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Abstract

Compartmental models for influenza that include control by vaccination and antiviral treatment are formulated. Analytic expressions

for the basic reproduction number, control reproduction number and the final size of the epidemic are derived for this general class of

disease transmission models. Sensitivity and uncertainty analyses of the dependence of the control reproduction number on the

parameters of the model give a comparison of the various intervention strategies. Numerical computations of the deterministic models

are compared with those of recent stochastic simulation influenza models. Predictions of the deterministic compartmental models are in

general agreement with those of the stochastic simulation models.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The spread through much of the world of a strain of
avian influenza (H5N1) that has been infecting some
humans has been causing a great deal of concern about
pandemic influenza if it should evolve into a strain with
human to human transmission. Several recent studies,
including Balicer et al. (2005), Colizza et al. (2007),
Ferguson et al. (2005), Gani et al. (2005), Longini et al.
(2004, 2005) and Wu et al. (2007) have examined models to
attempt to control such a pandemic influenza should one
develop. These recent models have all been based on
networks and stochastic simulations. Such models have
great potential for predictions of outcomes and design
of control strategies. However, some of the model para-
meters have considerable uncertainty, and such models are
not very amenable to sensitivity analysis. A further very
e front matter r 2008 Elsevier Ltd. All rights reserved.
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difficult question to answer is the sensitivity of the model
predictions to inaccuracies in the simulation or changes in
the network structure during the course of the epidemic.
The model described in Longini et al. (2004) is a discrete-

time stochastic simulation based on a detailed network
contact structure, and it is used to describe the influenza
H2N2 epidemic of 1957–58. Our purpose is to try to
formulate a simple deterministic model with similar
behaviour. While a detailed simulation model could
provide more precise predictions when an epidemic is
under way, we suggest that, for planning in advance of a
possible approaching epidemic, a simple model, in which
the sensitivity to parameters can be analysed, may be more
useful. Since compartmental models are easier to analyse
qualitatively, especially for the effects of mixed strategies,
and their sensitivity analysis is easier, we believe that such
models also have a place in the study of control strategies
for epidemics. The classical deterministic compartmental
models for epidemic spread can be extended to include the
important features of influenza, and we suggest that such
extensions may be able to give predictions comparable to
some of the simulation model predictions, thus adding
credence to both kinds of model.
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Here we develop compartmental models for influenza,
including control by vaccination and antiviral treatment,
and establish their theoretical analyses. Numerical simula-
tions of the deterministic models are compared with those
of recent stochastic simulation influenza models: in all
cases examined, predictions of the two modelling ap-
proaches are in general agreement. Moreover, the determi-
nistic framework in which we operate greatly simplifies
model analysis and allows a more thorough comparison of
the various intervention strategies. We conclude that
deterministic models remain an essential tool for pandemic
planning.

2. An influenza treatment model

Our model for influenza is based on the standard SEIR

model. We assume that individuals who have been infected
go first into a latent (exposed) stage during which they may
have a low level of infectivity. In addition, our model
includes two additional properties suggested by Longini et
al. (2004), first that some members of the population who
are infected never develop symptoms but go directly from
the latent stage to an asymptomatic infective stage and
then to the recovered stage, and second that some infective
individuals withdraw from contact after developing symp-
toms. We also include in the model vaccination of
susceptible members and antiviral treatment of latent,
infective, and asymptomatically infected members of the
population. We ignore the possibility of the emergence of
drug resistant strains.

Our analysis begins with the case of no treatment. This
provides a baseline for parameter estimation. In later
sections we analyse the full model with treatment and
examine two special cases. The first includes only pre-
epidemic vaccination, as for annual influenza epidemics.
The second, appropriate for a possible pandemic influenza
when no specific vaccine has yet been developed, includes
only antiviral treatment of latent, infective, and asympto-
matically infected members of the population.

Specifically, we make the following assumptions, where
S, ST , L, LT , I, IT , A, AT and R denote the numbers of
individuals in the susceptible, treated susceptible, latent,
treated latent, infective, treated infective, asymptomatic,
treated asymptomatic and recovered compartments, re-
spectively, and N is the total population size.
(A1)
 Initially the total population size is N0, of which a
small number Ið0Þ ¼ I0 are infective and the
remainder, S0 ¼ N0 � I0, are susceptible. A fraction
g, 0pgp1, of the susceptible population is vacci-
nated before a disease outbreak, so that
Sð0Þ ¼ ð1� gÞS0, and ST ð0Þ ¼ gS0. All other com-
partments are initially empty.
(A2)
 Vaccinated members have susceptibility to infection
reduced by a factor sS with 0psSp1.
(A3)
 A fraction p of latent members proceed to the
(symptomatic) infective compartment at a rate k,
while the remainder goes directly to an asympto-
matic infective compartment, also at a rate k.
(A4)
 Infective individuals leave the infective compartment
at a rate a.
(A5)
 The rates of departure from LT , IT and AT are kT , aT

and ZT , respectively. It is reasonable to assume that
apaT and ZpZT , but there is no obvious relation
between k and kT . While these inequalities are
plausible for influenza, they are not necessarily valid
for other diseases. However, except where explicitly
stated, our analysis does not depend on them.
(A6)
 The fractions of members recovering from disease
when they leave I and IT are f and f T , respectively,
giving case fatalities ð1� f Þ and ð1� f T Þ, respec-
tively. It is reasonable to assume that fpf T .
(A7)
 Antiviral treatment reduces the fraction of latent
members who will develop symptoms by a factor t,
with 0ptp1.
(A8)
 There is a treatment rate jL in L and a rate yL of
relapse from LT to L, a treatment rate jI in I and a
rate yI of relapse from IT to I, and a treatment rate
jA in A and a rate yA of relapse from AT to A.
(A9)
 Latent members have infectivity reduced by a factor
�, with 0p�p1. Technically, the term ‘latent’ implies
� ¼ 0, so if �40, then this compartment represents
an initial asymptomatic and mildly infectious stage.
(A10)
 Asymptomatic individuals have infectivity reduced
by a factor d, with 0pdp1, and go to the recovered
compartment at a rate Z.
(A11)
 Infectivity in LT , IT and AT is reduced by a factor
sL, sI and sA, respectively, with 0psLp1, 0psIp1
and 0psAp1.
(A12)
 On average infective individuals reduce their contact
rate by a factor q. This gives a mixing population
size (Brauer, 2006)

NM ðN; I ; IT Þ ¼ N � qI � qIT .

