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Abstract. HIV transmission process involves a long incubation and infection
period, and the transmission rate varies greatly with infection stage. Conse-
quently, modeling analysis based on the assumption of a constant transmission
rate during the entire infection period yields an inaccurate description of HIV
transmission dynamics and long-term projections. Here we develop a general
framework of mathematical modeling that takes into account this heterogeneity
of transmission rate and permits rigorous estimation of important parameters
using a regression analysis of the twenty-year reported HIV infection data in
China. Despite the large variation in this statistical data attributable to the
knowledge of HIV, surveillance efforts, and uncertain events, and although the
reported data counts individuals who might have been infected many years
ago, our analysis shows that the model structured on infection age can assist
us in extracting from this data set very useful information about transmission
trends and about effectiveness of various control measures.

1. Introduction. Human immunodeficiency virus (HIV) has been one of the major
public health problems worldwide: in 2005, an estimated 38.6 million people were
living with HIV, an estimated 4.1 million became newly infected, and an estimated
2.8 million lost their lives to AIDS [17]. HIV has also been officially recognized
by the Chinese government as one of the four infectious diseases that impose a
significant challenge to the country’s economic growth and public health: in 2005,
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an estimated 650,000 residents of China lived with HIV/AIDS, of which 75,000 had
developed AIDS [18].

Accurate prediction of the HIV trends in China is urgently required for strategic
planning. Despite the availability of twenty years of annually reported data since
the first HIV infection was reported in 1985, creating mathematical-model-based
predictions and simulations seems to be a difficult task because of some important
features of HIV transmission and of the data. First, the HIV virus has a long
incubation and infectious period, during which the infectivity of infected people
varies depending on the viral loads, the CD4 cell number, and the time elapsed
since infection. Wawer et al estimated that, respectively, the average rates of HIV
transmission are 0.0082, 0.0015, 0.0007, and 0.0028 per coital act within roughly
2.5 months after seroconversion of the index partner, six to fifteen months after
seroconversion of the index partner, among HIV-prevalent index partners, and six
to twenty-five months before the death of the index partner, respectively [16]. Rap-
atski, Suppe, and Yorke found that the infectivity rates for semen are 0.024, 0.002,
and 0.299 for the primary, asymptomatic, and symptomatic stages, respectively
[14]. Second, the annual HIV statistical data available to us involve the number of
reported individuals. As the infection might have occurred many years before it was
reported, the annual reported data do not reflect the newly infected. Also, many
variations in the statistical data have resulted from evolution of the knowledge of
HIV, the surveillance efforts, and various uncertain events. Thus, models involving
infection age and infection-age-dependent transmission rates are needed to reflect
the complicated mechanism of the disease with long infection period; unfortunately,
this leads to too many model parameters to be determined. Consequently, we must
reduce the number of parameters to be determined from annual statistical data
using available epidemiological observations and facts.

In this work, we develop a discrete epidemic compartmental model involving
infection age and infection-age-dependent transmission rates to describe the ten-
dencies in the spread of HIV in China. We adopt the discrete-time approach, since
discrete-time models seem to be realistic for the description of processes with differ-
ent characteristic times because they permit arbitrary time-step units, preserving
the basic features of corresponding continuous-time models and providing a sub-
stantial reduction of computer time. In addition, a discrete-time epidemic model
allows better use of statistical data, because the epidemic statistics are compiled at
discrete given time intervals.

Much success has been achieved using continuous models to understand trans-
mission dynamics of infectious diseases, ranging from the early work of Kermack
and McKendrick [9] to more recent efforts for HIV-AIDS [7], and SARS [4, 21].
Discrete models in population dynamics have also been extensively studied, but ap-
plications and analysis of discrete models in epidemiology are still in their infancy.
Allen studied the discrete SI, SIS, and SIR epidemic models and found that the SI
and SIR models are similar in behavior to their continuous analogues under some
natural restriction, but the SIS model can have more diverse behaviors [1]. Castillo-
Chavez and Yakubu studied a discrete SIS model which exhibits bistability over a
wide range of parameter values [3]. Méndez and Fort investigated the dynamical
evolution of discrete epidemic models by taking into account an intermediate class
of population [12]. Allen and Thrasher formulated an age-dependent model for vari-
cella and herpes zoster to investigate the effectiveness of various control strategies
[2]. Zhou and Fergola studied a discrete age-structured epidemic SIS model where
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the basic reproductive number is defined and the threshold for the persistence or
extinction of disease is found [20]. Zhou, Ma, and Brauer formulated a discrete
model to investigate the transmission of SARS in China, where model parameters
were estimated using available but limited statistical data, and numerical simula-
tions were carried out to mimic closely the SARS transmission process in China
[21].

