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We establish the threshold dynamics of a delayed reaction diffusion equation subject to the homogeneous
Dirichlet boundary condition when the delayed reaction term is non-monotone. We illustrate the main
results by two examples, including the delayed Nicholson’s blowflies diffusion equation.
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1. Introduction

Our focus here is on the threshold dynamics of reaction diffusion equations with nonlinear and
delayed non-monotone reaction terms under the Dirichlet boundary condition. This type of system,
including Nicholson’s blowflies equation and the logistic-type delay diffusion equation, arises
naturally from modelling population dynamics and spatial ecology.

Much has been done in the case where the space is a one-dimensional unbounded domain
in association with the consideration of traveling wavefronts, see [7,8,9] and references therein.
There are also substantial studies about asymptotic properties of solutions to the logistic-type
delayed diffusion equation under the Dirichlet/Neumann boundary condition, see, for example,
[1,2,4,12,14,20,29]. Unfortunately, results about the global dynamics for Nicholson’s blowflies
equation under the Dirichlet boundary condition seem to be quite scarce [22,28] due to the
difficulty in describing the non-negative non-trivial steady-state solution analytically.

By applying the theory of monotone dynamical systems and the Krein–Rutman theorem, So
and Zhao [24] obtained a threshold result on the global dynamics of scalar reaction diffusion
equations with time delays, and they also applied their general results to the diffusive Nicholson’s
blowflies equation where the nonlinearity satisfies a certain monotonicity property in the domain
under consideration. In [22], So and Yang studied the asymptotic behaviour of the diffusive
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332 T. Yi et al.

Nicholson’s blowflies equation subject to the Neumann boundary condition and with delayed
non-monotone feedbacks. In [28], Wu and Zhao introduced a new ordering in the phase space
with respect to which some reaction diffusion equations with non-linear and delayed reaction
terms (which are not necessarily monotone) can generate monotone semiflows so that the global
dynamics (in particular, threshold dynamics) of some diffusive population models with delayed
and non-local effects can be described by using the order-preserving property and some general
results of monotone dynamical systems.

None of these results can be applied to examine the global dynamical behaviours of solutions
to the following delayed reaction diffusion equation subject to the Dirichlet boundary condition:

∂u

∂t
(t, x) = d�u(t, x) − μu(t, x) + μf (u(t − τ, x)) in D ≡ (0, ∞) × �,

u|∂� = 0 on � ≡ (0, ∞) × ∂�,

u(θ, x) = ϕ(θ, x) for (θ, x) ∈ [−τ, 0] × �.

(1)

Here, � is a bounded domain with smooth boundary ∂�, � is the Laplacian operator, d, μ, and
τ are positive parameters, f : R+ ≡ [0, ∞) → R+ is a local Lipschitz function with f (0) = 0,
and the initial function ϕ is assumed to be a continuous and non-negative function with respect to
the two variables. Special cases of Equation (1) have been studied. See [5,6,10,17,18,23,25,30].
Recently, by combining a dynamical system argument with the maximum principle as well as
some subtle inequalities, Yi and Zou [31] established the global attractivity of the positive steady
state of the diffusive Nicholson’s equation with the homogeneous Neumann boundary condition,
and their result can be applied to the case where the reaction is non-monotone.

The purpose of this paper is to modify some of the arguments in Yi and Zou [31] to describe
the threshold dynamics of Equation (1) that will include results in [22] as special cases. As shall
be shown, the modification seems to be significant, and some rather different approaches must be
taken while dealing with the Dirichlet problem. In Section 2, we establish the threshold dynamics
of Equation (1), and in Section 3, we provide illustrative examples.

2. Threshold dynamics

Let R denote the set of all real numbers. Let C0 = {ϕ ∈ C(�, R) : ϕ|∂� = 0} and X = {φ ∈
C([−τ, 0] × �, R) : φ|[−τ,0]×∂� = 0} be equipped with the usual supremum norm ‖ · ‖. Note
that we use ϕ for an element in C(�), and φ for an element in C([−τ, 0] × �).

Also let C+ = {ϕ ∈ C0 : ϕ|� ≥ 0} and X+ = {φ ∈ X : φ|[−τ,0]×� ≥ 0}. For a ∈ R, â ∈ C0 is

defined as â(x) = a for x ∈ �. Similarly, ˆ̂a ∈ X is defined as ˆ̂a(θ, x) = a for (θ, x) ∈ [−τ, 0] ×
�. For the simplicity of notation, we shall write a ≡ â and a ≡ ˆ̂a if no confusion arises.

For an interval I ⊆ R, let I + [−τ, 0] = {t + θ : t ∈ I and θ ∈ [−τ, 0]}. For u : (I +
[−τ, 0]) × � → R and t ∈ I , we write ut (·, ·) for the element of X defined by ut (θ, x) =
u(t + θ, x) for −τ ≤ θ ≤ 0 and x ∈ �.

