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Abstract In this paper, we study the stability and saddle-node bifurcation of a model for
the West Nile virus transmission dynamics. The existence and classification of the equi-
libria are presented. By the theory of K-competitive dynamical systems and index theory
of dynamical systems on a surface, sufficient and necessary conditions for local stabil-
ity of equilibria are obtained. We also study the saddle-node bifurcation of the system.
Explicit subthreshold conditions in terms of parameters are obtained beyond the basic re-
production number which provides further guidelines for accessing control of the spread
of the West Nile virus. Our results suggest that the basic reproductive number itself is not
enough to describe whether West Nile virus will prevail or not and suggest that we should
pay more attention to the initial state of West Nile virus. The results also partially ex-
plained the mechanism of the recurrence of the small scale endemic of the virus in North
America.
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1. Introduction

Since the first outbreak in New York in the late summer of 1999, West Nile virus (WNV)
has been spreading through the continent of North America for the last several years (Cen-
ters for Disease Control and Prevention, 2003). It was believed that WNV is maintained
in nature in a mosquito-bird-mosquito transmission cycle (Campbell et al., 2002; Hayes,
2001; Komar et al., 2003; Lanciotti et al., 2003). Many areas in North America, such as
Southern Ontario, Canada (West Nile Virus Monitor—West Nile Virus Surveillance Infor-
mation. West Nile Virus—Public Health Agency of Canada. http://www.phac-aspc.gc.ca/
wn-no/index-e.html), have been experiencing for the last several years small scale out-
breaks of the virus. It is imperative to gain some insights into the transmission dynamics
of WNV in the mosquito-bird population.

Compartmental epidemiological models have played a significant role in understand-
ing the mechanism of dynamical transmission of various virus. Since the pioneer-
ing work of Kermack–Mckendrick, SIR/SEIR epidemiological models have received
much attention from scientists (see Brauer and Castillo-Chavez, 2000; Hethcote, 2002;
Diekmann and Heesterbeek, 2000 and references therein). However, to our knowledge,
the literature on the mathematical modeling studies of the transmission of WNV is rather
scant. Lord and Day (2001) carried out simulation studies of St. Louis encephalitis and
West Nile virus using the models of differential equations. Thomas and Urena (2001) for-
mulated a difference equation model for WNV targeting its effects on New York City.
Wonham et al. (2004) presented a single-season ordinary differential equations model for
WNV transmission in the mosquito-bird population. Kenkre et al. (2005) provided a the-
oretical framework for the analysis of the West Nile virus epidemic and for dealing with
mosquito diffusion and birds migration. Bowman et al. (2005) proposed a model system
incorporating mosquito-bird-human population for assessing control strategies against
West Nile virus. Cruz-Pacheco et al. (2005) formulated a model for the transmission of
WNV and by using experimental and field data as well as the numerical simulations,
they found the phenomena of damped oscillations of the infected birds population. By
using a reaction-diffusion model, Lewis et al. (2006a) studied the spatial spread of the
virus, established the existence of traveling waves computed the spatial spread speed of
infection. Liu et al. (2006) studied the impact of directional dispersal of birds on the spa-
tial spreading of West Nile virus. In a more recent work by Lewis et al. (2006b), they
made a comparative study of the discrete-time model (Thomas and Urena, 2001) and
the continuous-time model (Wonham et al., 2004). This interesting study suggests that a
slightly different but seemingly reasonable assumptions for the modeling of WNV can
yield very different biological conclusions on the basis of analysis of the basic reproduc-
tion number.

To our knowledge, the aforementioned modeling studies on West Nile virus are the
only mathematical models available in the literature. In all of these models, the threshold
conditions, the basic reproduction numbers were calculated or estimated which serves as
crucial control threshold for the eradication of the West Nile virus. In particular, these
studies suggested that when the basic reproduction number, R0 < 1, the disease free equi-
librium would be globally asymptotically stable and the infections eventually die out.
In this paper, we are going to analytically study the model proposed by Bowman et al.
(2005). The model undergoes a saddle-node bifurcation when the basic reproduction num-
ber is smaller than one. The saddle-node bifurcation suggests that more attention should

http://www.phac-aspc.gc.ca/wn-no/index-e.html
http://www.phac-aspc.gc.ca/wn-no/index-e.html
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be paid to the initial number of the infected mosquitoes and birds, which may also par-
tially explain the mechanism of the recurrence of the small scale endemic of the virus in
North America.

The model in Bowman et al. (2005) consists of nine differential equations and de-
scribes the transmission of the WNV among the mosquito-bird-human populations.
Though humans, horses, and other large domestic mammals can be infected by an in-
fectious mosquito, they do not transmit the disease, therefore, the dynamics of the whole
model are indeed determined by the four dimensional system involving only the mos-
quitoes and birds. Hence, the model for the transmission of the virus in the primary
mosquito-bird cycle reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMu

dt
= ΠM − b1β1MuBi

Bi + Bu

− μMMu,

dMi

dt
= b1β1MuBi

Bi + Bu

− μMMi,

dBu

dt
= ΠB − b1β2MiBu

Bi + Bu

− μBBu,

dBi

dt
= b1β2MiBu

Bi + Bu

− μBBi − dBBi,

(1)

where following the symbols and notations in Bowman et al. (2005), Mu(t) and Mi(t)

are the populations of uninfected and infected female mosquitoes, respectively; Bu(t) and
Bi(t) represent the population of susceptible and infected birds, respectively, and ΠM and
ΠB are the recruitment rates of the uninfected birds (either by birth or immigration) of sus-
ceptible mosquitoes and birds, respectively; b1 is the per capita biting rate of mosquitoes
on the primary host (bird); β1 and β2 are the West Nile virus transmission probabilities
from infected birds to uninfected mosquitoes and from mosquitoes to birds, respectively;
μM and μB are the natural death rates of mosquitos and birds, respectively; dB denotes the
WNV-induced death rate of infected birds. The parameters in this model are all positive
constants.

