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Asymptotic patterns of a structured population diffusing in a
two-dimensional stripI
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Abstract

In this paper, we derive a population model for the growth of a single species on a two-dimensional strip with Neumann and
Robin boundary conditions. We show that the dynamics of the mature population is governed by a reaction–diffusion equation with
delayed global interaction. Using the theory of asymptotic speed of spread and monotone traveling waves for monotone semiflows,
we obtain the spreading speed c∗, the non-existence of traveling waves with wave speed 0 < c < c∗, and the existence of monotone
traveling waves connecting the two equilibria for c ≥ c∗.
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1. Introduction

Aiello and Freedman [1] proposed the following system for a single species population with age stages:

w′(t) = αe−γ rw(t − r)− βw2(t), (1.1)

where α, β, γ and r are positive constants, w denotes the numbers of adult members of the population, and r is the
time taken from birth to maturity. The first term of (1.1) represents the rate of recruitment into the adult population,
and the second term represents the mortality rates of adult individuals. This system provides an alternative, and more
realistic model for a single species than the logistic equation w′ = w(1− w). As shown in [1], all solutions of (1.1),
other than the trivial solution, converge to the positive equilibrium solution w∗.
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By considering the diffusion in continuous space which is Fickian diffusion, (1.1) was generalized by AL-Omari
and Gourley [2] to the following form

∂w(x, t)

∂t
= Dm∆w(x, t)+

∫ r

0

∫
Ω

G(x, y, s) f (s)e−γ sb(w(y, t − s))dyds − d(w(x, t)) (1.2)

subject to a Neumman boundary value condition on ∂Ω , where Dm is a diffusion coefficient, d is the death function,
Ω is a bounded domain, f is a probability function satisfying

∫ r
0 f (s)ds = 1,G is a kernel yielded from solving the

heat equation, and satisfies
∫
Ω G(x, y, t)dx =

∫
Ω G(x, y, t)dy = 1. In [2], AL-Omari and Gourley showed also the

global attractivity of the positive steady state ŵ of (1.2).
In the present article, we shall consider a similar system as in [2], which represents the population growth of a

single species with age stages in a two-dimensional strip domain. In Section 2, a reaction–diffusion equation with
delayed global interaction is derived for the mature population:

∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw

+µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)b(w(t − r, zx , zy))dzx dzy, t > 0, (x, y) ∈ (0, L)× R,

Bw(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R,

(1.3)

where b(·) is the birth function, Bw(t, x, y) = p(x)w(t, x, y) + ∂
∂nw(t, x, y) is the boundary value condition

including the Neumann (p(0) = p(L) = 0) and Robin (p(0) ≥ 0, p(L) ≥ 0, [p(0)]2 + [p(L)]2 6= 0) boundary
value conditions respectively. Although we only consider the case when the death function d(w) = dmw, we change
Ω into a unbounded strip domain (0, L)×R which makes us able to discuss two very important asymptotic properties
(traveling waves and spread speed) of the population system (1.3) as t = ∞. The boundary value conditions here are
also more abundant than that in [2].

In population dynamics, two key elements to the developmental process seems to be the appearance of a traveling
wave and the spread speed (or, asymptotic speed of spread). A traveling wave is a special solution which travels
without any change in shape. Traveling wave solutions have been widely studied for reaction–diffusion equations [18,
22,28], integral and integro-differential equations [4–6], lattice systems [25,27]. The concept of spreading speed
was first introduced by Aronson and Weinberger [3] for reaction–diffusion equations, and also applied to integro-
differential equations, integral equations, lattice systems and systems of recursions. See [6,11,13,16,20,21,23,24,26]
and the references therein. The spreading speed is a threshold constant c∗ > 0 which gives an important description
of the long time behaviors of the population systems either for c ∈ (0, c∗) or c ∈ (c∗,∞). Taking (1.3) as an example,
the spreading speed c∗ is a number in the sense that limt→∞,|y|≥ct w(t, x, y) = 0 uniformly on x ∈ [0, L] if c > c∗

and the initial function is zero for y outside a bounded interval, and that limt→∞,|y|≤ct w(t, x, y) = w+(x) (w+(x) is
the positive equilibrium of (1.3)) uniformly on x ∈ [0, L] if c ∈ (0, c∗) and the initial function is not identical to zero
(see Theorem 3.2 in this article).

Recently, the theory of asymptotic speeds of spread and monotone traveling waves for monotone semiflows
(discrete or continuous time) has been developed by Liang and Zhao [12] in such a way that it can be applied to
various evolution equations admitting the comparison principle. For every population dynamical system admitting the
comparison principle, if the solution of the initial problem exists and is unique, then all solutions form a monotone
semiflow {Qt }

∞

t=0 which has an asymptotic speed of spread c∗ > 0 under some conditions (A1)–(A5). Furthermore an
estimates of c∗ can be given by the linearized approach. On the other hand, the existence of traveling waves above c∗

and their non-existence below c∗ can be obtained with an extra condition (A6), and thus c∗ is also the minimal wave
speed of the system.

In this paper, we shall apply the theory mentioned above to the population model (1.3) to obtain the asymptotic
speed and monotone traveling waves by imposing a sublinear condition to the birth function b. The application of
this theory seems very technical and tricky. It is organized as follows. In Section 2, we give a derivation of model
(1.3) and discuss the dynamical structure of the steady states. We show the existence and the global attractivity of the
positive steady state by using the theory of functional differential equations in abstract space. The main results are
presented in Section 3. We first investigate the existence of solutions for (1.3) and show that the system (1.3) satisfies
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the comparison principle, and thus all solutions of it yields a monotone semiflow {Qt }
∞

t=0. Furthermore, we show that
{Qt }

∞

t=0 satisfies the assumptions (A1)–(A6) in [12] provided (P1)–(P3) hold. Therefore, we can obtain the existence
of spreading speed c∗, the existence of the traveling waves and the minimal wave speed c∗ by using Theorems 2.17,
and 4.3–4.4 in [12] directly. The estimates of c∗ is also evaluated by using two linearized systems of (1.3) and the
method of asymptotic approximation. The last section is an Appendix for model derivation.

We mention here that the discussions in [2] include the global attractivity for the non-spatial problem of (1.2). As
for the non-spatial problem of (1.3): dw

dt = −dmw(t)+µb(w(t − r)), we refer the readers to Faria et al. [8], where as
an application of their results, the dynamics and the bifurcation are discussed.

We must emphasize that the relevant study for age-structured population, and in particular for the reduced non-
local reaction–diffusion equations with delayed interaction in a one-dimensional domain was reported in [19,21,25].
In comparison, our focus here is the asymptotic patterns of the age-structured population in a two-dimensional strip.
The traveling wave connects the trivial solution to a spatially varying equilibrium, giving rise to more complicated
spatially changing asymptotic patterns.

2. Model derivation and the structure of equilibria

We divide a population into juveniles and adults. We assume that age structure for mature adults is not important
(i.e., vital rates are independent of age). Let u(t, a, x, y) be the density of individuals with age a at a point (x, y) and
time t , r ≥ 0 be the length of juvenile period. Denote by w(t, x, y) the density of mature (or adult) individuals at
point (x, y) and time t . Then u is governed by

∂u

∂t
+
∂u

∂a
= D j

[
∂2u

∂x2 +
∂2u

∂y2

]
− d j (a)u, a ∈ [0, r ], t > 0, (x, y) ∈ Ω := (0, L)× R,

u(t, 0, x, y) = b(w(t, x, y)), t ≥ −r, (x, y) ∈ Ω ,
Bu(t, a, x, y) = 0, x = 0, L , a ∈ [0, r ], t ≥ 0, y ∈ R;

(2.1)

while w satisfies
∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw + u(t, r, x, y), t > 0, (x, y) ∈ Ω ,

Bw(t, x, y) = 0, x = 0, L , t ≥ 0, y ∈ R.
(2.2)

Here b(w) and dmw are the birth and mortality rates of mature individuals, respectively, d j (a) denotes the per
capita mortality rate of juveniles at age a, D j and Dm are the diffusion coefficients. In (2.1), Bu(t, a, x, y) =
p(x)u(t, a, x, y)+ ∂

∂n u(t, a, x, y). More precisely, letting h0 := −p(0), hL := p(L), we shall consider (2.1) subject
to one of the following Neumann or Robin boundary conditions:

(NBC) : h0 = hL = 0,
∂

∂x
u(t, a, 0, y) = 0,

∂

∂x
u(t, a, L , y) = 0 for all y ∈ R;

(RBC0) : h0 = 0, hL > 0, u(t, a, 0, y) = 0,
∂

∂x
u(t, a, L , y)+ hLu(t, a, L , y) = 0 for all y ∈ R;

(RBCL) : h0 > 0, hL = 0,
∂

∂x
u(t, a, 0, y)− h0u(t, a, 0, y) = 0, u(t, a, L , y) = 0 for all y ∈ R;

(RBC*) : h0 > 0, hL > 0,
∂

∂x
u(t, a, 0, y)− h0u(t, a, 0, y) = 0,

∂

∂x
u(t, a, L , y)+ hLu(t, a, L , y) = 0 for all y ∈ R.

We sometimes simply use (RBC) to include the three cases: (RBC0), (RBCL) and (RBC*). We shall use the same
boundary condition for Bw(t, x, y) = 0.