Let T (·) be the semigroup on C0 generated by the operator d� under the Dirichlet boundary
condition. It is well known that T (·) is an analytic, compact, and positive semigroup on C0

[19,21,27].
Define F : X → C0 by

(F (φ))(x) =
{

−μφ(0, x) + μf (φ(−τ, x)), x ∈ � and φ ∈ X+,

0, otherwise.
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We consider the following integral equation with a given initial condition,

u(t, ·) = T (t)φ(0, ·) +
∫ t

0
T (t − s)F (us)ds, t ≥ 0,

u0 = φ ∈ X.

(2)

By the standard theory [15,27], for each φ ∈ X, Equation (2) admits a unique solution uφ(t, ·)
(with values in C0) on its maximal interval [0, σφ). As usual, uφ(t, x) is called a mild solution of
Equation (1). For details, see [15,16,27].

Definition 2.1 For given t1, t2 ∈ R with t2 > t1, a continuous function u : [t1 − τ, t2) × � → R

is called a classical solution of Equation (1) for t ∈ [t1, t2) if all involved derivatives exist and for
i, j ∈ {1, . . . , m}, ∂u/∂t and ∂2u/∂xi∂xj are continuous for (t, x) ∈ (t1, t2) × �, and ∂u/∂xi is
continuous for (t, x) ∈ (t1, t2) × �, and u satisfies Equation (1) for (t, x) ∈ (t1, t2) × �.

Let λ1 be the first eigenvalue of the operator −� with the homogeneous Dirichlet boundary
condition. To investigate the threshold dynamics of Equation (1) or its abstract form (2), we
introduce the following assumptions:

(H1) There exists M > 0 such that f (x) ≤ M for x ∈ R+.
(H2) There exists u∗ > 0 such that f (u∗) = u∗.
(H3) If a ≥ 0, b ≥ 0, and u∗ ≥ k > 0, then a − 1 ≥ |b − 1| implies −af (k) + f (bk) ≤ 0.

Moreover, −af (k) + f (bk) = 0 if and only if a = b = 1.
(H4) If a ≥ 0, b ≥ 0, and u∗ ≥ k > 0, then 1 − a ≥ |b − 1| implies −af (k) + f (bk) ≥ 0.

Moreover, −af (k) + f (bk) = 0 if and only if either a = b = 1 or a = b = 0.
(H5) There exists a continuous function g : R+ → R+ such that f (ξ) = ξg(ξ) for ξ ∈ R+.

We refer to Lemma 2.5 below for the motivation of assumptions (H3) and (H4).
By (H1) and Theorem 2.2.3 in [27], we have σφ = ∞ for φ ∈ X. Since limh→0+ dist(ψ(0) +

hF(ψ), C+) = limh→0+ inf{‖ψ(0) + hF(ψ) − ψ̃‖ : ψ̃ ∈ C+} = 0 for ψ ∈ X+, it follows from
Proposition 3 and Remark 2.4 in [15] that (uφ)t ∈ X+ for t ∈ R+ and φ ∈ X+. In the sequel, we
always assume that (H1) holds.

Define the map U : R+ × X+ → X+ by U(t, φ) = (uφ)t for (t, φ) ∈ X. The following result
is a direct consequence of the abstract results in [3,26,27].

Lemma 2.2 The map U is a semiflow defined on X+ and satisfies the following properties:
(i) For a given t > τ , U(t, ·) : X+ → X+ is completely continuous. More precisely, if B ⊂ X+

is bounded, then U(t, ·)B is precompact for t > τ .
(ii) For a given φ ∈ X+, U(t, φ)(0, ·) is a classical solution of Equation (2) for t > τ .

The proof of the following lemma can be found in [19,21].

Lemma 2.3 Let T > 0 and W ⊆ � be an open domain with a smooth boundary ∂W . Let u(t, x)

be a continuous function on [0, T ] × � with derivatives ∂u/∂xi , ∂2u/∂xi∂xj , and ∂u/∂t existing
and being continuous on (0, T ] × �. Let Lu(t, x) = d�u(t, x) − ∂u/∂t(t, x). Then the following
statements are true:

(i) If Lu(t, x) > 0 for (t, x) ∈ (0, T ) × W , then u cannot attain a local maximum in
(0, T ) × W ;

(ii) If Lu(t, x) ≥ 0 for (t, x) ∈ (0, T ) × W and if u attains its maximum in [0, T ] × W at a point
(t∗, x∗) ∈ (0, T ) × W , then u(t, x) = u(t∗, x∗) for (t, x) ∈ [0, T ] × W ;
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334 T. Yi et al.