Here, we remark that for the model proposed in Bowman et al. (2005), the basic repro-
duction number was calculated, and sufficient conditions for the local and global stability
of the associated equilibria were obtained and detail explanations were also given for their
theoretic results. However, one important phenomena was ignored: the existence of multi-
ple equilibria when the control parameter, the basic reproduction number, is smaller than
one. As have been seen, system (1) may undergo a backward bifurcation.

Let

M(t) = Mu(t) + Mi(t). (2)

It follows from system (1) that M(t) satisfies the following differential equation:

dM

dt
= ΠM − μMM. (3)
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This leads to M(t) → ΠM

μM
as t → +∞. Thus, system (1) is reduced to the following three

dimensional system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMi

dt
= b1β1(

ΠM

μM
− Mi)Bi

Bi + Bu

− μMMi,

dBu

dt
= ΠB − b1β2MiBu

Bi + Bu

− μBBu,

dBi

dt
= b1β2MiBu

Bi + Bu

− μBBi − dBBi.

(4)

One of the important subjects in epidemiological modeling studies is to obtain a threshold
condition for accessing control of the disease or virus. In most cases, it is the so-called
basic reproduction number R0 that may determine the persistence and eradication of the
disease (Anderson and May, 1991; Brauer and Castillo-Chavez, 2000; Hethcote, 2002).
The spread of the disease can be controlled or the virus can be eradicated if the basic
reproduction number R0 < 1, and otherwise the disease will be endemic. However, our
study of system (4) indicates that the basic reproductive number cannot simply determine
whether West Nile virus will prevail or not and suggests that one needs to pay more
attention to the initial number of the infected mosquitoes and birds.

This paper is organized as follows: in Section 2, we will examine the existence of mul-
tiple equilibria and provide a detailed classification of the equilibria of system (1). We will
discuss the local stability of all the disease free equilibrium (DFE) and endemic equilibria
in Section 3. In Section 4, we will develop and present explicitly the threshold conditions
for the saddle-node bifurcation of the model; we will also describe the bifurcation dia-
gram by using the recruitment rate of susceptible mosquitoes ΠM and the natural death
rate of mosquitos μM as parameters. In the last section, we conclude with some numerical
simulations and discussions.

2. Existence and classification of equilibria

As in Bowman et al. (2005), we let

D =
{

(Mi,Bu,Bi) | 0 ≤ Mi ≤ ΠM

μM

,
ΠB

μB + dB

≤ Bu + Bi ≤ ΠB

μB

}

.

Then we have

Proposition 2.1. All solutions of the system (4) remain nonnegative. Moreover, D is a
global attractor in R

3+ and positively invariant for (4).

Proof: The first statement is trivial. It easily follows from the argument for reduction in
the last section that 0 ≤ Mi(t) ≤ ΠM

μM
. It follows from system (4) that we have

ΠB − (μB + dB)(Bi + Bu) ≤ d(Bi + Bu)

dt
≤ ΠB − μB(Bi + Bu)

for all t ≥ 0, then the second statement follows immediately. �
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Thus, we always assume that the initial points (Mi(0),Bu(0),Bi(0)) lie in D. The
following basic reproduction number was calculated in Bowman et al. (2005):

R0 =
√

b2
1β1β2μBΠM

μ2
M(μB + dB)ΠB

. (5)

To examine the existence of equilibrium, we set

f (Bi) = a2B
2
i + a1Bi + a0, (6)

where

a2 = dB(μMdB − b1β1μB)

b1β2μB

,

a1 = b1β1ΠM

μM

− (2μMdB − b1β1μB)ΠB

b1β2μB

, (7)

a0 = μMΠ2
B(1 − R

2
0)

b1β2μB

.

We use the notations in Bowman et al. (2005) and denote

� = a2
1 − 4a0a2,

B∗
i1 = μMΠB

μMdB − b1β1μB

, B∗
i2 = ΠB

μB + dB

.

Now we are able to state the principal results in this section.

Theorem 2.2. The system (4) can have up to three equilibria. More precisely, we have

(i) The boundary equilibrium, the disease free equilibrium (DFE) E0(0,
ΠB

μB
,0), always

exists.
(ii) If R0 > 1, there exists a unique positive equilibrium E∗(M∗,B∗

u,B∗
i ). Moreover, if

a2 �= 0, we have

B∗
i = −a1 + √

�

2a2
, M∗

i = (ΠB − dBB∗
i )B∗

i

b1β2(B
∗
i2 − B∗

i )
, B∗

u = μB + dB

μB

(
B∗

i2 −B∗
i

);

if a2 = 0, which is equivalent to dB = 0 or μMdB − b1β1μB = 0, then

B∗
i = −a0

a1
, M∗

i = (ΠB − dBB∗
i )B∗

i

b1β2(B
∗
i2 − B∗

i )
, B∗

u = μB + dB

μB

(
B∗

i2 − B∗
i

)
.

(iii) If R0 < 1, then
(a) if a2 ≤ 0, there is no positive equilibrium;
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(b) if a2 > 0, system (4) has two positive equilibria if and only if

� > 0, and 0 <
−a1

2a2
< B∗

i2. (8)

These two equilibria E1(M1
i ,B1

u,B
1
i ) and E2(M2

i ,B2
u,B

2
i ) are

B1
i = −a1 − √

�

2a2
, M1

i = (ΠB − dBB1
i )B

1
i

b1β2(B
∗
i2 − B1

i )
,

B1
u = μB + dB

μB

(
B∗

i2 − B∗
i

)
,

B2
i = −a1 + √

�

2a2
, M2

i = (ΠB − dBB2
i )B

2
i

b1β2(B
∗
i2 − B2

i )
,

B2
u = μB + dB

μB

(
B∗

i2 − B2
i

)
.

These two equilibria coalesce if and only if 0 <
−a1
2a2

< B∗
i2 and � = 0; otherwise,

there is no positive equilibrium.

