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Abstract The classical SIS model with a constant transmission rate exhibits
simple dynamic behaviors fully determined by the basic reproduction num-
ber. Behavioral changes and intervention measures influenced by the level of
infection, likely with a time lag, require the transmission rate to be a non-
linear function of the total infectives. This nonlinear transmission, as shown
in this paper via a combination of qualitative and numerical analysis, can
generate interesting dynamical behaviors at the population level including
backward and Hopf bifurcations. We conclude that sustained infections and
periodic outbreaks can be consequences of delayed changes in behaviors or
human intervention.
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1 Introduction

The following classical SIS model without vital dynamics (death and birth)
⎧
⎪⎪⎨

⎪⎪⎩

S′(t) = −βS(t)I(t)
N(t)

+ γI(t),

I ′(t) = β
S(t)I(t)
N(t)

− γI(t),
(1.1)

with N(t) = S(t) + I(t), and a constant transmission rate β as well as
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a constant recovery rate γ exhibits simple dynamics. See, for example,
Ref. [2]. It has been observed in a number of studies [3,7,9,10,12] that the
transmission rate should be a nonlinear function of the total infectives I(t),
since the number of effective contacts between infectives and susceptibles
may saturate at a high infection level due to crowding effects (of infectives)
or due to some protection measures taken by the susceptibles. Such a non-
linear function can lead to complicated dynamics, including Bogdanov-Takens
singularity, multiple equilibria and limit cycles.

In this paper, we consider the situation where the nonlinear transmission
rate β = β(T (t− τ)) is a nonlinear function of I with a time delay, since the
behavior changes of susceptible individuals occurs with a time delay. Such
a time lag can be a result of a long incubation period (for example, some
sexually transmitted diseases) or ineffectiveness of the surveillance system
and the public education program. A detailed qualitative analysis (Sections
2 and 3), based on the normal form and center manifold theory [6], shows that
backward bifurcation and Hopf bifurcation of stable periodic oscillations can
take place. Numerical simulations in Section 4 confirm that such oscillations
can be easily observed in models with realistic epidemiological parameters.

2 Model formulation

We consider the following SIS model with delayed nonlinear incidence rate:
⎧
⎪⎪⎨

⎪⎪⎩

S′(t) = −β̃(I(t− τ))
S(t)I(t)
N(t)

+ γI(t),

I ′(t) = β̃(I(t− τ))
S(t)I(t)
N(t)

− γI(t),
(2.1)

where N(t) = S(t) + I(t) is the total population at time t, S(t) and I(t) are
respectively the sizes of the susceptible and infective populations, γ is the
recovery rate. We assume that infected individuals recover without immunity.
It is assumed that the transmission rate β̃ depends on the size of infective
population, with a time delay τ. We assume that β̃ : R+ → R+ := [0,∞) is
a continuous function with β̃(0) �= 0.

It follows immediately that N ′(t) = 0 for t � 0, and hence

N(t) = S(t) + I(t) = S(0) + I(0) for t � 0.

Therefore, the dynamic behavior of solutions of (2.1) is fully determined by
the following scalar delay differential equation:

I ′(t) = β̃(I(t− τ))
[N(0) − I(t)]I(t)

N(0)
− γI(t).

Normalizing by

x(t) =
I(t)
N(0)

, β(y) = β̃(yN(0)) for y ∈ R, (2.2)



Backward/Hopf bifurcations in SIS models 537

we obtain
x′(t) = β(x(t − τ))[1 − x(t)]x(t) − γx(t). (2.3)

To determine a unique solution of (2.3) for all future time t � 0, we need
to prescribe the initial value of x on the interval [−τ, 0]. We assume

x(t) = ϕ(t) ∈ [0, 1], t ∈ [−τ, 0], (2.4)

where ϕ ∈ C([−τ, 0]; R), the Banach space of continuous functions on [−τ, 0]
equipped with the super-norm. It is straightforward to verify that x(t) ∈ [0, 1]
for all t � 0. Furthermore, if β is a non-increasing function, then

x′(t) � β(0)[1 − x(t)]x(t) − γx(t).

Consequently, under the condition that

R0 =
β(0)
γ

< 1, (2.5)

x(t) → 0 as t → ∞, so the disease-free equilibrium (x ≡ 0) is globally
asymptotically stable.