(iii) Suppose that the first derivatives of u with respect to the xi exist and are continuous on
(0, T ] × W . Let c ≥ 0 and Lu(t, x) − cu(t, x) ≥ 0 for (t, x) ∈ (0, T ) × W . If there exist
(t∗, x∗) ∈ (0, T ) × ∂W , ε∗ ∈ (0, T ) and an open ball S∗ ⊆ W such that S∗ ∩ ∂W = {x∗}
and u(t∗, x∗) > u(t, x) for (t, x) ∈ [t∗ − ε∗, t∗ + ε∗] × S∗, then ∂u/∂n|(t∗,x∗) > 0.

Lemma 2.4 Suppose φ ∈ X+\{0}. Then

(i) U(t, φ)(0, x) > 0 for (t, x) ∈ [3τ, ∞) × �;
(ii) ∂U(t, φ)(0, x)/∂n < 0 for (t, x) ∈ [3τ, ∞) × ∂�;

(iii) there exists K = Kφ,M > 0 such that ‖U(t, φ)‖ ≤ K for t ∈ [0, ∞).

Proof Let u(t, x) = uφ(t, x) for (t, x) ∈ [−τ, ∞) × �. According to Lemma 2.1(ii), u(t, x) is
a classical solution of Equation (1) for t > τ .

To prove (i), we first claim that U(τ, φ) ∈ X+ \ {0}. If not, then U(τ, φ) = 0 and hence
u(t, x) = 0 for (t, x) ∈ [0, τ ] × �. This, combined with Equation (2), gives

∫ t

0 T (t − s)

F (us)ds = 0 for t ∈ [0, τ ]. Thus,
∫ 1

0 T (t − s)[u(s − τ, ·)e−u(s−τ,·)]ds = 0 for t ∈ [0, τ ]. Since
T (·) is a strongly positive semigroup, that is, T (t)(ψ)(x) > 0 for (t, x, ψ) ∈ (0, ∞) × � × C+ \
{0} [22, Corollary 7.2.3], we can deduce that u(s − τ, ·)e−u(s−τ,·) = 0 for s ∈ [0, τ ] and thus
φ = U(0, φ) = u0 = 0, a contradiction. Similarly, we can prove U(2τ, φ) ∈ X+ \ {0}. Hence,
there exists (t̃ , x̃) ∈ (τ, 2τ) × � such that u(t̃, x̃) > 0. Suppose now that statement (i) is not true.
Then there is (t∗, x∗) ∈ [3τ, ∞) × � such that u(t∗, x∗) = 0. This implies that u attains its mini-
mum in [τ, ∞) × � at (t∗, x∗) ∈ (τ, ∞) × �. On the other hand, it follows from Equation (1) that
d�u(t, x) − (∂u(t, x)/∂t) − μu(t, x) ≤ 0 for (t, x) ∈ (τ, ∞) × �. Let v(t, x) = −u(t, x)eμt

for (t, x) ∈ [−τ, ∞) × �. Then Lv(t, x) ≥ 0 for (t, x) ∈ (τ, ∞) × � (where L is defined in
Lemma 2.3) and v attains its maximum in [τ, ∞) × � at (t∗, x∗) ∈ (τ, ∞) × �. Then, by
Lemma 2.3 (ii), we have v(t, x) = v(t∗, x∗) = 0 for (t, x) ∈ [τ, t∗] × � and hence u(t, x) = 0
for (t, x) ∈ [τ, t∗] × �, which shows U(2τ, φ) = 0, a contradiction. This proves (i).

We next prove statement (ii). From Equation (1), we have d�u(t, x) − (∂u(t, x)/∂t) −
μu(t, x) ≤ 0 for all (t, x) ∈ [3τ, ∞) × �. By (i) proved above and Lemma 2.3 (iii), we obtain that
∂U(t, φ)(0, x)/∂n = ∂u(t, x)/∂n < 0 for (t, x) ∈ [3τ, ∞) × ∂�, that is, statement (ii) holds.

Finally, we prove statement (iii). By the definition of U , there exists K0 = K0(φ) > 0 such
that ‖U(t, φ)‖ ≤ K0 for t ∈ [0, 3τ ]. Let K = Kφ,M = 3K0 + 3M , where M is the number in
assumption (H1). We claim ‖U(t, φ)‖ ≤ K for t ∈ [0, ∞). Otherwise, there exists (t∗, x∗) ∈
(3τ, ∞) × � such that u(t∗, x∗) > K . Let t∗∗ = inf{t ∈ [3τ, ∞) : u(t, x) = K for some x ∈
�}. Then t∗∗ > 3τ , and there exists x∗∗ ∈ � such that u(t∗∗, x∗∗) = K and u(t, x) < K

for (t, x) ∈ (0, t∗∗) × �. Hence, ∂u(t, x)/∂t |(t,x)=(t∗,x∗) ≥ 0 and d�u(t, x)|(t,x)=(t∗,x∗) ≤ 0. But,
it follows from Equation (1) that ∂u(t, x)/∂t ≤ d�u(t, x) − μu(t, x) + μM , in particular,
∂u(t, x)/∂t |(t,x)=(t∗,x∗) ≤ μ(−K + M) < 0, a contradiction. This completes the proof of state-
ment (iii). �

For φ ∈ X+, we define O(φ) = {U(t, φ) : t ≥ 0} and ω(φ) = ⋂
t≥0 O(U(t, φ)). By

Lemma 2.2 (i) and Lemma 2.4 (iii), we know that O(φ) is compact and hence ω(φ) is non-empty,
compact, connected and invariant. According to the invariant property of ω(φ), for ψ ∈ ω(φ),
there is a global solution u : R × � → R with u0 = ψ and ut ∈ ω(φ) for t ∈ R [12].

Lemma 2.5 Assume that (H2), (H3) and (H5) hold. Then the following statements hold:
(i) g(ak) < g(k) for k ∈ (0, u∗] and a > 1.

(ii) g(ξ) is strictly decreasing in ξ ∈ [0, u∗].
(iii) g(0) > g(ξ) for ξ > 0.
(iv) g(ξ) ≤ 1 for ξ ∈ [u∗, ∞).
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Proof It follows from (H3) with a = b and a > 1 that af (k) > f (ak) for k ∈ (0, u∗]. Thus (H5)
implies g(ak) < g(k) for k ∈ (0, u∗] and a > 1, that is, statement (i) holds.

For ξ , η ∈ (0, u∗] with ξ > η, by taking a = ξ/η > 1, we obtain from statement (i) that g(η) >

g(aη) = g(ξ), that is, g(ξ) is strictly decreasing in ξ ∈ [0, u∗]. This proves statement (ii).
We now prove statement (iii) by way of contradiction. Suppose statement (iii) is not true.

Then there exists ξ ∗ > 0 such that g(ξ ∗) ≥ g(0). Let ξ ∗∗ = sup{ξ ∈ [0, ξ ∗] : g(ξ) = max{g(η) :
η ∈ [0, ξ ∗]}}. Then ξ ∗∗ > 0 and g(ξ ∗∗) = max{g(η) : η ∈ [0, ξ ∗]}. It follows from statement (i)
that ξ ∗∗ > u∗. But, statement (i) implies g(ξ ∗∗) = g(ξ ∗∗/u∗u∗) < g(u∗), a contradiction. Thus,
statement (iii) holds.

Finally, we prove statement (iv). Indeed, we can easily see from statement (i) that g(ξ) =
g(ξ/u∗u∗) ≤ g(u∗) = 1 for ξ ≥ u∗ . This completes the proof. �

Applying Theorem and Remark in [13] and Lemma 2.5, we have the following result:

Proposition 2.6 Assume that (H2), (H3) and (H5) hold. If μg(0) > dλ1 + μ, then Equation (1)

has a unique positive steady-state solution (to be denoted by u+(x) in what follows).

To proceed further, we now introduce the following notations:

M◦(φ)(x) = φ(0, x)

u+(x)
− 1 for x ∈ � and φ ∈ X+;

M∂(φ)(x) = ∂φ(0, x)/∂n

∂u+(x)/∂n
− 1 for x ∈ ∂� and φ ∈ X+;

M(φ)(x) =
{

M◦(φ)(x), x ∈ � and φ ∈ X+,

M∂(φ)(x), x ∈ ∂� and φ ∈ X+.

Obviously, �(ψ) = max{�+(ψ), �−(ψ)}.
Lemma 2.7 Let ψ ∈ X+. Then M(·)(·) is a continuous function with respect to (x, φ) ∈ � ×
O(u2τ (ψ)).

Proof According to the definition of M(φ)(x), we know that, for a given x ∈ �, M◦(φ)(x) is a
continuous function with respect to φ ∈ O(u2τ (ψ)).

It suffices to prove that for a given φ ∈ O(u2τ (ψ)), M(φ)(x) is a continuous function with
respect to x ∈ �. In the following, let {xn}∞n=1 be a sequence of � such that limn→∞ xn = x0

for some x0 ∈ ∂�. Note that for sufficient large n, there exist x0
n ∈ ∂� and sn > 0 such that

xn = x0
n + snnx0

n
and x0

n + ηsnnx0
n

∈ � for η ∈ [0, τ ]. Thus,

lim
n→∞ M◦(φ)(xn) = lim

n→∞
φ(0, xn)

u+(xn)
− 1

= lim
n→∞

∫ 1
0 ∂φ(0, x0

n + ηsnnxn
)/∂ηdη∫ 1

0 ∂u+(x0
n + ηsnnx0

n
)/∂ηdη

− 1

= lim
n→∞

∫ 1
0 ∇xφ(0, x0

n + ηsnnx0
n
)nx0

n
dη∫ 1

0 ∇xu+(x0
n + ηsnnx0

n
)nx0

n
dη

− 1

= M∂(φ)(x0).