Proof: It is obvious that the boundary equilibrium E0(0,
ΠB

μB
,0) always exists and is

unique.
Now we prove the other two cases. It is easy to see that a positive equilibrium of (4)

must satisfy the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1β1(
ΠM

μM
− Mi)Bi

Bi + Bu

− μMMi = 0,

ΠB − b1β2MiBu

Bi + Bu

− μBBu = 0,

b1β2MiBu

Bi + Bu

− μBBi − dBBi = 0.

(9)

Adding the second and third equations leads to

Bu = ΠB

μB

−
(

1 + dB

μB

)

Bi. (10)

Putting (10) into (9), as in Bowman et al. (2005), the positive equilibrium, if exists, is the
intersection of the two curves:

Mi =
b1β1ΠM

μM
Bi

ΠB

μB
μM + (b1β1 − μM

dB

μB
)Bi

= Γ1(Bi), (11)

and

Mi = (ΠB − dBBi)Bi

b1β2(B
∗
i2 − Bi)

= Γ2(Bi). (12)
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It is clear that if (Mi,Bi,Bu) is a positive solution for (9), then Bi ≤ B∗
i2, and satisfies

Γ1(Bi) = Γ2(Bi). (13)

A straightforward calculation yields that if the positive equilibrium exists, its Bi coordi-
nate is the root of the quadratic equation

f (Bi) = a2(Bi)
2 + a1Bi + a0 = 0 (14)

in the interval [0,B∗
i2].

Consider the parabola f (Bi) on the interval [0,B∗
i2]. Substituting Bi = B∗

i2 = ΠB

μB+dB

into f (Bi) gives

f (B∗
i2) = a2

(
ΠB

μB + dB

)2

+ a1
ΠB

μB + dB

+ a0

= 1

(μB + dB)2

[
dB(μMdB − b1β1μB)

b1β2μB

Π2
B + b1β1ΠM

μM

(μB + dB)ΠB

− 2μMdB − b1β1μB

b1β2μB

(μB + dB)Π2
B + μMΠ2

B(1 − R
2
0)

b1β2μB

(μB + dB)2

]

= ΠB

(μB + dB)2

[−μMdB

b1β2μB

ΠBdB + b1β1ΠM

μM

(μB + dB)

− 2μMdB − b1β1μB

b1β2μB

ΠBμB + μMΠB(1 − R
2
0)

b1β2μB

(μB + dB)2

]

= ΠB

(μB + dB)2

[−μMdB

b1β2μB

ΠBdB + b1β1ΠM

μM

(μB + dB)

− 2μMdB − b1β1μB

b1β2μB

ΠBμB

+ μ2
MΠB(μB + dB) − b2

1β1β2μBΠM

b1β2μBμM

(μB + dB)

]

= μBΠ2
B(μM + b1β1)

(μB + dB)2b1β2
> 0.

Case R0 > 1. It is obvious that a0 < 0. Hence, f (0) = a0 < 0. Since f (Bi) is a
quadratic function (or a linear function), it follows that f (Bi) = 0 has a unique posi-
tive root in the interval [0,B∗

i2]. Therefore, it follows that system (4) has a unique positive
equilibrium E∗(M∗

i ,B∗
u,B∗

i ).
If a2 = 0, then either dB = 0 or μMdB − b1β1μB = 0, the result is straightforward.
Assume that a2 �= 0. Then the positive root for (13) is to the right of the line Bi = − a1

2a2

in the case when a2 > 0, while it lies on the left of the line Bi = − a1
2a2

if a2 < 0. This

shows that the positive root has the expression B∗
i = −a1+√

�

2a2
. It follows from (10) and

(12) that the other coordinates of the unique equilibrium must be as given in the theorem.
Figures 1(a) and (b) show the two cases of the unique equilibrium with the two different
positions of the asymptote of Γ1.
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Fig. 1 Case R0 > 1: the unique positive equilibrium.

Fig. 2 Case R0 < 1: system (4) can have zero, one, and two positive equilibria.

Case R0 < 1. Obviously we have a0 > 0. It follows that f (0) = a0 > 0. Since f (Bi) is
either quadratic or linear in Bi , we can prove that (14) has no positive root in the interval
[0,B∗

i2] in the case a2 ≤ 0. It remains to consider the case a2 > 0.
It is clear that Eq. (14) has two real roots in the interval [0,B∗

i2] if and only if 0 <
−a1
2a2

< B∗
i2 and f (

−a1
2a2

) < 0 (� > 0); see Fig. 2(c). Solving (14) gives the two equilibria
as given in the theorem. The system (4) has a unique positive equilibrium (multiplicity
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two) if and only if 0 <
−a1
2a2

< B∗
i2 and f (

−a1
2a2

) = 0 (� = 0). This is the case when the two

positive equilibria coalesce; see Fig. 2(d). One can solve (14) to get B1
i = − a1

2a2
. The other

cases correspond to the situation where there is no positive equilibrium. �

3. The local stability analysis

In this section, we shall study the local stability of all the equilibria of system (4). In
what follows, we first state some results for three dimensional K-competitive dynamical
systems, which will prove to be useful in the discussion of the stability of the positive
equilibrium.

Consider the differential equations:

ẋ = f (x), (15)

where x ∈ R
3+. A matrix A is called type K-competitive and irreducible (Smith, 1995) if

A has the following form
⎛

⎝
∗ − +
− ∗ +
+ + ∗

⎞

⎠ .

The system (15) is called type K-competitive and irreducible if the Jacobian Df (x) of f

is type K-competitive and irreducible for each x ∈ R
3+. Now we set

K = {
(x, y, z) | x ≥ 0, y ≥ 0, z ≤ 0

}
.

It follows from Perron–Frobenius theorem that A has a real eigenvalue, which has a
unique unit eigenvector in IntK , and the real part of the other two eigenvalues is strictly
greater than this real eigenvalue if A is type K-competitive and irreducible.

