

H20(ϑ) = −g20q(ϑ) − ḡ02q̄(ϑ), H11(ϑ) = −g11q(ϑ) − ḡ11q̄(ϑ),

H20(0) = −g20q(0) − ḡ02q̄(0) +

(
2b2p̄

2
0e−i2ωτ0

2a2e−i2ωτ0

)
,

H11(0) = −g11q(0) − ḡ11q̄(0) +

(
2b2p0p̄0

2a2

)
.

On the interval ϑ ∈ [−1, 0), equation Ẇ = AW holds and substituting into (5.36) gives rise
to

Ẇ20(ϑ) = i2ωτ0W20(ϑ) + g20q(ϑ) + ḡ02q̄(ϑ),

Ẇ11(ϑ) = g11q(ϑ) + ḡ11q̄(ϑ)
(5.37)

with the initial condition at ϑ = 0 defined by the definition of A:∫ 0

−1
[dη(ϑ)]W20(ϑ) = i2ωτ0W20(0) − H20(0),

∫ 0

−1
[dη(ϑ)]W11(ϑ) = −H11(0).

Solving equations (5.37), we obtain

W20(ϑ) = ig20q(0)

ωτ0
eiωτ0ϑ +

iḡ02q̄(0)

3ωτ0
e−iωτ0ϑ + E1ei2ωτ0ϑ , (5.38)

W11(ϑ) = − ig11q(0)

ωτ0
eiωτ0ϑ +

iḡ11q̄(0)

ωτ0
e−iωτ0ϑ + E2. (5.39)

Subject to the initial condition and using equations (5.32), we obtain(
i2ωτ0I2×2 −

∫ 0

−1
[dη(ϑ)ei2ωτ0ϑ ]

)
E1 =

(
2b2p̄

2
0e−i2ωτ0

2a2e−i2ωτ0

)
,

( ∫ 0

−1
[dη(ϑ)]

)
E2 =

(
−2b2p0p̄0

−2a2

)
.
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It follows that

E1 = 2e−i2ωτ0

D1τ0

(
b2p̄

2
0(α + i2ω) + a2µ̃e−i2ωτ0

b2p̄
2
0µe−i2ωτ0 + a2(α + i2ω)

)
,

E2 = 2

τ0(α2 − µ̃µ)

(
−αb2p0p̄0 + a2µ̃

b2µp0p̄0 − αa2

)
,

where D1 = (α + i2ω)2 − µ̃µe−i4ωτ0 .
Substituting E1, E2 into equations (5.38) and (5.39), we can determine W20(−1),

W11(−1), and furthermore, determine g21. Thus, we can compute the following quantities:

C1(0) = i

2τ0ω

(
g11g20 − 2|g11|2 − |g02|2

3

)
+

g21

2
,

T2 = 1

τ0ω

[
− Im{C1(0} +

Im{λ′(τ0)}
Re{λ′(τ0)}Re{C1(0)}

]
.

These quantities determine the bifurcated periodic solutions on the centre manifold at the
critical value τ0, concluded by theorem 5.1. Simplifying by a near-identity transformation, we
obtain the normal form

ż = iωτ0z + 1
2C1(0)z|z|2.

Expressed in polar coordinate z = reiξ , this degenerate system becomes

ṙ = 1
2 Re{C1(0)}r3, ξ̇ = ωτ0 + 1

2 Im{C1(0)}r2 (5.40)

and its unfolding is

ṙ = νr + 1
2 Re{C1(0)}r3,

ξ̇ = ωτ0 + 1
2 Im{C1(0)}r2.

(5.41)

Here ν is an unfolding parameter, whose role is that all possible behaviours of system close to
(5.40) must be contained in a system of the form of (5.41).

Theorem 5.1. If parameters satisfy µµ̃ < −α2, system (2.3) at equilibria E4, E5, E6

and E7 undergoes a Hopf bifurcation when τ = τj with j = 0, 1, . . .. The sign of
Re{λ′(τ0)}Re{C1(0)} determines the direction of the Hopf bifurcation: the Hopf bifurcation is
supercritical (subcritical) if Re{λ′(τ0)}Re{C1(0)} < 0 (> 0) and bifurcated periodic solutions
exist for τ > τ0 (< τ0). The sign of Re{C1(0)} determines the stability of the bifurcated
periodic solutions: the periodic solutions are orbitally stable (unstable) if Re{C1(0)} < 0
(> 0). T2 determines the period of the bifurcated periodic solutions: the period increases
(decreases) if T2 < 0 (> 0).

