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Abstract We discuss natural limitations on motor perfor-
mance caused by the time delay required for feedback signals
to propagate within the human body or mechanical control
systems. By considering a very simple delayed linear ser-
vomechanism model, we show there exists a best possible
speed-accuracy trade-off similar to Fitts’ law that cannot
be exceeded when delay is present. This is strictly a delay
effect and does not occur for the ideal case of instantaneous
feedback. We then examine the performance of the vector
integration to endpoint (VITE) circuit as a model of human
movement and show that when this circuit is generalized to
include delayed feedback the performance may not exceed
that of the servomechanism with an equal delay. We suggest
the existence of such a limitation may be a ubiquitous conse-
quence of delay in motor control with the implication that the
index of performance in Fitts’ law cannot arbitrarily large.
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1 Introduction

In this article we discuss natural limitations on motor
performance imposed by the time delay required for feedback
signals to propagate within the human body or in mecha-
nical control systems. Clearly, delay within the motor cir-
cuit must limit performance since movements taking place
on time scales smaller than the delay could not have sen-
sory or other feedback information available to coordinate
or control the movement. However, even when feedback
signals do have enough time to propagate, the accuracy of fas-
ter movements would be diminished by the larger distances
being moved during the time required for those signals to be
received. The result will be a trade-off between speed and
accuracy. We show that, when this delay is considered, there
exists a best possible speed—accuracy trade-off for feedback-
generated motor tasks that cannot be exceeded if delay is
present. This maximum performance is dependent on the
total amount of delay in both perception and action that ope-
rate during the movement.

To quantify how delay limits performance, we consider a
model of the feedback processes underlying movement tra-
jectory formation. The vector integration to endpoint (VITE)
circuit (Bullock and Grossberg 1988) describes a real time
neural network model simulating behavioral and neural pro-
perties of planned and passive movements. Within the model,
target-position commands are translated into complete move-
ment trajectories via a mechanism of continuous vector upda-
ting and integration. It is among the earliest models to suggest
that invariant properties of movement trajectories such as
Fitts” law (Fitts 1954, 1964; MacKenzie 1989) are best
understood as emergent properties of underlying neurobio-
logical mechanisms.

The generalization of this circuit to include delayed feed-
back serves as a model for the impact of delay on human

@ Springer



44

Biol Cybern (2008) 99:43-61

motor performance (Beamish et al. 2005, 2006a). In fact, the
speed—accuracy trade-off of the delayed VITE circuit pro-
vides a theoretical foundation for Fitts’ law that is based
directly on the neurodynamics of the motor circuit and
explains widely reported inconsistencies of Fitts’ law with
experimental results as delay effects (Beamish et al. 2006b).
Within this formulation, the classical information model of
Fitts’ law developed by linear regression becomes an approxi-
mation to the more general relationship given by the
performance of the delayed circuit.

Here we show that when delay is considered, there exists
an optimal speed—accuracy trade-off of the VITE circuit
which cannot be exceeded. Although this theoretical limita-
tion may not necessarily be a constraint of human movements
for reasons discussed below, its existence is qualitatively dif-
ferent from the behavior of the circuit in which no delay
is present: with instantaneous feedback control there is no
such limitation. The implication here is that the neurodyna-
mic explanation of Fitts’ law offered by the delayed feedback
circuit is not equivalent to the classical “information” para-
digm in which performance is an arbitrary parameter of the
model.

We further show that in the limit as the delayed feed-
back circuit approaches its maximum performance, the beha-
vior becomes similar to a linear servomechanism in which
delayed but only unidirectional control input is possible. This
represents the simplest possible model for delayed spring-
to-endpoint control of a muscle synergy or an artificial actua-
tor. Surprisingly, delay within this simple mechanism gives
rise to a logarithmic speed—accuracy trade-off similar in form
to Fitts’ law. This is strictly a delay effect, and is not present
for the ideal servomechanism in which no delay is opera-
ting. Because of the generality of this, we suggest that the
existence of a maximum performance is in fact a ubiquitous
property of feedback-regulated motor control when delay is
present. Although this limitation may be beyond any prac-
tical consequence, it is of theoretical importance because it
demonstrates the qualitative difference in behavior between
ideal systems operating with zero delay, whether biological
or artificial, and real systems in which some delay, no matter
how small, will always be present.

2 Motor performance and Fitts’ law

A fundamental property of human motor behavior is a trade-
off between speed and accuracy in target directed move-
ments (Woodworth 1899). This is classically modeled by
Fitts’ law (Fitts 1954, 1964), which provides a unifying rela-
tionship between the time required to perform a task over
different conditions. In Fitts” hypothesis, information is trans-
mitted through the human sensory-motor “channel” during
motor tasks. However, the capacity of the channel to transmit
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information is limited so that for a particular limb, group of
muscles, and a particular kind of motor behavior, the time to
perform a task is proportional to the amount of information
(in bits) required on average for controlling or organizing
each movement. This quantity, known as the Index of Diffi-
culty (ID) of a task, is quantified using the Shannon Coding
Theorem so that MT = b -ID = b -log, (A/W + 1), where
A is the amplitude of the movement and W is the tolerance
or target width (MacKenzie 1989).

The reciprocal of this proportionality constant, 1/b, is
known as the index of performance (IP) or Throughput and
represents the information capacity of the motor channel in
bits per second. This is widely used as a measure of motor
performance since it unifies multiple measurements of move-
ment time across different conditions into a single statistic
(MacKenzie and Soukoreff 2004; ISO 2002). However, expe-
rimentally, where a model is built using regression, Fitts’ law
appears as

MT=a+b-ID=a+b-log, (A/W+1), )

with both of the constants a and b empirically determined.

Although this regression model is extremely robust (with
correlations usually above 0.95) it is theoretically unsatis-
factory in some respects: the presence of the non-zero
y-intercept is problematic since, ideally, the intercept should
be (0,0) predicting 0 ms to complete a task requiring zero bits;
and this law is observed to breakdown for tasks with low ID.
Ithas long been speculated that delay within the motor circuit
is somehow responsible for the presence of non-zero inter-
cepts, although this is complicated by the fact that negative
intercepts too large to be explained through random variation
in subject performance are often observed. For this reason, it
is therefore desirable to consider an alternative explanation
of Fitts’ law derived directly from the neurobiology of the
motor circuit (Beamish et al. 2006b).

3 The VITE circuit as a feedback model of motor
behavior

The VITE circuit is among the earliest models to suggest that
invariant properties of movement trajectories such as Fitts’
law are best understood as emergent properties of underlying
neurobiological mechanisms (Bullock and Grossberg 1988).
Unlike other models of motor control, the VITE circuit does
not rely on explicit trajectories or kinematic invariants repre-
sented within the model as is common with those based on
optimization. Instead, the movements generated by the VITE
circuit emerge from dynamical interaction of the network
variables which represent the feedback process underlying
trajectory formation. Quantitative simulations of the model
provide results consistent with data pertaining to numerous
kinematic properties including the speed—accuracy trade-off
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of movements (Fitts’ Law and Woodworth’s law), isotonic
arm movement properties, “‘error-correcting” properties of
isotonic contractions, velocity amplification during target
switching, velocity profile invariance and asymmetry,
changes of velocity profile at higher speeds, automatic com-
pensation of staggered onset times for synergetic muscles, the
inverse relationship between movement duration and peak
velocity, and peak acceleration as a function of movement
amplitude and duration (Bullock and Grossberg 1988).

The VITE circuit models the feedback processes which
generate a movement trajectory. Within the model, inequali-
ties of distance are translated into neural commands as dif-
ferences in the amount of contraction by muscles forming a
synergy (Hollerback et al. 1986). Motor planning occurs in
the form of a rarget position command (TPC) which repre-
sents the final desired position of the arm upon completion
of the movement; and a GO signal (GO) which specifies the
overall speed of movement as well as the will to move at all.
Two additional variables are under automatic control as part
of a feedback loop: the present position command (PPC) is
an internal representation of the location of the arm, and the
difference vector (DV) is the difference between the TPC and
PPC at any given time.