In summary, the characteristics of epidemics caused by HIV with long-term in-
fections indicates sensitive dependence of the transmission dynamics on the trans-
mission rates in different stages of infection and calls for infection age-structured
models. On the other hand, such models will naturally involve a large number of
infection-age-dependent parameters, and estimating these parameters based on very
limited surveillance data is a challenging task. The fact that the yearly reported
data does not include those newly infected makes the mathematical modeling, the
parameter estimation, and simulations even more complicated and difficult. In this
paper, for the discrete epidemic model with infection age structure we developed,
we propose a simplification procedure based on the epidemiological features of HIV
in China and the available data from the Chinese Center for Disease Control’s State
Key Laboratory for Infectious Disease Prevention and Control to reduce the prob-
lem of estimating a large number of parameters to the estimation of a baseline
transmission rate and the functional relation between the transmission rates and
the viral load of an infected individual.

The model formulation and the calculation of the basic reproduction number are
presented in Section 2, while the proof of the fact that the basic reproduction number
characterizes the long-term dynamics is given in the appendix. The parameter
estimation and projection of HIV in China for 2006-2010 are carried out in Section
3, and a short summary and some discussions are given in Section 4.

2. Model formulation and stability. As discussed earlier, the infectious period
of an HIV-infected individual is very long and the transmission rate of HIV-infected
individuals varies greatly in different periods of infection. There are no clear symp-
toms for a long time after the infection, so that infected individuals can not be
identified and recorded timely. The number of the reported HIV-infected individ-
uals each year thus consists of individuals who were infected in different years and
are in different infection stages.

This motivates the use of an infection-age-structured HIV transmission model,
where individuals are assumed to be in one of the following epidemiological groups:
susceptible (at risk of contracting the disease), infected (those who were infected
and are capable of transmitting HIV, but have no symptoms), AIDS (those who
have various symptoms). We also note that an HIV-infected individual usually
develops AIDS after eight or ten years, and thus we divide the infected group into
twelve subgroups, indexed by the infection age (year) j; j = 1, 2, · · · , 12. Later, for
the purpose of parameter identification we also lump together certain infection ages
according to their viral loads and CD4 cell numbers. The idea is similar to that in
[8, 11, 5, 15]. More precisely, at time t let S(t) be the number of the susceptibles,
Ij(t) the number of the infected with infection age j, and A(t) the number of AIDS.
Let βj , µj , and αj be the transmission rate, the death rate, and the AIDS rate of
the infected individual in the group j, respectively, and δ the death rate of AIDS
individual. The AIDS rate αj is introduced to describe the slow and fast progression
of AIDS: some HIV infected individuals will enter the AIDS stage faster, some may
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Figure 1. The schematic diagram of HIV transmission, structured
by infection ages, where γj = 1− µj − αj , j = 1, · · · , 12.

be slower. We assume that α1 = 0, αj ≥ 0, j = 2, 3, ..., 11, and α12 = 1− µ12. The
transfer among those groups is shown in a schematic diagram (see Figure 1), where
the standard incidence rate is used for the transmission rate:

λ(t) =
12∑

j=1

βjIj(t)
S(t)
N(t)

.

From the the schematic diagram, we formulate the following discrete HIV trans-
mission mode with infection age structure:

S(t + 1) = S(t) + Λ− S(t)
N(t)

∑12
j=1 βjIj(t)− µS(t),

I1(t + 1) =
S(t)
N(t)

∑12
j=1 βjIj(t),

Ij+1(t + 1) = (1− αj − µj)Ij(t), j = 1, 2, ..., 11,

A(t + 1) = A(t) +
∑11

j=2 αjIj(t) + (1− µ12)I12(t)− δA(t),

(1)

where N(t) is the total population at time t, namely,

N(t) = S(t) + I1(t) + I2(t) + ... + I12(t) + A(t).

Therefore,

N(t + 1) = N(t) + Λ− µS(t)−
12∑

j=1

µjIj(t)− δA(t).

As
∑12

j=1 βjIj(t) ≤ (max1≤j≤12 βj)
∑12

j=1 Ij(t) = max1≤j≤12 βjN(t), we conclude
from the first equation of the above model that S(t + 1) ≥ 0 for all t ≥ 0 provided
S(0) ≥ 0 and max1≤j≤12 βj ≤ 1− µ. This shows the positivity of solutions.

Using the following variables and changes of parameters,

S(t) = S̃(t)− I1(t), I1(t) = Ĩ1(t),
I2(t) = (1− µ1)Ĩ2(t), I3(t) = (1− µ1)(1− µ2 − α2)Ĩ3(t),
Ij(t) = (1− µ1)(1− µ2 − α2)...(1− µj−1 − αj−1)Ĩj(t), j = 4, 5, ..., 12,

β̃1 = β1, β̃2 = (1− µ1)β2, β̃3 = (1− µ1)(1− µ2 − α2)β3,

β̃j = (1− µ1)(1− µ2 − α2)...(1− µj−1 − αj−1)βj , j = 4, 5, ..., 12,
µ̃1 = µ− µ1, µ̃2 = (1− µ1)(δ − µ2), µ̃3 = (1− µ1)(1− µ2 − α2)(δ − µ3),
µ̃j = (1− µ1)(1− µ2 − α2)...(1− µj−1 − αj−1)(δ − µj), j = 4, 5, ..., 12,
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we can rewrite model (1) as