In (2.2), u(t, r, x, y) is the recruitment term, coinciding with those of maturation age r . As usual, we integrate
along characteristics to derive a closed system for (2.2) involving delayed non-local terms. Let v(τ, a, x, y) =
u(a + τ, a, x, y). It follows that
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∂

∂a
v(τ, a, x, y) =

[
∂u

∂t
(t, a, x, y)+

∂u

∂a
(t, a, x, y)

]
t=τ+a

= D j

[
∂2u

∂x2 (a + τ, a, x, y)+
∂2u

∂y2 (a + τ, a, x, y)

]
− d j (a)u(a + τ, a, x, y)

= D j

[
∂2v

∂x2 (τ, a, x, y)+
∂2v

∂y2 (τ, a, x, y)

]
− d j (a)v(τ, a, x, y),

v(τ, 0, x, y) = b(w(τ, x, y)).

Regarding τ as a parameter and integrating the last equation, we get

v(τ, a, x, y) =
∫
R

∫ L

0
Γ (D j a, x, zx , y, zy)F(a)b(w(τ, zx , zy))dzx dzy,

where

F(a) = exp
{
−

∫ a

0
d j (s)ds

}
, Γ (t, x, zx , y, zy) = Γ1(t, x, zx )Γ2(t, y, zy), Γ2(t, y, zy) =

1
√

4π t
e−

(y−zy )2

4t ,

(2.3)

and Γ1(t, x, zx ) is the Green function of the boundary value problem

∂W

∂t
−
∂2W

∂x2 = 0, t > 0, x ∈ (0, L),

BW (t, x) = 0, t ≥ 0, x = 0, L .

Let (µn,Φn(x)), n = 1, 2, . . . be the eigenvalues and eigenfunctions of − ∂2

∂x2 on (0, L) subject to the corresponding
boundary condition with µ1 < µ2 < · · · (see the Appendix for details). By using the method of separation variables,
we obtain that

Γ1(t, x, zx ) =

∞∑
n=1

1
Mn

e−µn tΦn(zx )Φn(x),

where Mn =
∫ L

0 Φ2
n(x)dx . Furthermore, let mn :=

∫ L
0 Φn(ξ)dξ , we have∫

R
Γ2(t, y, zy)dzy = 1, ∀t > 0, y ∈ R,∫ L

0
Γ1(t, x, zx )dzx =

∞∑
n=1

mn

Mn
e−µn tΦn(x) ≤ 1, t ≥ 0, x ∈ (0, L).

(2.4)

Since u(t, a, x, y) = v(t − a, a, x, y), it follows that

u(t, a, x, y) =
∫
R

∫ L

0
Γ (D j a, x, zx , y, zy)F(a)b(w(t − a, zx , zy))dzx dzy . (2.5)

Substituting (2.5) into (2.2), we obtain the delayed system with non-local term:

∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw

+µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)b(w(t − r, zx , zy))dzx dzy, t > 0, (x, y) ∈ Ω ,

Bw(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R,

(2.6)

where α = D jr, µ = F(r).
Let R+ = [0,∞). We now formulate assumptions for the birth function b, motivated by the biological reality:

(P1) b ∈ C1(R+,R+), b(0) = 0, b′(0) > 0 and b is strictly sublinear, i.e., b(γw) > γ b(w) for γ ∈ (0, 1) and
w ∈ (0,∞).
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(P2) The maximum of b can be achieved at ϑ > 0, b is non-decreasing on [0, ϑ] and there exists a number N ∈ (0, ϑ]
such that µb(w) < dmw for all w > N .

(P3) µb′(0)e−µ1α > dm + Dmµ1.

Remark 2.1. The birth functions b1(w) = pwe−awq
, b2(w) =

pw
1+awq and

b3(w) =

pw

(
1−

wq

K q

)
, 0 ≤ w ≤ K ,

0, w > K ,

with constants p > 0, q > 0, a > 0, K > 0 in the well-known Nicholson’s blowfly model satisfy the above
assumptions if the parameters are in appropriate ranges. Taking b2(w) as an example, we have b2(γw) =

γ pw
1+aγ qwq >

γ pw
1+awq = γ b2(w), and b2(w) is strictly sublinear. Assume that the solution of µp

dm
− 1 = awq is N (if µp

dm
> 1), then

µb2(w) < dmw for w > N . Furthermore, since b′2(w) =
p+ap(1−q)wq

(1+awq )2
, b′2(0) = p, we can easily choose p such that

(P2)–(P3) are satisfied.

Our focus here is the asymptotic patterns of (2.6), and for this purpose it is essential to first describe the structure
of equilibria. Note that w ≡ 0 is an equilibrium of (2.6). Other equilibria for (2.6) are independent of y, and thus are
equilibria of the following boundary value problem:

∂w

∂t
= Dm

∂2w

∂x2 − dmw + µ

∫ L

0
Γ1(α, x, zx )b(w(t − r, zx ))dzx , t > 0, x ∈ (0, L),

Bw(t, x) = 0 t ≥ 0, x = 0, L .

(2.7)

The linearized equation at zero solution for (2.7) is

∂w

∂t
= Dm

∂2w

∂x2 − dmw + µb′(0)
∫ L

0
Γ1(α, x, zx )w(t − r, zx )dzx , t > 0, x ∈ (0, L),

Bw(t, x) = 0 t ≥ 0, x = 0, L .

(2.8)

Substituting w(t, x) = eλtv(x) into (2.8), we obtain the following eigenvalue problem:

λv(x) = Dm
d2v

dx2 − dmv + µb′(0)e−λr
∫ L

0
Γ1(α, x, zx )v(zx )dzx , x ∈ (0, L),

Bv(x) = 0, x = 0, L .

(2.9)

In the following, we want to show that the principal eigenvalue λ0 exists and to find the precise conditions for λ0
to be positive. Substituting v(x) = Φn(x) with n = 1, 2, . . ., into (2.9), and noting that∫ L

0
Γ1(α, x, zx )Φn(zx )dzx = e−µnαΦn(x), (2.10)

then we obtain that the eigenvalues of (2.9) satisfy

λ = −Dmµn − dm + µb′(0)e−λr e−µnα, n = 1, 2, . . . . (2.11)

It is well-known (see [10,7]) that since b′(0) > 0, Eq. (2.11) with a fixed n has a real zero λn,1 and complex conjugate
pair of zeros λn,2, λ̄n,2, λn,3, λ̄n,3, . . . such that λn,1 > Re λn,2 > Re λn,3 > · · ·. Furthermore, we can easily show
that λ1,1 > λ2,1 > λ3,1 > · · ·. Therefore, λ0 = λ1,1 ∈ R is the principal eigenvalue of (2.9) which determines the
stability of zero solution for (2.8). Let fn(λ) := λ+ Dmµn + dm − µb′(0)e−λr e−µnα . Then we have

fn(−∞) = −∞ < fn(0) = Dmµn + dm − µb′(0)e−µnα < fn(∞) = ∞,

f ′n(λ) = 1+ rµb′(0)e−λr e−µnα > 0.

We conclude that λn,1 > 0 if and only if fn(0) < 0. Therefore,

λ0 > 0 if and only if (P3) holds. (2.12)
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Let X = C([0, L],R) be the Banach space of all bounded and continuous functions with the supremum norm ‖ · ‖.
Let X+ = {φ ∈ X : φ(x) ≥ 0, ∀x ∈ [0, L]} denote the positive cone in X, then intX+ is non-empty under the
boundary value condition (either (NBC) or (RBC), see Smith [17]). For any ζ ≥ 0, let [0, ζ ]X = {φ ∈ X : 0 ≤
φ(x) ≤ ζ,∀x ∈ [0, L]}. We know that X is a Banach lattice under the partial ordering induced by X+.

The heat equation

∂W (t, x)

∂t
= Dm

∂2W (t, x)

∂x2 , t > 0, x ∈ (0, L),

BW (t, x) = 0, t ≥ 0, x = 0, L ,
W (0, x) = ϕ(x), x ∈ (0, L),

has the solution

T (t)ϕ(x) =
∫ L

0
Γ1(Dm t, x, zx )ϕ(zx )dzx , t > 0, x ∈ [0, L], ϕ ∈ X,

and T (t) : X→ X is a C0-semigroup with T (t)X+ ⊂ X+ for all t ≥ 0 [15].
Let C = C([−r, 0],X) be the Banach space of continuous functions from [−r, 0] to X, C+ = {φ ∈ C : φ(s) ∈

X+,∀s ∈ [−r, 0]}. For any ζ ≥ 0, let [0, ζ ]C = {φ ∈ C : φ(s) ∈ [0, ζ ]X, ∀s ∈ [−r, 0]}. Then C+ is a closed cone of
C . As usual, we identify an element φ ∈ C with a function from [−r, 0]×[0, L] into R defined by φ(s, x) = φ(s)(x).
For any function w : [−r, a)→ X, a > 0, we define wt ∈ C with t ∈ [0, a) by wt (θ) = w(t + θ) for θ ∈ [−r, 0].

