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Abstract

We consider a network of two coupled neurons with delayed feedback. We show that the connection
topology of the network plays a fundamental role in classifying the rich dynamics and bifurcation phenom-
ena. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension 1
bifurcations (including a fold bifurcation and a Hopf bifurcation) and codimension 2 bifurcations (including
fold–Hopf bifurcations and Hopf–Hopf bifurcations). We also give concrete formulae for the normal form
coefficients derived via the center manifold reduction that give detailed information about the bifurcation
and stability of various bifurcated solutions. In particular, we obtain stable or unstable equilibria, periodic
solutions, quasi-periodic solutions, and sphere-like surfaces of solutions. We also show how to evaluate crit-
ical normal form coefficients from the original system of delay-differential equations without computing
the corresponding center manifolds.
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1. Introduction

Recent years have witnessed a growing interest in the dynamics of interacting neurons with
delayed feedback, in particular, from bifurcation point of view, see [4,10,18,28–33,37–39,41]
and the references therein. Much of the existing bifurcation analysis has been carried out by
regarding the time delays as bifurcation parameters while the connection topology is fixed. On
the other hand, realistic modeling of networks inevitably requires careful design and variation of
the connection topology, and the fact that a wide range of different behaviors can be established
by varying the coupling strength and structure has important implications for neural networks,
since synaptic coupling can change through learning. The observation provides us the motivation
of this study to regard connection topology as the bifurcation parameter while time lags are fixed.
The work [17,19–21,32] certainly shows the feasibility of this approach.

We follow [24] and regard each individual neuron as a circuit with a linear resistor and a linear
capacitor. With some rescaling and reparametrization, the model for an individual neuron takes
the form

ẋ(t) = −x(t) + βf
(
x(t − τ)

)
, (1.1)

where ẋ = dx/dt and f ∈ C1(R;R), and delayed signal transmission as a self-feedback is due
to the finite switching speed of neurons. Equation (1.1) has been widely studied, and it has been
shown that by varying the parameters appropriately, this fairly simple model can reproduce two
fundamental states of a neuron, quiescence and periodic firing. Therefore, Eq. (1.1) can act as
an oscillator for appropriate choices of τ , β , and f . More interesting dynamics can occur only
when such oscillators are coupled via certain synaptic connections. For this purpose, we shall
consider the following system of two neurons,{

ẋ1(t) = −x1(t) + βf
(
x1(t − τ)

) + a12f
(
x2(t − τ1)

)
,

ẋ2(t) = −x2(t) + βf
(
x2(t − τ)

) + a21f
(
x1(t − τ2)

)
,

(1.2)

where x1(t) and x2(t) denote the activations of the two neurons, τi , i = 1,2, and τ denote the
synaptic transmission delays, a12 and a21 are the synaptic coupling weights, f : R → R is the ac-
tivation function. Throughout this paper, we always assume that τ1 + τ2 = 2τ > 0 and f : R → R

is a C1-smooth function with f (0) = 0. Without loss of generality, we also assume that τ1 � τ2
and f ′(0) = 1. We note that despite the low number of units, two-neuron networks with delay
often display the same dynamical behaviors as large networks and, can thus be used as prototypes
for us to understand the dynamics of large networks with delayed feedback (see, for example,
the monograph of Milton [29]).

In this paper, we will use β and η as the bifurcation parameters, where η = √|a12a21|. In
other words, μ = (β, η) will be varied simultaneously to generate a bifurcation curve Γ . The
equilibrium 0 is asymptotically stable if all the eigenvalues of the linearized system of (1.2)
at equilibrium 0, which are zeros of an analytic function of λ parametrized by μ, denoted by
detΔ(μ,λ), have strictly negative real parts. If there exists a zero λ of detΔ(μ,λ) with a posi-
tive real part, then the equilibrium 0 is unstable. By varying μ, we may encounter codimension 1
bifurcations, i.e., there exists a simple zero eigenvalue or a pair of purely imaginary eigenvalues
for some μ. Thus, either a fold bifurcation or Hopf bifurcation may occur in system (1.2). If we
further vary μ, then extra eigenvalues can approach the imaginary axis, thus changing the dimen-
sion of the center manifold. Thus, several codimension 2 bifurcations can occur in system (1.2),
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where curves of codimension 1 bifurcations intersect or meet tangentially. We develop a method
that evaluates critical normal form coefficients from the original system directly without com-
puting the corresponding center manifolds. This allows us to decouple the amplitude equations
and hence phase equations, and hence the phase plane analysis can be employed to explore the
bifurcation diagrams.