A vector x is called K-positive if x ∈ K , strictly K-positive if x ∈ IntK . Two distinct
points u,v ∈ R

3 are K-related if either u − v or v − u is strictly K-positive. A set S is
called K-balanced if no two distinct points of S are related.

It is obvious that the Jacobian of system (4) is

⎛

⎜
⎜
⎜
⎝

−(μM + b1β1Bi

Bi+Bu
) − b1β1(

ΠM
μM

−Mi)Bi

(Bi+Bu)2

b1β1(
ΠM
μM

−Mi)Bu

(Bi+Bu)2

− b1β2Bu

Bi+Bu
−(

b1β2MiBi

(Bi+Bu)2 + μB)
b1β2MiBu

(Bi+Bu)2

b1β2Bu

Bi+Bu

b1β2MiBi

(Bi+Bu)2 −(μB + dB + b1β2MiBu

(Bi+Bu)2 )

⎞

⎟
⎟
⎟
⎠

.

Therefore, system (4) is K-competitive in D. From the expressions of M1
i , B1

u , B1
i , M2

i ,
B2

u , B2
i , M∗

i , B∗
u , B∗

i , it is not difficult to see that the equilibria E1, E2, E0 or E0 and E∗
are unordered in the K-order. It follows from Proposition 3.2 in Wang and Jiang (2001)
and Proposition 1.3 in Takac (1992) that there exists a two-dimensional compact Lip-
schitz submanifold Σ such that E1,E2 ∈ IntΣ or E∗ ∈ IntΣ , E0 ∈ ∂Σ . Moreover, Σ is
K-balanced. Since Σ is a two-dimensional compact Lipschitz submanifold and homeo-
morphic to a compact domain in the plane, it is obvious that Poincare–Bendixson theorem
holds for the dynamics of (4) on Σ .
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Let E#(M#
i ,B#

u,B
#
i ) be an arbitrary equilibrium of (4). Then the variational system

associated with (4) about E#(M#
i ,B#

u,B
#
i ) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMi

dt
= −

(

μM + b1β1B
#
i

B#
i + B#

u

)

Mi − b1β1(
ΠM

μM
− M#

i )B#
i

(B#
i + B#

u)
2

Bu

+ b1β1(
ΠM

μM
− M#

i )B#
u

(B#
i + B#

u)
2

Bi,

dBu

dt
= − b1β2B

#
u

B#
i + B#

u

Mi −
(

b1β2M
#
i B#

i

(B#
i + B#

u)
2

+ μB

)

Bu + b1β2M
#
i B#

u

(B#
i + B#

u)
2
Bi,

dBi

dt
= b1β2B

#
u

B#
i + B#

u

Mi + b1β2M
#
i B#

i

(B#
i + B#

u)
2
Bu −

(

μB + dB + b1β2M
#
i B#

u

(B#
i + B#

u)
2

)

Bi.

(16)

The corresponding characteristic equation reads

λ3 + A1λ
2 + A2λ + A3 = 0, (17)

where

A1 = μM + 2μB + dB + b1β1B
#
i + b1β2M

#
i

B#
i + B#

u

;

A2 = 1

(B#
i + B#

u)
2

[

(2μMμB + 2b1β1μB + (μB + dB)μB + μMdB + b1β1dB)
(
B#

i

)2

+ (4μMμB + 2b1β1μB + 2μ2
B + 2dBμB + 2μMdB + b1β1dB)

(
B#

i B
#
u

)

+ (2μMμB + (μB + dB)μB + μMdB)
(
B#

u

)2

+
(

μMb1β2M
#
i + μBb1β2M

#
i − b1β2b1β1

(
ΠM

μM

− M#
i

))

B#
u

+ b1β2(μM + μB + dB + b1β1)M
#
i B#

i

]

;

A3 = 1

(B#
i + B#

u)
3

{

μMμB(μB + dB)
(
B#

i + B#
u

)3

+ b1
[
β2M

#
i B#

i μM(μB + dB)
(
B#

i + B#
u

) + β1B
#
i μB(μB + dB)

(
B#

i + B#
u

)2

+ β2M
#
i B#

uμMμB

(
B#

i + B#
u

)]

+ b2
1β1β2[B#

i μBM#
i B#

u + B#
i M

#
i B#

i (μB + dB)]

− B#
u

(
ΠM

μM

− M#
i

)
(
B#

i + B#
u

)
μB − B#

u

(
ΠM

μM

− M#
i

)

dBB#
i

}

.

For any equilibrium E#(M#
i ,B#

u,B
#
i ) of the system (4), to determine the sign of the

eigenvalues, the roots for the characteristic Eq. (17), we need the following proposition.
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Proposition 3.1. For any equilibrium E#(M#
i ,B#

u,B
#
i ) of the system with characteristic

Eq. (17), we always have

A1A2 − A3 > 0. (18)

Proof: For the equilibrium E#(M#
i ,B#

u,B
#
i ), note that

M#
i = (ΠB − dBB#

i )B
#
i

b1β2(B
∗
i2 − B#

i )
,

B#
u = μB + dB

μB

(
B∗

i2 − B#
i

)
,

M#
i = b1β1μBΠMB#

i

μM [ΠBμM + (b1β1μB − μMdB)B#
i ]

.

Substituting the above into the expressions for A1, A2, and A3. With extensive algebraic
manipulations, we get

A1 = 1

(ΠB − dBB#
i )(B

∗
i2 − B#

i )

[
b1β1μBB#

i

(
B∗

i2 − B#
i

)

+ (
ΠB − dBB∗

i

)[
(μM + 2μB + dB)

(
B∗

i2 − B#
i

) + μBB#
i

]];

A2 = μMμBΠB

(ΠB − (μB + dB)B#
i )

+ μB[(ΠB − dBB#
i )

2 + dBμBB#
i B

#
i ]

(ΠB − dBB#
i )(B

∗
i2 − B#

i )

+ ΠBμ2
Bb1β1B

#
i

(ΠB − dBB#
i )(ΠB − (μB + dB)B#

i )
+ b1β1μB(μB + dB)B#

i

ΠB − dBB#
i

;

A3 = (μB + dB)μBB#
i

(ΠB − dBB#
i )

2(ΠB − (μB + dB)B#
i )

[
dB(μB + dB)(b1β1μB − dBμM)

(
B#

i

)2

+ 2ΠBdB(dBμM − b1β1μB)B#
i + Π2

B(b1β1μB + μMμB − dBμM)
]
.