Complicated dynamics occurs, however, if R0 > 1 due to the interaction
of the nonlinearity of β and the time delay τ > 0.

Recall that R0 is normally called the basic reproduction number.

2.1 R0 and stability of equilibria

We note that equilibria of (2.3) are given by the following algebraic equation:

β(x)x(1 − x) − γx = 0.

Let
β∗ = max{β(x)(1 − x); x ∈ [0, 1]}. (2.6)

Then (2.3) has only one equilibrium 0 if γ > β∗ and this corresponds to
the disease free equilibrium x = 0. If γ < β∗, then (2.3) has at least one
equilibrium x = x∗ ∈ (0, 1). This endemic equilibrium x = x∗ satisfies

β(x∗)(1 − x∗) = γ.

The linearization of (2.3) at a given equilibrium x̃ is

y′(t) = β′(x̃)x(1 − x̃)y(t− τ) + [β(x̃)(1 − 2x̃) − γ]y(t). (2.7)

In particular, the linearization of (2.3) at the disease free equilibrium x = 0
is

y′(t) = [β(0) − γ]y(t).

Therefore, the equilibrium x = 0 is asymptotically stable if β(0) < γ and
unstable if β(0) > γ. In other words, x = 0 is asymptotically stable/unstable
if the basic reproduction number R0 is less/larger than 1.
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Note also that with

βmax = max{β(x); 0 � x � 1}, (2.8)

we have
x′(t) � βmax[1 − x(t)]x(t) − γx(t).

Consequently, x = 0 is globally asymptotically stable if

βmax < γ. (2.9)

βmax and β(0) can have different ordering relationships, and this seems
to be the mechanism behind backward bifurcations. A simple example where
β(0) = βmax is when β is a non-increasing function such as

βM (x) = e−αxβ0 with α > 0, β0 > 0. (2.10)

An example where β(0) < βmax is

βN (x) = e−αx(β0 + β1x) with α > 0, β0 > 0, β1 > 0. (2.11)

For βN(x), β(0) < βmax if β1 > αβ0. In particular, if

0 <
β1 − αβ0

αβ1
< 1, (2.12)

then

βmax =
β1

α
e−(1−α

β0
β1

). (2.13)

See Fig. 1 for the graphs of βM (x) and βN (x).
We now summarize the above discussion as follows.

Theorem 2.1 Let R0, β
∗ and βmax be defined as in (2.5), (2.6) and (2.8).

Then
(i) the zero solution of (2.3) is asymptotically stable if β(0) < γ and

unstable if β(0) > γ;
(ii) the zero solution of (2.3) is globally attractive if βmax < γ;
(iii) system (2.3) has at least one endemic equilibrium x = x∗ ∈ (0, 1) if

and only if γ < β∗.

As β(x∗)(1 − x∗) = γ, at an endemic equilibrium x∗, the linearization of
(2.3) can be written as

y′(t) = −B1y(t) +B2y(t− τ), (2.14)

with
B1 = β(x∗)x∗ > 0, B2 = β′(x∗)(1 − x∗)x∗. (2.15)
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Fig. 1 (a) Graph of βM (x) = β0e−αx with β0 = 0.062 and α = 2.

(b) Graph of βN (x) = (β0 + β1x)e−αx with β0 = 0.062, β1 = 1 and α = 2

When β(x) is a monotonically decreasing function such as βM (x), R0 > 1
implies that (2.3) has a unique endemic equilibrium x∗ ∈ (0, 1) with B2 < 0.
When β(x) is non-monotonic such as βN (x), however, (2.3) may have multiple
endemic equilibria. In particular, backward bifurcations can occur.

2.2 Backward bifurcation

To illustrate the possibility of backward bifurcations, we consider

β(x) = βN (x) = (β0 + β1x)e−αx. (2.16)

We note that

[(1 − x)βN (x)]′ = −e−αx[(α+ 1 − αx)(β0 + β1x) − β1(1 − x)]. (2.17)

Therefore, if β0(1 + α) < β1, then [(1 − x)βN (x)]′ = 0 has a unique solution
x ∈ (0, 1) and [(1 − x)βN (x)] achieves the maximum on [0, 1] at x. That is,

β∗ = (β0 + β1x)e−αx(1 − x).