S̃(t + 1) = Λ + (1− µ)(S̃(t)− Ĩ1(t)),

Ĩ1(t + 1) =
S̃(t)− Ĩ1(t)

N(t)
∑12

j=1 β̃j Ĩj(t),

Ĩj+1(t + 1) = Ĩj(t), j = 1, 2, 3, ..., 11,

N(t + 1) = (1− δ)N(t) + Λ + (δ − µ)S̃(t) +
∑12

j=1 µ̃j Ĩj(t).

(2)

Let

R0 = β̃1 + β̃2 + ... + β̃12

= β1 + (1− µ1 − α1)β2 + (1− µ1 − α1)(1− µ2 − α2)β3

+(1− µ1 − α1)(1− µ2 − α2)(1− µ3 − α3)β3 + ...
+(1− µ1 − α1)(1− µ2 − α2)...(1− µ11 − α11)β12,

(3)

where 1− µ1 − α1 is the rate at which an infected individual can reach the second
year, (1−µ1−α1)(1−µ2−α2)...(1−µj−1−αj−1) is the rate at which an infected
individual can reach the jth year, and βj is the new infection that an infected
individual can generate in the jth infection year. Therefore, the above number gives
the average number of secondary cases generated by a primary case in the considered
pool of susceptible individuals, though as shown in [6] this is not necessarily true
in general. Nevertheless, as shall be shown mathematically, the basic reproductive
number R0 is indeed the threshold parameter to determine the stability of the
disease-free equilibrium and the existence of an endemic equilibrium. So, R0 serves
as a threshold parameter that predicts whether an infection will spread.

Simple algebraic calculation shows that there is a unique disease-free equilibrium
E0 of (2) with S0 = Λ/µ, I0

j = 0, j = 1, 2, ..., 12 and N0 = Λ/µ, if R0 ≤ 1. There
exist disease-free equilibrium E0 and endemic equilibrium E∗ of (2) if R0 > 1, with

I∗1 =
Λ(R0 − 1)

µ + µ(1− µ)/δ + µ(µ̃1 + µ̃2 + ... + µ̃12)/δ + R0 − 1
,

Ĩ∗12 = Ĩ∗11 = ... = Ĩ∗2 = Ĩ∗1 ,

S̃∗ = Λ/µ− (1− µ)Ĩ∗1/µ,

N∗ = Λ/δ + (1− µ/δ)S̃∗ +
∑12

j=1 µ̃j Ĩ
∗
j /δ.

(4)

The stability of the disease-free equilibrium E0 of model (2) is completely deter-
mined by the magnitude of R0 as shown in the following theorem.

Theorem 2.1. The disease-free equilibrium E0 of (2) is globally asymptotically
stable if R0 < 1; the disease-free equilibrium E0 is unstable if R0 > 1.

We defer the proof to the Appendix.
The endemic equilibrium E∗ of (2) exists when R0 > 1. At the endemic equilib-

rium E∗ the matrix of the linearized system of (2) is

L∗ =




1− µ −(1− µ) 0 0 ... 0 0 0
R0Ĩ

∗
1

N∗
β̃1

R0
− R0Ĩ

∗
1

N∗
β̃2

R0

β̃3

R0
...

β̃11

R0

β̃12

R0

−Ĩ∗1
N∗

0 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... 1 0 0

δ − µ µ̃1 µ̃2 µ̃3 ... µ̃11 µ̃12 1− δ




.
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The characteristic equation of matrix L∗ is

f(ρ) = −(1− µ)(δ − µ)
Ĩ∗1
N∗ ρ11 − ρ(1− δ − ρ)

R0Ĩ
∗
1

N∗ ρ11

+(1− µ− ρ)(1− δ − ρ)

(
ρ12 −∑12

j=1

β̃j

R0
ρ12−j

)

−(1− µ− ρ)
Ĩ∗1
N∗

∑12
j=1 µ̃jρ

12−j .

(5)

The stability of the endemic equilibrium is determined by the locations of the eigen-
values of matrix L∗, and a full stability analysis of the endemic equilibrium seems to
be difficult because of the complicated expression of the equilibrium’s coordinates
and because of the high order of the polynomial f .

We can, however, estimate the root of f(ρ) = 0 for sufficiently small Ĩ∗1/Ñ∗, a
situation naturally anticipated for China. When Ĩ∗1/Ñ∗ = 0, f(ρ) becomes

f0(ρ) = (1− µ− ρ)(1− δ − ρ)ρ12


1−

12∑

j=1

β̃j

R0
ρ−j


 ,

f0(ρ) = 0 has 3 positive roots: ρ = 1 − δ, ρ = 1 − µ, and ρ = 1 (recall that∑12
j=1 β̃j/R0 = 1). Other roots are either real and negative, or complex, and are

given by 1 =
∑12

j=1 β̃jρ
−j/R0. If ρ = reiθ is such a root of f0(ρ) = 0, then we have

1 <
∑12

j=1 β̃jr
−j/R0. It follows that r < 1.