Expressing A1A2 − A3 in terms of b1, we have

A1A2 − A3 = D2b
2
1 + D1b1 + D0, (19)

where

D2 = [(μB + dB)2(B∗
i2 − B#

i ) + ΠBμB](β1μBB#
i )

2

(μB + dB)(ΠB − dBB#
i )

2(B∗
i2 − B#

i )
;

D1 = μBβ1B
#
i μM((dB + μB)2(B∗

i2 − B#
i ) + 2ΠBμB)

(ΠB − dBB#
i )(ΠB − (μB + dB)B#

i )

+ μBβ1B
#
i ((dB + μB)(ΠB − (dB + μB)B#

i ) + ΠBμB)2

(ΠB − dBB#
i )(ΠB − (μB + dB)B#

i )
2

;

D0 = ΠBμBμ2
M

(μB + dB)(B∗
i2 − B#

i )
+ 1

(ΠB − dBB#
i )(ΠB − (μB + dB)B#

i )
2
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× [
ΠBμBμM(μB + dB)

(
(μB + dB)2

(
B∗

i2 − B#
i

)2

+ (2μB + dB)(μB + dB)
(
B∗

i2 − B#
i

)(
ΠB − dBB#

i

) + μBB#
i

(
ΠB − dBB#

i

))

+ μB(μB + dB)
[
(dB + μB)2

(
B∗

i2 − B#
i

)

+ ΠBμB

]((
ΠB − dBB#

i

)2 + μBdB

(
B#

i

)2)]
.

Then it becomes obvious from (19) and the expressions for D0, D1, and D2 that (18) is
true since 0 < B#

i < B∗
i2 = ΠB

μB+dB
<

ΠB

dB
. �

To discuss the local stability of the positive endemic equilibrium (if exists), we need
the sign of A3 in the characteristic Eq. (17). It is not an easy task to write A3 in detail, but
for the technique, we shall use for the stability of the positive equilibrium; we only need
to know when it vanishes. Hence, we introduce an auxiliary function

g(Bi) = (b1β1μB − dBμM)
[
dB(μB + dB)B2

i − 2ΠBdBBi + Π2
B

] + Π2
BμMμB.

A straightforward lengthy calculation shows that for any equilibrium E#(M#
i , B#

u , B#
i ),

A3 = 0 if and only if g(B#
i ) = 0.

Proposition 3.2. For any equilibrium E#(M#
i ,B#

u,B
#
i ) of the system with characteris-

tic equation (17), g(B#
i ) = 0 is equivalent to � = 0. Also, g(B#

i ) = 0 if and only if the
parameters satisfy

Π2
M − 2ΠB(2dBμM − b1β1(μB − dB))μM

b2
1β1β2(μB + dB)

ΠM + Π2
B

b2
1β

2
2

μ2
M = 0. (20)

Now we present the results on the local stability of the equilibria. The following the-
orem about the stability of the disease free equilibrium for (4) is from Bowman et al.
(2005).

Theorem 3.3. If R0 < 1, then the boundary equilibrium (DFE) E0 is locally asymptoti-
cally stable; if R0 > 1, then E0 is unstable.

The following theorem regarding the local stability for the unique endemic equilibrium
when R0 > 1 was proved in Bowman et al. (2005). Here, we give a different proof using
the index theory for planar systems.

Theorem 3.4. If R0 > 1, then the unique positive equilibrium E∗(M∗
i ,B∗

u,B∗
i ) is locally

asymptotically stable.

Proof: First note that if R0 > 1, then the positive endemic equilibrium is unique. It fol-
lows from Proposition 3.2 that we have g(B∗

i ) �= 0.
By (17), we know that the characteristic equation of system (4) about E∗ (M∗

i , B∗
u , B∗

i )
reads

λ3 + A1

(
B∗

i

)
λ2 + A2

(
B∗

i

)
λ + A3

(
B∗

i

) = 0. (21)
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Let λ1(B
∗
i ), λ2(B

∗
i ), λ3(B

∗
i ) be the roots of (21) and assume Reλ1(B

∗
i ) ≤ Reλ2(B

∗
i ) ≤

Reλ3(B
∗
i ). It follows from the relations between the roots and the polynomial coefficients

and the assumption g(B∗
i ) �= 0 that

λ1

(
B∗

i

) + λ2

(
B∗

i

) + λ3

(
B∗

i

) = −A1

(
B∗

i

)
< 0, (22)

λ1

(
B∗

i

)
λ2

(
B∗

i

)
λ3

(
B∗

i

) = −A3

(
B∗

i

) �= 0. (23)

These together with Perron–Frobenius theorem, imply that λ1(B
∗
i ) < 0 and λ2(B

∗
i ) �= 0,

λ3(B
∗
i ) �= 0.

It is easy to prove system (4) is uniformly persistent if R0 > 1. Now suppose the
positive equilibrium E∗(M∗

i ,B∗
u,B∗

i ) is unstable. Then there must hold Reλ3(B
∗
i ) ≥ 0. It

follows from Theorem 3.4.2 of Smith (1995) that there exists a stable closed orbit γ ⊂ Σ .
Thus, from the index theory for planar systems, we have

Reλ2
(
B∗

i

) ≥ 0, Reλ3
(
B∗

i

) ≥ 0. (24)

Inequalities (23) and (24) imply that A3(B
∗
i ) = −λ1(B

∗
i )λ2(B

∗
i )λ3(B

∗
i ) > 0, which to-

gether with A1(B
∗
i ) > 0,A1(B

∗
i )A2(B

∗
i ) − A3(B

∗
i ) > 0 and Routh–Hurwitz criterion im-

plies that

Reλ2

(
B∗

i

)
< 0, Reλ3

(
B∗

i

)
< 0,

contradicting (24). Therefore, Reλ3(B
∗
i ) < 0. Thus, the positive equilibrium

E∗(M∗
i ,B∗

u,B∗
i ) is locally asymptotically stable. �

The next theorem is about the stability of the multiple equilibria when they exist.