On the other hand, it follows from the definition of M(φ)(x) that M(φ)(·)|� and M(φ)(·)|∂� are
continuous functions. Thus, M(φ)(·) is a continuous function in �. This completes the proof. �
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336 T. Yi et al.

Proposition 2.8 Assume that (H1)–(H5) hold. If μg(0) > dλ1 + μ, then the positive steady-
state solution u+(x) of Equation (1) attracts all solutions of Equation (1) with the initial value
ψ ∈ X+ \ {0}.

Proof By way of contradiction, suppose that there exists ψ ∈ X+ \ {0} such that �(ψ) > 0.
Without loss of generality, we may assume that �−(ψ) ≥ �+(ψ). Then, 1 ≥ �−(ψ) = �(ψ) > 0.

We first prove u+(x) ≤ u∗ for x ∈ �. Otherwise, there is a u∗∗ > u∗ such that u∗∗ =
sup{u+(x) : x ∈ �}. It follows from Equation (1) that f (u∗∗) ≥ u∗∗. Let a = b = u∗∗/u∗ and
k = u∗. Then, by assumption (H3), f (u∗∗) = f (ak) < af (k) = u∗∗, a contradiction.

We complete the proof by discussing four possible cases.

Case 1 There exist x∗ ∈ � and φ∗ ∈ ω(ψ) \ {0} such that −M◦(φ∗)(x∗) = �−(ψ). It follows
from Lemma 2.4 (i) that −M◦(φ∗)(x∗) < 1. Let v(t, x) = uφ∗

(t, x)/u+(x) for x ∈ � and t ∈ R,
where uφ∗

(t, x) denotes a full orbit in ω(ψ) with (uφ∗
)0 = φ∗. Obviously, v(t, x) attains the

minimum value v(0, x∗) in R × � (since v(t, x) − v(0, x∗) = (1 − v(0, x∗)) − (1 − v(t, x)) ≥
�−(ψ) − �(ψ) = 0). Hence, �v(0, x∗) ≥ 0, dv(0, x∗)/∂t = 0 and ∂v(0, x∗)/∂xj = 0 for j ∈
{1, 2, . . . , n}. On the other hand, for t ∈ R, we can deduce from Equation (1) that

∂v(t, x∗)
∂t

= 1

u+(x∗)
· ∂uφ∗

(t, x∗)
∂t

= 1

u+(x∗)
[d�uφ∗

(t, x∗) − μuφ∗
(t, x∗) + μf (uφ∗

(t − τ, x∗))]

= 1

u+(x∗)
[du+(x∗)�v(t, x∗) + dv(t, x∗)�u+(x∗)

− μuφ∗
(t, x∗) + μf (uφ∗

(t − τ, x∗))]

= d�v(t, x∗) + μ

u+(x∗)
[v(t, x∗)(u+(x∗) − f (u+(x∗)))

− uφ∗
(t, x∗) + f (uφ∗

(t − τ, x∗))]

= d�v(t, x∗) + μ

u+(x∗)
[−v(t, x∗)f (u+(x∗)) + f (uφ∗

(t − τ, x∗))]

= d�v(t, x∗) + μ

u+(x∗)

[
−v(t, x∗)f (u+(x∗)) + f

(
u+(x∗)

uφ∗
(t − τ, x∗)
u+(x∗)

)]

= d�v(t, x∗) + μ

u+(x∗)
[−v(t, x∗)f (u+(x∗)) + f (u+(x∗)v(t − τ, x∗))].

By assumption (H4), |v(−τ, x∗) − 1| ≤ 1 − v(0, x∗) implies ∂v(0, x∗)/∂t − d�v(0, x∗) > 0,
a contradiction.

Case 2 There exist x∗ ∈ ∂� and φ∗ ∈ ω(ψ) \ {0} such that −M∂(φ∗)(x∗) = �−(ψ) and
−M◦(φ)(x) < �−(ψ) for (x, φ) ∈ � × ω(ψ). In this case, it follows from Lemma 2.4 (ii)
that a ≡ 1 + M∂(φ∗)(x∗) ∈ (0, 1). Let v(t, x) = uφ∗

(t, x) − au+(x) for x ∈ � and t ∈ R, where
uφ∗

(t, x) denotes a full orbit in ω(ψ) with u0(φ
∗) = φ∗. Obviously, v(0, x∗) = 0, ∂v/∂n|x=x∗ = 0

and v(t, x) > 0 for t ∈ R and x ∈ �. On the other hand, for (x, t) ∈ � × R, it follows from
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Equation (1) that