The synthesis of a movement trajectory involves the inter-
action of the above-defined variables. The actual outflow
commands, which act on the arm muscles to cause contrac-
tion, and consequently arm movement, are generated by the
PPC. Each outflow command moves the arm toward the posi-
tion coded for by the PPC. In order to produce a continuous
movement there must be a succession of PPC’s. Only one
TPC which remains active during the entire movement, is
required to generate the appropriate trajectory.

The continuous computation of new PPC’s relies on the
continuous computation of DV’s. The DV, which encodes
the difference between the TPC and the constantly changing
PPC, indicates the direction and amplitude required to com-
plete the movement. Difference vectors are calculated in the
motor cortex by a specific population of vector cells that
are sensitive to a broad range of directions (Leonard 1998).
The DV is actually computed by subtracting the PPC from
the TPC. The PPC will equal the TPC only when the DV is
equal to zero. As a result, the DV gets smaller and smaller
as the arm approaches the target position. The updating pro-
cess that occurs between the PPC and the DV is a negative
feedback loop whereby the DV is constantly reduced by the
movement of the PPC towards the TPC. Thus the PPC is a
cumulative record of all past DV’s which were responsible
for bringing the PPC towards the TPC (i.e. the PPC integrates
all past DV’s). It must be noted here that since we have two
separate groups of neurons interacting, the PPC activity may
have reached the target while the DV has not yet reached a
value of zero. Physically this situation manifests itself as an
overshoot of the target, or movement error.

The GO signal exists in between the PPC and the DV
and acts as a multiplier or gain for the circuit. It embodies
the concept of volition to planned arm movement velocity
(Bullock and Grossberg 1988). A larger GO signal will result
in a faster movement and a smaller GO signal will result in
a slower movement. The GO signal is also responsible for
stopping movement before a trajectory is complete. This is
an important property of arm movements that are determined
to be dangerous before completion.

The simplest model consistent with these constrains obeys
the set of non-linear differential equations

dv
5 =l VO+TO = P)] )
dP N

o eVl 3

where 7' (), P (t) represent the PPC and TPC activities, V ()
represents the difference vector population activity, G(¢)
represents the gain signal, and

+ _|V@® if V@) =0

V™= [ 0 if Vi)<O0"

The first equation says that the activity of the difference vec-
tor population averages the difference of the input signals
from the target and position commands at a rate « through
time. The second equation asserts that the PPC cumulatively
integrates the DV signals multiplied by the gain G(¢), but
for only as long as the DV generates a positive signal-the
presence of the cutoff function prevents these signals from
becoming negative.

While the choice of constant gain G(f) = G creates a
linear feedback process that allows a tractable mathematical
analysis, it may be more realistic to consider a GO signal
of the form G(t) = Gog(t) where g(¢) is a monotonically
increasing function (not necessarily continuous). The func-
tion g(¢) is called the GO onset function, and describes the
transient buildup of the GO signal after it is activated. The
constant Gy is called the GO amplitude and parameterizes
how large the GO signal can become. Bullock and Grossberg
(1988) consider GO onset functions of the form

" If >0
t — /Brl+ytn _
8 { 0 Ifr<0

where 8, y equal 1 or O to generate PPC profiles through
time which are in quantitative accord with experimental data.
Specifically, if 8 = 1 and y = Othen g(¢) is a linear function
of time if n = 1 and faster-than-linear when n > 1, and if
B =1,y =1,and n = 1 then g(¢) is slower-than-linear.

See Fig. 1 which contains a network diagram of the VITE
circuit.
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Fig. 1 Network diagram of the
VITE circuit with connections
indicated as excitatory or TPC
inhibitory. TPC target position
command; PPC present position
command; DV difference vector;
G gain Signal

DV

PPC

OUTFLOW

MOTOR
COMMANDS

4 The delayed VITE circuit

It is natural to introduce time delay into the negative feed-
back process this circuit represents because of the property
of neurons to behave like delay lines (Pauvert et al. 1998;
Ugawa et al. 1995). These time delays arise from synaptic
delay, conduction delay along the axon of the neuron, and
delay in the dendrites of the neurons (Admon-Snir and Segev
1993; Macdonald 1989). Synaptic delay is the elapsed time
between the arrival of an action potential at the output site of
the presynaptic cell and the arrival of an action potential to
the input site of the postsynaptic cell. In the past, many stu-
dies have quantified the synaptic delay between two single
neurons and an approximate value is 1-2ms (Sabatini and
Reghr 1996; Carr et al. 1988; Stratford et al. 1996). The
delay associated with conduction along the axon depends
on the length of the axon and whether the axon is myelina-
ted or nonmyelinated. The appropriate value for mammalian
conduction delays are 1-20 ms (Burke et al. 1994; Macefield
and Gandevia 1992). Delay in the dendrites exists prima-
rily because of the resistance/capacitance properties of the
dendrites and can vary greatly depending on the dendritic
topology of the neurons involved (Admon-Snir and Segev
1993). See also the monographs by Wu (2001) and Milton
(1996).

The incorporation of time delay into the VITE model
involves the defining of two distinct delays. The first is the
delay of the signal from the PPC population to the DV popu-
lation. The second is the delay from the DV population signal
back to the PPC population. These two delays will be denoted
by 11 and 12, respectively. The system of differential equa-
tions (2)—(3) that define the model must therefore be modified
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in the following way:

av
5 =V O+TO = Pa—m)], “)
dP—G v + 5
5 =GOV —m)It. ®)

These two delays are not necessarily the same, and there is
strong evidence that these signals may actually be derived
from a forward internal model.

The idea of a forward internal model which predicts the
normal behavior of the motor system in response to outgoing
motor commands has recently emerged as an important theo-
retical concept in motor control (Miall and Wolpert 1996). In
the VITE circuit, present position information is identified as
being derived from an outflow-command integrator located
along the pathway between the pre-central motor cortex and
the spinal motor neurons. It is likely that a forward predictive
model anticipates motor response based on an efference copy
of these motor commands, which are then integrated to form
present position information. This internal feedback signal
within the negative feedback loop would be available much
more rapidly than actual afferent feedback signals resulting
from the movement. Regardless of whether a forward model
operates within the circuit there would still include unavoi-
dable delays in neural processing within this mechanism so
that the above model of delay is still applicable even for flaw-
less forward prediction.

5 The delayed linear servomechanism

Before proceeding to consider the dynamics and performance
of the delayed VITE circuit, we first consider a much simpler
circuit as a model for feedback control. A servomechanism
is a system for the automatic control of mechanical motion
by means of negative feedback where by the control input to
an actuator is compared to the actual position of the mecha-
nical system as measured by a sensor or transducer. Any
difference between the actual value and the desired value
(an “error signal”) is amplified and used to drive the system
in the direction necessary to reduce or eliminate the error.
The most basic servomechanism model is the linear feedback
controller,

P'(1) = GIT — P(1)],

in which the magnitude of the control input is equal to the
difference between the current position P(¢) and the inten-
ded target position 7 multiplied by a gain signal G. In this
model, the error signal is reduced exponentially as the posi-
tion moves closer to the target at a rate determined by the
gain so that

P(t)=T — (T — P(0))e 9",
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This model is not very realistic, however, since there will
always be a delay t required to sense the position and gene-
rate an error signal. When this is the case, the control signals
are dependent on the previous position P(t — 1) instead of
the actual current position so that

P'(t) = G[T — P(t — 7)]. (6)

The system (6) is a linear delay differential equation with
constant coefficients. Solutions of (6) will be uniquely deter-
mined by the simple step-by-step method once the initial
value of P(¢) on [—t, O] are specified. For the sake of sim-
plicity, let us further assume that the suppose that the servo-
mechanism initially starts out in an equilibrium state where
the position is equal to the target for r < 0. At time r = 0,
a new target signal is activated so that the servomechanism
moves to restore the system to equilibrium.

The dynamics of the delayed linear servomechanism are
more complicated than the ideal case in where instantaneous
error signals are generated. There are four possible scenarios
for the behavior of solutions of (6) dependent on the model
parameters.

Theorem 1 The delayed linear servomechanism described
by (6) has four possible behaviors depending on the para-
meters magnitude of the gain G and delay t:

(1) (Non-oscillating) If Gt < % and the position P(t) is
held constant on the initial interval [—t, 0], then the
position increases towards the target asymptotically
without ever overshooting.