Let w(t)(x) = w(t, x). For any φ ∈ C+, define F : C+→ X by

F(φ)(x) = −dmφ(0, x)+ µ
∫ L

0
Γ1(α, x, zx )b(φ(−r, zx ))dzx , x ∈ [0, L]. (2.13)

Then F is Lipschitz continuous in any bounded subset of C+. Further, let A = ∂2

∂x2 , then we have the abstract setting
for the initial value problem of (2.7)

dw
dt
= Dm Aw + F(wt ), t > 0,

w0 = φ ∈ C+,
(2.14)

or equivalently

w(t) = T (t)φ(0)+
∫ t

0
T (t − s)F(ws)ds, t ≥ 0,

w0 = φ ∈ C+.
(2.15)

Definition 2.1. A supersolution (subsolution) of (2.7) is a function v : [−r, a)→ X with a > 0 satisfying

v(t) ≥ (≤)T (t)v(0)+
∫ t

0
T (t − s)F(vs)ds, t ∈ [0, a). (2.16)

If v is both a supersolution and subsolution on [0, a), then v is called a mild solution of (2.7).

Remark 2.2. Assume that there is a bounded and continuous v : [−r, a) × [0, L] → R with a > 0 such that v is in
C2 in x ∈ (0, L), C1 in t ∈ [−r, a) and satisfies

∂v(t, x)

∂t
≥ (≤)Dm

∂2v(t, x)

∂x2 − dmv(t, x)+ µ
∫ L

0
Γ1(α, x, y)b(v(t − r, y))dy,

t ∈ [−r, a), x ∈ (0, L),

Bv(t, x) ≥ (≤)0, t ∈ [−r, a), x = 0, L .

(2.17)

Then, by the fact T (t)X+ ⊂ X+ for all t ≥ 0, it follows that (2.16) holds, and hence v is a supersolution (subsolution)
of (2.7) on [0, a).
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Theorem 2.1. Assume that (P1)–(P3) hold. Then we have the following conclusions.

(i) For a given initial condition φ ∈ C+, there exists a unique non-negative solution w(t, x) = w(t, x;φ) of (2.7)
defined on [−r,∞). Furthermore, if φ ∈ [0, N ]C , then wt ∈ [0, N ]C , where wt (θ, x) = w(t + θ, x), (θ, x) ∈
[−r, 0] × [0, L].

(ii) (2.7) admits a unique equilibrium w+(x) in [0, N ]C , which is globally attractive.

Proof. For any M > ϑ and any φ ∈ [0,M]C , we have

φ(0, x)+ hF(φ, x) = φ(0, x)+ h

[
−dmφ(0, x)+ µ

∫ L

0
Γ1(α, x, y)b(φ(−r, y))dy

]
≥ φ(0, x)(1− hdm) ≥ 0,

when h > 0 is so small that 1− hdm > 0. On the other hand, for a given x ∈ [0, L] such that φ(0)(x) = φ(0, x) ≥ ϑ ,
we have

φ(0, x)+ hF(φ)(x) = φ(0)(x)+ h

[
−dmφ(0)+ µ

∫ L

0
Γ1(α, x, y)b(φ(−r, y))dy

]
≤ φ(0, x)+ h(−dmϑ + µb(ϑ))
≤ φ(0, x) ≤ M,

and for x ∈ [0, L] with φ(0, x) < ϑ , we have

φ(0, x)+ hF(φ)(x) = φ(0, x)+ h

[
−dmφ(0, x)+ µ

∫ L

0
Γ1(α, x, y)b(φ(−r, y))dy

]
≤ φ(0, x)+ hµb(ϑ) ≤ φ(0, x)+ M − ϑ ≤ M,

provided that h > 0 is so small that hµb(ϑ) ≤ M − ϑ . Therefore, we always have φ(0) + hF(φ) ∈ [0,M]X.
Consequently, for M > ϑ , we obtain

lim
h→0+

1
h

dist (φ(0)+ hF(φ); [0,M]X) = 0, ∀φ ∈ [0,M]C .

By Corollary 4 in [14] with K = [0,M]C , S(t, s) = T (Dm(t − s)), B(t, φ) = F(φ), we conclude that (2.7) admits a
unique mild solution w(t, φ) with wt (φ) ∈ [0,M]C for t ∈ [0,∞). Moreover, we have from Corollary 2.2.5 in [29]
that w(t, φ) is a classical solution of (2.7) for t > r , and [0,M]C is an invariant subset in C+ for (2.7).

For any M ∈ [N , ϑ], F is globally Lipschitz continuous in [0,M]C and F is quasi-monotone on [0,M]C in the
sense that

lim
h→0+

1
h

dist
(
[φ1(0)− φ2(0)] + h[F(φ1)− F(φ2)]; X+

)
= 0 (2.18)

for all φ1, φ2 ∈ [0,M]C with φ1 ≥ φ2. In fact, it follows from (P2) that

F(φ1)(x)− F(φ2)(x) = −dm(φ1(0, x)− φ2(0, x))+ µ
∫ L

0
Γ1(α, x, y)[b(φ1(−r, y))− b(φ2(−r, y))]dy

≥ −dm(φ1(0, x)− φ2(0, x)),

hence, for any h > 0 with 1 > hdm ,

φ1(0, x)− φ2(0, x)+ h[F(φ1)(x)− F(φ2)(x)] ≥ [1− hdm][φ1(0, x)− φ2(0, x)] ≥ 0,

from which (2.18) follows. We note that N and 0 are supersolution and subsolution of (2.7) in view of Definition 2.1.
Therefore, the existence and uniqueness of w ∈ [0, N ]C on [0,∞) follows from Corollary 5 in [14] with S(t, s) =
T (Dm(t − s)) for t ≥ s ≥ 0, v+(t) = M, v−(t) = 0, and B(t, φ) = F(φ). This also implies that [0, N ]C is an
invariant subset in C+ for (2.7). Summarizing the above discussions, we conclude that for any φ ∈ C+, (2.7) admits
a unique solution w(t, φ) which exists on [−r,∞).

(P3) implies that the principal eigenvalue λ0 > 0 for (2.9). The rest of the proof is similar to that in Theorem 3.2
of [30], and we omit it. �
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In what follows, we always assume that (P1)–(P3) are satisfied. Therefore, except for the trivial solution, w+(x) is
the only non-negative equilibrium of the model (2.6) in [0, N ]C .

3. Dynamics on a two-dimensional strip domain

Our main results will be presented in this section. Firstly, we investigate the existence and uniqueness of solutions,
and show a comparison theorem for (1.3) with initial conditions. Therefore, all solutions of (1.3) forms a group of
maps {Qt }

∞

t=0. In Section 3.2, we shall verify that {Qt }
∞

t=0 is a monotone and subhomogeneous semiflow. Furthermore,
we show that the assumptions (A1)–(A6) for the operator Q in [12] are satisfied with Q = Qt , thus by using Theorem
2.17 and Theorems 4.3–4.4 in [12], we obtain the asymptotic speed of spread and minimal wave speed c∗ for {Qt }

∞

t=0.
At the last part of Section 3.3, we give some calculation for an estimate of c∗ by a linearized approach.

3.1. Existence and comparison of solutions

We have from Section 2 that Γ (Dm t, x, ξ, y, ζ ) is the Green function of

∂ω

∂t
= Dm

[
∂2ω

∂x2 +
∂2ω

∂y2

]
, (x, y) ∈ Ω = (0, L)× R, t > 0,

Bω(t, x, y) = 0, x = 0, L , y ∈ R, t ≥ 0.
(3.1)

Thus the solution of (3.1) with the initial condition ω(0, x, y) = ψ(x, y) is

ω(t, x, y;ψ) =
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )ψ(ξ, ζ )dξdζ

=: [T̄ (t)ψ](x, y).
(3.2)

Therefore, using the linear semigroup theory of the heat equation, the solution of (2.6) with the initial value condition,
is given by w(θ, x, y) = φ(θ, x, y), θ ∈ [−r, 0] is

w(t, x, y;φ)

= exp{−dm t}[T̄ (t)φ(0, ·)](x, y)

+µ

∫ t

0

{
exp{−dms}T̄ (s) ·

{∫
R

∫ L

0
Γ (α, ·, zx , ·, zy)b(w(t − s − r, zx , zy))dzx dzy

}}
(x, y)ds

= e−dm t
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )φ(0, ξ, ζ )dξdζ + µ

∫ t

0
e−dm s

∫
R

∫ L

0
Γ (Dms, x, ξ, y, ζ )

×

{∫
R

∫ L

0
Γ (α, ξ, zx , ζ, zy)b(w(t − s − r, zx , zy))dzx dzy

}
dξdζds, t ≥ 0,

w(t, x, y;φ) = φ(t, x, y), t ∈ [−r, 0].

(3.3)

Assume that (2.6) has a non-negative equilibrium w+(x). Let Y = BC([0, L] × R,R) be the set of all bounded
and continuous functions from [0, L] × R to R. Let Y+ = {φ ∈ Y : φ(x, y) ≥ 0,∀(x, y) ∈ [0, L] × R}, and
[0, w+]Y = {φ ∈ Y+ : 0 ≤ φ(x, y) ≤ w+(x),∀(x, y) ∈ [0, L] × R}. Y+ is a closed cone of Y under the partial
ordering induced by Y+. We equip Y with a compact open topology. That is, φn

→ φ in Y if and only if that the
sequence of functions φn(x, y) converges to φ(x, y) uniformly for (x, y) in every compact set. Moreover, we define
a norm ‖φ‖Y by

‖φ‖Y =
∞∑

k=0

max
x∈[0,L],|y|≤k

|φ(x, y)|

2k .