When 0 < max{1 − µ, 1 − δ} < ρ < 1, the fact that 1 − ∑12
j=1

β̃j

R0
ρ−j < 0 for

positive ρ < 1 implies that

(1− µ− ρ)(1− δ − ρ)ρ12


1−

12∑

j=1

β̃j

R0
ρ−j


 < 0.

Therefore, for sufficiently small Ĩ∗1/N∗ and for ρ with max{1−µ, 1− δ} < ρ < 1 we
have

f(ρ) = −(1− µ)(δ − µ)
Ĩ∗1
N∗ ρ11 − ρ(1− δ − ρ)

R0Ĩ
∗
1

N∗ ρ11

+(1− µ− ρ)(1− δ − ρ)ρ12

(
1−∑12

j=1

β̃j

R0
ρ−j

)

−(1− µ− ρ)
Ĩ∗1
N∗

∑12
j=1 µ̃jρ

12−j < 0.

On the other hand, if R0 > 1 then we have

f(1) = µ(δ + 1− µ)
Ĩ∗1
N∗ +

δĨ∗1
N∗ (R0 − 1) +

µĨ∗1
N∗

12∑

j=1

µ̃j > 0.

Consequently, for sufficiently small Ĩ∗1/N∗, f(ρ) = 0 has three positive roots: one is
close to 1−µ, one is close to 1−δ, and the other is in the interval (max{1−µ, 1−δ}, 1).
In addition to these three positive roots located in (0, 1), other roots of f(ρ) = 0
have moduli less than 1 for sufficiently small Ĩ∗1/N∗.

Whether the endemic equilibrium E∗ is globally asymptotically stable or not for
the realistic set of parameter values remains an open problem, though our simula-
tions seem to indicate the convergence of solutions to this endemic equilibrium for a
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wide range of parameter values and initial data. As an illustration, we use the follow-
ing set of parameters (see next section for parameter identification and estimation):
β1 = 1, β2 = β3 = 0.1, β4 = β5 = β6 = 0.35, β7 = β8 = β9 = β10 = β11 = β12 = 0.3,
µj = 0.05, αj = 0 for j = 1, 2, ..., 12, µ = 0.006, δ = 0.2 and Λ = 1000. The
basic reproductive number is thus R0 = 3.21. The endemic equilibrium of (2) is
S̃∗ = 61834, N∗ = 167371, Ĩ∗j = 9687 for j = 1, 2, ..., 12. The characteristic equation
of the matrix L is f(ρ) = 0, where

f(ρ) = ρ14 − 1.92ρ13 + 1.17ρ12 − 0.223ρ11 − 0.067ρ10 + 0.056ρ9

+0.00029ρ8 + 0.012ρ7 − 0.0094ρ6 + 0.00017ρ5 + 0.00016ρ4

+0.00016ρ3 + 0.00015ρ2 + 0.051ρ− 0.047.

The fourteen roots of the equation f(ρ) = 0 are

ρ1 = −0.7412, ρ2 = 0.8983,
ρ3,4 = −0.6426± 0.3581i, ρ5,6 = −0.3853± 0.6399i,
ρ7,8 = −0.0188± 0.7713i, ρ9,10 = 0.3590± 0.7367i,
ρ11,12 = 0.6703± 0.5010i, ρ13,14 = 0.8988± 0.1738i.

It is easy to see that |ρj | < 1 holds for all j = 1, 2, ..., 14; hence, the endemic
equilibrium is asymptotically stable.
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Figure 2: The simulation of model (2) with three sets of initial data
specified in the text, for the total population N(t), the total number
of infected individuals

∑12
j=1 Ĩj(t) in all 12 groups, the total number

of susceptibles S̃(t), and the total number of infected individuals Ĩ1(t).
The simulation indicates that solutions corresponding to different initial
data are all convergent to the endemic equilibrium E∗.
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In the simulation reported in Figure 2, we use the following three sets of initial
values for our simulation:

(I1). S̃(1) = 60000, N(1) = 183000, Ĩj(1) = 10000, j = 1, 2, ..., 12;
(I2). S̃(1) = 60, N(1) = 210, Ĩj(1) = 10, j = 1, 2, ..., 12;
(I3). S̃(1) = 15000, N(1) = 246000, Ĩj(1) = 10000− 500j, j = 1, 2, ..., 12.

The simulation results are shown in Figure 2, indicating the convergence of solutions
to the endemic equilibrium.

3. Estimation of transmission rates and prediction for 2006-2010. In this
section, we use a simplified version of (2) to estimate the transmission rates and to
make a prediction for the HIV trend in China during 2006-2010.