(i1) (Stable oscillation) For é < Gt < 7 the position
oscillates around the target with diminishing ampli-
tude before eventually reaching equilibrium.

(iii) (Critical oscillation) For Gt = % the position oscil-
lates around the target forever with constant ampli-
tude. It will never reach equilibrium.

(iv) (Unstable oscillation) For Gt > % the position oscil-
lates around the target forever with ever increasing
amplitude. It will never reach equilibrium.

Proof Without loss of generality we may assume that the
target lies at the origin so that 7 = 0 and that the initial
position is positive on the initial interval.

(i) First, we show that if Gt < % then the movement
trajectory increases asymptotically towards the target
without overshooting. Suppose that there exists a y >
0 such that we ™" > G. We first show that if y(¢) =
€M P(t) is an increasing function on the initial interval
[—7, O] then it remains increasing for all subsequent
intervals [n7, (n+ 1)7]. Keeping in mind that P'(r) =

—GP(t — 1), the derivative of y(¢) is

y'(t) = pwet P(t) + ™ P'(1)
= et P(t) — Ge" P(t — 1)
= e P(t) — Get et I P(t — 1)
= py(t) — Gel'"y(t — 1),

which is positive if pe #%y(t) > Gy(t — t). Since
we are assuming ue ** > G, the function y(r) is
increasing for as long as y(#) > y(¢ — t) holds. If
there is any point at which y’(z) = 0, then it must
have been because y(t) < y(¢ — 7). But this is not
possible since y(¢) was an increasing function for all
lesser values of ¢ and so could not be equal to it is
previous value. Therefore y’(¢) > 0 for all # > 0 and
so y(t) is an increasing function.

For any value i > 0, the function y(r) = e*' P ()
will be an increasing function on the initial interval
[—7, 0] whenever the initial function P (#) is a (posi-
tive) constant. Therefore the solutionof P/ (1) = —GP
(t — t) is non-negative so long as it was possible
to chose ue "% > G. However, since the function
we HT has a maximum value of %, this is possible
if and only if Tl—e < G, or Gt < 1/e. Therefore, the
movement trajectory will increase towards the target
asymptotically if Gt < 1/e.

To show the converse that if Gt > % then P (¢) must
eventually become negative and overshoot the target,
we make use of Theorem 10.1, 5 from Widder (1971)
which asserts that the Laplace transform of any non-
negative function f has a singularity within it’s abs-
cissa of convergence. Taking the Laplace transform of
the equation P(¢) = G P(t — t) with initial condition
P(t) = 1 on the interval [—t, 0], we have,

sP(s)—1=—Ge ™ P(s),

and so

A 1
This has a singularity whenever the denominator s +
Ge™ ™ has a zero. The solution of s + Ge™™ = 0 is
given by s = %W(—TG) where W (z) is the Lambert
W-function (also known as Product Log). The function
W (2) is the inverse function of f(W) = We", and is

real forx > — é . Therefore, s +Ge~** has areal root if

andonlyif G < Tl—c However, the movement trajectory
P (1) could not be nonnegative since this would imply
that the Laplace transform would have a singularity,

which it cannot since we assumed Gt > % So, there
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(i)

must be a time 79 > O for which P(zy) = 0. After
reaching the target, the movement will then come to
rest after an additional time t because of the delay
since

P't+1)=-GP(t+1t—1)=-GP()=0.

We show that if G < % then there are no roots of
the characteristic equation A(s) = s + Ge™ " having
non-negative real part. Suppose that there is such a
root s = x + yi with x > 0 so that

A(x + yi) = x + yi + Ge TOHYD
= (x + Ge " costy)
+i (y — Ge ™ sinty)
=0.

Since the real and imaginary part must both equal zero
we have

0=x+ Ge " costy,
0=y— Ge "sinty.

Itis easy to see from this that if x + yi is aroot of A(s)
then so is the complex conjugate x — yi. We may there-
fore assume y > 0 as well. According to the first equa-
tion above, we must therefore have costy < 0 and

Non-oscillating: x'(t) = -0.3x(t-1)

0.9+ 4
0.8 - 4
0.7k 4
0.6 - 4

0.4} ~
0.3} ~
0.2} — -
0.1} : -

Critical oscillation: x'(t) = -n/2x(t-1)

Sh bbb ioanwas

(iii)

(iv)

thus y > J=. On the other hand, G < 3= (by assump-
tion) and e~ ™ sinty < 1 so that Ge™™*sinty < 7=

It must therefore be that y —Ge ™" sin Ty > 0 making
itimpossible for x 4 yi to be aroot of the characteristic
equation with nonnegative real part.

It follows from the linear stability theory of delay diffe-
rential equations (see, for example, Macdonald 1989)
that the zero solution x(#) = 0 of the system (6) is
stable, and we know from part (i) that overshooting
will take place for any initial solution since Gt > %

It can easily be shown using the above analysis that if
Gt = 7 the characteristic equation A(s) has exactly
two roots s = %47 with real part equal to zero and
all other roots have negative real part. Since (6) is
linear, no higher-order resonances are possible and any
solution will be of the form

x(t) = Asin (”2 ) + 200,

where z(t) — 0 exponentially as r — oo (see, for
example, Hale 1977).
Follows because the characteristic equation A(s) will

have positive roots when G > 7.

Figure 2 contains graphs of the different solutions possible
for the delay differential equation (6). Note that the assump-
tion of the initial position being constant is strictly necessary
for condition (i) to take place, and arbitrary initial functions

0.8
0.6
0.4

X 02

-0.2
-0.4
-0.6

Stable oscillation : x'(t) =

-X(t-1)

\/ ~———"
1 2 3 4 5 6 7

Unstable oscillation: x'(t) = -2x(t- 1

\/\/\

Fig. 2 Graphs of the different solutions possible for the delay differential equation (6). In each case the initial position x(r) = 1 forr <0
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may cause the servomechanism to overshoot the target. An
example of a positive initial function for which the solution
of (6) always overshoots a target at 7 = 0 for all values of
delay and the gain parameters is

1 for —1<
-3+ for —3<

Py(1) =[

since

%
P(t/2) = P(0) — G/ P(s — t)ds

0
G 3
=—T—G/1ds
4
0

Gt

4
< 0.

In fact, we can derive an explicit solution to (6) using the
Laplace transformation:

Theorem 2 The differential equation P'(t) = —GP(t — 1)
with initial conditions P(t) = P(0) on the interval [0, t]
has solution

L] "
. L= k=DoF
P(t+1)=P(0) kZEO( 1) —k! G (7)

Proof We first find the solution of the differential equation
P(t) = —GP(t — 1) with initial condition P(¢) = 1 on the
interval [—t, 0]. Taking the Laplace transform of both sides
this equation,

sP(s)—1=—Ge ™ P(s),

and so

This has a series expansion in G of

R 1 0 ke—krs .
PO e S

The G¥ term in the above series expansion each contains
e 7S which has the effect of multiplying the inverse trans-
form of that term by the Heavyside unit-step function

1 for t >kt
0 for t <kt

)

u(t —kt) = {

and shifting to the right by k7. Thus for r < nt, all the terms
of order G" and above will be zero. Since

tk 1
ﬁ [_} Tk
k! sk+1

we have

_ _ k —kts
E[u(r—(k—l)r)(t k—Dr) }— ¢

k! ookl
Therefore,
Lzl k
_ &= (k=D
mn-?%4>——7r——c,

where L%J refers to the floor function. Therefore the solution
of P(t) = G P (t — ) with the initial condition P(t) = P(0)
on the interval [0, 7] is given by

Lz k
(t — (k— 1))
Poo(t + 1) = P(0) 3 (—1)f ————G".

k=0

The nature of this solution is that P (¢) is piecewise a poly-
nomial of degree n on each interval [nt, (n 4 1)t] so that

(1 if +e[—1,0]
1—1tG if r€l0,1]
1—1G+ 3t —1)2G? if t €[t,21]

1 —1G+ 5t —1)*G? if t €[27,37] -
+i(t—21)°G?