The rest of this paper is organized as follows: In Section 2, we discuss the associated character-
istic equation and obtain criteria ensuring the linear stability of the trivial solution. The existence,
direction, and stability of Hopf bifurcated periodic solutions are given in Section 3. Sections 4
and 5 are devoted to the Bautin bifurcation analysis and fold bifurcation analysis, respectively.
Sections 6 and 7 are devoted to codimension 2 bifurcations including fold–Hopf bifurcations and
Hopf–Hopf bifurcations. The appendices contain some of the details of the calculation of some
critical coefficients for the normal forms of fold–Hopf bifurcations and Hopf–Hopf bifurcations.

2. The characteristic equation

Let C = C([−τ1,0],R
2) denote the Banach space of all continuous mappings from [−τ1,0]

into R
2 equipped with the supremum norm ‖φ‖ = sup−τ1�θ�0 |φ(θ)| for φ ∈ C. As usual,

if σ ∈ R, A � 0 and u : [σ − τ1, σ + A] → R
2 is a continuous mapping, then ut ∈ C for

t ∈ [σ,σ + A] is defined by ut (θ) = u(t + θ) for −τ1 � θ � 0.
Linearizing system (1.2) at the trivial solution leads to the following linear system,{

ẋ1(t) = −x1(t) + βx1(t − τ) + a12x2(t − τ1),

ẋ2(t) = −x2(t) + a21x1(t − τ2) + βx2(t − τ).
(2.1)

Let η = √|a12a21| and μ = (β, η), for reasons explained below. The characteristic matrix for
system (2.1) is

Δ(μ,λ) =
[

λ + 1 − βe−λτ −a12e
−λτ1

−a21e
−λτ2 λ + 1 − βe−λτ

]
,

and hence the characteristic equation is

detΔ(μ,λ) = [
λ + 1 − βe−λτ

]2 − a12a21e
−2λτ = 0. (2.2)

Then detΔ(μ,λ) can be decomposed as

detΔ(μ,λ) = [
λ + 1 − (β + η)e−λτ

][
λ + 1 − (β − η)e−λτ

]
if a12a21 > 0,

or

detΔ(μ,λ) = [
λ + 1 − (β + iη)e−λτ

][
λ + 1 − (β − iη)e−λτ

]
if a12a21 < 0.

It is well known that the trivial solution of system (1.2) is locally asymptotically stable if all roots
λ of the characteristic equation (2.2) satisfy Re(λ) < 0.

Observe that the connection matrix of system (1.2) is[
β a12

a β

]
,

21
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whose eigenvalues are β ± η (if a12a21 > 0) or β ± iη (if a12a21 < 0). It follows that it is natural
to choose β and η as the bifurcation parameters. As a result, it is necessary to determine when
the infinitesimal generator A(μ) of the C0-semigroup generated by the linear system (2.1) has
eigenvalues lying on the imaginary axis. For this purpose, we first consider

Pz(λ) = λ + 1 − ze−λτ , (2.3)

where z ∈ C.
Define a curve Σ with the following parametric equations,

{
u(t) = cos τ t − t sin τ t,

v(t) = t cos τ t + sin τ t,
t ∈ R. (2.4)

It is easy to see that the curve Σ is symmetric about the u-axis. Let θ(t) = v(t)/u(t). Then
θ ′(t) = u−2(t)[1 + τ + τ t2] > 0 for all t ∈ R such that u(t) �= 0. This implies that, as t increases,
the corresponding point (u(t), v(t)) on the curve Σ moves anticlockwise around the origin.
Moreover, it follows from u2(t) + v2(t) = 1 + t2 that Σ+ = {(u(t), v(t)): t ∈ R

+} is simple,
i.e., it cannot intersect with itself. Let {tn}+∞

n=0 be the monotonic increasing sequence of the non-
negative zeros of v(t), and cn = u(tn) for all n ∈ N0 := {0,1,2, . . .}. Obviously, we have t0 = 0
and tn ∈ ((2n − 1)π/(2τ), nπ/τ) for all n ∈ N. Therefore, the curve Σ intersects with the u-axis
at (cn,0), n ∈ N0. It follows from the anticlockwise property of the curve Σ that (−1)ncn > 0
for all n ∈ N0. In addition, we have |cn| = √