Note that NM ¼ N if q ¼ 0. Much of our analysis
extends easily to more general formulations of the
mixing population.
(A13)
 The number of contacts sufficient to transmit
infection per unit time per individual is a non-
decreasing function NMbðNM Þ of the mixing popu-
lation size NM . We assume that bðNM Þ is a non-
increasing function of NM with bð0Þo1. These
assumptions include mass action incidence,
bðNM Þ ¼ b0=S0, for some constant b0, and standard
incidence, bðNMÞ ¼ b0=NM (provided bðNMÞ is
redefined near NM ¼ 0 to be biologically plausible
and keep bð0Þ finite), as well as many forms of
saturating incidence.
Assumptions (A9) through (A12) lead to an infectivity

L ¼ �Lþ �sLLT þ ð1� qÞI þ ð1� qÞsI IT þ dAþ dsAAT .

Together with Assumption (A13) this leads to a force of
infection bðNM ÞL for untreated susceptibles. It is also
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Fig. 1. SLIAR epidemic model with treatment.

Fig. 2. SLIAR epidemic model.
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possible that infectivity is reduced through preventative
measures without reducing the contact rate. This case is
modelled by taking NM ¼ N with q representing a
reduction in infectivity due to these measures. Our results
are easily extended to more general models combining both
effects.

The resulting model is

S0 ¼ �bðNMÞSL,

S0T ¼ �sSbðNMÞSTL,

L0 ¼ bðNMÞSL� kL� jLLþ yLLT ,

L0T ¼ sSbðNMÞSTL� kT LT þ jLL� yLLT ,

I 0 ¼ pkL� aI � jI I þ yI IT ,

I 0T ¼ ptkT LT � aT IT þ jI I � yI IT ,

A0 ¼ ð1� pÞkL� ZA� jAAþ yAAT ,

A0T ¼ ð1� ptÞkT LT � ZT AT þ jAA� yAAT ,

R0 ¼ f aI þ f TaT IT þ ZAþ ZT AT ,

N 0 ¼ �ð1� f ÞaI � ð1� f T ÞaT IT . (1)

Here and elsewhere, a prime denotes differentiation with
respect to t. Since N is the total population size, one
variable can be removed from the system, and it is
convenient to remove the variable R. A flow diagram for
the model (1) is shown in Fig. 1.

The model (1) is an extension of the treatment model
described in Arino et al. (2006), in which � ¼ q ¼ 0, the
incidence is mass action, and there is no treatment of
asymptomatic individuals. It also extends the vaccination
model with mass action incidence in Arino et al. (2007,
Section 7.3).

Treatment of diagnosed infective individuals means
making a choice of treatment rate jI . Treatment of latent
and asymptomatic members means choosing a treatment
rate of members identified by contact tracing. In practise
this means treating a mixture of susceptible, latent and
asymptomatic members. For simplicity we neglect the
susceptible individuals who would be included. Contact
tracing to try to identify latent individuals before they
develop symptoms leads to a constant multiple of new
infectives, which is a constant multiple of L, thus making
the rate of treatment of latent individuals proportional to
L, the size of the latent compartment. Alternately, the
identification of individuals by contact tracing could be
modelled as proportional to the incidence of infection
(Lipsitch et al., 2003; McCaw and McVernon, 2007).
However, even in this case, the simpler assumption of
constant treatment rates is a reasonable first approxima-
tion. The ratio of latent individuals to asymptomatic
individuals included would depend on the speed with which
treatment is implemented. For example, if contacts are
treated immediately before they reach the end of the latent
period, we would take jA ¼ 0, while if treatment is delayed
longer than the duration of the latent period, we would
take jL ¼ 0.

3. Analysis of the untreated influenza model

If there is no treatment, either before or during an
epidemic, then the treatment model (1) reduces to the
following model:

S0 ¼ �bðNM ÞSL,

L0 ¼ bðNM ÞSL� kL,

I 0 ¼ pkL� aI ,

A0 ¼ ð1� pÞkL� ZA,

R0 ¼ f aI þ ZA,

N 0 ¼ �ð1� f ÞaI , (2)

with L ¼ �Lþ ð1� qÞI þ dA, NM ¼ N � qI , and initial
conditions

Sð0Þ ¼ S0; Lð0Þ ¼ 0; Ið0Þ ¼ I0,

Að0Þ ¼ 0; Rð0Þ ¼ 0; Nð0Þ ¼ N0 ¼ S0 þ I0.

A flow diagram for the model (2) is shown in Fig. 2.
As with model (1), the variable R may be removed. It is

easy to show that the problem (2) is properly posed in the
sense that all variables remain non-negative for 0pto1.
We take � ¼ 0 in our numerical simulations because in
Longini et al. (2004) it is assumed that there is no
infectivity in the latent stage. However, for some diseases,
including some strains of influenza, there is a possibility of
infectivity in the latent stage. The special case � ¼ 0, p ¼ 1,
q ¼ 0, which gives A ¼ 0, is the standard SEIR model
(Diekmann and Heesterbeek, 2000, Exercise 2.2).
Model (2) has a set of disease-free equilibria with

L ¼ I ¼ A ¼ 0
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and S ¼ N arbitrary. We use the approach of Diekmann
and Heesterbeek (2000) and van den Driessche and
Watmough (2002) to calculate the basic reproduction
number

R0 ¼ b0
�

k
þ
ð1� qÞp

a
þ

dð1� pÞ

Z

� �
, (3)

where b0 ¼ S0bðN0Þ as per Assumptions (A12) and (A13).
This calculation corresponds to the disease-free equili-
brium with S ¼ N ¼ S0. The basic reproduction number
given by (3) is the sum over the infected compartments of
the product of infectivity and mean duration.

We adopt the notations g1 for limt!1 gðtÞ and ĝ forR1
0 gðsÞds if g is a non-negative integrable function defined
for 0pto1. A special case of the model (2) with � ¼ q ¼ 0
and mass action incidence has been analysed in Arino et al.
(2006), where it is shown that

L1 ¼ I1 ¼ A1 ¼ R1 ¼ 0,

and the final size relation is

ln
S0

S1
¼ R0 1�

S1

S0

� �
þ

b0I0

aS0
. (4)

For the more general model (2) with �40 and q40 and a
general incidence term, we still have that L1 ¼ I1 ¼

A1 ¼ R1 ¼ 0, and the final size relation, which gives S1,
can be computed as follows. Dividing the first equation of
model (2) through by SðtÞ and integrating yields

ln
S1

S0
¼ �

Z 1
0

bðNM ðtÞÞð�Lþ I þ dAÞdt

¼ � bðN�M Þð�L̂þ Î þ dÂÞ, (5)

for some N�M in the range of NMðtÞ.
Summing the first two equations of model (2) yields

L̂ ¼
1

k
ðS0 � S1Þ.