P(r) =

For example, when G = 1, 7 = 1, and P(t) = 1 on the
initial interval [—t, 0], the solution is

[ 1 if +e[—1,0]
1 —1¢ if te]0, 7]
32+ 412 if ¢e€l[r,27]
17 3.2 3
P(t): 5 —1 43t =+ §t if te [21', 31'] .
—<t
DU B2 283 4 Lt if 1 e [31,41)

Notice that according to Theorem 1, trying to drive the
servomechanism to reach its target goal faster by increasing
the gain leads to instabilities in which the system will not
reach equilibrium when Gt > 7. Delay-induced oscilla-
tions are a natural limitation of delayed negative feedback
systems generally. Since movement trajectories of the servo-
mechanism do not necessarily reach any equilibrium as we
increase the speed, it is problematic to describe a meaningful
performance measure for this circuit.

6 The delayed unidirectional servo
Let us now modify our servomechanism model by assuming
only unidirectional movement towards the target is possible.

The motivation for this is to eliminate the possibility of oscil-
lation around the target: the position cannot overshoot the
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target and “reverse” back towards it since it is only capable
of moving in a forward direction. This situation is a good
model for a muscle synergy where outflow motor commands
cause goal-directed movement towards a target but a sepa-
rate synergy would be required to move oppositely. Another
example might be a hydraulic actuator or rocket motor where,
again, the system can only be driven in one direction.

We therefore modify our equation describing the servo-
mechanism to include a cut-off function analogous to Eq. (3)
of the VITE model to prevent “negative’ or backwards move-
ment. Equation (6 ) becomes

P'(t)=GI[T =Pt —0]", ®)

where

[T—P(t—1)]* = T—P(t—1) %f T—P(t—1)>0 '
0 if T—P(t—1) <0
We assume that P(0) < T so a positive velocity moves the
position towards the target.

‘When the cut-off function is included, the behavior of the
servomechanism is to either increase asymptotically towards
the target without overshooting; or, to overshoot the target by
a finite distance and come to rest. Which of these two cases
occurs depends on the gain and the amount of delay present
but not on the initial position relative to the target.

Theorem 3 The servomechanism described by Eq. (8) in
which the position P(t) is initially held constant and then
released at time zero has two possible behaviors:

(i) (Overshooting) If Gt > 1/e, then the movement tra-
Jjectory P (t) overshoots the target by a finite distance
before coming to rest after a finite time, or,

(i) (Asymptotic approach) If Gt < 1/e, then the move-
ment trajectory P (t) approaches the target asymptoti-
cally without overshooting.

Proof This is a corollary to Theorem 1 above. If the position
ever exceeds the target, then after a delay t the system will
come to rest at a position beyond the target because of the
cut-off function.

Remark 1 Itis only necessary to consider the behavior of the
circuit with delay v = 1. If we rescale time so that P.(t) =
P(rt), Eq. (8) becomes

Pi(1) = TG [Pt — DT,
which is equivalent to the original system but with the delay

absorbed into the gain.
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6.1 Speed—accuracy trade-off

Notice that one effect of the cut-off function is to elimi-
nate the possibility of instabilities caused by large delays:
once the error signal generated by the difference between
the current position and the desired target has become nega-
tive further movement is terminated. But now we have a new
situation: increasing the gain may increase the speed with
which the position approaches the target, but at the same
time it also increases the amount of movement taking place
during the delay between reaching the target and generating
an error signal to halts further movement. We therefore have
a trade-off between speed (the time required for a complete
movement) and accuracy (the amount by which the target is
exceeded at the end of the movement. We quantify this more
precisely with the following definitions:

Definition 1 The movement amplitude (A) is defined to be
the distance between the initial position at the start of the
movement and the target, i.e.

A=|T — P(O)|.

Definition 2 (Speed) For any movement trajectory of the
servomechanism (8), the movement time (MT) is defined to
be the unique minimum value of # > 0 for which the current
position comes to rest; or, in the case where the position
approaches the target asymptotically, is defined to be infinite.

Definition 3 (Accuracy) For any movement trajectory of the
servomechanism (8), the movement error (E) or overshoot is
defined to be the amount by which the final position exceeds
the target, i.e.

E = lim |T — P()|.
11— 00

From Theorem 3 it is clear these are all well-defined.
Figure 3 contains graphs of the movement and overshoot
MT;(G) and E1(G) as a function of gain for unit amplitude
movement trajectories in the circuit with delay 7 = 1.

There are two important properties of the movement tra-
jectories generated by the delayed unidirectional servome-
chanism which follow from the fact that Eq. (8) is linear
except for the cutoff function. These are analogues of the
experimentally observed properties of human movements
known in the motor control literature as duration invariance
and Woodworth’s Law (Woodworth 1899).

Theorem 4 (Duration invariance) The movement time of tra-
Jjectories generated by the servomechanism (8) is independent
of the distance between the initial position and the target.
That is, the movement time actually only depends on the gain
G and the delay t.

Proof From the proof of Theorem 3, the substitution
P@t)—T

Py (1) = m
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Fig. 3 Graphs of the movement and overshoot M T} (G) and E;(G) as a function of gain for unit amplitude movement trajectories in the circuit

with delay = 1

transforms the original system to one in which the initial
position has P,(0) = 1 with the target at the origin. The
movement times for both systems are the same.

Theorem 5 (Woodworth’s law) The movement error is pro-
portional to the movement amplitude for the servomechanism
(8) with a given value of gain G and delay t. In other words

E(G.1,A)=A-E(G, 1),

where E{(G, t) is the overshoot of the movement trajectory
with unit amplitude.

Proof This follows because the substitution in the proof
above brings the movement trajectory with amplitude A to
is proportional to the one with unit amplitude. It follows
that P(t) = AP;(¢t) where P;(t) represents the movement
trajectory with unit amplitude.

In an experimental setting, movement times are measured
where the subjects are required to move to and acquire targets
of width W at a distance A as quickly and accurately as
possible. For the servomechanism, the movement time and
target overshoot are consequences of the gain and delay—
they are not directly controlled—and we will denote them at
E.(G) and M T, (G) to emphasize their dependence on these
parameters. With this in mind, the speed—accuracy trade-off
of the circuit can be formulated as: what is the minimum
movement time required for a movement trajectory of the
servomechanism to move to a target through an amplitude A
and come to rest within a target zone of fixed width? Taken
together, E;(G) and MT,(G) create a relationship MT(E)
between movement time (speed) and the amount of target
overshoot (accuracy) defined parametrically in the gain G for
a fixed delay. It is this relationship which defines the speed—
accuracy trade-off of movement trajectories generated by the
servomechanism (8) in the above sense.

However, it is more instructive to look at the speed—
accuracy trade-off within the framework of information
theory by instead considering the equivalent question of how
much time is required to perform a task with given ID.
Because of duration invariance, the movement time of the
circuit is independent of the movement amplitude. Likewise,
since Woodworth’s law holds, the amount of overshoot is pro-
portional to the movement amplitude. As a consequence, the
ID of movement trajectories are also independent of move-
ment amplitude A since

A
ID;(G) = log, (W + 1)

= 1ox: (57 +)
=2 \A5 o "

1
~ e (El(G> i 1)

which is a one-to-one function. We can thus define the speed—
accuracy trade-off as follows:

Definition 4 The Speed—accuracy trade-off is the relation-
ship MT (I D) defined parametrically by [ID; (G), MT (G)]
that represents the minimum time required by the delayed
unidirectional servomechanism to perform a task with ID (in
bits).

6.2 Performance

Figure 4 contains a graph of the speed—accuracy trade-off
MT| (ID) for the unidirectional servomechanism with delay
t = 1. It is sufficient to consider this case since for general
delay 7 the performance can be determined from the follo-
wing result that follows from Remark 1:

@ Springer
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35

Movement Time

0 5 10 15 20 25 30 35 40 45
Index of Difficulty (bits)

Fig. 4 Graph of the speed—accuracy trade-off M T} (ID) for the delayed
linear servomechanism with unit delay (solid). Also shown is the regres-
sionline MT = 0.044+0.687 ID that approximates the speed—accuracy
trade-off for large index of difficulty (broken)

Theorem 6 The speed—accuracy trade-off of the servome-
chanism with delay t is given by

MT, (ID) = tMT;(ID),

where MT | (ID) is the speed—accuracy trade-off of the circuit
with delay 1.