1 + t2
n , which implies that cn = (−1)n

√
1 + t2

n for
n ∈ N0 and {|cn|}n∈N0 is an increasing sequence. In particular, c0 = 1 and c1 = sec τ t1 < −1.
Moreover, we claim that

(−1)nv′(tn) > 0 and (−1)nu′(tn) � 0 for n ∈ N0. (2.5)

Equality in the second formula of (2.5) holds if and only if n = 0. In fact, we can check that
v′(tn) �= 0 when v(tn) = 0. This, combined with the anticlockwise property of the curve Σ ,
gives the first inequality in (2.5). From u2(t) + v2(t) = 1 + t2, we have u′(t)u(t) + v′(t)v(t) = t

for t ∈ R
+. Particularly, u′(tn)cn = tn for all n ∈ N0. This, combined with (−1)ncn > 0 for

n ∈ N0, immediately implies the second inequality in (2.5). This proves the claim. Finally,
u2(t) + v2(t) = 1 + t2 � 1 also implies that the curve is not inside the unit circle and it has
only one intersection point (1,0) with the unit circle.

For each n ∈ N0, let Σn = {(u(t), v(t)): t ∈ [−tn+1,−tn] ∪ [tn, tn+1]}, which is a closed
curve with (0,0) inside. The curve Σ is schematically illustrated in Fig. 1. In the sequel, we will
identify Σ with {u(t) + iv(t): t ∈ R} ⊂ C. The following lemma will play an important role in
analyzing the distributions of the roots of (2.2).

Lemma 2.1. Consider Pz(λ) defined in (2.3) with z ∈ C. Then the following statements are true:

(i) Pz(λ) has a purely imaginary zero if and only if z ∈ Σ . Moreover, if z = u(θ) + iv(θ) then
the purely imaginary zero is iθ except that there is a pair of conjugate purely imaginary
zeros ±itn if z = cn for n ∈ N.

(ii) For each fixed z0 = u(θ0) + iv(θ0) ∈ Σ , there exists an open δ-neighborhood of z0 in the
complex plane, denoted by B(z0, δ), and an analytical function λ :B(z0, δ) → C such that
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Fig. 1. The parametric curve Σ .

λ(z0) = iθ0 and λ(z) is a zero of Pz(λ) for all z ∈ B(z0, δ). Moreover, along the vec-
tor ϑ(ξ) = (v′(θ0),−u′(θ0))M(ξ), the directional derivative of Re{λ(z)} at z0 is positive,
where ξ ∈ (−π/2,π/2) and

M(ξ) =
[

cos ξ sin ξ

− sin ξ cos ξ

]
.

(iii) Pz(λ) has only zeros with strictly negative real parts if and only if z is inside the curve Σ0;
exactly j ∈ N zeros with positive real parts if z is between Σj−1 and Σj . In particular, if
z ∈ Σ0, Pz(λ) has either a simple real zero 0 (if z = 1) or a simple purely imaginary zero (if
Im(z) �= 0), or a pair of simple purely imaginary zeros (if z = c1), and all other zeros have
strictly negative real parts.

Proof. (i) Pz(λ) has a purely imaginary zero, say λ = iθ , if and only if eiτθ (1 + iθ) = z, which
is equivalent to z ∈ Σ by separating the real and imaginary parts of eiτθ (1 + iθ).

(ii) Note that Pz0(iθ0) = 0 and iθ0 is a simple zero of Pz0(λ). The existence of δ and the
mapping λ follow from the Implicit Function Theorem. Moreover, λ(z) is analytic with respect
to z. Thus,

λ′(z) = ∂
Re

{
λ(z)

} + i
∂

Im
{
λ(z)

} = ∂
Im

{
λ(z)

} − i
∂

Re
{
λ(z)

}
,

∂a ∂a ∂b ∂b
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where a = Re(z) and b = Im(z). On the other hand, differentiating Pz(λ) = 0 with respect to z

and using Pz0(iθ0) = 0 and |u(θ0) + iv(θ0)| =
√

1 + θ2
0 , we have

λ′(z0) = ε1(θ0)
{
u(θ0)ε2(θ0) + θ0v(θ0) + i

[
θ0u(θ0) − v(θ0)ε2(θ0)

]}
,

where ε1(θ) = [(1 + τ)2 + (τθ)2]−1(1 + θ2)−1 and ε2(θ) = 1 + τ + τθ2. It follows that

∇ Re
{
λ(z0)

} =
(

∂

∂a
Re

{
λ(z0)

}
,

∂

∂b
Re

{
λ(z0)

})T

= ε1(θ0)
(
u(θ0)ε2(θ0) + θ0v(θ0), v(θ0)ε2(θ0) − θ0u(θ0)

)T
.