It follows that (Y, ‖φ‖Y) is a normed space. Let d(·, ·) be the metric on Y induced by the norm ‖φ‖Y. Then Y is a
Banach lattice, and T̄ (t) : Y→ Y is a linear C0-semigroup with T̄ (t)Y+ ⊂ Y+ for t ≥ 0.
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Let CY = C([−r, 0],Y) be the set of continuous functions from [−r, 0] to Y and let C+Y = {φ ∈ CY : φ(s) ∈
Y+,∀s ∈ [−r, 0]}, and [0, w+]CY = {φ ∈ C+Y : φ(s, ·) ∈ [0, w

+
]Y, s ∈ [−r, 0]}. Then C+Y is a closed cone of

CY. For any given continuous function w : [−r, a) → Y, where a > 0, we define wt ∈ CY with t ∈ [0, a) by
wt (θ) = w(t + θ) for θ ∈ [−r, 0].

Let C be the set of all bounded and continuous functions from [−r, 0] × [0, L] ×R to R. For φ1, φ2 ∈ C, we write
φ1 ≥ φ2(φ1 � φ2) provided φ1(θ, x, y) ≥ φ2(θ, x, y)(φ1(θ, x, y) > φ2(θ, x, y)),∀(θ, x, y) ∈ [−r, 0] × [0, L] ×R,
and φ1 > φ2 provided φ1 ≥ φ2 but φ1 6= φ2. Define C̄ = C([−r, 0] × [0, L],R). Then every element in C̄ can be
regarded as a function in C. Specially, we let Cw+ := {u ∈ C : w+(x) ≥ u ≥ 0}. Since we identify an element φ ∈ CY
as a function from [−r, 0] × [0, L] × R into R defined by φ(s, x, y) = φ(s)(x, y), φ ∈ C implies φ ∈ CY and vice
versa.

For any φ ∈ C+Y , define F̄ : C+Y → Y by

F̄(φ)(x, y) = −dmφ(0, x, y)+ µ
∫
R

∫ L

0
Γ (α, x, zx , y, zy)b(φ(−r, zx , zy))dzx dzy . (3.4)

Then F̄ is Lipschitz continuous in every bounded subset of C+Y . Furthermore, the initial value problem for (2.6) can
be rewritten as

w(t) = T̄ (t)φ(0)+
∫ t

0
T̄ (t − s)F̄(ws)ds, t > 0,

w(t) = φ(t), t ∈ [−r, 0].
(3.5)

Now we use Y,CY, A = ∂2

∂x2+
∂2

∂y2 and T̄ , F̄ to replace X,CX, A = ∂2

∂x2 and T, F from (2.13) to (2.16) respectively,
and we define the notions of supersolution and subsolution of (2.6) similarly to Definition 2.1.

The following lemma shows that Cw+ is positively invariant for solutions of (2.6).

Lemma 3.1. Assume that (P1)–(P2) hold. If φ ∈ Cw+ , then the solution w(t, x, y;φ) of (2.6) exists uniquely and
satisfies wt (·;φ) ∈ Cw+ for all t > 0, where wt (·;φ) = w(t + θ, x, y;φ).

Proof. For a given φ ∈ Cw+ , define a set

S = {w ∈ C([−r,∞)× Ω̄ ,R+)|0 ≤ w(t, x, y) ≤ w+(x) for t ∈ R+, (x, y) ∈ Ω̄;
w(t, ·) = φ(t, ·) for t ∈ [−r, 0]},

and a map G on S as follows:

G[w](t, x, y) =



φ(t, x, y), t ∈ [−r, 0], (x, y) ∈ Ω̄ ,

e−dm t
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )φ(0, ξ, ζ )dξdζ + µ

∫ t

0
e−dm s

∫
R

∫ L

0
Γ (Dms, x, ξ, y, ζ )

×

{∫
R

∫ L

0
Γ (α, ξ, zx , ζ, zy)b(w(t − s − r, zx , zy))dzx dzy

}
dξdζds,

t > 0, (x, y) ∈ Ω̄ .

Then G[S] ⊂ S. In fact, as w+(x) satisfies

−Dm
d2w+

dx2 + dmw
+
= µ

∫ L

0
Γ1(α, x, zx )b(w

+(zx ))dzx , x ∈ (0, L),

Bw+(x) = 0, x = 0, L ,
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we have

0 ≤ G[w](t, x, y) ≤ e−dm t
∫ L

0
Γ1(Dm t, x, ξ)max

y∈R
{φ(0, ξ, y)}dξ

+µ

∫ t

0
e−dm s

∫ L

0
Γ1(Dms, x, ξ)

{∫ L

0
Γ1(α, ξ, zx )b(w

+(zx ))dzx

}
dξds

≤ e−dm t
∫ L

0
Γ1(Dm t, x, ξ)w+(ξ)dξ +

∫ t

0
e−dm s

∫ L

0
Γ1(Dms, x, ξ)

{
−Dm

d2w+(ξ)

dξ2 + dmw
+(ξ)

}
dξds

= e−dm t
∫ L

0
Γ1(Dm t, x, ξ)w+(ξ)dξ

+

∫ t

0
e−dm s

∫ L

0

{
−Dm

∂2Γ1(Dms, x, ξ)

∂ξ2 + dmΓ1(Dms, x, ξ)

}
w+(ξ)dξds

= e−dm t
∫ L

0
Γ1(Dm t, x, ξ)w+(ξ)dξ

+

∫ t

0

∫ L

0

{
−Dm

∂2
{e−dm sΓ1(Dms, x, ξ)}

∂ξ2 + dm{e−dm sΓ1(Dms, x, ξ)}

}
w+(ξ)dξds

= e−dm t
∫ L

0
Γ1(Dm t, x, ξ)w+(ξ)dξ +

∫ t

0

∫ L

0

{
−
∂{e−dm sΓ1(Dms, x, ξ)}

∂s

}
w+(ξ)dξds

= e−dm t
∫ L

0
Γ1(Dm t, x, ξ)w+(ξ)dξ +

∫ L

0
w+(ξ){Γ1(0, x, ξ)− Γ1(Dm t, x, ξ)e−dm t

}dξ = w+(x).

Thus, G[w] ∈ S.
Note that the fixed point of G is the solution of (2.6) with the initial condition w(t, x, y) = φ(t, x, y), t ∈

[−r, 0], (x, y) ∈ Ω̄ . Therefore, it suffices to show that G has a unique fixed point in S. For any λ > 0, define
the norm ‖w‖λ = supt∈[−r,∞),(x,y)∈Ω̄ |w(t, x, y)|e−λt . Then C([−r,∞) × Ω̄ ,R+) is a Banach space with the norm
‖w‖λ. For any given w1, w2 ∈ S, let v = w1 − w2. Then G[w1](t, ·) − G[w2](t, ·) = 0 for t ∈ [−r, r ]. Since b
satisfies the Lipschitz condition in [0, N ], we may assume that |b(w1)− b(w2)| ≤ γ0|w1 −w2| for w1, w2 in [0, N ].
If t > r , we have

|G[w1](t, x, y)− G[w2](t, x, y)|

= µ

∫ t

0
e−dm s

∫
R

∫ L

0
Γ (Dms, x, ξ, y, ζ )

{∫
R

∫ L

0
Γ (α, ξ, zx , ζ, zy)

× |b(w1(t − s − r, zx , zy))− b(w2(t − s − r, zx , zy))|dzx dzy

}
dξdζds

≤ µγ0

∫ t

0
e−dm s

∫
R

∫ L

0
Γ (Dms, x, ξ, y, ζ )

×

{∫
R

∫ L

0
Γ (α, ξ, zx , ζ, zy)|v(t − s − r, zx , zy)|dzx dzy

}
dξdζds,

which leads to

|G[w1](t, x, y)− G[w2](t, x, y)|e−λt

≤ µγ0

∫ t

0
e−(dm+λ)s−λr

∫
R

∫ L

0
Γ (Dms, x, ξ, y, ζ )

×

{∫
R

∫ L

0
Γ (α, ξ, zx , ζ, zy)|v(t − s − r, zx , zy)|e−λ(t−s−r)dzx dzy

}
dξdζds

≤ µγ0

∫ t

0
e−(dm+λ)s−λr

‖v‖λds

≤
µγ0

−(dm + λ)
e−(dm+λ)s |∞0 ‖v‖λ =

µγ0

dm + λ
|‖v‖λ.
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Choosing λ > 0 large enough, we have µγ0
dm+λ

< 1, and thus G is a contracting map and has a unique fixed point
in S. The conclusion of the lemma follows. �

We now establish the following comparison theorem.

Lemma 3.2. Assume that (P1)–(P2) hold. Let w̄(t, x, y), w(t, x, y) ∈ [0, N ], for t ∈ [−r,∞), (x, y) ∈ Ω , be the
supersolution and subsolution of (2.6), respectively. If w̄(θ, x, y) ≥ w(θ, x, y) for θ ∈ [−r, 0], then w̄(t, x, y) ≥
w(t, x, y) for all t ≥ 0. Moreover, if w̄(θ, x, y) ≥ w(θ, x, y) for θ ∈ [−r, 0] with w̄(0, x, y) 6≡ w(0, x, y), then there
holds

w̄(t, x, y) > w(t, x, y) for all (t, x, y) ∈ (0,∞)× Ω̄ .