Proof By Remark 1, if we let P,(t) = P(tt) the system (8)
becomes P (1) = TG [Py(t — )] . In the new system, the
overshoot remains the same but the movement times are %
those of the original. Since the speed—accuracy trade-off is
defined parametrically as [ID; (G), MT; (G)], in the new sys-
tem it is defined parametrically as [ID(tG), tMT(zG)].
This is simply a reparametrization of the original with the
movement times multiplied by t.

In the case where the dynamics of the servomechanism
occur on the first two intervals [0, t] and [z, 27] (i.e. on the
same scale as the delay) it is possible to derive an explicit
formula for the speed—accuracy trade-off using the expres-
sion for the solutions of (8) given in Theorem 2. In this case,
since the solution P () is piecewise polynomial of degree n
on each interval [nt, (n + 1)7], it is simple enough to solve
and we have the following result:

Theorem 7 The speed—accuracy trade-off for the servome-
chanism is given by

4x2‘D—1—3x4lD)

1 — 4D ©

when t < MT < 2t oy, equivalently, when 0 < ID <
log, 3 ~ 1.585.

MT,(ID) = t (

@ Springer

Proof Letus assume without loss of generality that the move-
ment starts with P(¢) = 1 towards a target at zero. Suppose
that the movement time MT = 7y where T < 15 < 27 so
that P(tp — ) = 0. Using the explicit formula 7 given in
Theorem 2 above, we have

Pto—1)=1—(tp —1)G =0

so that
1

G = .
fh—T71

The final position of the movement will be given by

1 _ l N2 2
P(ty) =1 —1tG + 2(t0 7)°G

_ D 1 (o — 7)*
o th—T 2 (o — 1)
. 3 o
2 to—1T’
and the overshoot will be
o o 3
E=|P@t)| =5 — = _2
2 fho—T71 fho—T71 2

Solving for the movement time in terms of the overshoot we
thus have

2E+3
MT =<
2E+1
We can express this in terms of the ID since
ID =1 ! +1)=E !
= 10 —_ = —
2\E 2D |
so that
2E+3 4x2P—1-3x4D
MT =~ = .
2E +1 1 — 4D

Observe that the above result also asserts that the move-
ment time will be greater than the delay and in that as the ID
approaches 0 bits the time required to perform the movement
task approaches the lower limit of t. We state this as follows:

Corollary 1 The movement time approaches a lower limit
of T as the ID diminishes so that

lim MT,(ID) = t.
ID—0

Unfortunately, it is difficult to continue the process used
to obtain this and derive an expression for the entire speed—
accuracy trade-off MT(ID) since determining the movement
time on the interval [nt, (n+ 1) 7] involves solving a polyno-
mial of degree n. We therefore leave this as an open problem.

Notice that the speed—accuracy trade-off is approximately
linear when the movement time is large relative to the delay
so that

MT (ID) ~ 0.049 + 0.687 - ID
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holds to a high degree of accuracy for the range of ID between
4 and 45 bits. However there are pronounced nonlinearities
when the movement time is small relative to the delay and the
above linear approximation appears to be an underestimate
in this range. This is confirmed by the above formula (9) and
is observable in Fig. 4.

That a linear relationship should occur is in accordance
with Fitts’ hypothesis and an explanation may be given in
terms of information theory: Information (in bits) by defini-
tion represents the base two logarithm of the “uncertainty”
in position. As the negative feedback dynamics of the servo-
mechanism act to move the position towards the target this
uncertainty is continually reduced. The assumption of Fitts’
hypothesis that information is reduced at a constant rate is
equivalent to the uncertainty in position being reduced expo-
nentially.

In the linear negative feedback system P’(r) = —GP(r)
where no delay is present, if the position is initially within a
distance Py of the target then after time 7 it will have moved to
be within a distance of Pye ™" of the target. The uncertainty
is initially equal to Iy = log, Py bits, but after a time ¢ it has
become

1(1)=log, Poe~ " =log, Py — Gtlog, e= Iy — Gt log, e.

Thus the information is reduced at a rate proportional to the
gain in bits per second. When delay is present, the uncertainty
in position is reduced exponentially when the delay is small
relative to the movement time since P(t — ) =~ P(t). We
should therefore expect the average Index of Performance
IP=ID/MT (in bits per second) to approach a constant value
as the movement time becomes large.

This is supported by Table 1 which contains numerically
computed values of the movement time required to complete
tasks with large index of difficulties. The result shows the
index of performance approaches a limiting value of approxi-
mately 1'744 [bits/unit time]. If this is in fact the case then the
speed-accuracy trade-off of the delayed unidirectional ser-
vomechanism is approximated by

1
MT = 7——ID = 0.697 - ID.
" 144 ’

Finding a mathematical proof of this result is left as an open
problem:

Conjecture I (Maximum performance) The average index
of performance (in bits per second) of the servomechanism
with delay T = 1 reaches a finite limit

IP =

I
= lim ———— ~ 1.44 [bits/unit time]. (10)
ID—o00 MT/(ID)

Table 1 numerically computed values of the movement time required
to complete tasks with large index of difficulties for the circuit with
delay 7 =1

Movement Overshoot Index of Index of
difficulty performance
Time E(MT) ID(MT) IP = ID/MT
3 0.50000000 1.58496250  0.52832083
4 0.10456949 340095017  0.85023754
5 0.02959255 5.12069559  1.02413911
6 9.32115741 x 1073 6.75866047  1.12644341
7 3.09248228 x 1073 8.34147357  1.19163908
8 1.05659233 x 1073 0.88788896  1.23598612
9 3.67674890 x 10~* 11.4098120  1.26775689
10 1.29517140 x 10~* 12.9147561  1.29147561
100 7.69071203 x 10~%4 143221719 1.43221719
200 2.81385552 x 10787 287515196  1.43757598
300 1.04101967 x 107139 431792655  1.43930885
400 3.86203304 x 10-17*  576.066128  1.44016532
500 1.43433457 x 107217 720.338015  1.44067603
600 5.32998238 x 107201 864.609102  1.44101517
700 1.81481293 x 10734 1009.00632  1.44143761

The result shows the Index of Performance approaches a limiting value

of approximately % [bits/unit time]

7 Dynamics of the delayed VITE circuit

We now consider the dynamics of the delayed VITE cir-
cuit as a more realistic feedback model of human motor
control. The system (4)—(5) is also a delay differential system
with continuous but non—smooth right-hand side. It is ele-
mentary that any initial functions V(¢) and P(¢) defined on
[— max(z, 12), 0] have unique extensions to [— max(ty, 12),
oo) that satisfy Eqgs. (4)—(5) by the simple step-by-step
method. Following Bullock and Grossberg (1988), we sup-
pose that the circuit initially starts out in an equilibrium state
such that the difference vector population have a zero activity,
i.e. V(t) = 0, and the PPC is constant on the aforementioned
initial interval. At time ¢t = 0, a new target position stimulus
is activated causing a movement trajectory as the PPC shifts
towards the new equilibrium.

We first observe that the behavior of the system (4)—(5)
depends only on the sum of the delays, t = 7] + 12, since, if
we let P,(t) = P(t — 1), we obtain the equivalent system

v _ [-V(@) +T — Pu(1)]
a e
P -
e GIVe—-ol",
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where no delay term appears in the first equation. We there-
fore need only consider the case of a single delay 7, where
71 = 0 and 1p = 7. We refer to this delay 7 = 71 + 17 as the
total delay.

Movement trajectories generated by the delayed VITE cir-
cuit are qualitatively identical to that of the unidirectional
servomechanism:

Theorem 8 (Qualitative behavior) For any fixed o, T with
target T (t) = T and constant GO function G(t) = G, there
exists a critical value G* > 0 such that:

(1) IfGt > G*, then the movement trajectory P (t) over-
shoots the target by a finite distance before coming to
rest after a finite time, or,

(ii) IfGt < G*, thenthe movement trajectory P (t) appro-
aches the target asymptotically without overshooting.