There are several factors we should consider when we estimate the parameters in
our model. At first, the statistical data of HIV is the reported number. The reported
number consists of infected individuals who might have been infected many years
ago. Therefore, the annual reported number can not be regarded as the newly
infected number. Second, the statistical data contain many variations resulting
from the knowledge of HIV, the surveillance efforts, and uncertain events. Third,
there are too many model parameters to be determined, and hence it is necessary
to reduce model parameters by some epidemiological facts.

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
0
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3

4

5

6
x 10

4

the top curve: fitted by data 1985−2004

the middle curve: fitted by data 1990−2002

the bottom curve: fitted by data 1998−2002

stars: yearly reported HIV data 1985−2004 
  

Figure 3: Statistical data and the regression curves of the reported
HIV number.

The first HIV infection in China was reported in 1985, and we have now twenty
annual reports whose data clearly show the tendency of exponential growth with
time, and thus we use the standard exponential regression to fit these data. There
are also different choices to carry out the regression by using data sets during
different periods of time. The following three regression curves

h5(t) = 2552e0.2723(t−1997),
h13(t) = 151.5173e0.3740(t−1990),
h20(t) = 3.6466e0.4792(t−1984),
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are based on the data from 1998-2002 (h5(t), bottom curve in Figure 3), from 1990-
2002 (h13, middle curve in Figure 3), and from 1985-2004 (h20, top curve in Figure
3). These three periods reflect different ways the surveillance system was set up
over the period 1985-2004. There was very limited knowledge of HIV infection and
virtually no surveillance system in the 1980s, when HIV infection was first reported
in China. The surveillance system was then established gradually as more and more
attention to HIV infection was given at various levels of government. There were
local outbreaks due to contaminated blood between 1995 and 1997, and then a
large scale screening program was launched in 2004 and 2005 to trace and identify
the HIV infection status for those with possible contact with the contaminated
blood. These factors greatly influence the normal and natural surveillance system
and the reported data. In our opinion, the annual reported data from 1998 to 2002
are collected in a natural manner that reflects the HIV transmission tendency in
China. We therefore will use the regression curve based on those five years of data
to estimate the model parameters.

We now outline our assumptions to simplify the model. We observed that, al-
though there are a large number of infected individuals because of the large basic
reproductive number R0 and the large susceptible population, the percentage of HIV
infected in China is quite small. As such, S(t) ≈ N(t). Therefore, the structured
epidemic model (1) can be approximated by

I1(t + 1) =
∑12

j=1 βjIj(t),
Ij+1(t + 1) = (1− µj − αj)Ij(t), j = 1, 3, ..., 11,

A(t + 1) = A(t) +
∑11

j=2 αjIj(t) + (1− µ12)I12(t)− δA(t).
(6)

We note that the above twelve equations for the infected individuals are similar to
the classical Leslie population model.

We need to estimate the transmission rates βi, 1 ≤ i ≤ 12, and here the under-
lining assumption is that infected individuals with the same infection age have the
same transmission rate since the viral load, the CD4 cell count, and the behavior
activity determine the HIV progress and transmission capability. Due to the very
limited number of data, we further regroup these infection ages to five stages ac-
cording to the viral load, the CD4 cell count, and the behavior activity of a HIV
infected individual.

Table 1: Classification of infection ages by stages, according to the time
since infection, the viral load, and CD4 cell.

stage time since infection viral loan or CD4
stage 1 within 3 months very high viral load
stage 2 4th month to the 3rd year ≥ 500
stage 3 4th year to the 6th year 499-350
stage 4 7th year to 9th year 349-200
stage 5 10th year to 12th year ≤ 200

We used a data set from the State Key Laboratory for Infectious Disease Pre-
vention and Control that contains information of 433 HIV nontreated infected in-
dividuals about their CD4 cell counts and viral loads. We regress the logarithm of
the viral load with base 10 on the CD4 cell count to obtain the following regression
model

log10(viral load) = 4.790712− 0.001689 CD4 counts.
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The p-value of the F-test is less than 0.0001, indicating a very significant regression
relationship.

Table 2 shows that the median of the CD4 cell count (100, 275, 425, 750) for each
of stages 2 to 5 is quite close to its corresponding average value. We then substitute
the median value of the CD4 count at each stage to the above regression model to
obtain the corresponding viral load, as shown in Table 2. We also assume that the
transmission rate in each stage rate is proportional to the viral load; thus we can
obtain the proportionality coefficient of the transmission rate for each of the stages
2 to 5 when the baseline transmission rate at stage 2 is set to 1.

Table 2: The CD4 cell, viral load, and the proportionality coefficient
of the transmission rate at each stage.