Similarly, from the third equation,

Î ¼
pk
a

L̂þ
I0

a
¼

p

a
ðS0 � S1Þ þ

I0

a
, (6)

and from the fourth,

Â ¼
ð1� pÞk

Z
L̂ ¼

1� p

Z
ðS0 � S1Þ.

Thus,

�L̂þ Î þ dÂ ¼
�

k
þ

p

a
þ

dð1� pÞ

Z

� �
ðS0 � S1Þ þ

I0

a

¼
R0

bðN0Þ
1�

S1

S0

� �
þ

I0

a
,

and the final size relation (5) for model (2) can be written as

ln
S0

S1
¼

bðN�MÞ
bðN0Þ

R0 1�
S1

S0

� �
þ

I0bðN0Þ

a

� �
. (7)
In the special case of mass action incidence, bðNMÞ ¼

b0=S0, and (7) reduces to (4). It is common to assume that
I0 is small enough to be neglected in this formula, and (4)
with I0 ¼ 0 is a standard result for simple epidemic models
(Diekmann and Heesterbeek, 2000, Section 1.3). The
assumption that I0 ¼ 0 implies S0 ¼ N0, and then S0

would be replaced by N0 in the formulae for the analysis of
the model (2).
The attack ratio, often called the attack rate, is defined as

the fraction of the susceptible population that develops
disease symptoms over the course of the epidemic. In our
notation this is, for a general incidence term,

p 1�
S1

S0

� �
.

The basic reproduction number R0 is related to the attack
ratio through the final size relation.
We consider an example with parameters used in

Longini et al. (2004) with time measured in days:

k ¼ 1
1:9 ¼ 0:526; a ¼ Z ¼ 1

4:1 ¼ 0:244,

p ¼ 0:667; f ¼ 0:98; S0 ¼ 1988; I0 ¼ 12,

N0 ¼ 2000; � ¼ 0; d ¼ 0:5.

In Longini et al. (2004) an attack ratio is assumed for each
of four age groups, and the average attack ratio for the
entire population is 0:326. If we use an attack ratio of 0:326
with p ¼ 0:667, we obtain S1 ¼ 1016. If we assume q ¼ 0
and mass action incidence so that we may use the final size
relation (4), with I0 ¼ 0, we obtain R0 ¼ 1:37, which gives,
from (3), b0 ¼ 0:402. The number of cases of influenza
(including the original I0) is

C ¼ I0 þ pðS0 � S1Þ,

and this gives 660 cases (including the original 12) of
influenza compared to the estimate 668 in Longini et al.
(2004).
In order to calculate R0 if q40, we must simulate the

dynamic model (2) with different choices of b0 to find
the value of b0 that gives S1 ¼ 1016. If we now take
q ¼ 0:4, an average value for the assumptions in Longini
et al. (2004), and assume standard incidence, that is
bðNMÞ ¼ b0=NM , we find that, b0 ¼ 0:581 and R0 ¼ 1:35.
It is worth noting that the error introduced by using a final
size equality (assuming mass action incidence and taking
q ¼ 0) instead of using a more accurate dynamic simulation
is only about 0:6% for this set of parameter values: using
b0 ¼ 0:395 with q ¼ 0, so that R0 ¼ 1:35, and the remain-
ing parameters as above in (7) (with N�M ¼ N0) gives
S1 ¼ 1022.
In the special case of no withdrawal, q ¼ 0, we can

also derive an upper bound of this error for a general
function bðNMÞ. First note that if q ¼ 0, then NM ¼ N.
If additionally f ¼ 1, then N�M ¼ N0, but in general
for fo1 and q ¼ 0, N0 � ð1� f ÞaÎpN�MpN0. Using



ARTICLE IN PRESS
J. Arino et al. / Journal of Theoretical Biology 253 (2008) 118–130122
expression (6) for Î ,

N�MXN0 � ð1� f Þ½pðS0 � S1Þ þ I0�

¼ ð1� ð1� f ÞpÞS0 þ ð1� f ÞpS1 þ fI0

Xf ðS0 þ I0Þ

¼ fN0.

Now, a simple argument shows that if R0bðfN0Þ4bðN0Þ,
then there exists

rðf Þ 2 ð0; bðN0Þ=R0bðfN0ÞÞ

that solves the algebraic equation

gðz; f Þ ¼ ln zþ
bðfN0Þ

bðN0Þ
R0ð1� zÞ þ

I0bðN0Þ

a

� �
¼ 0. (8)

Furthermore, if gðz; f ÞX0, then zXrðf Þ.
We now use Sf ;1 to denote the final size that depends on

the fraction, f , recovering from the infection. The final size
equation (7) with f ¼ 1 and q ¼ 0 gives (4). Therefore,
S1;1 ¼ rð1ÞS0. Now for general incidence, since N�MXfN0,
the monotonicity bðN�MÞpbðfN0Þ and final size equation
yield that

ln
S0

Sf ;1
p

bðfN0Þ

bðN0Þ
R0 1�

Sf ;1

S0

� �
þ

I0bðN0Þ

a

� �
.

Thus, the upper bound for the error between S1;1 using
mass action incidence and Sf ;1 for a general incidence
function bðNMÞ is given by the following estimates:

S1;1 ¼ rð1ÞS0XSf ;1Xrðf ÞS0, (9)

0p
S1;1 � Sf ;1

Sf ;1
p

rð1Þ � rðf Þ

rðf Þ
. (10)

The inequality in (10) gives the percentage of error in
calculating Sf ;1. This yields, in terms of the parameters
used above with q ¼ 0 and bðNM Þ ¼ b0=N, the error bound
of 2.24% if f ¼ 0:99, 4:56% if f ¼ 0:98 and 6:97% if f ¼

0:97 (recall that f ¼ 0:97 corresponds to a 3% mortality of
infective individuals).