Furthermore, because the system (4)—(5) is linear except
for the cutoff function, we also have that duration invariance
and Woodworth’s law holds for movement trajectories of the
delayed VITE circuit:

Theorem 9 (Duration invariance) For any delay t > 0 and
GO function G(t) (not necessarily constant) with constant

NO DELAY (1 = 0)

10 12 14 16 18 20
TIME

0 2 4 6 8

NO DELAY (z = 0)
08|
06|
04|
0.2

0
02 N~
0.4k
-0.6 +
08l

-

V()

10 12 14 16 18 20
TIME

0 2 4 6 8

target T(t) = T, the movement time is independent of the
target and initial position.

Theorem 10 (Woodworth’s Law) For any GO function G (t)
(not necessarily constant) and fixed target T, the overshoot
of the movement is proportional to the movement amplitude.
In fact, E = A - E1,where E is the overshoot of the circuit
for a movement with a unit movement amplitude.

This was proved in Beamish et al. (2005), where it is
also conjectured that the movement overshoots in the case of
constant GO function if and only if the characteristic equa-
tion A(s) = s2 +as +aGe ™ has no real roots. In the case
where delay is zero this reduces to G > «/4. However, if
the GO function G (¢) is not constant then the existence of
a critical GO amplitude G separating overshooting trajec-
tories from non-overshooting is not necessarily true and it
can happen that trajectories overshoot for all values of the
GO amplitude no matter how small. This is indeed the case
for the linear GO function G () = Got. See Fig. 5 which
contains graphs of the PPC and DV trajectories generated by
the circuit with constant GO function before and after delay
activation.

, DELAY (z = 1)
18}
16}
14 b
121 /
S =

10 12 14 16 18 20
TIME

0 2 4 6 8

DELAY (1= 1)
0.8
0.6 |-

0.4+
0.2

; ¥
02}
04}
06}
08}
-1

V()

10 12 14 16 18 20
TIME

0 2 4 6 8

Fig. 5 Graphs of PPC P(t) (fop ) and DV V (¢) (bottom) with no delay (left) and delay t = 1 (right) for the constant GO function G = 0.1, 0.2,
0.25,0.3,0.5, 1.0 withae = 1, T(¢) = 1, and P(¢) = 0 for t < 0. Trajectories for the circuit overshoot are red while those which do not are blue
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7.1 Speed-accuracy trade-off

Since the dynamics of the delayed VITE circuit are qualita-
tively similar to the delayed unidirectional servomechanism,
the speed—accuracy trade-off can be formulated in exactly
the same way: we consider the minimum movement time
MT(G) required after initial presentation of a fixed target
stimulus to move through an amplitude A and come to rest
within a target zone of width W (assuming the circuit is
initially in an equilibrium state,where PPC and TPC are
equal). Figures 6 and 7 contains graphs of the speed—accuracy

Movement Time

0 1 i i i i i i i i i i i i i

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Index of Difficulty [bits]

Fig. 6 The speed—accuracy trade-oftf MT, ; (ID) of the delayed VITE
circuit with averaging rate « = 1 for delaysof t = 5,4,3,2, 1, 0.5,
0.1 (black) and no delay (blue)

Movement Time

0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Index of Difficulty [bits]

Fig. 7 The speed—accuracy trade-off MT, ; (ID) of the circuit with
delay 7 = 1 and « = 0.01, 0.1, 0.5, 1, 2, 3, 4, 10 and the limiting
speed—accuracy trade-off as &« — oo shown in red

trade-off MT, ; (ID) for different values of the delay and ave-
raging rate, respectively.

It is an interesting and remarkable property of the original
VITE circuit (operating with zero delay) that this negative
feedback process gives rise to a speed—accuracy trade-off
MT = 210[—“21D, identical in form to the information-theoretic
formulation of Fitts’ law. The index of performance, IP =
5177 Lbits per second], is determined by the rate o at which the
DV population averages the target and position commands—
the larger this value the more quickly the DV population
adapts to the changing PPC, resulting in a higher perfor-
mance throughput. In fact, this model is equivalent to the
information-theoretic formulation for the reasons discussed
above in the context of the delayed unidirectional servo. See
Beamish (2006a) for a discussion.

When delay is activated, an approximately linear relation-
ship

MT,. . (ID) ~ a +b - ID

with non-zero y-intercept continues to hold for movement
times that are large relative to the delay, but as the movement
time diminishes a nonlinear breakdown occurs in which the
predicted time approaches the lower limit of 27 imposed by
the delay. The y-intercept can be either positive or nega-
tive, with both the intercept and slope nonlinearly coupled to
both the delay 7, and the averaging rate «. As discussed in
Beamish (2006b), this qualitatively explains the inconsisten-
cies of the information paradigm, and provides an important
link between the coefficients occurring in Fitts’ law and the
underlying neurobiology. As we shall see in the next section,
the speed—accuracy trade-off of the delayed feedback circuit
does not take on all possible values of slope and intercept
and is therefore not equivalent to a regression model. There
is no simple expression for this relationship although it is
computable by simulation of the model equations.

Another important property movement trajectories of the
delayed VITE circuit have is that, as in the case of the ser-
vomechanism, it is sufficient to only consider the circuit in
which delay T = 1. The following result is similar to Theo-
rem 6 for the delayed servomechanism:

Theorem 11 The speed—accuracy trade-off of the delayed
VITE circuit with averaging rate « and delay t is given by

MT, . (ID) = tMTy 1 (ID).

where MTy - 1(ID) is the speed—accuracy trade-off of the cir-
cuit with averaging rate ot and delay 1.

Proof We rescale time by a factor of 7 by letting V,.(z) =
V(tt), P.(t) = P(tt). For the sake of simplicity we assume
the target is at the origin and the initial position at P(z) = 1
so that system (4)-(5) then becomes

V/(t) = at[-Vi(t) + Pi(1)],
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P(t) = —tG [Vi(t — t/7)]T
= —tG[V,(t — D]™.

This is in the same form as the original system except the
averaging rate and gain have both been multiplied by the
delay t. If the movement time of the original system with
parameters «, 7, and G was M T, - (G), we have
Vi—-o=V((t-%))=V(t-%) =0,

T T T T

and so the movement time of the circuit with new parameters
will be

1
;MTa,r (G) = MTg:,1(rG).

And since the speed—accuracy trade-off is defined parame-
trically as

(IDq,7 (G), MT, - (G)],

in the new system we have

(IDgr,1(tG), tMTor,1(G)].

This is a reparameterization of the original, and therefore

MTg - (ID) = tMTy.,1(ID)

Remark 2 Alternatively, it is sufficient to consider the cir-
cuit in which the averaging rate « = 1 and a similar resca-
ling would give a similar expression for the speed—accuracy
trade-off.

The multiplicative dependence of the speed-accuracy per-
formance on delay shown to occur for the delayed circuit here
is supported by the experimental observations of MacKenzie
(1993) who observed it in the performance effect of visual
lag on target acquisition in Fitts” paradigm.

8 Performance limitations of the delayed VITE circuit

Here we develop the main result of this paper: the perfor-
mance of the delayed VITE circuit cannot exceed the
speed—accuracy trade-off of the delayed unidirectional ser-
vomechanism and, in the limit approaching its maximum
performance, the behavior is identical. In the VITE circuit,
the error signal is derived from the activity of the difference
vector population V (¢) which averages the difference of the
input signals from the target and position commands at a rate
o through time. As the averaging rate « increases, the dif-
ference between the actual position error and the perceived
error signal encoded by the DV population diminishes so that
V (t) approaches the true value of T — P(t). The effect is to
increase the performance of the circuit. In other words, as
« increases the amount of time required to perform a motor
task with given ID is diminished.

@ Springer

In the ideal circuit that operates with zero delay, the time
required to perform a task can be made arbitrarily small by
choosing a sufficiently large averaging rate o. However, with
the presence of delay, the time required to perform a task of
given ID does not diminish indefinitely as « is increased but
instead approaches a finite minimum value equal to the time
required for the delayed unidirectional servomechanism to
perform the same task.