CD4 cell number percentage average CD4 viral load proportionality
> 500 113 26.1 719.57 3341 1
499− 350 108 24.9 413.55 11827 3.54
349− 200 99 22.9 275.76 21195 6.34
< 200 113 26.1 104.55 41861 12.53

It is difficult to catch a newly infected person within three months of the infection,
and thus Table 2 does not contain relevant information about the viral load or CD4
for those individuals in the first three months of the infection. Existing literature
does indicate that the viral load is extremely high during this stage [10], and it is
estimated that the transmission rate in the first three months of infection is thirty
to fifty times higher than that in the second stage [13]. Therefore, if we denote the
transmission rate in the second stage by x, then we shall assume the transmission in
the first three months of the infection as 40x. On the other hand, the time scale of
our recurrent calculation is one year, we need to spread the very high transmission
rate in the first three months into the first year with the transmission rate given by

(3(month)× 40x(hign transmission rate) + 9(month)× x)/12 = 10.7x.

Behavior analysis shows that there is a significant behavior change in the HIV-
infected because of the illness and, in the last two stages, because of others’ aware-
ness of the infection. This behavior change will reduce the transmission rate, and
we assume the reduction rates are 0.5 and 0.25 respectively for the last two stages
(seven to nine years, and ten to twelve years). Therefore, we obtain the the trans-
mission rates used in model (6) as follows:

β1 = 10.7x,
β2 = β3 = x,
β4 = β5 = β6 = 3.54x,
β7 = β8 = β9 = 6.34× 0.5x = 3.17x,
β10 = β11 = β12 = 12.53× 0.25x = 3.13x.

(7)

Hence, estimating the 12 transmission rates βj is now reduced to the determination
of the baseline value x.

From the regression function h5(t) we see that the average yearly rate increase is
31.3%, and the average number that an infected individual can transmit per year is
0.329, and the regressed number in the first year (1985) is 97. It is important to note
that the reported number does not represent the newly infected patients; instead it
is the number of individuals who were infected at an early time and whose infection



DYNAMIC MODELING OF HIV IN CHINA 413

was confirmed that year. We note that only a part of the HIV infected is reported
each year. At the end of 2005, the estimated number of HIV-infected individuals in
China is 650,000, and the cumulative number of the annually reported number from
1985 to 2005 is approximately 17.76% of the estimated number; 17.76% is the ratio
of the accumulated reported number over the twenty-one years to the estimated
number 650,000.

Note that 17.76% is not the annual report rate. To estimate the annual report
rate, we assume that the report rate is a constant every year, and we use a simple
recursive model to calculate this constant as follows. Let I(t), H(t), and U(t)
be the HIV-infected number, the reported number, and the unreported number
at time t, respectively. The HIV-infected number increased by 32.9% each year.
The unreported number is the remainder of the previously unreported infected
individuals plus the newly infected. The reported number is part of the infected who
have not been reported that year. The infected, the reported, and the unreported
numbers therefore satisfy the following recursive equations

I(t + 1) = 1.329I(t),
U(t + 1) = (1− r)U(t) + 0.329I(t),
H(t + 1) = rU(t + 1),

(8)

where the parameter r is the report rate. Starting from any initial value, we add
all the reported numbers from the recursive model (8), then calculate the ratio of
the total reported to the total infected, and finally, let the ratio be 17.76%. Thus,
the annual report rate can be determined by the equation

the sum of the annually reported

the infected
=

∑T
t=1 H(t)
I(T )

=
17.76
100

.

The calculation gives the value of the annual report rate r = 5.1%.
After we understand the features of the annually reported HIV-infected number,

we now use following model to estimate the transmission rate:

I1(t + 1) =
∑12

k=1 βkIk(t),
Ij+1(t + 1) = pjIj(t) for j = 1, 2, ..., 11,
H1(t + 1) = rI1(t + 1),
Hj+1(t + 1) = rpjUj(t) for j = 1, 2, ..., 11,
U1(t + 1) = (1− r)I1(t + 1),
Uj+1(t + 1) = (1− r)pjUj(t) for j = 1, 2, ..., 11,

H(t + 1) =
∑12

k=1 Hk(t + 1),

(9)

where p1 = 1− µ1, pj = 1− µj − αj (j = 2, 3, ..., 11).
The equation for the HIV-infected Ij(t + 1) is just the simplified model (6). The

equation for Hj(t + 1) calculates the reported number at year t + 1. The reported
number of the newly infected at t + 1 year is the product of the reported rate and
the infected. The reported number in each of other groups is the product of the
report rate and the infected who are not reported at year t + 1. The equation on
Uj+1(t + 1) calculates the unreported number at year t + 1. The last equation of
H(t + 1) sums up the total number of the reported HIV-infected in the year t + 1.