4. Analysis of the treatment model

To analyse the model (1) we use the formulation of
Arino et al. (2007), writing the model in the form

x0 ¼ bðNMÞPDybx� Vx,

y0 ¼ �bðNMÞDybx,

N 0 ¼ �wx. (11)

Here, x 2 Rn represents the set of infected compartments,
y 2 Rm represents the set of susceptible compartments and
N is the total population. The n� n matrix V describes the
transitions between infected states as well as removals from
infected states through death and recovery. It is pointed
out in Arino et al. (2007) that V is a non-singular
M-matrix. Thus the eigenvalues of V all have positive real
parts, and V�1 is a matrix with all entries non-negative.
The m�m diagonal matrix D has diagonal entries si40
that are the relative susceptibilities of the corresponding
susceptible compartment, P is an n�m matrix with the
property that the ði; jÞ entry represents the fraction of the
jth susceptible compartment that goes into the ith infective
compartment on becoming infected, and b and w are
n-dimensional row vectors of relative horizontal transmis-
sion and disease death rates, respectively.
For the model (1), n ¼ 6, m ¼ 2,

x ¼

L

LT

I

IT

A

AT

2
666666666664

3
777777777775
; x0 ¼

0

0

I0

0

0

0

2
666666666664

3
777777777775
; y ¼

S

ST

" #
,

yð0Þ ¼ y0 ¼
ð1� gÞS0

gS0

" #
,

P ¼

1 0

0 1

0 0

0 0

0 0

0 0

2
666666666664

3
777777777775
; D ¼

1 0

0 sS

" #
,

w ¼ ½0; 0; ð1� f Þa; ð1� f T ÞaT ; 0; 0�

and

b ¼ ½�; �sL; ð1� qÞ; ð1� qÞsI ; d; dsA�.

We write the matrix V in the block form

V ¼

V L 0 0

�VLI VI 0

�VLA 0 VA

2
64

3
75,

where

VL ¼
kþ jL �yL

�jL kT þ yL

" #
,

VLI ¼
pk 0

0 ptkT

" #
,

VI ¼
aþ jI �yI

�jI aT þ yI

" #
,

VLA ¼
ð1� pÞk 0

0 ð1� ptÞkT

" #
,

VA ¼
Zþ jA �yA

�jA ZT þ yA

" #
.
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Then

V�1 ¼

V�1L 0 0

V�1I V LI V�1L V�1I 0

V�1A VLAV�1L 0 V�1A

2
64

3
75.

Because the model (1) may include pre-epidemic treatment
and describe the introduction of infective individuals into a
population that is not wholly susceptible, we speak of a
control reproduction number Rc as in Gumel et al. (2004),
rather than a basic reproduction number R0. Since the
matrix bðN0ÞPDy0b of new infections has rank 1, one of
the results in Arino et al. (2007) is that the control
reproduction number Rc for the model (11) at a disease-
free equilibrium ð0; y0;N0Þ is given by

Rc ¼ ð1� gÞRu þ gRv, (12)

where Ru and Rv are the components of the row vector
S0bðN0ÞbV�1PD. For model (1), exploiting the lower
block of zeros in P, these can be expressed as

½Ru;Rv� ¼ b0ð�½1; sL�V
�1
L Dþ ð1� qÞ½1; sI �

�V�1I VLI V�1L Dþ d½1; sA�V
�1
A V LAV�1L DÞ,

(13)

where, as stated in Assumption (A13), b0 ¼ S0bðN0Þ. Note
that these results all hold for a general incidence term.
Since the entries of V�1 can be interpreted as durations,
each term in Rc is again a weighted product of infectivity
and mean duration in an infected compartment. This is
clear in the special cases below. It is important to note here
that this decomposition of Rc into a sum of infectivity
times duration may also be derived for more general
models that do not assume an exponential distribution for
sojourn times in each compartment. Further details can be
found in the text of Diekmann and Heesterbeek (2000).

Two special cases are of particular interest. The first is
the case of pre-epidemic treatment only, as would be the
practise in preparation for annual influenza epidemics that
are not expected to reach pandemic status and for which a
vaccine is available. For this case, susceptible individuals
are vaccinated, but no other compartment is treated, thus

jL ¼ yL ¼ jI ¼ yI ¼ jA ¼ yA ¼ 0

in the model (1). We obtain

Ru ¼ b0
�

k
þ
ð1� qÞp

a
þ

dð1� pÞ

Z

� �
, (14)

Rv ¼ sSb0
�sL

kT

þ
ð1� qÞsI pt

aT

þ
dsAð1� ptÞ

ZT

� �
, (15)

with Rc given by (12). To control the epidemic means to
choose g large enough to makeRco1, and this is possible if
Rvo1, in particular if sS is small.

A second special case of interest is that of treatment
without pre-epidemic vaccination, as would be the case for
a new strain of influenza with no vaccine available. In this
case, g ¼ 0, and Rc ¼ Ru, with Ru given by (13).
5. The final size relation

Calculation of the basic and control reproduction
numbers is only part of the process of analysing the
epidemic model (1). There is an extension of the final size
relation (7) to the treatment model (1), and this gives
information about the number of cases of disease during
the epidemic. Integrating the first two equations of (1),
using the notation of (11), gives

ln
Sð0Þ

S1
¼

1

sS

ln
ST ð0Þ

ST1

¼ bðN�M Þbx̂, (16)

for some N�M in the range of NMðtÞ, x� in the range of xðtÞ

and x̂ given by (17) below.
Since x1 ¼ 0, integration of the sum of the first and

second equations of (11) gives Vx̂ ¼ x0 þPðy0 � y1Þ.
Solution of this equation for x̂ gives

x̂ ¼ V�1x0 þ V�1Pðy0 � y1Þ. (17)

From the block form of V�1, the components of x̂ for
model (1) can be expressed as

L̂

L̂T

" #
¼ V�1L ðy0 � y1Þ,

Î

ÎT

" #
¼ V�1I

I0

0

" #
þ V�1I VLI V�1L ðy0 � y1Þ,

Â

ÂT

" #
¼ V�1A V LAV�1L ðy0 � y1Þ. (18)

If the incidence is mass action then bðN�MÞ is replaced by
the constant b0=S0. When treatment is included, (16) and
(17) give

ln
Sð0Þ

S1
¼ ð1� gÞRu 1�

S1

Sð0Þ

� �
þ gRv 1�

ST1

ST ð0Þ

� �

þ
b0I0ðaT þ yI þ sIjI Þ

S0ðaaT þ yIaþ jIaT Þ
(19)

together with the first equality from (16), where Ru and Rv

are given by (13). We have a pair of equations determining
S1 and ST1 in terms of the parameters of the model. Then
Sð0Þ � S1 is the number of untreated members not
infected during the epidemic, and ST ð0Þ � ST1 is the
number of treated members not infected during the
epidemic. The number of cases of disease over the course
of the epidemic is