Proof. Assume that w̄, w are a pair of supersolution and subsolution of (2.6) with w̄(t, x, y), w(t, x, y) ∈ [0, N ] for
t ∈ [−r,∞) and (x, y) ∈ Ω , respectively. We have from Corollary 5 in [14] and the fact w̄(θ, x, y) ≥ w(θ, x, y) for
(θ, x, y) ∈ [−r, 0] × Ω , that the solutions of (3.5) satisfy

0 ≤ w(t, ·;w0) ≤ w(t, ·; w̄0) ≤ N , t ≥ 0.

Again applying Corollary 5 in [14] with [v+(t, ·) = N , v−(t, ·) = w(t, ·)] and [v+(t, ·) = w̄(t, ·), v−(t, ·) = 0]
respectively, we obtain

w(t, ·) ≤ w(t, ·;w0) ≤ N , t ≥ 0,
0 ≤ w(t, ·; w̄0) ≤ w̄(t, ·), t ≥ 0.

Combining the above three inequalities, we have w(t, x, y) ≤ w̄(t, x, y) for all (t, x, y) ∈ (0,∞)× Ω̄ .
Let v = w̄ −w. Then we have already known that v(t, x, y) ≥ 0 for all (t, x, y) ∈ (0,∞)× Ω̄ . We have from the

definition of supersolution and subsolution, the monotonicity of b on [0, N ], and the fact T̄ Y+ ⊂ Y+ that

v(t) ≥ T̄ (t)v(0)+
∫ t

0
T̄ (t − s)[F̄(w̄s)− F̄(ws)]ds

≥ T̄ (t)v(0)+
∫ t

0
T̄ (t − s)[dm(w(s)− w̄(s))]ds

= T̄ (t)v(0)− dm

∫ t

0
T̄ (t − s)v(s)ds, t ≥ 0.

Therefore, we have

v(t) ≥ T̄ (t)v(0)− dm

∫ t

0
T̄ (t − s)v(s)ds, t ≥ 0.

Define z(t) = e−dm t T̄ (t)v(0), t ≥ 0. Then z(t) satisfies

z(t) = T̄ (t)z(0)− dm

∫ t

0
T̄ (t − s)z(s)ds, t ≥ 0.

By Proposition 3 in [14] with v−(t) = z(t), v+(t) = +∞, S(t, s) = T̄ (t − s), B(t, φ) = B−(t, φ) = −dmφ(0), we
get v(t) ≥ z(t) for t ≥ 0, that is

v(t) ≥ e−dm t T̄ (t)v(0) = e−dm t
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )v(0, ξ, ζ )dξdζ for t ≥ 0.

Thus it follows that v(t) > 0 for t > 0 if v(0, x, y) 6≡ 0 on Ω . �

3.2. Monotone and subhomogeneous semiflows

In the following, we equip C with the compact open topology, that is, φn
→ φ in C if and only if the sequence

of functions φn(θ, x, y) converges to φ(θ, x, y) uniformly for y in every compact set. Moreover, we define the norm
‖φ‖ by

‖φ‖ =

∞∑
k=0

max
(θ,x)∈[−r,0]×[0,L],|y|≤k

|φ(θ, x, y)|

2k ,
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and let ρ(φ,ψ) be the metric on C induced by the norm ‖φ‖. Note that Cw+ is a complete subset of C under this norm.
We also equip C̄ with the maximum norm ‖ · ‖ such that C̄ is a Banach space.

Recall that a family of operators {Λt }
∞

t=0 is said to be a semiflow on a metric space (X, ρ) with metric ρ provided
Λt has the following properties:

(i) Λ0(v) = v,∀v ∈ X .
(ii) Λt1 [Λt2 [v]] = Λt1+t2 [v],∀t1, t2 ≥ 0, v ∈ X .

(iii) Λ(t, v) := Λt (v) is continuous in (t, v) on [0,∞)× X .

It is easy to see that the property (iii) holds if Λ(·, v) is continuous on [0,+∞) for each v ∈ X , and Λ(t, ·) is uniformly
continuous for t in any bounded intervals in the sense that for any v0 ∈ X , bounded interval I and ε > 0, there exists
δ = δ(v0, I, ε) > 0 such that if ρ(v, v0) < δ, then ρ(Λt [v],Λt [v0]) < ε for all t ∈ I .

Define a group of maps Qt (φ) : C → C as follows:

[Qt (φ)](θ, x, y) = wt (θ, x, y;φ), ∀θ ∈ [−r, 0], (x, y) ∈ Ω̄ ,

where w(t, x, y;φ) is the solution of (2.6) with an initial function φ. Then we have the following.

Theorem 3.1. Assume that (P1)–(P2) hold. Then Qt is a monotone and subhomogeneous semiflow on Cw+ .

Proof. Clearly, Qt satisfies property (i) of semiflow. The semiflow property (ii) follows from (3.5) and the properties
of T̄ (t) (see [9,15]). Given φ ∈ Cw+ , it then follows from (3.5) and the semigroup theory that Qt (φ) = w(t + ·, ·;φ)
is continuous in t ∈ R+ with respect to the compact open topology.

Let w(t, x, y) and w̄(t, x, y) be solutions of (2.6) with the initial function φ(θ, ·) and φ̄(θ, ·) ∈ Cw+ respectively.
Then we have the following

Claim. For any ε > 0 and t0 > 0, there exist δ > 0 and M > 0 such that |w(t, x, z) − w̄(t, x, z)| < ε for
(t, x) ∈ [0, t0] × [0, L] whenever |φ(θ, x, y) − φ̄(θ, x, y)| < δ for θ ∈ [−r, 0], (x, y) ∈ [0, L] × [z − M, z + M]
with some z ∈ R.

By the spatial translation invariance of Eq. (2.6), we only need to verify the claim for the case when z = 0. Indeed,
let v = w − w̄. Then v(t, x, y) satisfies

∂v

∂t
= Dm

(
∂2v

∂x2 +
∂2v

∂y2

)
− dmv + µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)

×[b(w(t − r, zx , zy))− b(w̄(t − r, zx , zy))]dzx dzy, ∀t > 0, (x, y) ∈ Ω ,
Bv(t, x, y) = 0, ∀t ≥ 0, x = 0, L , y ∈ R,
v(θ, x, y) = φ(θ, x, y)− φ̄(θ, x, y), ∀θ ∈ [−r, 0], (x, y) ∈ Ω .

(3.6)

Let b̄ = b(N ). First we assume that φ ≥ φ̄, and thus v = w − w̄ ≥ 0. First note from (2.4) that∫
R

e−
(y−zy )2

4α dzy =

∫
R

e−
s2
4α ds =

√
4απ.

Choose M̄ > 0 such that∫
−M̄

−∞

e−
s2
4α ds +

∫
∞

M̄
e−

s2
4α ds <

ε

4µb̄
.

If r > 0, then for any ε > 0 and t0 = r , we can choose δ > 0 such that∫
−2M̄

−∞

e−
(y−zy )2

4α dzy +

∫
∞

2M̄
e−

(y−zy )2

4α dzy <
ε

4µb̄
for y ∈ [−M̄, M̄] uniformly

and

|b(w(t − r, x, y))− b(w̄(t − r, x, y))| <
ε

2µ
, for t ∈ [0, r ], (x, y) ∈ [0, L] × [−2M̄, 2M̄],
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when |φ(θ, x, y)− φ̄(θ, x, y)| < δ for θ ∈ [−r, 0] and (x, y) ∈ [0, L] × [−2M̄, 2M̄]. Therefore, we have from (2.3),
(2.4) and the above conclusion that

µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)[b(w(t − r, zx , zy))− b(w̄(t − r, zx , zy))]dzx dzy

= µ

∫
−2M̄

−∞

∫ L

0
Γ (α, x, zx , y, zy)[b(w(t − r, zx , zy))− b(w̄(t − r, zx , zy))]dzx dzy

+µ

∫
∞

2M̄

∫ L

0
Γ (α, x, zx , y, zy)[b(w(t − r, zx , zy))− b(w̄(t − r, zx , zy))]dzx dzy

+µ

∫ 2M̄

−2M̄

∫ L

0
Γ (α, x, zx , y, zy)[b(w(t − r, zx , zy))− b(w̄(t − r, zx , zy))]dzx dzy

≤ 2µb̄

[∫
−2M̄

−∞

∫ L

0
Γ (α, x, zx , y, zy)dzx dzy +

∫
∞

2M̄

∫ L

0
Γ (α, x, zx , y, zy)dzx dzy

]

+
ε

2

∫ 2M̄

−2M̄

∫ L

0
Γ (α, x, zx , y, zy)dzx dzy

≤
ε

2
+
ε

2
= ε for (x, y) ∈ [0, L] × [−M̄, M̄] uniformly,

which, together with (3.6), leads to

∂v

∂t
≤ Dm

(
∂2v

∂x2 +
∂2v

∂y2

)
− dmv + ε, t ∈ [0, r ], (x, y) ∈ (0, L)× (−M̄, M̄),

Bv(t, x, y) = 0, t ∈ [0, r ], x = 0, L , y ∈ R,
v(θ, x, y) = φ(θ, x, y)− φ̄(θ, x, y) ≥ 0, θ ∈ [−r, 0], (x, y) ∈ Ω .

(3.7)

It is easy to verify that the following function

u(t, x, y) = exp{−dm t}
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )v(0, ξ, ζ )dξdζ +

ε

dm
,

satisfies

∂u

∂t
= Dm

(
∂2u

∂x2 +
∂2u

∂y2

)
− dmu + ε, t ∈ [0, r ], (x, y) ∈ (0, L)× (−M̄, M̄),

Bu(t, x, y) ≥ 0, t ∈ [0, r ], x = 0, L , y ∈ R,
u(0, x, y) = v(0, x, y)+

ε

dm
, (x, y) ∈ Ω .