6. Simulation results: bifurcation of periodic solutions and global gluing bifurcation to
butterflies

In this section, we present some detailed simulation results for system (2.3) with parameters
α = 1, β1 = 10, β2 = 10, k = −1, h = 0.5, which give rise to eleven equilibria lying in
the region (d) of Figure 4. We focus mainly on the effect of increasing the delay on local
dynamical behaviours around equilibria E4, E5, E6, E7 and on patterns of global continuation
of periodic solutions bifurcated from these equilibria.

Equilibrium E4 is given by (x̃, ỹ) = (0.1091, 0.4777), and equilibrium E5(ỹ, x̃) is
symmetric to E4 with respect to the line y = x. At E4, µ = f ′(x̃) = 3.4237 and



1404 J Ma and J Wu

0 0.2 0.4 0.6 0 00.2 0.2–0.20.4 0.40.6 0.6
0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.2

–0.2

0

0.4

0.6

E
1

E
2

E4

E
5

(a)

x

y

E
1

E
2

E4

E
5

Γ
4

Γ
5

(b)

x

y

E
1

E
2E4

E
5

Γ4

Γ
5

(c)

x

y

Figure 9. The effect of increasing time delay τ on the local behaviours near E4 and E5 and the
global pattern of periodic solutions bifurcated from E4 and E5 for system (2.3) in the projected
(x, y)-plane when α = 1, β1 = 10, β2 = 10, k = −1, h = 0.5: equilibria E4 and E5 are
asymptotically stable when µµ̃ < −α2 and τ < τ0 = 0.0629, shown in (a); when τ > τ0, these
equilibria lose their stability and stable limit cycles 	4 and 	5 appear, shown in (b). (c) shows the
butterfly configuration generated in a global gluing bifurcation process as τ increases to the critical
value (τ = 0.154): two periodic orbits 	4 and 	5 are glued together at the saddle point E2 to form
two homoclinic orbits.

µ̃ = f ′(ỹ) = −4.8376, which satisfy µµ̃ < −α2. Theorem 4.11 gives the Hopf
bifurcation values ω = 3.9449 and τ0 = 0.0629. Following the computational process
in Section 5, we obtain the two important quantities: C1(0) = −3.1542 − 7.6011i and
λ′(τ0) = 13.0615 − 6.7620i. Theorem 5.1 concludes that the Hopf bifurcation is supercritical
when τ = τ0 since Re{λ′(τ0)}Re{C1(0)} < 0. Four equilibria are asymptotically stable when
τ < τ0; they become unstable and periodic solutions are bifurcated when τ > τ0. Bifurcated
periodic solutions are stable since Re{C1(0)} < 0 and the period of the bifurcated periodic
solutions decreases initially near τ0 because T2 > 0.

System (2.3) possesses multiple steady states, including five saddle points and six stable
equilibria, and six heteroclinic orbits connecting these steady states. When τ passes the critical
value τ0, the four equilibria E4, E5, E6 and E7 lose their stability and a Hopf bifurcation
takes place at each of these equilibria. These four branches of periodic solutions enjoy the
apparent symmetry along the diagonals |y| = |x|. To visualize phase-space trajectories for
delay differential equations (2.3), we project the trajectories in the infinitely dimensional phase
space C into the two-dimensional (x, y)-plane.

Figures 9, 11 and 12 illustrate the effect of increasing time delay τ on the local dynamical
behaviours (see figures 9(a) and (b)) near the equilibria E4 and E5 and the global patterns of
bifurcated periodic solutions of system (2.3). Figure 9(a) with τ < τ0 shows the asymptotic
and attractive property of equilibria E4 and E5. When τ > τ0, equilibria E4 and E5 lose their
stability, a supercritical Hopf bifurcation occurs, and two periodic orbits 	4 (anticlockwise)
and 	5 (clockwise) are generated simultaneously, shown in figure 9(b). Periodic orbits 	4

and 	5 possess a reflection symmetry with respect to the heteroclinic orbit E1E2, which is a
segment on the line y = x in the projected (x, y)-plane.