We formalized the above by considering (without loss
of generality) the circuit with initial condition P(z) = 1,
V(t) = 0 on the initial interval [—t, 0] and a target of zero
so that equations (4)-(5) becomes

V() =a[-V () + P()], an

Pt)y=-Gt)[V(t—1]". (12)

Let P, (¢) and V, (¢) represent the solution of the model equa-
tions with averaging rate o« > 0. We first show that in the limit
as @ — 00, the difference vector population V,, () becomes
equal to P, (t) over [—t, 00) in L! norm. We then use this to
show that the limiting behavior of the movement trajectories
P (1) is to converge pointwise to solutions of the equation

P (1) = =G (1) [Poo(t — )] (13)

obtained by substituting V(t) = P(¢) into Eq. (12). The
resulting system (13) is identical to the equation of the dela-
yed unidirectional servomechanism (8) when the GO func-
tion is constant.

Lemma 1 For any fixed GO function G(t) = Gog(t) and
delay t > 0, let Py(t) and V,(t) represent the solution of
the model equation having a > 0. We then have

T
IIVa(t)—Pa(t)Ih=/IVa(t)—Pa(t)|dS—>0 (14)
0

on any closed interval [0, T] as ¢ — o0.

Proof We show that as « — oo, the PPC and DV become
equal in L' norm on the closed interval [0, T]. Suppose first
that V,,(¢) is positive on the entire interval [0, T']. Then,

Ve (1) = Pa (D)l

T
/lPa(s) — Va(s)lds
0

T

= é/m [—Va(s) 4+ Py(s)]lds

0
T
1/W’( )id
= — ) S.
a o
0

It is easy to show that the behavior of V (¢) is to increase until
V(t) = P(t) and then decrease. Suppose that V (¢) increases
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until # = #1, and then decreases. Then, using the fundamental

theorem of calculus,
T f T
= [ wionas =2 | [viots+ [1vioas
0 0 n
1 T

_ ! /%mm—/%mw
(07

LO 5l

1
= [Va(t1) — Va(0) = Vo (T) + Vo (11)]

However, since we know what 0 < V,(¢) < 1, it follows that

2
a [V (t1) — Vo (0) — Vo (T) + Vo (11)] < av
which can be made arbitrarily small by choosing « suffi-
ciently large. Suppose now instead that V (zy) = 0 for some

to € [0, T']. We then have

T r n T
é/|VO’[(s)|ds = - |Vo'l(s)|ds+/|VO/[(s)|ds
0 LO n
r h T
= l /V;(s)ds—/Vé(s)ds
* LO |

1
=5 Ve (11) = Vo (0) = Vo (T) + Vo (11)]

1
= — [2Vu(t1) — Vo(T)]
o

however, we know that

t

Valt) = Poult) > 1 —/G(s s,
0

and thus
T

é[ZVa(n) - Voc(T)]fé 2Va(t1)+/ G(s —1)ds — 1
0

But this can be made arbitrarily small by choosing « suffi-

ciently large. Therefore || Vy (t) — Py (2)|l; — Oas o — oo.

Lemma 2 Let x, y be real numbers. Then | [x]t — [y]T] <
lx — yl.

Proof We show this is true by considering the four cases of
different signs for x and y. If x > 0, and y > 0, then | [x]T —
I I=Ix—yl.Ifx <0,andy <0, then |[x]" —[y]*| =
0<|x—yl.Ifx>0,and y <0, then |[x]T — [y]T]| =
x| < |x —yl.Ifx <0,and y > 0, then | [x]T — [y]*| =
[yl < lx — y|. Therefore | [x]* — [y]T| < |x — yI.

Theorem 12 For any fixed GO function G(t) = Gog(t)
and delay t > 0, let Py(t) and V,(t) represent the solu-
tion of the model equation having o > 0,and let P (1)

represent the solution of the differential equation P, (1) =
—G (1) [ Pso(t — T)]Twith initial condition Ps,(t) = 1 on the
interval [0, t]. Then P,(t) — P (t) pointwise forallt > 0
as o — o0.

Proof We show that this is true on eachinterval [nt, (n+1)7]
by induction. Itis trivially true on the first interval [0, 7] since
Px(t) = P,(¢t) = 1 for all «. Suppose that P, (t) = Poo(?)
pointwise on the interval [0, nt]. For any point¢ € [nt, (n +
Drl,

t

| Poo (1) — Pa(0)] = Poo(nT)Jr/Péo(S)dS
l’th

— Pa(nt)—i—/Po’t(s)ds
nt )

— | Po(n7) = Palnr) + / PL(s)

nt

— Po/l (s)ds

A

| Pao(nT) — Po(n)|
4 / PL(5) — P(s)ds
— | Patnt) — Puln)|
t
4 / G(s) ([Pals — DI

nt

—[Vals = D1T) ds

Since the GO function G (¢) is bounded on the closed interval
[0, t], say G(t) < M, we have

t

/ G() ([Poo(s — DT — [Vo(s — D1T) ds

nt

t
=M /[Poo(s —OI" = [Vals = 1)]" ds

t
<M | [[Poo(s — DT = [Vo(s — DT | ds.

Observe that

t
/ [[Poso(s — DT — [Vo(s — )T ds
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t
= / [[Poo(s — DT — [Po(s — D)]F
+[Py(s — )T = [Vo(s — 7)1 T | ds

t
s/|[Poo(s—r)]+—[Pa(s — o] |ds

t
+/|[va(s—r)]+—[Pa(s — 1" | ds,

and so

[Poo(t) — Po(1)| < |Poo(nt) — Py (n7)]

t
+M/ [[Poc(s = DI" = [Pul(s — D)]" | ds

t
+M/ | [Vals — T = [Pa(s — 0)]" | ds.

nt
By the induction hypothesis, |Psx(nt) — Py(nt)| — 0 as
o — 00 since we assumed pointwise convergence. It there-
fore follows that | P»o(t) — P, (t)| — 0 if we can show that
the two integrals in the above inequality both go to zero as
o — 00,
We first show that

t
/| Vi(s = DT = [Pals — D" |ds — 0 (15)

as ¢ — 0o0. By Lemma 2,
| [Va(s = D17 = [Pals = DT | < [Vals — 1)
—Po(s — 1),

and so

t
/ | [Vals — DT — [Pals — 0)]" | ds
nt )

< / |Vo(s — T) — Py(s — T)|ds.
nt
From Lemma 1, we know that
T
Vo (@) — Pull1 = / [Va(s) — Py(s)lds — O
0

on any interval [0, T] as « — 00, and since

t—T

/ Ve (s) — Po(s)|ds

(n—Dt

1
/IVa(S—f)—Pa(S—f)I =<
T
S/IVa(S)—Pa(S)IdS—>0,
0
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it follows from that the integral from (15) tends to zero as
o — 00.
We now show that

t
/|[Poo(s — O = [Pals = )] |ds — 0

as ¢ — 0o. By Lemma 2,

[[Poo(s — )T — [Po(s — )] |
< |Poo(s — T) — Po(s — 7)),

and so

t
/ [[Poo(s — )T — [Po(s — )] " | ds

nt
t
< / |Pao(s — ) — Pals — 1)) ds.
nt

By the induction hypothesis, P,(f) — Poo(t) pointwise for
all t € [0, nt]. But since the interval [0, nt] is compact and
the functions P, (t) and P, (¢) are both continuous, | Poo () —
P, ()] — 0 converges uniformly over the interval [0, nt] as
o — o0. It therefore follows that

t
/lPoo(s —17)— Py(s —1)|ds — 0.
nt

as @ — o0, and hence |Pxo(t) — Py(t)] > Oas o — 00
Therefore | Poo(t) — Py(t)| — O forall r > 0.