∂v(t, x)

∂t
= ∂uφ∗

(t, x)

∂t

= d�uφ∗
(t, x) − μuφ∗

(t, x) + μf (uφ∗
(t − τ, x))

= d�v(t, x) + ad�u+(x) − μuφ∗
(t, x) + μf (uφ∗

(t − τ, x))

= d�v(t, x) + a[μu+(x) − μf (u+(x))] − μuφ∗
(t, x) + μf (uφ∗

(t − τ, x))

= d�v(t, x) − μv(t, x) + μ[−af (u+(x)) + f (uφ∗
(t − τ, x))]

= d�v(t, x) − μv(t, x) + μ

[
−af (u+(x)) + f

(
u+(x)

uφ∗
(t − τ, x)

u+(x)

)]
.

Since 1 − a = �(ψ) ≥ |uφ∗
(t − τ, x)/u+(x) − 1|, assumption (H4) implies ∂v(t, x)/∂t −

d�v(t, x) + μv(t, x) > 0 for (x, t) ∈ � × R. Applying Lemma 2.3 (iii), we can deduce
∂v/∂n|(0,x∗) < 0, a contradiction.

Case 3 ω(ψ) \ {0} �= ∅ and −M(φ)(x) < �−(ψ) for x ∈ � and φ ∈ ω(ψ) \ {0}. In this case,
we have 0 ∈ ω(ψ) and �(ψ) = |M(0, x)| = 1. If �+(ψ) = 1, then similar arguments as those
in Case 1 or Case 2 will produce a contradiction. Now we assume M+ ≡ �+(ψ) < 1. Then
−1 ≤ M+ < 1. Let v(t, x) = uψ(t, x) for (t, x) ∈ [−τ, ∞) × �. To complete the proof, we need
the following claims.

Claim 1 There is an s∗ > 5τ such that 1 > M∗+ ≡ sup{M(vt )(x) : (t, x) ∈ [s∗, +∞) × �}.
Indeed, by the definition of ω(ψ) and Lemma 2.7, there exists s∗ > 5τ such that inf{‖M(vt )(·) −
M(φ)(·)‖ : φ ∈ ω(ψ)} < (1 − M+)/3 for t ∈ [s∗, +∞). It follows from the compactness of
ω(ψ) that for every t ∈ [s∗, +∞) there exists ϕt ∈ ω(ψ) such that ‖M(vt )(·) − M(φt)(·)‖ =
inf{‖M(vt )(·) − M(φ)(·)‖ : φ ∈ ω(ψ)}. Therefore, according to the choice of φt , we obtain

M∗
+ = sup{M(vt )(x) : (t, x) ∈ [s∗, +∞) × �}

≤ sup{M(vt )(x) − M(ϕt)(x) : (t, x) ∈ [s∗, +∞) × �}
+ sup{M(ϕt)(x) : (t, x) ∈ [s∗, +∞) × �}

≤ sup{‖M(vt )(·) − M(ϕt)(·)‖ : t ∈ [s∗, +∞)}
+ sup{M(ψt)(x) : (t, x) ∈ [s∗, +∞) × �}

≤ 1 − M+
3

+ M+

< 1.

This completes the proof of Claim 1.
Since ω(ψ) \ {0} �= ∅ and ω(ψ) \ {0} ⊆ Int(X+), there exist ε0 ∈ (0, 1/8 min{1, 1 − M+, 1 −

M∗+}) and φ∗ ∈ ω(ψ) such that φ∗ − ε0u
+ ∈ X+. In view of {0, φ∗} ⊆ ω(ψ) and the definition of

ω(ψ), there exist s1 > s∗ + τ, s2 > s∗ + τ and s3 > s∗ + τ such that s1 < s2 − τ < s2 < s3 −
τ < s3, ‖M(vs2)(·)‖ > 1 − 1/8ε0, sup{‖M(vs1+θ )(·) − M(uθ(φ

∗))(·)‖ : θ ∈ [−τ, 0]} < 1/8ε0

and ‖M(vs3)(·) − M(φ∗)(·)‖ < 1/8ε0. Let M1 = sup{|M(vt )(x)| : (t, x) ∈ [s1 − τ, s3] × �}.
Then it follows from M∗+ < 1, the definition of M1 and Lemma 2.4 (i, ii) and Lemma 2.7 that
M1 < 1. By the choice of si and the definition of M1, we have M1 ≥ ‖M(vs2)(·)‖ > 1 − 1/8ε0. In
view of the choice of ε0, we have M1 > M+ and M1 > M∗+, and hence 1 > M1 > max{M+, M∗+}.
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Claim 2 M1 > |M(vt )(x)| for (t, x) ∈ ([s1 − τ, s1] ⋃{s3}) × �. Indeed, it follows from the
choices of s1 and φ∗ that, for θ ∈ [−τ, 0],