I0 þ p½Sð0Þ � S1� þ pt½ST ð0Þ � ST1�,

and this may be calculated from (19) if the incidence is
mass action.
The number of cases and the number of members of the

population receiving antiviral treatment depend on L̂, L̂T ,
Î , ÎT , Â and ÂT , as given by (18). We use these expressions
to calculate the number of treatments,

T ¼ jLL̂þ jI Î þ jAÂ,
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as the (1,1) entry of the 2� 1 matrix

jI V�1I

I0

0

" #
þ ðjL þ jI V�1I VLI

þ jAV�1A V LAÞV
�1
L ðy0 � y1Þ, (20)

and the number of disease cases

C ¼ I0 þ pkL̂þ ptkT L̂T ,

as

C ¼ I0 þ p½k; tkT �V
�1
L ðy0 � y1Þ. (21)

It is important to note that, except for the initial terms
involving I0 in T and C, presumably small, the number of
cases and the number of treatments are linear combina-
tions of the number of untreated and treated members of
the population who are infected. These may be found by
solving the final size relation (16) or (19). If the control
reproduction number Rc is close to 1 or smaller than 1, the
number of infected members is small and depends critically
on the initial number of infective individuals. Although
different strategies for control can be compared using the
model, absolute predictions of the number of disease cases
and treatments are unreliable, and this is inherent in the
model. This critical dependence on the initial number of
infective individuals does indicate the importance of rapid
response to an emerging epidemic; beginning action when
the number of infective individuals is small means
significantly fewer cases of disease and number of treat-
ment doses required to control the epidemic.

Since yL is small relative to k and kT , setting yL ¼ 0 gives
a useful approximation for the number of cases:

C � I0 þ pðSð0Þ � S1Þ
kþ tjL

kþ jL

� �
þ ptðST ð0Þ � ST1Þ.

This formula can be obtained intuitively from Fig. 1 by
noting that a fraction pk=ðkþ jLÞ of people entering
compartment L progress to I, and a fraction
ptjL=ðkþ jLÞ, progress through LT to IT . The last term
arises since a fraction pt of individuals entering LT from
ST progress to IT . In the case of no treatment or
vaccination, that is jL ¼ 0 and ST ð0Þ ¼ 0, we obtain
C ¼ I0 þ pðSð0Þ � S1Þ; in the case of vaccination, but no
treatment of latently infected individuals, we obtain
C ¼ I0 þ pðSð0Þ � S1Þ þ ptðST ð0Þ � ST1Þ.

If the incidence is not mass action, the simple final size
relation of (19) is not valid. An estimate for the final size of
the epidemic for the general model can be obtained by
replacing bðN�M Þ by bðN0Þ in (16). In the remainder of this
section, we show how bounds on bðN�MÞ, can be used to
place bounds on this estimate.

To simplify the presentation, we replace x̂ in (16) using
(17), and write the result as follows:

ln
yi0

yi1

¼ sibðN�MÞbV�1ðx0 þPðy0 � y1ÞÞ,

i ¼ 1; . . . ;m, (22)
for some N�M in the range of NM ðtÞ. In model (1), y1 and y2

correspond to S and ST respectively, s1 ¼ 1 and s2 ¼ sS.
In general, assume s1 ¼ 1. Hence,

yi1

yi0

¼
y11

y10

� �si

; i ¼ 2; . . . ;m.

Define gi as the initial fraction of individuals in the ith
susceptible compartment, so that yi0 ¼ giS0, and set Ri to
be the ith component of b0bV�1P, so that Rc ¼Pm

i¼1siRigi (see (12)). Note that for model (1), g1 ¼ 1� g,
g2 ¼ g, R1 ¼ Ru and sSR2 ¼ Rv. Then

yi0 � yi1 ¼ giS0 1�
y11

y10

� �si
� �

, (23)

and the final size equation can be written as

ln
y10

y11

¼
bðN�MÞ
bðN0Þ

bðN0ÞbV�1x0

�

þ
Xm

i¼1

Rigi 1�
y11

y10

� �si
� �!

. (24)

This equation is the extension of (19) to the case of an
arbitrary number of susceptible groups and a general
incidence. A rough estimate for the final size is obtained by
replacing bðN�M Þ with bðN0Þ in (24), giving

ln
y10

y11

¼ bðN0ÞbV�1x0 þ
Xm

i¼1

Rigi 1�
y11

y10

� �si
� �

. (25)

Define o as the ratio bðN�MÞ=bðN0Þ, and redefine gðz; f Þ as

gðz;oÞ ¼ ln zþ o bðN0ÞbV�1x0 þ
Xm

i¼1

Rigið1� zsi Þ

 !
.

(26)

It is straightforward to show that gðz;oÞ has a unique root,
z ¼ rðoÞ in the interval 0ozo1. This follows immediately
from the signs of limz!0 gðz;oÞ and gð1;oÞ and the fact
that the derivative of g with respect to z has at most one
zero in the interval 0ozo1. Further, if

omp
bðN�MÞ
bðN0Þ

poM ,

then the final size satisfies

rðoMÞp
y11

y10

prðomÞ.

Hence, we can bound our estimate of the final size of the
epidemic if we can place upper and lower bounds on
bðNMÞ.

6. Sensitivities of Rc to parameters

The presence of 27 parameters (including the initial
conditions S0 and I0), none of which are known with
confidence, makes a comparison of the various intervention
strategies difficult. However, by focusing on the simple
model and several special cases, many general statements
can be made.
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In the absence of treatment during the epidemic, the
basic reproduction number for the system (11) was found
to be (12) with (14) and (15), which are repeated here for
convenience.

Rc ¼ ð1� gÞRu þ gRv,

with

Ru ¼
b0
a

�
a
k
þ ð1� qÞpþ dð1� pÞ

a
Z

� �
,

Rv ¼
sSb0
aT

�sL

aT

kT

þ ð1� qÞsI ptþ dsAð1� ptÞ
aT

ZT

� �
.

First, since both � and a=k, the reduction factor for latent
transmission and the ratio of the lengths of the infectious
and latent periods, are small, their product is small and in a
first examination can be neglected. Similarly, d and a=Z are
each less than 1 and so ð1� qÞpþ dð1� pÞa=Z is most
certainly less than 2, and quite likely near to or slightly less
than 1. Thus, the ratio b0=a, best referred to as the ‘‘back of
the napkin’’R0, which is the expected number of secondary
infections produced by a single (untreated) symptomatic
case, is a good rough estimate of Ru.