We already noted that the equilibrium x = 0 is locally asymptotically stable if
γ > β0, and unstable if γ < β0. Note also that endemic equilibrium x∗ ∈ (0, 1)
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exists only when γ < β∗. It is therefore natural to consider the cases where
γ < β0 and where β0 < γ < β∗.

Theorem 2.2 Consider β(x) = βN (x) and assume β0(1 + α) < β1. Then
in the case where τ = 0, we have

(i) if 0 < γ < β0, then (2.3) has a unique endemic equilibrium x∗ ∈ (0, 1)
which is asymptotically stable;

(ii) if β0 < γ < β∗, then (2.3) has two endemic equilibrium x = x∗ ∈
(0, x) and x = x∗ ∈ (x, 1). The equilibrium x∗ is unstable and the equilibrium
x∗ is stable.

Proof We refer the readers to Fig. 2 for schematic illustrations of various
numbers involved in the proof.

Fig. 2 Relationship between β(x)(1 − x) and γ, whose intersection

in (0, 1) gives rise to endemic equilibria

(i) Let 0 < γ < β0. Observe that x∗ ∈ (x, 1). If β′(x∗) � 0, then B2 � 0
and the solution of (2.14) is asymptotically stable, and so is the equilibrium
x∗. Consider the case when β′(x∗) > 0. For x ∈ (x, x∗], since β(x)(1 − x) is
decreasing on (x, x∗], we have β(x) � γ/(1 − x) with equality holds only at
x = x∗. This implies β′(x∗) � γ/(1−x∗)2. We claim β′(x∗) < γ/(1−x∗)2. In
fact, if β′(x∗) = γ/(1 − x∗)2, then we have β′(x∗)(1 − x∗) = β(x∗). In other
words, x∗ is a root of equation (2.16) in (0, 1). Thus x∗ = x, a contradiction.
Hence β′(x∗) < γ/(1 − x∗)2. Noting that γ = β(x∗)(1 − x∗), we obtain

β′(x∗)(1 − x∗) < β(x∗).

That is, B2 < B1. Thus the equilibrium x = x∗ is asymptotically stable.
(ii) Let β0 < γ < β∗. For x ∈ [x∗, x), we observe that β(x) � γ/(1 − x)

with equality holds only at x = x∗. This implies β′(x∗) � γ/(1− x∗)2. Using
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the same argument as in part (i), we can show that β′(x∗) > γ/(1 − x∗)2.
Therefore, since γ = β(x∗)(1 − x∗), we obtain

β′(x∗)(1 − x∗) > β(x∗).

That is, B2 > B1. Thus the equilibrium x = x∗ is unstable.
Next, we show the equilibrium x = x∗ is stable. If β′(x∗) � 0, then we

get
B2 = β′(x∗)(1 − x∗) � 0.

If β′(x∗) > 0, then we can use the fact that β(x) � γ/(1 − x) for x ∈ (x, x∗]
with equality only at x = x∗ to show that β′(x∗)(1 − x∗) < β(x∗). Thus the
equilibrium x = x∗ is asymptotically stable. This completes the proof. �

Based on Theorem 2.2, we conclude that equation (2.1) with τ = 0
undergoes a forward transcritical bifurcation at x = 0 when γ = β0, and
a backward bifurcation at x = x when γ = β∗. This hysteresis-like
bifurcation is illustrated in Figure 3.

Note that this is the case where τ = 0. Increasing the size of the delay
may generate sustained oscillation as the next section shows.

3 Hopf bifurcation analysis

3.1 Existence of Hopf bifurcations

Let x∗ be an endemic equilibrium of (2.3). Then the linearized system of
(2.3) at x∗ is

x′(t) = −B1x(t) −B2x(t− τ), (3.1)

where
B1 = β(x∗)x∗, B2 = −β′(x∗)(1 − x∗)x∗.

Recall that B1 > 0. The associated characteristic equation becomes

λ = −B1 −B2e−λτ . (3.2)

If τ = 0, the stability of x∗ is described in Theorem 2.2. To consider the
occurrence of a local Hopf bifurcation at x∗ by increasing τ, we assume that
λ = ±iω with ω > 0 are roots of equation (3.2). Then

iω = −B1 −B2e−iωτ .