‖M(vs1+θ )(·)‖ ≤ ‖M((uφ∗
)θ )(·)‖ + ‖M(vs1+θ )(·) − M((uφ∗

)θ )(·)‖
= max{sup{M((uφ∗

)θ )(x) : x ∈ �}, sup{−M((uφ∗
)θ )(x) : x ∈ �}}

+ ‖M(vs1+θ )(·) − M((uφ∗
)θ )(·)‖

≤ max{M+, 1 − ε0} + ‖M(vs1+θ )(·) − M((uφ∗
)θ )(·)‖

< max{M+, 1 − ε0} + 1

8
ε0

= max

{
M+ + 1

8
ε0, 1 − 7

8
ε0

}
.

According to the choice of ε0, we have M+ + 1/8ε0 < 1 − 1/8ε0, and hence

sup{‖M(vs1+θ )(·)‖ : θ ∈ [−τ, 0]} ≤ 1 − 1

8
ε0 < M1.

A similar argument shows that ‖M(vs3)(·)‖ < M1. This proves Claim 2.

Claim 3 |M(vt )(x)| < M1 for (t, x) ∈ [s1 − τ, s3] × �. Otherwise, it follows from Claim 2 and
M1 > M∗+ that there exists (t2, x2) ∈ (s1, s3) × � such that M1 = −M(vt2)(x2) ∈ (0, 1). Using a
similar discussion as that in Case 1, we can deduce a contradiction. Consequently, Claim 3 holds.

It follows from Claims 2 and 3 and M1 > M∗+ that there exists (t∗∗, x∗∗) ∈ (s1, s3) × ∂� such
that M1 = −M(vt∗∗)(x∗∗) > 0. By a similar discussion as that in Case 2, we also can deduce a
contradiction.

Case 4 ω(ψ) = {0}. It follows from μg(0) > dλ1 + μ and assumption (H5) that there is a
K∗ > 0 such that f (x) ≥ (dλ1 + μ)/μx for x ∈ [0, K∗]. From the definition of ω(ψ), there
exists T > 5τ such that 0 < uψ(t, x) < min{u∗/3, K∗/3} for x ∈ � and t > T . Let H(φ) =
−μφ(0) + (dλ1 + μ)φ(−τ) for φ ∈ X+. Then H is quasimonotone in the sense of [15,27]. It
follows from Equation (2) that, for t > 5τ ,

uψ(t, ·) ≥ T (t)φ(0, ·) +
∫ t

0
T (t − s)H((uψ)s)ds.

Note that there exists φ∗ ∈ C+ such that −�φ∗ = λ1φ
∗ and φ∗(x) > 0 for x ∈ �. Let ε0 > 0

such that u(T + θ, ·) − ε0φ
∗ ∈ C+ for θ ∈ [−τ, 0]. Denote v(t, x) = ε0φ

∗(x) for all (t, x) ∈
[−τ, ∞) × �. Then v(t) = T (t)φ(0, ·) + ∫ t

0 T (t − s)H(vs)ds. Thus by Corollary 8.1.11 in [27],
we have u(t + T , x) ≥ v(t, x) = ε0φ

∗(x) for (t, x) ∈ [−τ, ∞) × �, which implies ω(φ) �= {0},
a contradiction.

Summarizing Cases 1–4, we see that �(ψ) > 0 is impossible and hence �(ψ) = 0. This
completes the proof. �

Proposition 2.9 Assume that (H1)–(H5) hold. If μg(0) ≤ dλ1 + μ, then the trivial steady-state
solution 0 of Equation (1) attracts all solutions of Equation (1) with the initial value ψ ∈ X+.

Proof By way of contradiction, we assume that there exists u0 ∈ X+ such that ω(u0) �=
{0}. Then, by the compactness of ω(u0), there exist M∗ > 0 and φ∗ ∈ ω(u0) such that
M∗ = sup{‖φ(0, ·)‖L2 : φ ∈ ω(u0)} and M∗ = ‖φ∗(0, ·)‖L2 . By the invariance of ω(u0), there
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exists a global classical solution w(t, x) : R × � → [0, ∞) of Equation (1) such that w0 = φ∗.
We multiply Equation (1) by w(t, x) and integrate it over �. Using integration by parts, the
Poincaré inequality, the Hölder inequality and Lemma 2.5(iii), we can obtain

d‖u(t, ·)‖L2

dt
< −(dλ1 + μ)‖u(t, ·)‖L2 + μg(0)‖u(t − τ, ·)‖L2 .

It follows from the choice of w that d‖u(t, ·)‖L2/dt |t=0 = 0 and ‖u(0, ·)‖L2 ≥ ‖u(−τ, ·)‖L2 ,
a contradiction. �

According to Proposition 2.6, Proposition 2.8 and Proposition 2.9, we have the following main
results:

Theorem 2.10 Assume that assumptions (H1)–(H5) hold.