Theorem 3.5. Consider the case when R0 < 1. If a2 > 0,0 <
−a1
2a2

< B∗
i2 = ΠB

μB+dB
and

� > 0, then the positive equilibrium E1 is a saddle point and there exists an orbit con-
necting E1 and E0, and the positive equilibrium E2 is locally asymptotically stable; the
E0 is globally asymptotically stable for the other parameter cases.

Proof: It follows from Theorem 2.2 that system (4) has two positive equilibria under our
assumptions. Also, it follows from � > 0 and Proposition 3.2 that we have g(B1

i ) �= 0,
g(B2

i ) �= 0. By a2 > 0, we have μMdB > b1β1μB , hence the auxiliary function g(Bi) is
strictly increasing on [0,B∗

i2]. Note that B2
i > B1

i , we have g(B2
i ) > g(B1

i ).
For convenience, let λ1(B

1
i ), λ2(B

1
i ), λ3(B

1
i ) and λ1(B

2
i ), λ2(B

2
i ), λ3(B

2
i ) be the eigen-

values associated to E1 and E2, respectively. We can also assume that Reλ1(B
1
i ) ≤

Reλ2(B
1
i ) ≤ Reλ3(B

1
i ) and Reλ1(B

2
i ) ≤ Reλ2(B

2
i ) ≤ Reλ3(B

2
i ). It follows from the re-

lations between the roots and the polynomial coefficients that we have

λ1

(
B1

i

) + λ2

(
B1

i

) + λ3

(
B1

i

) = −A1

(
B1

i

)
< 0,

λ1

(
B2

i

) + λ2

(
B2

i

) + λ3

(
B2

i

) = −A1

(
B2

i

)
< 0.

Since g(B1
i ) �= 0 and g(B2

i ) �= 0, it follows from Perron–Frobenius theorem that we have
λ1(B

2
i ) < 0, λ1(B

1
i ) < 0 and λ2(B

1
i ),λ3(B

1
i ),λ2(B

2
i ), λ3(B

2
i ) �= 0.
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To show that the positive equilibrium E2 is locally asymptotically stable, it suffices to
prove that Reλ3(B

2
i ) < 0. Since g(B2

i ) �= 0, hence we finish the proof by the two cases:
λ2(B

2
i )λ3(B

2
i ) > 0 and λ2(B

2
i )λ3(B

2
i ) < 0.

Consider the first case λ2(B
2
i )λ3(B

2
i ) > 0. Then

A3

(
B2

i

) = −λ1

(
B2

i

)
λ2

(
B2

i

)
λ3

(
B2

i

)
> 0.

Just as in the proof of Theorem 3.4, one can conclude that Reλ3(B
2
i ) < 0. Therefore, E2

is locally asymptotically stable.
Now consider the second case λ2(B

2
i )λ3(B

2
i ) < 0. Then we have λ2(B

2
i ) < 0 and

λ3(B
2
i ) > 0. Therefore, E2 is a saddle. In the following, we will rule out this case. By

contrary, if λ2(B
2
i ) < 0 and λ3(B

2
i ) > 0, it is easy to see that A3(B

2
i ) < 0, i.e., g(B2

i ) < 0.
Thus, we have g(B1

i ) < 0, i.e., A3(B
1
i ) < 0. Since

λ1

(
B1

i

)
λ2

(
B1

i

)
λ3

(
B1

i

) = −A3

(
B1

i

)
> 0, λ1

(
B1

i

)
< 0,

we have λ2(B
1
i ) < 0 and λ3(B

1
i ) > 0. This implies that the other positive equilibrium E1

is also a saddle point. Let Σ be a K-balanced and invariant compact Lipschitz subman-
ifold such that E0, E1 and E2 ∈ Σ . The existence of Σ is due to the result in Wang and
Jiang (2001). It is easy to see that E0 ∈ ∂Σ . Also, note that E1 and E2 are both saddle
points on Σ . It then follows from the property of the planar system that system (4) has no
periodic and homoclinic orbits on Σ . Therefore, the ω-limit set of the unstable manifold
of Ek are either E0 or El for k, l = 1,2. Therefore, either there exists a heteroclinic cycle
connecting both E1 and E2, or nonconstant solutions on the unstable manifolds of E1

(E2) tend to E0. Since E0 is asymptotically stable and E0 ∈ ∂Σ , it follows from the prop-
erties of the planar system that there must exist another equilibrium, which is different
from the existing equilibria E0, E1 and E2. This contradicts to the fact about the number
of the equilibria in Theorem 2.2. Thus, equilibrium E2 must be locally asymptotically
stable.

In the following, we prove that the equilibrium E1(M1
i ,B1

u,B
1
i ) is a saddle point. Let

U be the basin of attraction for of E0 on Σ and ∂U be the boundary of U . It is obvious
that ∂U is positively invariant, and every positive trajectory on ∂U is convergent. Because
E2 is asymptotically stable, the ω-limit set on ∂U must be the positive equilibrium E1,
thus E1 is unstable. Then we have Reλ3(B

1
i ) ≥ 0. If λ2(B

2
i )λ3(B

2
i ) > 0, the same proof as

in the last paragraph leads to Reλ3(B
1
i ) < 0, a contradiction. Therefore, there must hold

λ2(B
2
i ) > 0 and λ3(B

2
i ) < 0, that is, the equilibrium E1 is a saddle point.