Separating the real and imaginary parts gives

B1 = −B2 cosωτ, ω = B2 sinωτ,

which leads to

τk =
1

√
B2

2 −B2
1

[
arctan

(
−

√

B2
2 −B2

1

/
B1

)
+ (k + 1)π

]
, k = 0, 1, . . . ,
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Fig. 3 (a) Hysteresis-like bifurcation diagram for β1 > (1 + α)β0 with

β0 = 0.06, α = 3 and β1 = 1. For comparison, we also depict here the

bifurcation diagram (b) for β1 � (1 + α)β0 with β0 = 0.3, α = 5 and

β1 = 0.4. In both pictures, dotted lines represent unstable equilibria

ω0 =
√

B2
2 −B2

1 ,

provided |B1| < |B2|, or equivalently γ > β2(x∗)/|β′(x∗)|.
To check the transversality condition, we obtain from (3.2), by regarding

λ as a smooth function of τ in the neighborhood of τk, the following:

λ′ = B2(λ + λ′τ)e−λτ .
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Using
λ(τk) = iω0 = −B1 −B2e−iω0τk ,

we obtain
λ′(τk) = B2e−iω0τk(iω0 + λ′(τk)τk)

= (−B1 − iω0)(iω0 + λ′(τk)τk).

Therefore,

λ′(τk) =
ω2

0 − iB1ω0

1 +B1τk + iB1ω0τk
,

and hence

Reλ′(τk) =
ω2

0

(1 +B1τk)2 + ω2
0τ

2
k

> 0.

To verify the nonresonance condition, i.e., equation (3.2) has no root
λ(τk) = ±iω0n with integer n � 2, we assume by way of contradiction that
iω0n(n � 2) is a root of equation (3.2). Then

iω0n = −B1 −B2e−iω0nτk ,

which implies that

B1 = −B2 cos(ω0nτk), ω0n = B2 sin(ω0nτk).

Solving for ω0 gives us

ω0 =

√
B2

2 −B2
1

n2
�

√
B2

2 −B2
1

4
=
ω0

4
,

a contradiction.
We can now state the following existence result.

Theorem 3.1 When

β∗ > γ >
β2(x∗)
|β′(x∗)| ,

equation (3.2) has a pair of simple imaginary roots ±iω0 at τ = τ0. If τ ∈
[0, τ0), then all roots of (3.2) have negative real parts; if τ = τ0, then all roots
of (3.2) except ±iω0 have negative real parts. In particular, the equilibrium
x = x∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0; and
equation (2.1) undergoes a Hopf bifurcation at x = x∗ when τ = τ0.

3.2 Stability and direction of bifurcation

In the previous subsection, we obtained the conditions under which system
(2.1) undergoes a Hopf bifurcation of periodic solutions from the endemic
steady state at the critical values of τ = τ0. Whether such a nonlinear
oscillation can be observed in real epidemiological data depends on the
stability of bifurcated periodic solutions. Determining the stability of
bifurcated periodic solutions requires a very lengthy calculation, as shown
in this subsection. The method to be used is a standard application of the
normal form and center manifold theory.
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Letting
u = x− x∗, x(t) = u(τt), τ = τ0 + µ,

and dropping the bars for notational simplification, we can transfer system
(2.3) into the FDE in C = C([−1, 0],R) as follows:

x′(t) = Lµ(xt) + f(µ, xt), (3.3)

where x(t) ∈ R, xt(θ) = x(t+ θ), and Lµ : C → R is given by

Lµφ = (τ0 + µ)(−B1φ(0) −B2φ(−1)), φ ∈ C, (3.4)

and f : R×C → R is the high order term. The linear part can be written as

Lµφ =
∫ 0

−1

dη(θ, µ)φ(θ),

where
η(θ, µ) = (τ0 + µ)(−B1δ(θ) −B2δ(θ + 1)),

and δ is the Dirac delta function.
For φ ∈ C1([−1, 0],R), define

(A(µ)φ)(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

dφ(θ)
dθ

, −1 � θ < 0,
∫ 0

−1

dη(s, µ)φ(s) ≡ Lµφ, θ = 0

and

(R(µ)φ)(θ) =

{
0, −1 � θ < 0,

f(µ, φ), θ = 0.