Therefore, we have from (3.7) and the comparison theorem of linear parabolic partial differential equations that the
solution of (3.6) satisfies

v(t, x, y)≤ exp{−dm t}
∫
R

∫ L

0
Γ (Dm t, x, ξ, y, ζ )v(0, ξ, ζ )dξdζ

+
ε

dm
for t ∈ [0, r ], (x, y) ∈ [0, L] × [−M̄, M̄],

and thus

v(t, x, 0) ≤ exp{−dm t}
∫
R

∫ L

0
Γ1(Dm t, x, ξ)Γ2(Dm t, 0, ζ )v(0, ξ, ζ )dξdζ +

ε

dm
.

Note that∫
R

Γ2(Dm t, 0, ζ )dζ =
1

√
4t Dmπ

∫
R

e−
(0−ζ )2
4Dm t dζ = 1.

Similar to the above discussion, we can choose M := 2M̄ > 0 and δ > 0 (take the larger M and the smaller δ if
necessary) such that v(t, x, 0) < 2ε

dm
for t ∈ [0, r ] and x ∈ [0, L], when |φ(θ, x, y)− φ̄(θ, x, y)| < δ for θ ∈ [−r, 0]

and (x, y) ∈ [0, L] × [−M,M].
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If r > 0, but φ 6≥ φ̄ on [−r, 0], we define

φ̂ = max{φ, φ̄}, φ̃ = min{φ, φ̄},

and assume that ŵ and w̃ are solutions of (2.6), respectively, with the initial values φ̂ and φ̃, then in view of Lemma 3.2,
we have w̃ ≤ w, w̄ ≤ ŵ. Note that

|w(t, x, y)− w̄(t, x, y)| ≤ ŵ(t, x, y)− w̃(t, x, y) for (t, x, y) ∈ R+ × [0, L] × R.

Thus, the claim is true for t0 = r .
For any t ∈ [mr, (m+1)r ], we have Qt = Qt−mr Qmr . Thus Qt (·) is uniformly continuous for t ∈ [mr, (m+1)r ],

which yields that Qt (·) is uniformly continuous for t on any bounded interval. Therefore it follows that Qt (φ) is
continuous in (t, φ) ∈ R+ × Cw+ if r > 0.

It is obvious that b is Lipschitz in [0, N ]. Suppose that the Lipschitz constant is γ0. If r = 0, then we have from
(3.6) that

∂v

∂t
≤ Dm

(
∂2v

∂x2 +
∂2v

∂y2

)
− dmv + µγ0

∫
R

∫ L

0
Γ (α, x, zx , y, zy)v(t, zx , zy)dzx dzy . (3.8)

Consider the linear boundary problem

∂u

∂t
= Dm

(
∂2u

∂x2 +
∂2u

∂y2

)
− dmu + µγ0

∫
R

∫ L

0
Γ (Dm t, x, zx , y, zy)u(t, zx , zy)dzx dzy, t ≥ 0, (x, y) ∈ Ω ,

Bu(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R,
u(0, x, y) = φ(0, x, y)− φ̄(0, x, y).

(3.9)

Without loss of generality, we can assume that φ − φ̄ ≥ 0, and then u ≥ 0. Applying the Fourier transformation
V (t, x, ω) =

∫
R u(t, x, y)e−iωydy to (3.9) and using the formula∫

R
e−q2 y2

e−iωydy =

√
π

q
e
−
ω2

4q2 ,

we obtain

∂V

∂t
= Dm

(
∂2V

∂x2 − ω
2V

)
− dm V + γ0µe−ω

2α

∫ L

0
Γ1(α, x, zx )V (t, zx , ω)dzx . (3.10)

Let V (t, x, ω) =
∑
∞

n=1 Ψn(t, ω)Φn(x), bn := µγ0e−µnα, an(ω) := bne−ω
2α , where µn and Φn(x) are defined in

Section 2, and Ψn(t, ω) are to be determined later. Now we have from (2.10) and (3.10) that

∂Ψn

∂t
Φn(x) = −[Dm(µn + ω

2)+ dm]Ψn(t, ω)Φn(x)+ µγ0e−ω
2αΨn(t, ω)

∫ L

0
Γ1(α, x, zx )Φn(zx )dzx

= −[Dm(µn + ω
2)+ dm]Ψn(t, ω)Φn(x)+ an(ω)Ψn(t, ω)Φn(x)

for t ≥ 0 and ω ∈ R.
In what follows, we only consider the (NBC) case, since the argument for other cases are similar. We have

Ψn(t, ω) = Ψn(0, ω) exp{−[Dm(µn + ω
2)+ dm − an(ω)]t},

V (t, x, ω) =
∞∑

n=1

Ψn(t, ω)Φn(x) =
∞∑

n=1

Ψn(0, ω)Φn(x) exp{−[Dm(µn + ω
2)+ dm − an(ω)]t},

V (0, x, ω) =
∞∑

n=1

Ψn(0, ω)Φn(x).

The last expression gives the Fourier series of V (0, x, ω). Note µ1 = 0 for (NBC). Thus we have

Ψ1(0, ω) =
1
L

∫ L

0
V (0, zx , ω)dzx =

1
L

∫ L

0

∫
R

e−iωzy u(0, zx , zy)dzydzx ,

Ψn(0, ω) =
2
L

∫ L

0
V (0, zx , ω) cos(

√
µnzx )dzx =

2
L

∫ L

0

∫
R

e−iωzy u(0, zx , zy) cos(
√
µnzx )dzydzx ,
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where n = 2, 3, . . .. Note that∫
R

eiω(y−zy)−ω
2 Dm t dω =

√
π

Dm t
e−

(y−zy )2

4Dm t .

Therefore, by using the inverse Fourier transformation, we know that the solution of (3.9) satisfies

u(t, x, y) =
1

2π

∫
R

eiyωV (t, x, ω)dω

=
1

2π

∫
R

eiyω
∞∑

n=1

Ψn(t, ω)Φn(x)dω

=
1

2π

∫
R

eiωy
∞∑

n=1

Ψn(0, ω)Φn(x) exp{−[Dm(µn + ω
2)+ dm − an(ω)]t}dω

=
2

2Lπ

∫
R

∞∑
n=2

{
eiωy

∫ L

0

∫
R

e−iωzy u(0, zx , zy) cos(
√
µnzx )dzydzx

}
×Φn(x) exp{−[Dm(µn + ω

2)+ dm − an(ω)]t}dω

+
1

2Lπ

∫
R

{
eiωy

∫ L

0

∫
R

e−iωzy u(0, zx , zy)dzydzx

}
exp{−[Dmω

2
+ dm − a1(ω)]t}dω

≤
1

πL
√

Dm tπ

∞∑
n=1

{∫
R

∫ L

0
e−

(y−zy )2

4Dm t u(0, zx , zy) cos(
√
µnzx )dzx dzy

}
Φn(x) exp{−(Dmµn + dm − bn)t}

for t ∈ [0, t0]. Let m(t) =
∑
∞

n=1 exp{−(Dmµn − bn)t}, mt0 = max0≤t≤t0 m(t). By using the comparison theorem,
we have from (3.8)–(3.9) that

v(t, x, 0) ≤
e−dm t mt0

πL
√

t Dmπ

∫
R

∫ L

0
e−

(0−zy )2

4Dm t v(0, zx , zy)dzx dzy, ∀(t, x) ∈ [0, t0] × [0, L].

As argued for the case r > 0, we conclude that the claim holds.
By the claim above, we see that Qt (φ) is continuous in φ uniformly for t in any bounded interval. It then follows

that Qt (φ) is continuous in (t, φ) ∈ R+ × Cw+ with respect to the compact open topology, i.e., Qt satisfies property
(iii) of semiflow above. Consequently, Qt is continuous semiflow on Cw+ .

Clearly, Lemma 3.2 implies that Qt is monotone on Cw+ . It remains to prove that Qt is subhomogeneous in Cw+ in
the sense that Qt [γφ] ≥ γ Qt [φ] for all γ ∈ [0, 1] and φ ∈ Cw+ . In fact, let w̄ = w(t, x, y; γφ),w = γw(t, x, y;φ).
We have w̄t , wt ∈ Cw+ and

∂w̄

∂t
= Dm

[
∂2w̄

∂x2 +
∂2w̄

∂y2

]
− dmw̄

+µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)b(w̄(t − r, zx , zy))dzx dzy, t > 0, (x, y) ∈ Ω ,

Bw̄(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R,
w̄(θ, x, y) = γφ(θ, x, y), t ∈ [−r, 0], (x, y) ∈ Ω ,

and

∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw + µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)γ b(w(t − r, zx , zy))dzx dzy

≤ Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw

+µ

∫
R

∫ L

0
Γ (α, x, zx , y, zy)b(w(t − r, zx , zy))dzx dzy, t > 0, (x, y) ∈ Ω ,

Bw(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R,
w(θ, x, y) = γφ(θ, x, y), t ∈ [−r, 0], (x, y) ∈ Ω .