The stable manifold of E1 on Σ separates Σ into two parts, one contains E2 and one
branch Wu

1 (E1) of the unstable manifold of E1, the other contains E0 and the other branch
Wu

2 (E1) of the unstable manifold of E1, the positive trajectory on the latter branch tends
to E0, which implies that there exists an orbit connecting E0 and E1.

Assume that R0 < 1 and the system (16) has the unique equilibrium E0. Then we can
easily rule out the existence of periodic orbit by the theory of competitive system, hence
E0 is globally attractive. �

4. Backward bifurcation and subthreshold outbreak conditions

Usually one would expect that the endemic can be controlled if the basic reproduc-
tion number is smaller than one. In some cases, the system would undergo a backward
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Fig. 3 A saddle-node bifurcation occurs on C�+. In D1, R0 > 1 and system (4) has a unique endemic
equilibrium. In D2, system (4) has two endemic equilibria.

transcritical bifurcation which generates multiple endemic equilibria, and it becomes
impossible to control the endemic by just reducing the basic reproduction number. In
the aforementioned 6 models proposed for the West Nile virus transmission dynamics
(Cruz-Pacheco et al., 2005; Kenkre et al., 2005; Liu et al., 2006; Lord and Day, 2001;
Thomas and Urena, 2001; Wonham et al., 2004), the basic reproduction number serves
as the essential controlling threshold condition. In the model proposed in Bowman et al.
(2005), a backward bifurcation may occur which produces multiple endemic equilibria.
Therefore, a further threshold condition beyond the basic reproduction is essential for the
control of the spread of the virus.

It follows from Theorem 2.2 and Theorem 3.5 that there exist multiple endemic equi-
libria if and only if

R0 < 1, a2 > 0, 0 < − a1

2a2
< B∗

i2 and � > 0. (25)

To describe the backward bifurcation, we choose the recruitment rate of susceptible
mosquitoes ΠM and the natural death rate of mosquitos μM as parameters. We will present
the bifurcation diagram in the first quadrant in the (μM,ΠM) plane.

The basic reproduction number R0 = 1 defines a parabola shown in Fig. 3; we denote
this part of the parabola by C0:

C0 : ΠMC0
= (μB + dB)ΠB

b2
1β1β2μB

μ2
M, μM > 0. (26)

The condition a2 = 0 corresponds to the curve Γ1 has a vertical asymptote to the right
of Bi = B∗

i2, as shown in Fig. 1(b) and Fig. 2(b)–(d). For a2 > 0, we need μM >
b1β1μB

dB
.

As shown in Fig. 3, the vertical line μM = b1β1μB

dB
corresponds to a2 = 0, and to the right

of the line we have a2 > 0.
Let the parabola defined by a1 = 0 be C1, Fig. 3. Solving a1 = 0 in terms of μM gives

C1 : ΠMC1
= dBΠB

b2
1β1β2μB

(

2μ2
M − b1β1μB

dB

μM

)

, μM ≥ b1β1μB

dB

. (27)
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Let C2 be the parabola defined by B∗
i2 + a1

2a2
= 0, Fig. 3. Then we have

C2 : ΠMC2
= dBΠB

b2
1β1β2(μB + dB)

(

2μ2
M − b1β1(μB − dB)

dB

μM

)

, μM ≥ b1β1μB

dB

.

(28)

A straightforward calculation yields

ΠMC1
− ΠMC2

= 2d2
BΠB

b2
1β1β2μB(μB + dB)

μM

(

μM − b1β1μB

dB

)

. (29)

Hence, ΠMC1
> ΠMC2

for μM >
b1β1μB

dB
. It is shown in Fig. 3 that C1 is always above C2.

Now let us consider the curve defined by � = 0. It defines a curve with two branches,
denoted by C�±, Fig. 3. It follows from � = 0, or equivalently from (20), that

C�± : Π�± = 2 dBΠB

b2
1β1β2(μB + dB)

μM

×
[

μM − b1β1(μB − dB)

2dB

±
√

(μM + b1β1)

(

μM − b1β1μB

dB

)]

,

μM ≥ b1β1μB

dB

. (30)

One can verify that all the four curves C1, C2, and C�± pass through the same point
Q1(

b1β1μB

dB
,

β1μBΠB

dBβ2
) on the vertical line μM = β1μBΠB

dB
, Fig. 3.

One needs to compare the relative positions of the three curves C0, C1, and C�+ .
A straightforward calculation yields

ΠMC1
− ΠMC0

= μMΠB

b1β2

(

1 − (dB − μB)μM

b1β1μB

)

.

Hence, if dB > μB and μM >
b1β1μB

dB−μB
, the curves C1 and C0 have an intersection at the

point Q2(
b1β1μB

dB−μB
,

(μB+dB)ΠBβ1
β2(dB−μB)2 ), and C1 is above the curve C0 for μM >

b1β1μB

dB
. Further-

more, it follows from (26) and (30) that

ΠMC0
− Π�+

= ΠBμM

b2
1β1β2μB(μB + dB)

(
μB

√
b1β1 + μM − √

dB(dBμM − b1β1μB)
)2

≥ 0. (31)

Hence, for μM >
b1β1μB

dB
, C0 is always above C�+. Note that the curves C0 and C�+

intersect at the point Q2, therefore, they form a region D2; see Fig. 3, where system (4)
has two positive equilibria.

We summarize the above analysis in the following theorem regarding the backward
bifurcation and the subthreshold condition for the endemic of the virus.
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Fig. 4 Bifurcation diagram when dB < μB . In D1 where R0 > 1, system (4) has a unique endemic
equilibrium; outside the region D1, system does not have endemic equilibrium.

Fig. 5 Bifurcation diagram using the basic reproduction number R0 as parameter.

Theorem 4.1. The system (4) undergoes a saddle-node bifurcation if and only if

dB > μB, and
dB

μB

> 1 + b1β1

μM

. (32)

Furthermore, in the region D2 where

D2 =
{

(μM,ΠM) | μM >
b1β1μB

dB − μB

,Π�+ < ΠM < ΠMC0

}

system (4) has two endemic equilibria.