Corollary 2 The optimal speed—accuracy trade-off of the
delayed VITE circuit is equivalent to that of the delayed uni-
directional servomechanism so that

MTyTE(ID) > 7 + MTS"°(ID) (16)

for all « > 0 and with equality occurring in the limit as
o — 00,

Combining the above corollary with our Conjecture 1 that
the delayed servomechanism has an asymptotically constant
Index of Performance we have the following upper limit for
the performance of the VITE circuit:

MT,"E(ID) > © +0.667 - ID. (17)

Notice the extra t which occurs on the right hand side of
the inequality (16) occurs because the movement time of a
trajectory generated by the VITE circuit was defined to be
the time from initial presentation of the target stimulus until
movement ceases, instead of alternatively as the time from
when movement begins. The reason for doing so is because
the VITE circuit has two delays instead of the single delay for
the servomechanisms one: a delay 7j in generating the error
signal, and a delay 7, in generating outflow motor commands.
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So, the dynamics of the VITE circuit begin immediately after
target presentation as the difference vector population acti-
vity increases during the delay v = 11 4- 12 before movement
begins. The servomechanism does not have an error signal
generated by a separate sub-system (the DV population) that
would require an extra delay. If we instead defined the move-
ment time as the amount of time between the beginning and
end of movement then MTX’ITT E(ID) would be reduced by t
and we would instead have

MTy TE(ID) > MT;*"*°(ID)

for all «.
9 Discussion

If we accept the VITE circuit as a neurodynamic model for
human motor control, then the existence of a correspon-
ding performance limitation from nerve conduction delays
is an intrinsic property of human motor behavior. There is
strong evidence to support this model, and the recent study by
Beamish et al. (2006b) suggest that a delay of between 16 and
26 ms operates during Fitts’ reciprocal tapping task. This is
considerably shorter than what would be expected if present
position information was based on visual feedback or afferent
proprioception from the limbs and is suggestive of a forward
internal model that is compensating for delay by anticipating
the response of the motor system and the world to outflow
motor commands during reciprocal tapping. This is stron-
gly supported by Tunik et al. (2005), where it is shown that
updating to perturbed grasping trials is blocked by parietal
Transcranial Magnetic Stimulation where the DV and PPC
information is speculated to be calculated, and that this cal-
culation occurs within 60 ms.

Actual motor circuit delays are difficult to measure and
values have been reported from about 30 ms for a spinal reflex
up to 200-300ms for a visually guided response, and have
additionally been found to be dependent on task demands
(Keele and Posner 1968; Zelaznik et al. 1983; Barrett and
Glencross 1989; Miall 1996). If the 16—-26 ms associated with
the reciprocal tapping task is a typical motor circuit delay,
then by Eq. (17), the theoretical maximum index of perfor-
mance achievable is between 55 and 90 bits/s—a value so
large the limitation could likely never be realized. Larger
delays of 200-300 ms associated with visually guided move-
ment would permit only a much lower maximum Index of
Performance of between 4.8 and 7.2 bits/s. A moderate delay
of 100 ms would limit performance to below 14.4 bits/s.

Reports of experimentally measured IP for various tasks
reveals a tremendous range of performance indices, from
less than 1 bit/s (Hartzell et al. 1983; Kvalseth 1977) to over
60bits/s (Kvalseth 1981). Most studies report IP in the range
of 3—12bits/s and therefore do not approach the performance
limit predicted here. See MacKenzie (1991) for a review

of the experimental data. The existence of a performance
limitation at all shows that an alternative neurodynamic for-
mulation of Fitts’ law based on the speed—accuracy trade-
off of the delayed VITE circuit is strictly different than the
information-theoretic formulation. Furthermore, using the
connection between the coefficients occurring in Fitts’ law
and the neurobiological parameters of the VITE model show
that it is not possible for the speed-accuracy trade-off of the
circuit to take on all possible slope and intercept values.

For the performance limitation discussed here to apply it
is necessary that the motor circuit operates with linear feed-
back. This is supported by the observed duration invariance
and Woodworth’s law, and also from neural adaptive linea-
rization of the muscle plant (Grossberg and Kuperstein 1986;
Bullock and Grossberg 1988). However, if we instead allow
outflow motor commands to have nonlinear dependence on
the error signal it is possible to obtain a greater speed—
accuracy performance at the expense of possible inconsis-
tency between the behavior of the circuit and that of real
movements. For example, if feedback takes place such that
the movement velocity is proportional to the square of the
error signal as in the nonlinear delayed servomechanism des-
cribed by

P'(t)=G(IT — Pt —DI')’, (18)

then the time required to move through a distance A and come
to rest within a distance E of the target is less than that for
the delayed linear unidirectional servomechanism: it outper-
forms the linear circuit for movements of a fixed amplitude.
However, since duration invariance and Woodworth’s law no
longer hold, the speed—accuracy trade-off expressed in terms
of ID is no longer well-defined and we lose any compari-
son to Fitts” law. See Fig. 8 which contains graphs of the
relationship between movement time and tolerance for unit
amplitude movements in the unit delay circuits with linear
versus quadratic response.

The reason for this higher level of performance may be
because movement velocity determined by the square of the
error signal diminishes faster-than-linear as we arrive clo-
ser to the target and this has a compensatory effect against the
delay. The likely basis for this is comparison to the Act-and-
Wait or On—Off Intermittency control strategies for delayed
feedback system (Insperger 2006; Cabrera and Milton 2002).
Here control is applied by alternatively acting with a large
control gain (the “acting” period) followed by a zero gain
“waiting” period. Although it might seem unnatural not to
actuate during the wait period, this in fact can have a stabi-
lizing effect beyond what could be achieved by driving the
system continuously at a fixed gain when delay is present.
However, an investigation of optimality for the delayed cir-
cuit in which nonlinear feedback is permitted remains an
open question.
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Fig. 8 A comparison of the relationship between movement time and
tolerance for unit amplitude movements in the circuit with unit delay
and linear versus quadratic response. Note that movement time is not
independent of amplitude in the quadratic circuit

It is important to realize that the noiseless and determi-
nistic circuit discussed here does not consider the effect of
uncontrolled random perturbations in nerve and muscle acti-
vity. In fact, recent work in this area has shown that the
presence of noise can statistically stabilize circuits that are
tuned near the edge of instability and may therefore be an
important aspect of human motor control (Venkadesan et al.
2007; Moreau and Sontag 2003; Cabrera et al. 2004; Cabrera
and Milton 2004). Although the deterministic circuit has the
advantage of a tractable mathematical analysis, it would be
more realistic to model the motor system as a system of
stochastic delay differential equations that includes signal-
dependent or other noise terms. The results presented here
may hopefully serve as a starting point for such studies.

The proposed generality of the 1.44%bps performance
limit is dependent on the evidence for closed-loop control
of movement and the role the VITE circuit plays as a central
generator of outflow movement commands. This needs to be
taken in the context of auxiliary circuits in the spinal cord,
cerebellum, and neocortex that address how a motor plant
would actually respond to such signals. Or, how the brain
ensures that a changing motor plant responds with enough
fidelity that the VITE outflow commands are substantially
obeyed despite delays and inertial properties in such a plant.
Towards this goal, the Factorization of LEngth and TEnsion
(FLETE) model was introduced to clarify how the spinal cord
and cerebellum may influence such compensation, and how
other forms of interference with the realization of planned
trajectories (such as obstacles) are compensated for by brain
circuits that also include interactions between outflow and

@ Springer

inflow signals (Bullock and Grossberg 1989, 1991, 1992;
Contreras-Vidal et al. 1997; Cisek et al. 1998). Additionally,
Bullock et al. (1998) consider further extensions to the VITE
circuit itself that are well matched to a larger set of neuro-
nal discharge patterns that define key electrophysiologically
identified neuron types observed in the motor and parietal
cortex. The PPC stage of the VITE circuit is resolved into
two stages: an outflow position vector (OPV) stage and a
perceived position vector (PPV) stage. Also added was an
explicit desired velocity vector (DVV) stage.

It seems reasonable that, regardless of the model conside-
red, the determinant of performance would be the pathway
of smallest effective delay available between the DV and
itself, ignoring any performance “advantage” attributable to
nonlinearity or noise as discussed above. Of course, some
stages would likely be based on forward predictor output
that compensates for slow proprioceptive or visual feedback
and the precise elaboration of these mechanisms is an area of
ongoing research. The shortest central pathway form the DV
stage back to itself within the Bullock et al. (1998) model
becomes: DV to DVV, DVV to OPV, OPV to PPV and PPV
back to DV. If processing along each of the implied axons,
with its associated synapse, adds approximately 4 ms delay,
then shortest possible delay would be around 16 ms which is
in accord with the given estimates.
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