As time delay increases, periodic orbits 	4 and 	5 on both sides of the heteroclinic orbit
E1E2 grow and approach the saddle separatrix of E2. As time delay reaches another critical
value (τ = 0.154), periodic orbits 	4 and 	5 living on the opposite sides of the heteroclinic
orbit E1E2 are glued together at the saddle point E2 to form two homoclinic orbits and then
are merged into a large periodic orbit 	4,5 through the process of a global gluing bifurcation,
as shown in figure 9(c). Due to the reflection symmetry, homoclinic orbits simultaneously
appear on both sides of the heteroclinic orbit and the global pattern of hybrid structure forms
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Figure 10. (a) An orbit homoclinic to the saddle-focus E2; (b) butterfly configuration generated
by a gluing bifurcation at the saddle point E2; (c) zoomed picture around the saddle point E2
of (b): small oscillations appear in the stable manifold of the saddle point E2. Here, Ws is the
infinite-dimensional stable manifold of the saddle-focus E2 and Wu is the one-dimensional unstable
manifold.

a butterfly configuration. The gluing bifurcation has a codimension of one, since only one
parameter (time delay) is required to control the homoclinic connection of two periodic orbits.

The homoclinic orbits are given by the intersection of the stable and unstable manifolds
of the saddle point E2. The stable manifold is defined as the set of all trajectories that tend
to the saddle point in forward time, and the unstable manifold is defined as the set of all
trajectories that tend to the saddle point in backward time. The homoclinic orbits provide a
recurrent mechanism in a global setting while the saddle point provides stretching, folding and
contraction of the semiflow at the local level.

We now study the stable and unstable manifolds of the saddle point E2. As time delay
reaches the gluing bifurcation point (τ = 0.154), the linearized system of (2.3) has a positive
real eigenvalue λ0 at the saddle point E2 and infinitely many complex eigenvalues with negative
real parts, among which a pair of eigenvalues with the largest real part is −λ1 ± iω1 with
λ1, ω1 > 0. The saddle point E2 therefore has a one-dimensional unstable manifold, denoted
by Wu(E2), and an infinite-dimensional stable manifold, denoted by Ws(E2). With parameters
α = 1, β1 = 10, β2 = 10, k = −1, h = 0.5, the three important eigenvalues are λ0 = 1.8726,
−λ1 ± iω1 = −4.7417 ± i7.0201 when τ = 0.154.

With a one-dimensional unstable manifold Wu(E2) and an infinite-dimensional stable
manifold Ws(E2), equilibrium E2 is of saddle-focus type. An orbit homoclinic to the saddle-
focus is depicted in figure 10(a). A trajectory spirals close to the stable manifold Ws(E2)

towards the saddle-focus E2 and is then ejected along the unstable manifold Wu(E2) to form
a global pattern of recurrence. How a periodic orbit (	4 or 	5) approaches the homoclinic
orbit is determined by the ratio δ of the stable and unstable eigenvalues δ = λ1/λ0 [44]. When
1/2 < δ < 1, a homoclinic orbit arises in a sequence of periodic orbits and period-doubling
cascades. When δ > 1, a homoclinic orbit arises in a gluing process and the period of the
periodic orbit near the homoclinic orbit increases monotonically towards infinity until the
bifurcation point is reached. For both cases, the periodic orbits near the homoclinic orbit are
stable. However, when δ < 1/2, the periodic orbits are unstable and therefore cannot be
observed numerically.

With the above parameters in the gluing process, we have δ = 2.532 > 1 and it indicates
the occurrence of a gluing bifurcation. Figure 10(b) shows the butterfly configuration in
the stable manifold Ws(E2) and unstable manifold Wu(E2). Periodic orbits on both sides
of the stable manifold Ws(E2) approach the saddle point E2 in the same direction and form
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Figure 11. Continuation of global patterns when τ passes the first gluing bifurcation point.
(a) shows the glued large periodic orbit 	4,5 which has the reflection symmetry with respect
to the heteroclinic orbit E1E2 in the projected (x, y)-plane. As the time delay increases, the closest
distance between the projected trajectory and the saddle point E2 first increases and then decreases.
(b) shows an inverse gluing bifurcation as time delay reaches a critical value (τ = 0.21): the large
periodic orbit 	4,5 is decomposed into two homoclinic orbits. As time delay passes this inverse
gluing bifurcation point, two periodic orbits 	4 and 	5 emerge, but now each of these periodic
orbits crosses transversally the heteroclinic orbit E1E2 twice, as shown in (c).