The effectiveness of a reduction in contacts to control the
outbreak depends on the magnitude of dð1� pÞa=ð1� qÞpZ,
which is the ratio of secondary infections caused by
asymptomatic cases to those caused by symptomatic cases.
More accurately, the elasticity of Ru to q, which is one
useful measure of sensitivity, is given by

q

Ru

qRu

qq
¼ �qp �

a
k
þ ð1� qÞpþ dð1� pÞ

a
Z

� ��1
,

which is approximately

�q 1� qþ
dð1� pÞa

pZ

� ��1
since

�a
k
51.
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Fig. 3. Dependence of Rc on g for 100 sets of parameter values randomly

sampled as detailed in the text.
Second, we observe that since treatment will probably have
little effect on the ratios of the latent and infectious
periods, that is, aT=kT and aT=ZT are likely very close to
their untreated counterparts, a reasonable estimate of Rv is
sSsIb0=a. Since the effect of pre-epidemic treatment or
vaccination is to reduce Rc from Ru to Rv, it is required
that sSsIoa=b0 for vaccination to control an outbreak.
The dependence of Rc on g is shown in Fig. 3. This figure
was generated by drawing the line RcðgÞ for 100 sets of
parameter values as explained below. Each of the 100 lines
intercepts the left boundary of the figure (g ¼ 0) at Ru and
the right boundary (g ¼ 1) at Rv.
To unfold the dependence of Rc on the treatment

parameters jA, jL and jI , it is reasonable to assume that
yL5kT , yI5aT and yA5ZT . This is similar to assuming
that most people recover or advance to the next disease
stage before completing treatment. Setting yL ¼ yI ¼

yA ¼ 0, leads to

Rc ¼
�b0
k
½v1 þ s̄Lv2�

þ
pð1� qÞb0

a
½v1ð1� aI þ s̄I aI Þ þ v2ts̄I �

þ
db0
Z
½v1ð1� pÞð1� aA þ s̄AaAÞ þ v2ð1� ptÞs̄A�,

where aI ¼ jI=ðaþ jI Þ, aA ¼ jA=ðZþ jAÞ and aL ¼

jL=ðkþ jLÞ are the fractions treated in each of the stages
of infection, and v1 ¼ ð1� gÞð1� aLÞ, v2 ¼ aLð1� gÞ þ sSg,
s̄L ¼ sLk=kT , s̄I ¼ sIa=aT , s̄A ¼ sAZ=ZT .
The dependence of Rc on the treatment rate jI is

through the fraction aI , which appears in the second
component of Rc. Assuming that treatment reduces, or at
least does not increase, the infectious period, then s̄Io1,
and it follows that the effect of increasing jI depends on
the ratio of v1 þ v2ts̄I to ðv1 þ tv2Þs̄I . These quantities are
obtained by setting aI to 0 and 1, respectively in the second
term of Rc above. The smaller s̄I is, the more effective
treatment of infective individuals will be. Similarly,
the effectiveness of increasing jA depends on the magni-
tude of s̄A.
The dependence of Rc on jL is through v1 and v2.

Assuming no pre-epidemic vaccination or treatment, so
that g ¼ 0, increasing jL decreases the second component
of Rc from ð1� ð1� s̄I ÞaI Þ to ts̄I , and decreases the
third component of Rc from ð1� pÞð1� aA þ s̄AaAÞ to
ð1� ptÞs̄A. Thus, the impact of increased jL depends
largely on the value of t and on the magnitudes of s̄I and
s̄A. Additionally, the effectiveness of increasing jA and jI

diminishes with increased jL.
A more general picture of the elasticity of Rc with

respect to the parameters is given in Fig. 4. To generate
Figs. 3 and 4, 100 sets of parameter values were randomly
sampled from uniform distributions with the ranges
indicated in Table 1, with g ranging from 0 to 1 for
Fig. 3 and g ¼ 0 for Fig. 4.
Fig. 4 shows boxplots of the elasticities of Rc to each

parameter. For example, the elasticity of Rc with respect
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Fig. 4. Elasticities of Rc with respect to each parameter for 100 sets of parameter values randomly sampled as detailed in the text.

Table 1

Parameter values used in Sections 6 and 7

Parameter Section 7.1 Table 2 Table 3 Table 4

Fig. 5

Figs. 3

and 4

k 0.526 0.526 0.526 0.526 0.33–2

kT 0.526 0.526 0.526 0.526 kT ¼ k
a 0.244 0.244 0.244 0.244 0.1–0.5

Z 0.244 0.244 0.244 0.244 Z ¼ a
aT 0.323 0.323 0.323 0.323 0:8a2a
ZT 0.323 0.323 0.323 0.323 ZT ¼ aT

p 0.667 0.667 0.667 0.667 0.33–0.80

t 0.4 0.4 0.4 0.4 0.4–0.7

S0 1988 999 999 999 999

I0 12 1 1 1 1

� 0 0 0 0 0–0.3

d 0.5 0.5 0.5 0.5 0.4–0.6

jL ¼ jI ¼ jA 1.61 0 0 0 1.61

yL ¼ yI ¼ yA 0.0179 0 0 0 0.0179

sS 0.7 0.7 0.3 0.3 0.3

sL ¼ sI ¼ sA 0.2 0.2 0.2 0.2 0.2

q 0 0 0 0–1 0.2–0.4

f 0.98 0.98 0.98 0.98 Note 1

f T 1.00 1.00 1.00 1.00 Note 1

g 0 0–0.7 0–0.7 0 Note 2

b0 0.581 0.581 0.581 Note 3 Note 4

Parameter values and ranges assume a time unit of 1 day. The values are

those assumed in Section 7, and the ranges are used for the sensitivity

analyses in Section 6.

Note 1: Figs. 3 and 4 do not depend on f and f T .

Note 2: g is zero for Fig. 4 and ranges from 0 to 1 for Fig. 3.

Note 3: b0 was computed from (3) and the value for R0 given in the figure.

Note 4: b0 was computed from (3) for R0 in the range 2–6.
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to fI is defined as

fI

Rc

qRc

qfI

.