From the above description and analysis for the backward bifurcation curves, one can
see that if dB < μB , the backward bifurcation does not occur and the corresponding bifur-
cation diagram is given in Fig. 4.

In this model, it follows from Theorem 3.5 that if dB ≤ μB and R0 < 1, the disease free
equilibrium is locally asymptotically stable, Fig. 5(a). If dB > μB , a backward bifurcation
will occur if (32) is satisfied. Two positive endemic equilibria will appear, one is a stable
node and the other is a saddle point, Fig. 5(b).
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As shown in Fig. 3, when dB > μB , for any μM >
b1β1μB

dB−μB
and ΠM between C0 and

C�+, system has two endemic equilibria even though we have R0 < 1.
Let R01 = R0|ΠM=Π�+ . Then it follows from (30) that

R01 = 1

μB + dB

√
√
√
√2dBμB

[

1 + b1β1 (dB − μB)

2dBμM

+
√(

1 + b1β1

μM

)(

1 − b1β1μB

dBμM

)]

.

(33)

One can verify that when dB > μB and μM >
b1β1μB

dB−μB
, we have 0 < R01 < 1.

We summarize the condition for the saddle-node bifurcation in terms of the basic re-
production in the following theorem.

Theorem 4.2. The system (4) undergoes a saddle-node bifurcation if and only if

dB > μB, μM >
b1β1μB

dB − μB

and R01 < R0 < 1. (34)

And the bifurcation diagram using the basic reproduction number R0 as parameter is
given in Fig. 5.

5. Simulations and discussions

For the full model in Bowman et al. (2005), numerical simulations were carried out for
both the cases of R0 < 1 and R0 > 1. In this paper, we focus only on the case when R0 < 1
and dB > μB and system (4) has multiple equilibria.

It follows from the discussion in Bowman et al. (2005) that the most effective and re-
alistic strategy to prevent the spread of the West Nile virus is to control the mosquitoes.
Mosquito reduction strategies like the elimination of mosquito breeding sites (through im-
proved drainage and prevention of standing water), larvaciding (killing mosquito larvae
before they become adults), and adulticiding (killing adult mosquitoes via fogging) using
appropriate biological agents (Nosal and Pellizzari, 2003). In order to investigate the con-
trolling strategy for the West Nile virus related to mosquito control, we therefore use the
recruitment rate of susceptible mosquitoes ΠM and the natural death rate of mosquitos
μM as parameters.

For our simulations, except for ΠM and μM which are taken as bifurcation parame-
ters, parameters are taken from Bowman et al. (2005) and listed in Table 1. It should be
mentioned that compare to the parameters in Bowman et al. (2005), we increase b1 to 0.2
while we increase the West Nile virus induced death rate dB to 0.005 due to the fact that
the infected crow family of birds have higher death rate when they are infected with the
virus (Centers for Disease Control and Prevention, 2003; West Nile Virus Monitor—West
Nile Virus Surveillance Information. West Nile Virus—Public Health Agency of Canada.
http://www.phac-aspc.gc.ca/wn-no/index-e.html). It is assumed here that the maximum
lifespan of a mosquito is 2 to 3 weeks, and we take as 21 days (that is, 1/μM ≤ 21 days)
and the maximum number of recruited mosquitoes is 2 × 105.

http://www.phac-aspc.gc.ca/wn-no/index-e.html
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Table 1 Model parameters and their interpretations

Parameter Description Estimated value

ΠM Recruitment rate of uninfected mosquitoes (per day) Parameter
ΠB Recruitment rate of susceptible birds (per day) 1000
1/μM Average lifespan of a mosquito (days) Parameter
1/μB Average lifespan of a bird (days) 1000
b1 Biting rate of mosquitoes on birds 0.02
β1 Transmission probability from bird to mosquito 0.16
β2 Transmission probability from mosquito to bird 0.88
dB WNV-induced death rate of birds (fraction per day) 0.005

Fig. 6 For the parameters taken as in Table 1 and μM = 1
21 , ΠM = 200000, we have the basic re-

production number R0 = 0.9099, while R01 = 0.7552, system (4) has two positive endemic equilibria
E1(16088,44491,733048) and E2(195514,59026,156828).

The numerically simulated results are depicted in Fig. 6. For the purpose of displaying
the asymptotic behavior, in the simulations the time interval was taken as t ∈ [0,2000],
an interval of about 6 years. For different initial sizes of the infected mosquitoes and
birds, the corresponding population size of the infected birds saturates at the equilib-
rium state B2

i = 156828. Note that for the cases in North America, like the spreading of
the virus in the southern Ontario, Canada (West Nile Virus Monitor—West Nile Virus
Surveillance Information. West Nile Virus—Public Health Agency of Canada. http://
www.phac-aspc.gc.ca/wn-no/index-e.html), the mosquito season ends in late October due
to the cold weather. Hence, if we consider the model and combine the cases in Southern
Ontario, we can see that even though the basic reproduction number is smaller than one,
we can observe the growth of the number of infected birds. This might explain why the

http://www.phac-aspc.gc.ca/wn-no/index-e.html
http://www.phac-aspc.gc.ca/wn-no/index-e.html
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small scale outbreaks of the virus keep occurring in the region where there was an out-
break in the previous year(s). The analytical and numerical analysis both suggest that the
basic reproductive number alone cannot simply determine whether West Nile virus will
prevail or not, and that one needs to pay more attention to the initial sizes of the infected
mosquito and bird population.

If R0 > 1, system has a unique positive equilibrium. The global stability of the endemic
equilibrium was proved in Bowman et al. (2005) with the assumption that dB > 0 and
sufficiently small. Numerical simulations suggest that the unique endemic equilibrium
remains to be globally asymptotically stable even for large values of dB , but a rigorous
proof of the global stability of the endemic equilibrium remains an open problem.
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