two homoclinic orbits. In a three-dimensional system with a reflection symmetry, a gluing
bifurcation can occur in one of three configurations: figure-of-eight, butterfly configuration
and spiral configuration. It seems to be the first time we observe a gluing bifurcation which
possesses both the spiral configuration and the butterfly configuration (in the projected (x, y)-
plane). In the stable manifold Ws(E2), periodic orbits 	4 and 	5 when τ is close to 0.154
or the homoclinic orbits when τ = 0.154 exhibit small amplitude oscillations, as shown in
figure 10(c).

The number of times when a periodic orbit (	4, or 	5, or 	4,5) crosses transversally the
heteroclinic orbit E1E2 seems to be very important. Before the gluing bifurcation point, either
	4 or 	5 stays on one side of E1E2. After τ passes the gluing bifurcation point, as shown
in figure 11(a), two homoclinic orbits are destroyed and a large periodic orbit 	4,5 emerges.
This periodic orbit has the reflection symmetry with respect to the heteroclinic orbit E1E2

and crosses transversally E1E2 twice. Starting from an initial condition close to the steady
state E4, the projected trajectory is first expelled from one side of the stable manifold Ws(E2),
then makes a long excursion encircling the steady state E4, and (after crossing transversally the
heteroclinic orbit E1E2) reaches the opposite side of the stable manifold Ws(E2) and moves
close to the saddle E2 until it is expelled from the saddle point, completes a long excursion
encircling the steady state E5 and crosses the heteroclinic orbit E1E2, finally moves close to
the stable manifold Ws(E2) and completes a cycle. The closest distance between the projected
trajectory and the saddle point E2 increases as time delay increases until time delay reaches
the next critical value (τ = 0.189 35).

Meanwhile, the saddle point E1 has a positive real eigenvalue λ′
0 and infinitely many

complex eigenvalues with negative real parts, among which a pair of eigenvalues with the
largest real part is −λ′

1 ± iω′
1. This saddle E1 has a one-dimensional unstable manifold,

denoted by Wu(E1), and an infinite-dimensional stable manifold, denoted by Ws(E1). As
time delay increases, the periodic orbit 	4,5 gets close to E1 and starts to oscillate along the
unstable manifold Wu(E1). When τ = 0.189 35, three important eigenvalues of the saddle
point E1 are λ′

0 = 2.2325 and −λ′
1 ± iω′

1 = −2.2327 ± i7.4271, and hence δ′ = λ′
1/λ

′
0 
 1.

At the same time, the ratio δ of the saddle E2 decreases to δ = 1.8057 > 1. As τ passes
through τ = 0.189 35, the closest distance between the projected trajectory and the saddle
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point E2 decreases until the time delay reaches the next critical value (τ = 0.21), where a new
phenomenon takes place.

When τ is getting close to 0.21, we observe an inverse process of a gluing bifurcation:
two portions of the projected trajectory 	4,5 close to the stable manifold Ws(E2) approach
the separatrix of the saddle point E2, and simultaneously generate two homoclinic orbits
crossing the heteroclinic orbit E1E2. It is natural to call this bifurcation an inverse gluing
bifurcation. In the inverse gluing bifurcation process, the period of the periodic orbit 	4,5

increases monotonically towards infinity until the inverse gluing bifurcation point τ = 0.21 is
reached. After time delay passes this bifurcation point, the periodic orbit 	4,5 is decomposed
into two periodic orbits 	4 and 	5, as shown in figure 11(c). Each periodic orbit crosses the
heteroclinic orbit E1E2 twice.

When time delay continues to increase, a sequence of gluing bifurcations and inverse
gluing bifurcations occur. Figure 12(a) shows a gluing bifurcation occurring at τ = 0.265.
The corresponding homoclinic orbits cross E1E2 twice, and the merged periodic orbit when
τ passes 0.265 crosses E1E2 six times. Figure 12(b) shows an inverse gluing bifurcation
occurring at τ = 0.295 and when τ passes 0.295, two periodic orbits (decomposed from
the large periodic orbit before its degeneration into two homoclinic orbits) emerge and each
crosses E1E2 four times.