For the numerical computations, these derivatives were
approximated by percent changes in Rc with percent
change in the parameter value. Since treatment is expected
to reduce the latent and infectious periods, sensitivities to
these parameters were computed in a way that preserved
this ordering: the elasticity with respect to k�, as indicated
in the figure, is computed as a percent change in Rc with a
percent change in k and kT while keeping the ratio kT=k
fixed. The reason being that we are interested in the effect
on Rc of a change in the latent period, due, for example, to
mutation of the virus. Such a change would also affect the
latent period of treated individuals. Similarly, the sensitiv-
ity to a� was computed as a percent change in Rc with a
simultaneous percent change in all four parameters a, aT , Z
and ZT ; the sensitivity to Z� is a percent change in Rc with a
percent change in Z and ZT ; and the sensitivity to a�T is a
percent change with respect to aT and ZT . Thus in the last
case we are examining the effect on Rc of a change to the
treatment that affects both symptomatic and asymptomatic
cases equally. Computations were repeated for each of the
100 parameter sets, giving the results displayed in Fig. 4 as
boxplots for each parameter group. A boxplot, or a box
and whisker plot, is a graphical representation of the
quartiles of a data set. The box contains the middle 50% of
the data, and so extends from the first to the third quartile.
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The dividing line in the box is placed at the median. The
whiskers show the range of the data, with outliers indicated
by circles. In the usual convention for boxplots, the
interquartile range (IQR) is the width of the box, or the
difference between the first and third quartiles, and all data
further than 1.5 IQR below or above the first and third
quartiles are denoted as outliers.

As expected, Fig. 4 shows that Rc is most sensitive to
changes in a and b0, and is very insensitive to the values of
yL, yI and yA. Of more importance to the evaluation of
treatment strategies are the sensitivities of Rc to changes in
jL and jI . The elasticities for jL and jI show a similar
range. A closer examination reveals that Rc was more
sensitive to changes in jL than jI for 85 of the 100
parameter sets sampled, and that Rc was more sensitive to
changes in q than jL for 70 of the 100 parameter sets. The
large uncertainty in the results, represented by the width of
the boxplots, indicates the importance of obtaining better
estimates of the effect of treatment on the progression of
an infection (as represented by the parameter ratios aT=a
and ZT=Z and the parameters t and p). However, this
preliminary analysis suggests that treatment of latently
infected individuals is more effective at reducing Rc than
treatment of symptomatic individuals.

7. Numerical computations and sensitivities

7.1. The 1957–58 influenza epidemic

In Section 3 we used the parameter values of Longini et
al. (2004) in the model (2) to obtain predictions of our
model that are consistent with those of Longini et al. (2004)
for an untreated influenza epidemic. The next challenge is
to obtain predictions of our model with antiviral treatment
consistent with those of Longini et al. (2004). Thus we
consider the special case � ¼ g ¼ 0 of (1). In Longini et al.
(2004) it is assumed that 80% of index symptomatic
infective individuals and latent members are treated within
1 day. Since the assumption of treatment at a constant rate
j implies treatment of a fraction 1� expð�jtÞ after a time
t, we take jL ¼ jI ¼ jA ¼ � lnð1� 0:80Þ ¼ 1:61 per day.
This overlooks the fact that some of the members treated
are not infected, and thus would tend to overestimate the
number of cases of influenza. It also overestimates the
number of symptomatic infective individuals treated, since
in Longini et al. (2004) it is assumed that only index cases
are treated, not secondary infections. A course of treatment
of 8 weeks for prophylaxis implies yL ¼ 1=56 per day, since
1=yL is the expected duration of treatment. Actually,
Longini et al. indicate in Longini et al. (2004) that there
will be some attrition over the course of treatment and
suggest an average treatment duration of 4:9 weeks.
However, the numerical calculations appear not to depend
much on the value of yL. When antivirals are used as
treatment of exposed (but not necessarily infected)
individuals, the course of treatment can be much shorter.
However, since the course of treatment will still be much
longer than the duration of the latent stage (given by k), the
calculations remain insensitive to yL. In addition, we use
the parameter values stated in Section 3 and for simplicity
of calculation we take q ¼ 0. Thus, the full set of parameter
values is as given in column 2 of Table 1.
We use these parameters in (19) assuming mass action

incidence with Rc ¼ 0:312 given by (12) to estimate
S1 � 1976:9. Then the number of cases of influenza over
the course of the epidemic is, by (21), on average, 4:08, not
including the original 12 cases, which we compare with the
mean value of 46 obtained in Longini et al. (2004) (with a
stated confidence interval of (4,324)). The number of cases
depends very sensitively on b0: increasing b0 by 10%
increases the number of cases to 4.69, or by a factor of
15%. It would be reasonable to use our model to estimate,
for example, the effect of some pre-epidemic antiviral
treatment (g40Þ.
It should be remembered that here we are only

comparing simulations obtained for a compartmental
model to those obtained by using a stochastic simulation
model, not comparing simulations to experimental ob-
servations. The point is that predictions from these
different models are quite similar.

7.2. Pre-epidemic treatment

It has been suggested recently (Balicer et al., 2005) that
pre-epidemic antiviral treatment may be a cost-effective
method of coping with an influenza epidemic. This
conclusion was reached using the model of Longini et al.
(2004), but our model can easily be used to judge the effect
of such treatment. We use (19) to determine the number of
untreated susceptible individuals, S1, and the number of
treated susceptible individuals, ST1, at the end of the
epidemic, with the parameters of Longini et al. (2004),
including sS ¼ 0:7, in a population of 1000 with 1 infective
initially. For simplicity of calculation we assume mass
action incidence, so that bðN�MÞ ¼ b0=S0 in the final size
relations, ignoring the relatively small error inherent in this
assumption.
For example, with the parameter values listed in Table 1

we obtain the results shown in Table 2, giving the
treatment fraction g, the number of untreated susceptible
individuals S1 at the end of the epidemic, the number of
treated susceptible individuals ST1 at the end of the
epidemic, and the number of cases of influenza computed
from (21). This suggests that pre-epidemic antiviral
treatment may indeed be an effective way of preventing
an epidemic, at least if supplies of antiviral drugs are
sufficient.
With treatment by a vaccine developed for the specific

strain of influenza anticipated (sS ¼ 0:3), the same
calculation gives the results shown in Table 3. For both
antiviral treatment and vaccination, the fraction g of
susceptible individuals treated to bring the control repro-
duction number down to 1 is 0:28. The results indicate
the benefits in reducing influenza cases of pre-epidemic
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Table 2