We do not have the national data for the death rate µj and the conversion rate αj

of the HIV-infected; here we use the survival date of a recent survey in the province
of Anhui. It is estimated from 159 HIV-infected individuals that the survival time
distribution is

g(t) = exp(−0.0006(t− 0.5)3.099);
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see [19]. The survival rate pj from the jth infection year to the (j + 1)th year in
the estimate model (9) is determined on the basis of the function g(t). In 1985, the
reported number of the infected from the regression curve h5(t) is 97. The initial
infected number is chosen to be 1902, so that the reported number of 1985 is 97
under the report rate 5.1%. The expected survival time of the HIV infected with
the survival function g(t) is 9.23 year, and 1902 infected individuals in 1985 are
distributed into 12 groups by

I1(1985) =
1902
9.23

,

I2(1985) =
1902p1

9.23
,

Ij(1985) =
1902p1p2...pj−1

9.23
, j = 2, 3, ..., 12.

After substituting those parameters and the initial values into model (9), we ob-
serve that the reported number H(t) at year t contains only one unknown parameter
x. We thus minimize the following function

min φ(x) = min

2005∑
t=1986

(H(t)− h5(t))
2

to determine x and estimate the transmission rate, where h5(t) is the regression
curve of the reported number.

Needless to say, the function φ(x) is such a long polynomial that it is of no
interest or value to write it explicitly here. In practice, we use Maple to find the
expression of φ(x) and then determine the minimal point x0. The calculation gives
x = 0.0812.

Therefore, the transmission rates in the five stages are 0.868, 0.0812, 0.287, 0.257,
and 0.254, respectively. The basic reproduction number is R0 = 2.72, the average
infection period is 9.23 year, and the average number of transmissions by an infected
individual each year is 0.294. We have also carried out similar calculations by using
the curve h13(t) and h20(t), the resulted basic reproductive number is 3.38 and 4.01,
respectively.

The prediction from model (9) with the estimated transmission rates is shown in
the first two rows of Table 3, which clearly shows the fast growth of the reported and
the total HIV infection. More efforts must be made for the intervention and control.
In particular, if more education and effective control measures can be implemented
to reduce the HIV transmission rate by 50% within five years, as policy makers
hope, the HIV infection can be substantially reduced. The last two rows of Table 3
show the reported and total numbers of the HIV infection if the transmission rates
can be reduced 13% annually from 2006 to 2010.

The simulation results given in Table 3 are obtained under the assumption of
the same constant report rate for the HIV infected in each group: r = 0.051. More
realistically, the report rate of the HIV infected is an increasing function of the
infection time. Unfortunately, we do not have enough data and effective methods
to determine infection-age-dependent report rates.

As an example to illustrate the effect of age-infection dependent report rates on
the accuracy of the prediction, we use following increasing function

rj = 0.051 + 0.6
(

j − 1
12

)2

, for j = 1, 2, ...12.



DYNAMIC MODELING OF HIV IN CHINA 415

Table 3: Projected HIV cases in China during 2006-2010, using the cur-
rent transmission rates (the first two rows) or assuming the transmission
rates are reduced 13% annually (the last two rows).

year 2006 2007 2008 2009 2010
reported 31155 41582 55499 74073 98864
total 682440 910844 1215689 1622556 2165593
year 2006 2007 2008 2009 2010
reported 29897 36425 42403 47557 51696
total 657784 808494 952544 1083309 1195413

For our simulations, the total HIV infected in 1985 is chosen to be 516, so that the
reported number of HIV infected in 1985 is 97. The initial values of the infected in
12 groups are determined by

I1(1985) = 52, I2(1985) = 52p1, Ij(1985) = 52p1p2...pj−1, j = 3, · · · , 12.

Using the same procedure as before, we calculate the baseline transmission rate
x = 0.0917. The transmission rates in the five stages are 0.981, 0.0917, 0.325,
0.291, and 0.287, respectively. The basic reproduction number is R0 = 3.07, the
average infection period is 9.23, and the average number an infected individual can
transmit each year is 0.33. The prediction with this varying report rate is listed in
Table 4. The last two rows show the prediction with the transmission rate cut 50%
from 2006 to 2010.

Table 4: Projected HIV cases in China during 2006-2010, assuming the
report rate depends on the infection age and using the current trans-
mission rates (the first two rows) or assuming the transmission rates are
reduced 13% annually (the last two rows).

year 2006 2007 2008 2009 2010
reported 36464 51376 72386 101989 143699
total 558630 787090 1108979 1562508 2202512
year 2006 2007 2008 2009 2010
reported 35320 46296 58427 71246 84090
total 536003 688080 841538 988424 1122102

To conclude this section, we mention that intensive numerical simulations with
different report rates and initial values were carried out for the the transmission
rate varying in the interval [0.08, 0.095], and we observed that prediction of reported
HIV infections is more sensitive to the report rates, and that prediction of the total
number of HIV infections is more sensitive to the initial values.