Meanwhile, due to the reflection symmetry about the stable manifold Ws(E1), which is a
segment on the line y = −x in the projected (x, y)-plane, a similar global bifurcation process
occurs in parallel in the opposite side of the stable manifold of Ws(E1). In a gluing bifurcation
process, the periodic orbits 	6 and 	7 are glued together into a large periodic orbit 	6,7 while
in an inverse gluing bifurcation process, the periodic orbit 	6,7 is separated into two periodic
orbits 	6 and 	7.

When time delay increases to the critical value 0.315, two large periodic orbits 	4,5 and 	6,7

approach the saddle point E1 along its saddle separatrix and form two homoclinic orbits to the
saddle point E1 through a gluing bifurcation process. In the gluing process, two butterfly con-
figurations are merged together to form a complex global pattern, as shown in figure 12(c). Such
a periodic orbit 	4,5,6,7 exhibits small oscillations along the heteroclinic orbits E1E2 and E1E3.
As time delay passes the gluing bifurcation point, the glued larger periodic orbit 	4,5,6,7 crosses
the heteroclinic orbits E1E8 and E1E9, and exhibits more and more oscillatory behaviours
around three saddle points (E1, E2, E3) and we eventually see a global structure in figure 12(d).

Information of the period of the periodic orbit 	4 or 	4,5 is summarized in figure 13,
when time delay is varied. The segment from A to C corresponds to the process depicted
in figures 9(b) and (c). After the local Hopf bifurcation occurs, the period of the periodic
orbit 	4 first decreases, corresponding to the segment from A to B. However, as 	4 moves
close to the stable manifold of the saddle point E2, the period of this periodic orbit starts to
monotonically increase and grows to infinity as the gluing bifurcation point is reached at D.
The segment from E to G corresponds to the process illustrated in figure 9(c) and figures 11(a)
and (b). The period of the glued periodic orbit 	4,5 first decreases and then increases to infinity
when the inverse gluing bifurcation point is reached at H . Except near a neighbourhood of
the bifurcation points (both the gluing bifurcation point and the inverse gluing bifurcation
point), the period of the glued periodic orbit 	4,5 when τ is between E and G is always greater
than the period of the periodic orbit 	4 when τ is between A and C. The segment from I

to K corresponds to the process described in figures 11(b) and (c) and figure 12(a), and the
segment from M to O corresponds to the process described in figures 12(a) and (b). The
gluing bifurcation occurs at L and the inverse gluing bifurcation occurs at P . The period of
the periodic orbit 	4 from I to K and the period of the periodic orbit 	4,5 from M to O always
decrease first and then increase to infinity.
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Figure 12. Continuation of global patterns when τ is further increased. (a) A gluing bifurcation
occurs at τ = 0.265 with a large periodic orbit crossing E1E2 six times. (b) An inverse gluing
bifurcation occurs at τ = 0.295 when the large periodic orbit is degenerated into two homoclinic
orbits, and then two periodic orbits emerge with each crossing E1E2 four times. (c) As time delay
reaches a critical value (τ = 0.315), a gluing bifurcation occurs and the periodic orbits 	4,5 and
	6,7 are glued together into an even larger periodic orbit 	4,5,6,7 and the two butterfly configurations
are glued into a more complex global pattern. (d) More complex structures are developed as τ is
further increased.

7. Discussion

In this paper, we gave a detailed mathematical analysis of the dynamics of system (1.1):
structure and stability of equilibria in the case where τ = 0 from the point of view of the
pitchfork bifurcation and saddle-node bifurcation; impact of time delay on generation and
stability of Hopf bifurcation and global dynamical behaviours due to the interaction among limit
cycles and equilibria leading to a butterfly structure through a sequence of gluing bifurcations
and inverse gluing bifurcations.

Our focus is on multistability: the coexistence of multiple stable patterns including
equilibria and periodic orbits, where each stable equilibrium is identified with a static memory
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and stable periodic orbits are associated with temporally patterned spike trains. Our results
show that system (1.1) has potentially large capacity to encode information in the form of
stable equilibria using instantaneous feedback, and in the form of both stable equilibria and
stable periodic orbits using delayed feedback. This improvement of network’s capacity for
associative memory using a non-monotonic activation function provides great potential for
artificial neural network applications in dynamic memory.