Thus system (3.3) is equivalent to

x′t = A(µ)(xt) +R(µ)(xt). (3.5)

The adjoint operator of A(µ) is defined as

(A∗(0)ψ)(ζ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dψ(ζ)
dζ

, 0 < ζ � 1,

∫ 0

−1

dη(s, 0)ψ(−s), ζ = 0,

where ψ ∈ C1([0, 1],R). For φ ∈ C1([−1, 0],R) and ψ ∈ C1([0, 1],R), we can
define the bilinear inner product by

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.6)
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where η(θ) = η(θ, 0). From the previous discussion, we know that ±iω0τ0 are
eigenvalues of A(0). Suppose that q(θ) = eiθω0τ0q(0) is an eigenfunction of
A(0) associated with iω0τ0. Then

A(0)q(θ) = iω0τ0q(θ).

It follows from the definition of A(0) that

τ0(iω0 − (−B1 −B2e−iω0τ0))q(0) = 0.

Thus, q(0) can be any non-zero constant vector.
Since iω0τ0 is an eigenvalue for A(0), −iω0τ0 is an eigenvalue for A∗(0).

Suppose that q∗(ζ) = eiζω0τ0q∗(0) is an eigenfunction of A∗(0) corresponding
to −iω0τ0, we have

A∗(0)q∗(ζ) = −iω0τ0q
∗(ζ).

Let q(0) = 1. We use (3.6) to calculate

〈q∗, q〉 = q∗(0) −
∫ 0

−1

∫ θ

ξ=0

q∗(0)e−i(ξ−θ)ω0τ0dη(θ)eiξω0τ0dξ

= q∗(0)
(

1 −
∫ 0

−1

θeiθω0τ0dη(θ)
)

= q∗(0)(1 + τ0B2e−iω0τ0).

Thus, we can choose

q∗(0) =
1

1 + τ0B2eiω0τ0
,

so that 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0.
A center manifold C̃ at µ = 0 is a locally invariant, attracting two-

dimensional manifold in C described as follows. If we define

z(t) = 〈q∗, xt〉, W (t, θ) = xt(θ) − 2Re{z(t)q(θ)}, (3.7)

where xt is a solution of (3.5), then on the center manifold C̃ we have

W (t, θ) = W (z(t), z(t), θ)

and

W (z, z, θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · . (3.8)

As z and z are local coordinates for the center manifold C̃, we note that W
is real if xt is real. We consider only real solutions. For the solution xt ∈ C̃,
since µ = 0, we have

z′(t) = iω0τ0z + q∗(0)f(0,W (z, z, 0) + 2Re{zq(0)})
= iω0τ0z + q∗(0)f0(z, z).
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This can be rewritten as

z′(t) = iω0τ0z + g(z, z),

with

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.9)

Noticing that

xt(θ) = W (t, θ) + zq(θ) + zq(θ), q(θ) = eiθω0τ0 ,

we have

xt(0) = z + z +W20(0)
z2

2
+W11(0)zz +W02(0)

z2

2
+O(|z, z|3),

xt(−1) = e−iω0τ0z + eiω0τ0z +W20(−1)
z2

2

+W11(−1)zz +W02(−1)
z2

2
+O(|z, z|3).

Consequently, the Taylor expansion of f(µ, xt) in (3.3) can be expressed in
terms of z and z as follows:

f0(z, z) = f(0, xt)

= τ0

(
[−β(x0)]x2

t (0) + [β′(x0)(1 − 2x0)]xt(0)xt(−1)

+
[1
2
β(2)(x0)(1 − x0)x0

]
x2

t (−1) + [−β′(x0)]x2
t (0)xt(−1))

+
[1
2
β(2)(x0)(1 − 2x0)

]
xt(0)x2

t (−1)

+
[1
6
β(3)(x0)(1 − x0)x0

]
x3

t (−1)
)

+ · · ·

= τ0

{
f20

(
z + z +W20(0)

z2

2
+W11(0)zz +W02(0)

z2

2

)2

+ f11

(
z + z +W20(0)

z2

2
+W11(0)zz +W02(0)

z2

2

)