4. Discussion. The characteristics of epidemics caused by HIV and other diseases
with long-term infections is highly sensitive to the transmission rates in different
stages of infection. The fact that the yearly reported number does not represent
the newly infected makes the mathematical modeling, the parameter estimation,
and simulations complicated and difficult. Here we develop a discrete epidemic
model with infection age structure to reflect the variation of transmission in different
infection periods. We obtain an explicit formula of the basic reproduction number
R0 in terms of model parameters, and show that this number characterizes the
long-term dynamic behavior of the HIV infection.
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Another contribution of this study is the estimation of transmission rates in the
different infection age group. In particular, we develop a simplification procedure
based on the epidemiological features of HIV in China and the available data from
the Chinese CDC’s laboratory to reduce the problem of estimating a large number
of parameters to the estimation of a baseline transmission rate and the functional
relation between the transmission rates and the viral load of an infected individual.
In our parameter identification, we also incorporate the behavior reduction factor for
those infected in the last two stages of their infection. We emphasize the importance
of introducing the reported rate to the model, derive the reported numbers of the
HIV-infected in every infection group, and compare these derived reported numbers
to the regression numbers of the real data to determine the transmission rates. We
then estimate the transmission rates and the basic reproduction number in two
cases: the constant reported rate and death rate, and the infection-age-dependent
reported rate and death rate. Simulations and analysis show that the total number
of projected infections from 2006 through 2010 is sensitive to the initial infections,
while the anticipated reported number is also sensitive to the dependence of the
report rate on the infection stages. It is hoped the techniques developed here also
apply to other infections with long infection periods.
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Appendix. We now give the proof of Theorem 2.1. The matrix of the linearized
system of (2) is

L =




1− µ −(1− µ) 0 0 ... 0 0 0
L2,1 L2,2 L2,3 L2,4 ... L2,12 L2,13 L2,14

0 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... 1 0 0

δ − µ µ̃1 µ̃2 µ̃3 ... µ̃11 µ̃12 1− δ




,

where

L2,1 =
1
N

∑12
j=1 β̃j Ĩj ,

L2,2 =
β̃1(S̃ − Ĩ1)−

∑12
j=1 β̃j Ĩj

N
,

L2,j =
(S̃ − Ĩ1)β̃j−1

N
, j = 3, 4, ..., 13,

L2,14 =
(S̃ − Ĩ1)
−N2

∑12
j=1 β̃j Ĩj .

At the disease-free equilibrium E0, L2,1 = 0, L2,j = β̃j−1 for j = 2, 3, ..., 13,
L2,14 = 0, and the the matrix of the linearized system of (2) is

L0 =




1− µ −(1− µ) 0 0 ... 0 0 0
0 β̃1 β̃2 β̃3 ... β̃11 β̃12 0
0 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... 1 0 0

δ − µ µ̃1 µ̃2 µ̃3 ... µ̃11 µ̃12 1− δ




.
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1− µ , 1− δ are two eigenvalues of the matrix L0, and the other 12 eigenvalues of
L0 are the same as eigenvalues of the matrix

L0
1 =




β̃1 β̃2 β̃3 ... β̃11 β̃12

1 0 0 ... 0 0
0 1 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0




.

L0
1 is a nonnegative and irreducible matrix. The classical theory of the Leslie pop-

ulation model implies that the dominant eigenvalue of L0
1 is positive and less than

1 when R0 < 1. Therefore, every eigenvalue of the matrix L0 has the magnitude
less than the unit when R0 < 1, and the disease free equilibrium is locally asymp-
totically stable. When R0 > 1 the matrix L0

1 has an eigenvalue greater than 1, and
the disease free equilibrium is unstable.

From model (2) we see that it is critical to understand the dynamics of the first
subgroup Ĩ1(t). Using the equations on Ĩj(t) in model (2), we have

Ĩ1(t + 1) =
S̃(t)− Ĩ1(t)

N(t)

12∑

j=1

β̃j Ĩ1(t− j + 1) ≤
12∑

j=1

β̃j Ĩ1(t− j + 1). (10)

Let Ĩmax = max{Ĩ1(1), Ĩ1(2), ..., Ĩ1(12)}. Under the condition R0 < 1, it fol-
lows from (10) that Ĩ1(t) ≤ R0Ĩmax for t = 13, 14, ..., 24, Ĩ1(t) ≤ R2

0Ĩmax for
t = 25, 26, ..., 36, and inductively

Ĩ1(t) ≤ Rm
0 Ĩmax, (11)

for t = 12m + 1, 12m + 2, ..., 12m + 12 with m = 3, 4, 5, .... Inequalities in (11)
implies that limt→∞ Ĩ1(t) = 0, which results in limt→∞ Ĩj(t) = 0, j = 2, 3, ..., 12.
Substituting those limits into the first and last equations of (2) leads to the limiting
system

S̃(t + 1) = Λ + (1− µ)S̃(t), N(t + 1) = (1− δ)N(t) + Λ + (δ − µ)S̃(t).

From those two limiting equations it is easy to obtain limt→∞ S̃(t) = Λ/µ and
limt→∞ Ñ(t) = Λ/µ. The global stability of the disease-free equilibrium when
R0 < 1 is thus proved.
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