Saddle points are useful for the maintenance of working memory at the local level
while homoclinic and heteroclinic orbits play an important role in securing coding and
communication of both working memory and associative memory at the global level. In
either the instantaneous feedback case or the delayed feedback case with a small time delay,
six heteroclinic orbits, which are segments on the lines y = x and y = −x in the projected
(x, y)-plane, separate the phase space into four regions, where trajectories converge to the
respective equilibria. Homoclinic orbits arise from a codimension-one homoclinic bifurcation
in which the saddle point experiences homoclinicity at both sides of its separatrix. With the
reflection symmetry, the appearance of homoclinic orbits is associated with the occurrence of
either a gluing bifurcation or an inverse gluing bifurcation, which results in more and more
complex dynamics of system (1.1).

We noted that the number of equilibria is dependent on the ratio of the capacitance to the
resistance, the synaptic connection strength and the derivative of the activation function. A
small time delay can be considered as being associated with ‘local’ communication between
neurons while a large time delay is associated with long range interactions in polysynaptic loops
of neurons or neuron populations [21]. Small delays do not change the stability of equilibria,
while large delays may destabilize some of the equilibria, leading to Hopf bifurcations of
multiple periodic solutions simultaneously bifurcated from equilibria. Our results show that
such long range interactions can induce multiple stable periodic orbits, representing frequent
firing of neurons with the frequencies of the oscillations being the ‘message’ transmitted [18].
Furthermore, increasing the time delay of these long range interactions can merge or decompose
periodic orbits through a gluing bifurcation or an inverse gluing bifurcation process.

The delay-induced oscillations with a non-zero frequency due to a Hopf bifurcation
are commonly referred to as Type II oscillations [45]. The frequency of the delay-induced
oscillations continuously changes as time delay is varied. In the range of time delays between
the Hopf bifurcation point and the first gluing bifurcation point, corresponding to the segment
from A to C in figure 13, the frequency of the periodic orbit first increases from A to B and
then decreases from B to C. However, as the delay reaches the gluing bifurcation point at D in
figure 13, the periodic orbit becomes a homoclinic orbit and the frequency of such a recurrent
orbit becomes zero, and such an oscillation with zero frequency is normally called a Type I
oscillation. In the range of delays between the gluing bifurcation point and the inverse gluing
bifurcation point, corresponding to the segment from E to G in figure 13, the frequency of
the periodic orbit first increases and then decreases. The delay-induced oscillations change
from Type I to Type II and then change back to Type I through an inverse gluing bifurcation
process at H . The frequency of the periodic orbit varies similarly in the range of delays from
I to K and from M to O. The transition between Type I and Type II oscillations illustrates an
interesting influence of time delay on neural network computational performance.

Our simulations demonstrate complicated global dynamical phenomena due to interactions
among multiple periodic orbits and equilibria. A butterfly structure in the projected (x, y)-
plane is generated via a sequence of gluing and inverse gluing bifurcations when time delay
is varied. To our knowledge, the transition between gluing bifurcations and inverse gluing
bifurcations has not been reported in the literature for infinite-dimensional systems such as
DDEs. Furthermore, we observed a gluing bifurcation with both spiral configuration and



1410 J Ma and J Wu

0.1 0.15 0.2 0.25 0.3
10

20

30

40

50

60

Time Delay (τ)

P
er

io
d 

of
 P

er
io

di
c 

O
rb

it 
(T

)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Figure 13. Variation of the period of the periodic orbit 	4 or 	4,5 as the time delay is varied: the
segment from A to C corresponds to the process of figures 9(b) and (c); the segment from E to
G corresponds to the process of figure 9(c) and figures 11(a) and (b); the segment from I to K

corresponds to the process of figures 11(b) and (c) and figure 12(a); the segment from M to O

corresponds to the process of figures 12(a) and (b). The gluing bifurcations occur at D and L, and
the inverse gluing bifurcations occur at H and P .

butterfly configuration, a structure that seems to be particular only for very high dimensional
dynamical systems. However, an analytic proof and explicit calculation of the critical values
of the delay when such gluing and inverse gluing processes occur for system (1.1) remain an
open problem for future studies.
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