Number of untreated susceptible individuals S1, treated susceptible

individuals ST1 and influenza cases after the epidemic, as a function of the

fraction treated prior to the epidemic, when sS ¼ 0:7

Fraction treated S1 ST1 Influenza cases

0.00 206 0 530

0.05 222 18 494

0.10 240 40 457

0.15 259 65 418

0.20 279 96 376

0.25 301 132 331

0.30 325 175 284

0.35 352 228 232

0.40 380 291 176

0.45 410 366 116

0.50 437 455 55

0.55 433 535 16

0.60 393 593 7

0.65 346 645 5

0.70 298 696 3

Table 3

Number of untreated susceptible individuals S1, treated susceptible

individuals ST1 and influenza cases after the epidemic, as a function of the

fraction treated prior to the epidemic, when sS ¼ 0:3

Fraction treated S1 ST1 Influenza cases

0.00 206 0 530

0.05 224 32 489

0.10 243 67 447

0.15 264 106 403

0.20 287 147 356

0.25 313 192 307

0.30 341 242 255

0.35 372 296 200

0.40 406 355 142

0.45 441 421 81

0.50 464 489 27

0.55 440 546 9

0.60 395 597 5

0.65 347 648 3

0.70 298 698 3

Table 4

Effect of isolation on final size and cases

q R0 ¼ 1:5 R0 ¼ 2:0 R0 ¼ 2:5 R0 ¼ 3:0

Final

size

Cases Final

size

Cases Final

size

Cases Final

size

Cases

0 584 391 797 532 892 596 940 628

0.1 497 332 747 499 862 576 921 615

0.2 386 258 683 456 822 549 895 598

0.3 242 162 597 399 767 513 859 574

0.4 68 46 480 321 692 462 807 539

0.5 9 7 318 213 584 390 732 490

0.6 3 3 94 63 425 284 620 415

0.7 2 2 6 5 183 123 443 297

0.8 1 2 2 2 6 5 151 102

0.9 0 1 1 1 1 2 2 2

1 0 1 0 1 0 1 0 1

Final size and total cases assuming mass action incidence and parameter

values listed in Section 3, but with S0 ¼ 999, I0 ¼ 1, and b0 set to obtain

the listed R0 value for q ¼ 0. Cases are computed using (21) with the final

size estimated from (19).
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Fig. 5. The effect of isolation on the number of cases. Total cases, as

computed from (21) with the final size estimated from (19) assuming mass

action incidence, are given as a function of q for the parameter values of

Section 3, but with S0 ¼ 999, I0 ¼ 1, and b0 chosen to achieve the value of

R0 with q ¼ 0.
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vaccination of even a fraction of the population too small
to reduce the reproduction number below 1.

7.3. Pandemic influenza preparation

One approach that may be part of a control strategy for
pandemic influenza is ‘‘social distancing’’ as described in
Ferguson et al. (2005). The isolation of some symptomatic
infective individuals is one aspect of social distancing. In
(1) the parameter q represents the withdrawal of some
infective individuals from contact because of their illness.
However, isolation of some diagnosed infective individuals
could also be encouraged as a control strategy. Thus if the
‘‘natural’’ value of q is 0:4, a choice q ¼ 0:46 represents
complete withdrawal of 10% of infective individuals
together with 40% withdrawal of the remainder. Similarly,
q ¼ 0:52 represents complete withdrawal of 20% of
diagnosed infective individuals. Complete withdrawal of
10% of infective individuals decreases the reproduction
number by about 7% with the parameter values of Longini
et al. (2004).
To estimate the effect of such isolation on the course of

the epidemic, Table 4 shows the results of simulating the
model without treatment (2) with parameters as given in
Table 1 for different values of R0 and q; see also Fig. 5. In
preparing for a possible pandemic influenza, one must
consider a range of possible basic reproduction numbers or
attack ratios because there is no advance indication of the
severity of the epidemic.
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The above results indicate that while isolation of
infective individuals can reduce the impact, the level of
isolation required to control a pandemic in absence
of other interventions is not practical. Thus, it is necessary
to use antiviral treatment as well. The process should be to
compare different management strategies, that is, different
choices of jL, jI and jA, by estimating the resulting
number of disease cases. It is important to also estimate the
number of treatments required, to assure that the supply of
antiviral drugs available is sufficient to implement a chosen
strategy. The results will, of course, depend on the severity
of the epidemic. Again, it is necessary to consider a range
of possible basic reproduction numbers or attack ratios
because there is no advance indication of the severity of the
disease attack.

8. Discussion

Approaches to coping with pandemic influenza that have
been proposed recently include pre-epidemic treatment of
susceptible individuals, treatment during an epidemic of
latent infective individuals identified by contact tracing,
and treatment during an epidemic of symptomatic infective
individuals (Public Health Agency of Canada, 2006). Using
(12), it is straightforward to calculate treatment rates
required to reduce the control reproduction number Rc

below 1 and avert an epidemic. An obvious extension
would be to simulate a combination treatment of latent
and symptomatic infective individuals at the start of a
pandemic, followed by vaccination of susceptible indivi-
duals once a targeted vaccine has been produced.

The model formulated here is designed to make such
simulations easy. Except for accurate simulations of (2),
which require solution of the dynamical system, computa-
tions require only algebraic calculations or the numerical
solution of one or two transcendental equations, which are
easily performed with any computer algebra system. This
may be more suitable than the stochastic simulation
models that have been the main approach to epidemic
studies. Both compartmental models of the type formu-
lated here and stochastic simulation models have obvious
shortcomings in the description of an actual epidemic, but
the extent to which the predictions of the two types of
models are in general agreement adds some confidence in
the results of both.

In addition, compartmental models let us do an
analytical sensitivity analysis to determine which para-
meters are important to estimate accurately for prediction
and control. The parameters d, p and Z associated with the
asymptomatic compartment are largely unknown, and the
effectiveness of treatment is very dependent on the values
of these parameters, thus stressing the importance of
reducing the uncertainty of these quantities. Analysis of the
compartmental model is able to deal with a larger range of
parameters, effectively allowing a complete analysis of
parameter space. The values of the treatment parameters
used for simulations in this paper were all taken from a
single study. Again, analyses over a large range of
parameter values are important.
Calculations indicated that the number of cases is sensitive

to the number of index cases when Rc is near 1, but not for
larger values. In effect, if the number of secondary cases is
small, the treatment is limited to the index cases.
We have used a simple assumption for the reduction in

contacts (through q), but have not properly modelled social
distancing. The parameter q models the response of
infective individuals, but not that of susceptible indivi-
duals. In practise, susceptible individuals would change
their behaviour in response to perceived prevalence and
morbidity. Several other important extensions to the model
remain to be considered: heterogeneity of transmission
rates; accounting for different contact rates and immuno-
logical responses; and the evolution of strains resistant to
the antiviral treatments available. See Alexander et al.
(2007) and McCaw and McVernon (2007) for very recent
investigations that consider drug resistance and contact
tracing, respectively, in influenza control.
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