Therefore, w̄ and w are supersolution and subsolution of (2.6), respectively, with w̄(θ, x, y) = w(θ, x, y) for
θ ∈ [−r, 0], (x, y) ∈ Ω . Again, Lemma 3.2 yields the subhomogeneous property of Qt in Cw+ . �
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3.3. Asymptotic speed of spread and traveling waves

Define the reflection operator R by R[φ](θ, x, y) = φ(θ, x,−y). Given z ∈ R, define the translation operator Tz
by Tz[φ](θ, x, y) = φ(θ, x, y − z).

To study the asymptotic speed of spread and traveling waves, we will apply the theorems in [12], which require
some hypotheses on a map. Let β ∈ C̄ with β � 0 and Q : Cβ → Cβ . The following hypotheses on Q are needed.

(A1) Q[R[φ]] = R[Q[φ]], Tz[Q[φ]] = Q[Tz[φ]] for z ∈ R;
(A2) Q : Cβ → Cβ is continuous with respect to the compact open topology;
(A3) One of the following two properties holds:

(a) {Q[φ](·, y) : φ ∈ Cβ , y ∈ R} is a precompact subset of C̄;
(b) There is a non-negative number ζ < r such that Q[φ](θ, x, y) = φ(θ + ζ, x, y) for −r ≤ θ ≤ −ζ , the

operator

S[φ](θ, x, y) =

{
φ(θ, x, y), −r ≤ θ < −ζ,
Q[φ](θ, x, y), −ζ ≤ θ ≤ 0,

(3.11)

is continuous on Cβ , and {S[φ](·, y) : φ ∈ Cβ , y ∈ R} is a precompact subset of C̄;
(A4) Q : Cβ → Cβ is monotone (order preserving) in the sense that Q[φ] ≥ Q[ψ] whenever φ ≥ ψ in Cβ ;
(A5) Q : C̄β → C̄β admits exactly two fixed points 0 and β, and for any positive number ε, there is α ∈ C̄β with

‖α‖ < ε such that Q[α] � α;
(A6) One of the following two properties holds:

(a) Q[Cβ ] is precompact in Cβ ;
(b) There is a non-negative number ζ < r such that Q[φ](θ, x, y) = φ(θ + ζ, x, y) for −r ≤ θ ≤ −ζ , the

operator S[φ](θ, x, y) defined by (3.11) is continuous on Cβ , and S[Cβ ] is precompact in Cβ .

Lemma 3.3. Assume that (P1)–(P3) hold. Then for each t > 0, the map Qt satisfies (A1)–(A6) with β = w+.

Proof. By (3.4), we know that Qt satisfies (A1). By Theorem 3.1, we obtain that Qt satisfies (A2) and (A4). We now
verify that Qt satisfies (A6). For t ≥ 0, define

L(t)[φ](θ, x, y) =

{
φ(t + θ, x, y)− φ(0, x, y), t + θ < 0, (x, y) ∈ Ω̄ ,
0, t + θ ≥ 0,−r ≤ θ ≤ 0, (x, y) ∈ Ω̄ .

Then L(t) = 0 for t ≥ r . Let S(t) = Qt − L(t), t ≥ 0. We have from the smoothness of the semigroup
generated from the heat equation that Qt satisfies (A6) (a) for t ≥ r . If t ∈ (0, r), let ζ = t , then we have
Qt [φ](θ, x, y) = φ(θ + t, x, y),∀θ ∈ [−r,−t], and

S(t)[φ](θ, x, y) =

{
φ(0, x, y), −r ≤ θ < −t,
Qt [φ](θ, x, y), −t ≤ θ ≤ 0.

We obtain from the above expression that S(t)[φ] is continuous on Cw+ , and we can show that S(t)[Cw+ ] is precompact
in Cw+ by using a method similar to Theorem 6.1 in [10]. Therefore, Qt satisfies (A6), and this yields (A3).

Let Q̂t express the restriction of Qt on C̄. Then Q̂t is the semiflow generated from the initial boundary value
problem:

∂w

∂t
= Dm

∂2w

∂x2 − dmw + µ

∫ L

0
Γ1(α, x, zx )b(w(t − r, zx ))dzx , t > 0, x ∈ (0, L),

Bw(t, x) = 0, t ≥ 0, x = 0, L ,
w(θ, x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, L].

(3.12)

As discussed in Section 2, we know that the boundary value problem in (3.12) has two equilibria w = 0 and
w = w+(x). Furthermore, similar to Lemma 3.2, we conclude that Q̂t is strongly monotone in [0, N ]Y = {φ ∈
Y+ : 0 ≤ φ ≤ N }. According to (P3), (2.12) and Theorem 2.1, w+(x) is globally attractive, and w = 0 is unstable.
By the Dancer–Hess connecting orbit lemma (see, e.g., [32, page 39]), the semiflow Q̂t admits a strongly monotone
entire orbit connecting 0 and w+(x). Thus assumption (A5) holds for each map Qt ,∀t > 0. �
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By Lemma 3.3 and [12, Theorems 2.11 and 2.15], it follows that the map Q1 has an asymptotic speed of spread
c∗ > 0 in the sense that:

∀c > c∗, lim
n→∞,|y|≥nc

Qn
1(φ)(θ, x, y) = 0 uniformly for θ ∈ [−r, 0], x ∈ [0, L],

∀0 < c < c∗, lim
n→∞,|y|≤nc

Qn
1(φ)(θ, x, y) = w+(x) uniformly for θ ∈ [−r, 0], x ∈ [0, L],

where

lim
n→∞,|y|≥nc

Qn
1(φ)(θ, x, y) = lim

n→∞
sup
|y|≥nc

Qn
1(φ)(θ, x, y) = lim

n→∞
inf
|y|≥nc

Qn
1(φ)(θ, x, y),

and limn→∞,|y|≤nc Qn
1(φ)(θ, x, y) is defined similarly (see [21]). The following result shows that c∗ is also the

asymptotic speed of spread for the solutions of (2.6).

Theorem 3.2. Assume that (P1)–(P3) hold. Let c∗ be the asymptotic speed of spread of Q1. Then the following
statements are valid:

(i) If φ ∈ Cw+ with 0 ≤ φ � w+, and φ(·, x, y) = 0 for x ∈ [0, L] and y outside a bounded interval, then for each
c > c∗, every solution of (2.6) satisfies limt→∞,|y|≥tc w(t, x, y;φ) = 0 uniformly for x ∈ [0, L];

(ii) If φ ∈ Cw+ with φ(0, ·) 6≡ 0, then for any 0 < c < c∗, every solution of (2.6) satisfies
limt→∞,|y|≤tc w(t, x, y;φ) = w+ uniformly for x ∈ [0, L].

Proof. Conclusion (i) is a direct consequence from the first part of Theorem 2.17 of [12]. To obtain the conclusion
(ii), we use our Lemma 3.2 combined with Theorem 2.17 of [12]. We know from Lemma 3.2 that for any φ ∈ Cw+
with φ(0, ·) 6≡ 0, we have w(t, x, y;φ) � 0 for t > 0, (x, y) ∈ Ω̄ . Since Qt is subhomogeneous, rσ in Theorem
2.17 of [12] can be chosen to be independent of σ > 0. Let rσ = τ . Fixing t0 > 0, we see that w(t0, x, y;φ) � 0
for (x, y) ∈ Ω̄ . So there exists a σ ∈ R, σ > 0 such that w(t0, x, y;φ) � σ for (x, y) ∈ [0, L] × [−τ, τ ]. Thus we
can take w(t0, x, y;φ) as a new initial data, and use the second part of Theorem 2.17 from [12] to obtain our second
conclusion. The proof is complete. �

A traveling wave solution of (2.6) is a solution with the form w(t, x, y) = ϕ(x, y − ct), where c > 0 is the wave
speed. Let s = y − ct , then the profile function of traveling wave is ϕ(x, s). We are concerned with the monotonic
traveling waves which connects the two equilibria w+ and 0. According to our Lemma 3.3 and [12, Theorem 4.3-4.4],
we have the following theorem about the existence of traveling waves for (2.6).

Theorem 3.3. Assume that (P1)–(P3) hold. Let c∗ be the asymptotic speed of spread of Q1. Then the following
statements are valid.

(i). For each c ≥ c∗, system (2.6) has a traveling wave ϕ(x, s) connecting w+(x) to 0 such that ϕ(x, s) is continuous
and non-increasing in s ∈ R;

(ii). For each c ∈ (0, c∗), system (2.6) has no traveling wave ϕ(x, s) connecting w+(x) to 0.

Remark 3.1. Theorems 3.2 and 3.3 thus describe the fact that asymptotic speed of spread coincides with the minimal
speed of monotone traveling waves.

In what follows, we need the condition b(w) ≤ b′(0)w for w ∈ [0, N ]. We also remark that assumption P1 yields
b(w) ≤ b′(0)w for w ∈ R.

In order to compute c∗, we consider the linearized boundary value problem

∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw + µb′(0)

∫
R

∫ L

0
Γ (α, x, zx , y, zy)w(t − r, zx , zy)dzx dzy,

t > 0, (x, y) ∈ Ω ,
Bw(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R.