×
(
e−iω0τ0z + eiω0τ0z +W20(−1)

z2

2
+W11(−1)zz +W02(−1)

z2

2

)

+ f02

(
e−iω0τ0z + eiω0τ0z +W20(−1)

z2

2

+W11(−1)zz +W02(−1)
z2

2

)2

+ f21

(
z + z +W20(0)

z2

2
+W11(0)zz +W02(0)

z2

2

)2
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×
(
z + z +W20(0)

z2

2
+W11(0)zz +W02(0)

z2

2

)

+ f12

(
z + z +W20(0)

z2

2
+W11(0)zz +W02(0)

z2

2

)

×
(
e−iω0τ0z + eiω0τ0z +W20(−1)

z2

2

+W11(−1)zz +W02(−1)
z2

2

)2

+ f03

(
e−iω0τ0z + eiω0τ0z +W20(−1)

z2

2

+W11(−1)zz +W02(−1)
z2

2

)3}
+ · · · .

From equation (3.9), we can compare the corresponding coefficients to obtain

g20 = 2q∗(0)τ0(f20 + f11e−iω0τ0 + f02e−2iω0τ0),

g11 = q∗(0)τ0(2f20 + f11(eiω0τ0 + e−iω0τ0) + 2f02),

g02 = 2q∗(0)τ0(f20 + f11eiω0τ0 + f02e2iω0τ0),

g21 = 2q∗(0)τ0
{
f20(W20(0) + 2W11(0))

+ f11

(eiω0τ0

2
W20(0) +

1
2
W20(−1) + e−iω0τ0W11(0) +W11(−1)

)

+ f02(eiω0τ0W20(−1) + 2e−iω0τ0W11(−1))

+ 3f21 + f12(2 + e−2iω0τ0) + 3f03e−iω0τ0

}
.

As W20(θ) and W11(θ) are involved in g21, we have to find W20 and W11 first.
From (3.5) and (3.7), we have

(W ′)(θ) = (x′t − z′q − z′q)(θ)

=

{
AW − 2Re{q∗(0)f0q(θ)}, −1 � θ < 0,

AW − 2Re{q∗(0)f0q(0)} + f0, θ = 0.
(3.10)

That is,
W ′ = AW +H(z, z, θ),

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.11)

On the other hand, on the center manifold C̃,

W ′ = Wzz
′ +Wzz

′.
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Expanding the above series and comparing the corresponding coefficients, we
obtain

(2iω0τ0 −A(0))W20(θ) = H20(θ), −A(0)W11(θ) = H11(θ), . . . . (3.12)

From (3.10), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −gq(θ) − g q(θ).

Comparing the coefficients with (3.11) gives

H20(θ) = −g20q(θ) − g02q(θ), H11(θ) = −g11q(θ) − g11q(θ), . . . . (3.13)

From (3.12), (3.13) and the definition of A, it follows that

W ′
20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g02q(θ).

As q(θ) = e−iθω0τ0 , we conclude

W20(θ) =
i

ω0τ0
g20eiθω0τ0 +

i
3ω0τ0

g02e
−iθω0τ0 + E1e2iθω0τ0 ,

where E1 is a constant vector. Similarly, we can obtain

W11(θ) = − i
ω0τ0

g11eiθω0τ0 +
i

ω0τ0
g11e

−iθω0τ0 + E2,

where E2 is a constant vector.
We now seek appropriate E1 and E2. From the definition of A and (3.12),

when θ = 0, we have
∫ 0

−1

dη(s)W20(s) = 2iω0τ0W20(0) −H20(0). (3.14)

On the other hand, when θ = 0, equations (3.10) and (3.11) give

H20(0) = −g20 − g02 + τ0(f20 + f11e−iω0τ0 + f02e−2iω0τ0).