(i) If μg(0) ≤ dλ1 + μ, then the trivial steady-state solution 0 of Equation (1) attracts all
solutions of Equation (1) with the initial value in X+.

(ii) If μg(0) > dλ1 + μ, then the non-trivial steady-state solution u+ of Equation (1) attracts all
solutions of Equation (1) with the initial value in X+ \ {0}.

Remark 2.11 Theorem 2.10 still holds if we replace (H1) with

(H1∗). There exists a sequence {un}n≥1 such that limn→∞ un = ∞ and f ([0, un]) ⊆ [0, un].

Remark 2.12 Similar results as those in Theorem 2.10 can be established if we replace d� with
a uniformly elliptic operator.

3. Applications

In this section, we illustrate Theorem 2.10 with two examples.

Example 3.1 Consider Nicholson’s blowflies equation with diffusion,

∂u

∂t
(t, x) = d�u(t, x) − δu(t, x) + pu(t − τ, x)e−ρu(t−τ,x), t > 0, x ∈ �,

u(0, ·)|∂� = 0,

(3)

where d, ρ, τ , β, δ ∈ (0, ∞).

In Example 3.1, we have μ = δ, u∗ = (1/ρ) ln p/δ and f (x) = p/δxe−ρx for x ∈ [0, ∞).

Lemma 3.2 If 1 < p/δ ≤ e2, then f (x) = p/δxe−ρx satisfies assumptions (H1)–(H5).

Proof We can easily see that assumptions (H1), (H2) and (H5) hold. It suffices to prove assump-
tion (H3) since assumption (H4) can be proved similarly. In the following, we assume that
a ≥ 0, b ≥ 0, 0 < k ≤ (1/ρ) ln(p/δ) and a − 1 ≥ |b − 1|. If ρk ≤ 1, then a simple computation
proves assumption (H3). Now suppose ρk > 1. Let β∗ = eρk , a∗ = aρk and b∗ = bρk. Then β∗ ∈
(1, e2], a∗ − ln β∗ ≥ |b∗ − ln β∗| and −af (k) + f (bk) = p/ρδe−ρk(−a∗ + β∗b∗e−b∗

). Hence,
by Lemma 2.4 in [32], we have −a∗ + β∗b∗e−b∗ ≤ 0. Moreover, −a∗ + β∗b∗e−b∗ = 0 if and only
if a∗ = b∗ = ln β. This completes the proof. �
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Theorem 2.10, combined with Lemma 3.2, gives the following theorem.

Theorem 3.3 Assume p/δ ∈ (1, e2].
(i) If p ≤ dλ1 + δ, then the trivial steady-state solution 0 of Equation (3) attracts all solutions

of Equation (3) with the initial value in X+.
(ii) If p > dλ1 + δ, then there exists a unique nontrivial steady-state solution of Equation (3)

which attracts all solutions of Equation (3) with the initial value in X+\{0}.
Example 3.4 Consider the following scalar equation

∂u

∂t
(t, x) = d�u(t, x) − δu(t, x) + pu(t − τ, x)

1 + u(t − τ, x)
,

u(0, ·)|∂� = 0,

(4)

where d, τ , δ, p > 0 and p/δ > 1.

In Example 3.4, μ = δ, u∗ = p/δ − 1 and f (x) = (p/δ)(x/1 + x) for x ∈ [0, ∞).

Lemma 3.5 If 1 < p/δ, then f (x) = (p/δ)(x/1 + x) satisfies assumptions (H1)–(H5).

Proof It is easy to see that assumptions (H1), (H2) and (H5) hold. It suffices to prove assumption
(H4) since assumption (H3) can be proved similarly. Assume that a ≥ 0, b ≥ 0, 0 < k ≤ p/δ − 1
and 1 − a ≥ |b − 1|. Then b ≥ a and a ≤ 1. By a simple computation, we obtain that −af (k) +
f (bk) = (pk/δ(1 + k)(1 + bk))(b + bk − a − abk), and thus −af (k) + f (bk) ≥ 0. Moreover,
−af (k) + f (bk) = 0 if and only if either a = b = 1 or a = b = 0. This completes the proof. �

Theorem 3.6 follows immediately from Theorem 2.10 and Lemma 3.5.

Theorem 3.6 Suppose p/δ > 1.

(i) If p ≤ dλ1 + δ, then the trivial steady-state solution 0 of Equation (4) attracts all solutions
of Equation (4) with the initial value in X+.

(ii) If p > dλ1 + δ, then there exists a unique non-trivial steady-state solution of Equation (4)

which attracts all solutions of Equation (4) with the initial value in X+\{0}.
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