(3.13)
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Assume that {Mt }
∞

0 is the linear solution map defined by (3.13). Let w(t, x, y) = η(t, x)e−νy . Note

µb′(0)
∫
R

∫ L

0
Γ (α, x, zx , y, zy)w(t − r, zx , zy)dzx dzy

= µb′(0)
∫
R

∫ L

0
Γ (α, x, zx , y, zy)e−νzyη(t − r, zx )dzx dzy

=
µb′(0)
√

4απ
e−νy

∫
R

∫ L

0
Γ1(α, x, zx )e−

(y−zy )2

4α +ν(y−zy)η(t − r, zx )dzx dzy

=
µb′(0)
√

4απ
e−νy+αν2

{∫
R

e−
(z−2αν)2

4α dz

}∫ L

0
Γ1(α, x, zx )η(t − r, zx )dzx

= µb′(0)e−νy+αν2
∫ L

0
Γ1(α, x, zx )η(t − r, zx )dzx .

(3.14)

We have from (3.13) and (3.14) that η(t, x) satisfies

∂η(t, x)

∂t
= Dm

∂2η(t, x)

∂x2 + Dmν
2η(t, x)− dmη(t, x)+ µb′(0)eαν

2
∫ L

0
Γ1(α, x, zx )η(t − r, zx )dzx ,

t > 0, x ∈ (0, L),
Bη(t, x) = 0, t ≥ 0, x = 0, L .

(3.15)

Substituting η(t, x) = eλt H(x), λ > 0, H(x) ≥ 0 into (3.15), we obtain

λH(x) = Dm
d2 H(x)

dx2 + (Dmν
2
− dm)H(x)+ g(ν)e−λr

∫ L

0
Γ1(α, x, zx )H(zx )dzx , x ∈ (0, L),

B H(x) = 0, x = 0, L ,
(3.16)

where g(ν) := µb′(0)eαν
2
.

By a similar argument to (2.9), we can show that (3.16) has a real principal eigenvalue λ(ν) with strictly positive
eigenfunction. Furthermore, we claim that λ(ν) > 0. In fact, define G(λ, ν) := λ + Dmµ1 − Dmν

2
+ dm −

g(ν)e−λr e−µ1α . We have from (P3) that

G(0, ν) = Dmµ1 − Dmν
2
+ dm − g(ν)e−µ1α < 0,

∂G(λ, ν)

∂λ
= 1+ rg(ν)e−λr e−µ1α > 1,

which yields the conclusion that G(λ, ν) = 0 has exact one positive root λ̄(ν) ∈ (0,∞) with positive eigenfunction
H(x) = Φ1(x) > 0. In view of the definition of principal eigenvalue, we know that λ(ν) ≥ λ̄(ν) > 0. Thus eλ(ν)t is
the principal eigenvalue of Bt

ν , where Bt
ν is the solution map associated with (3.15). Note that for any φ ∈ C̄w+ , we

have

Bt
ν[φ](θ, x) = Mt [φe−νy

](θ, x, 0) = eλ(ν)tφ(θ, x), t > 0.

Let t = 1. Then γ (ν) := exp{λ(ν)} is the principal eigenvalue of B1
ν =: Bν . Note λ(ν) > 0 for ν ≥ 0. This yields

γ (0) = eλ(0)t > 1 and (C7) in [12] is satisfied.
Define a function

Φ(ν) :=
1
ν

ln γ (ν) =
λ(ν)

ν
.

By [12, Lemma 3.8], we then have the following results.

Lemma 3.4. The following statements are valid:

(i) Φ(ν)→∞ as ν ↓ 0;
(ii) Φ(ν) is decreasing near 0;

(iii) Φ′(ν) changes sign at most once on (0,∞);
(iv) limν→∞ Φ(ν) exists, where the limits may be infinite.
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Theorem 3.4. Assume that (P1)–(P3) hold. Let c∗ be the asymptotic speed of spread of Q1. Then c∗ = infν>0 Φ(ν) =
infν>0

λ(ν)
ν

.

Proof. In order to use [12, Theorem 3.10], we need to prove that Φ(+∞) = +∞. Note that G(λ̄(ν), ν) ≡ 0, and

dλ̄
dν
= −

∂G(λ, ν)/∂ν

∂G(λ, ν)/∂λ
|λ=λ̄(ν) =

2Dmν + 2ανg(ν)e−λ̄r e−µ1α

1+ rg(ν)e−λ̄r e−µ1α
→∞ as ν →∞.

Thus we obtain

lim
ν→∞

Φ(ν) = lim
ν→∞

λ(ν)

ν
≥ lim
ν→∞

λ̄(ν)

ν
= lim
ν→∞

dλ̄
dν
= +∞.

Note that M1 and Bν satisfies (C1)–(C7) in [12] and the infimum of Φ(ν) is attained at some finite value ν∗. Since
Q1(φ) ≤ M1(φ) for φ ∈ Cw∗ , [12, Theorem 3.10] implies that c∗ ≤ infν>0 Φ(ν).

For any ε ∈ (0, 1), there is a δ > 0 such that for any φ ∈ Cδ , we have

b(w(t − r, x, y)) ≥ (1− ε)b′(0)w(t − r, x, y) for (x, y) ∈ Ω , t ∈ [0, 1].

Thus w(t, x, y) = w(t, x, y;φ) satisfies

∂w

∂t
≥ Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw + (1− ε)µb′(0)

∫
R

∫ L

0
Γ (α, x, zx , y, zy)w(t − r, zx , zy)dzx dzy

for t ∈ [0, 1], (x, y) ∈ Ω .
Consider the linear system

∂w

∂t
= Dm

[
∂2w

∂x2 +
∂2w

∂y2

]
− dmw + (1− ε)µb′(0)

∫
R

∫ L

0
Γ (α, x, zx , y, zy)w(t − r, zx , zy)dzx dzy,

t > 0, (x, y) ∈ Ω ,
Bw(t, x, y) = 0, t ≥ 0, x = 0, L , y ∈ R.

(3.17)

Let Mε
t , t ≥ 0, be the solution map associated with the above linear system. Then the comparison principle implies

that Mε
t (φ) ≤ Qt (φ), ∀φ ∈ Cδ, t ∈ [0, 1]. In particular, Mε

1 (φ) ≤ Q1(φ), ∀φ ∈ Cδ . We can carry out the analysis
for Mε

t similarly to that for Mt above, and it then follows from [12, Theorem 3.10] that infν>0 Φε(ν) ≤ c∗. Thus, we
have

inf
ν>0

Φε(ν) ≤ c∗ ≤ inf
ν>0

Φ(ν), ∀ε ∈ (0, 1).

Letting ε → 0, we obtain c∗ = infν>0 Φ(ν). �
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Appendix

Consider the following initial boundary value problem

Wt = Wxx , t > 0, 0 < x < L ,
W (0, x) = ϕ(x), 0 ≤ x ≤ L
Wx (t, 0)− h0W (t, 0) = 0, t > 0, h0 ≥ 0,
Wx (t, L)+ hL W (t, L) = 0, t > 0, hL ≥ 0.

(A.1)

We shall use the separation of variables to solve the above problem explicitly.
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Let W (t, x) = T (t)Φ(x) in the equation of (A.1), and we obtain

T ′(t)

T (t)
=

Φ′′(x)
Φ(x)

, t > 0, 0 < x < L .

Since the left-hand side of the above is a function of t , and the right-hand side is a function of x , there must be a
constant µ such that µ := − T ′(t)

T (t) = −
Φ′′(x)
Φ(x) . We obtain

T ′(t)+ µT (t) = 0, t > 0; (A.2){
Φ′′(x)+ µΦ(x) = 0, 0 < x < L ,
Φ′(0)− h0Φ(0) = 0, Φ′(L)+ hLΦ(L) = 0.

(A.3)

We have from [31] the following conclusions.

(i) All eigenvalues of (A.3) are non-negative real numbers.
(ii) For any given eigenvalue µ of (A.3), the corresponding eigenfunction is unique except for a constant factor.

(iii) There are countable eigenvalues of (A.3), say µn, n = 1, 2, . . ., satisfying

µ1 < µ2 < · · · < µn < · · · .

Furthermore, the eigenfunction Φn(x) corresponding to µn has exact n − 1 zero points in (0, L).

Assume that Φn(x) is the eigenfunction of (A.3) according to µn . Then we have
∫ L

0 Φn(x)Φm(x)dx = 0 for n 6= m.
We have from (A.2) that

Tn(t) = Ane−µn t , An is any constant, n = 1, 2, . . . .

Thus the Eq. (A.1) has a series of solutions

Wn(t, x) = Ane−µn tΦn(x), An is any constant, n = 1, 2, . . . .

Let Mn =
∫ L

0 Φ2
n(x)dx . We can show that

W (t, x) =
∞∑

n=1

Wn(t, x) =
∞∑

n=1

Ane−µn tΦn(x) =
∞∑

n=1

1
Mn

∫ L

0
e−µn tϕ(ξ)Φn(ξ)Φn(x)dξ (A.4)

is a classical solution of (A.1).
Now we have from the above discussion that the Green function of the BVP

Wt = Wxx , t > 0, 0 < x < L ,
Wx (t, 0)− h0W (t, 0) = 0, t > 0, h0 ≥ 0,
Wx (t, L)+ hL W (t, L) = 0, t > 0, hL ≥ 0,

(A.5)

is Γ1(t, x, zx ) =
∑
∞

n=1
1

Mn
e−µn tΦn(zx )Φn(x). Let mn :=

∫ L
0 Φn(ξ)dξ , we have∫ L

0
Γ1(t, x, zx )dzx =

∞∑
n=1

mn

Mn
e−µn tΦn(x) ≤ 1.
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