Substituting this and

W20(0) =
i

ω0τ0
g20 +

i
3ω0τ0

g02 + E1

into (3.14) yields
∫ 0

−1

dη(s)W20(s)

=
∫ 0

−1

( i
ω0τ0

g20eisω0τ0 +
i

3ω0τ0
g02e

−isω0τ0 + E1e2isω0τ0

)
dη(s)

= − g20 +
1
3
g02 + 2iω0τ0E1 − τ0(f20 + f11e−iω0τ0 + f02e−2iω0τ0).
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Observing
∫ 0

−1

i
ω0τ0

g20eisω0τ0dη(s) =
i

ω0τ0
g20iω0τ0 = −g20,

and ∫ 0

−1

i
3ω0τ0

g02e
−isω0τ0dη(s) =

i
3ω0τ0

g02(−iω0τ0) =
1
3
g02,

we obtain
∫ 0

−1

E1e2isω0τ0dη(s) = 2iω0τ0E1 − τ0(f20 + f11e−iω0τ0 + f02e−2iω0τ0),

which leads to

E1 =
f20 + f11e−iω0τ0 + f02e−2iω0τ0

2iω0 +B1 +B2e−2iω0τ0
.

Using the same argument, we get

E2 =
2f20 + f11(eiω0τ0 + e−iω0τ0) + 2f02

B1 +B2
.

We thus complete the calculation of W20(θ) and W11(θ), and hence of g21.
From the information of g20, g11, g02 and g21, we obtain

C1(0) =
i

2ω0τ0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+
g21
2
. (3.15)

Set

µ2 = −ReC1(0)
Reλ′(τ0)

, β2 = 2ReC1(0).

By the general results for the direction and stability of a Hopf bifurcation
[6,11], we see that the sign of β2 determines the direction of Hopf bifurcations,
and the sign of µ2 determines the stability of the bifurcated periodic solution.

Noting Reλ′(τ0) > 0, we obtain the following result.

Theorem 3.2 Let

β∗ > γ >
β2(x∗)
|β′(x∗)|

and C1(0) be given by (3.15). Then
(i) the Hopf bifurcation occurs as τ crosses τ0 to the right if ReC1(0) < 0,

and to the left if ReC1(0) > 0;
(ii) the bifurcated periodic solution is stable if ReC1(0) < 0, and unstable

if ReC1(0) > 0;
(iii) the period T and amplitude R of the bifurcated periodic solution are

given by

T (µ) =
2π
ω0τ0

+ o(|µ|), R(µ) =

√

−2Reλ′(τ0)µ
ReC1(0)

+ o(|µ|).



550 Yicheng LIU et al.

4 Numerical simulations

Theorem 3.2 provides an explicit algorithm for determining the stability and
direction of the Hopf bifurcation at x = x∗ near τ = τ0. This facilitates the
construction of numerical examples to illustrate nonlinear oscillations due to
the time delay in the nonlinear incidence rate. This is illustrated for both
βM (Fig. 4 (a)) and βN (Fig. 4 (b)).

Fig. 4 Occurrence of stable periodic solutions from a unique endemic

equilibrium when delay in the incidence rate is increased to a certain

value. (a) β(x) = βM (x) with β0 = 8, α = 8 and γ = 0.1, where x∗

= 0.4687 and τ0 = 4.9619; (b) β(x) = βN (x) with β0 = 0.1, β1 = 8,

α = 15 and γ = 0.1, where x∗ = 0.1648 and τ0 = 11.1060
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Figure 5 illustrates the bifurcation processes from the disease free equi-
librium (Fig. 5 (a) to (b)) to a unique endemic equilibrium by decreasing
γ, from a unique endemic equilibrium to two endemic equilibria with one
being stable by increasing γ again (backward bifurcation) (Fig. 5 (b) to (c)),
and from a stable endemic equilibrium to a stable periodic oscillation by
increasing the time delay τ (Hopf bifurcation) (Fig. 5 (c) to (d)).
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Fig. 5 The bifurcation processes from the disease free equilibrium ((a) to (b)) to

a unique endemic equilibrium by decreasing γ, from a unique endemic equilibrium

to two endemic equilibria with one being stable by increasing γ again (backward

bifurcation) ((b) to (c)), and from a stable endemic equilibrium to a stable periodic

oscillation by increasing the time delay τ (Hopf bifurcation) ((c) to (d)). In the

figure, β(x) = βN (x) with β0 = 0.1, β1 = 8, α = 15. (a) γ = 0.5 and τ = 1;

(b) γ = 0.05 and τ = 1; (c) γ = 0.15 and τ = 1; (d) γ = 0.15 and τ = 15
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