Thus, for a given ξ ∈ (−π/2,π/2), the directional derivative along the vector ϑ(ξ) at z0 is

d

dϑ(ξ)
Re

{
λ(z0)

} = ε3(θ0)
(
v′(θ0),−u′(θ0)

)
M(ξ)∇ Re

{
λ(z0)

}
= ε1(θ0)ε3(θ0)

(
ε2

2(θ0) + θ2
0

)
cos ξ > 0,

where ε3(θ0) = |ϑ(ξ)|−1 = 1/

√
(1 + τ)2 + τ 2θ2

0 .
(iii) Note that P0(λ) has exactly one zero −1, which obviously has a negative real part. Since

zeros of Pz(λ) depend continuously on z, there exists a region Ω0 containing z = 0 such that for
z ∈ Ω0, all zeros of Pz(λ) have negative real parts. Moreover, as z varies and passes through the
boundary ∂Ω0, only one (or two if z is real) zero point of Pz(λ) varies from a complex number
with a negative real part to a purely imaginary number and then to a complex number with a
positive real part. By (i), ∂Ω0 = Σ0. Therefore, Pz(λ) has only zeros with negative real parts if
z is inside the curve Σ0.

If z is a real number between Σj−1 and Σj , then one can easily show that Pz(λ) has exactly j

zeros with positive real parts (see, for example, the discussion in Chen and Wu [6]). This, com-
bined with (i) and the continuous dependence of zeros of Pz(λ) on z, completes the proof. �

For the sake of convenience, we introduce the following notations:

Ω±
j = {

(β, η): β ± η = cj , η > 0
}
, j ∈ N0,

Σ+
j = {

(β, η) ∈ Σj : η > 0
}
, j ∈ N0,

Σ+ =
⋃

j∈N0

Σ+
j ,

R
2+ = {

(β, η) ∈ R
2: η > 0

}
.

We call Ω±
j , j ∈ N0, critical lines.

Corollary 2.2. Suppose a12a21 > 0. Then the following statements hold.

(i) All zeros of detΔ(μ,λ) have negative real parts if and only if c1 < β − η < β + η < 1.
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(ii) If and only if μ = (β, η) ∈ Ω+
n ∪ Ω−

n for some n ∈ N, detΔ(μ,λ) has a pair of simple
conjugate purely imaginary zeros, which are ±itn.

(iii) If and only if μ = (β, η) ∈ Ω+
0 ∪ Ω−

0 , detΔ(μ,λ) has a simple zero λ = 0. Moreover, if
c1 < β − η < β + η = 1, then all zeros but λ = 0 of detΔ(μ,λ) have strictly negative real
parts.

(iv) For each fixed μ0 = (β0, η0) ∈ Ω+
n (or Ω−

n ), there exist an open δ-neighborhood B(μ0, δ)

of μ0 and a smooth function λ :B(μ0, δ) → C such that λ(μ0) = itn (or −itn) and
λ(μ) is a zero of detΔ(μ,λ) for all μ ∈ B(μ0, δ). Moreover, the directional derivative

d
dϑ(ξ)

Re{λ(μ0)} > 0, where ϑ(ξ) = (−1)n(cos ξ − sin ξ, cos ξ + sin ξ) (or (−1)n(cos ξ +
sin ξ,− cos ξ + sin ξ)) with ξ ∈ (−π/2,π/2).

Proof. By Lemma 2.1, it suffices to prove d
dϑ(ξ)

Re{λ(μ0)} > 0. If μ0 = (β0, η0) ∈ Ω+
n , then

∂

∂β
Re

{
λ(μ0)

} = ∂

∂η
Re

{
λ(μ0)

} = cnε1(tn)ε2(tn),

where the functions ε1(·) and ε2(·) are those defined in the proof of Lemma 2.1(ii). Hence,

d

dϑ(ξ)
Re

{
λ(μ0)

} =
√

2

2
ϑ(ξ)∇ Re

{
λ(μ0)

} = √
2|cn|ε1(tn)ε2(tn) cos ξ > 0,

where ϑ(ξ) = (−1)n(cos ξ − sin ξ, cos ξ + sin ξ) and ξ ∈ (−π
2 , π

2 ). Now, if μ0 = (β0, η0) ∈ Ω−
n ,

then

∂

∂β
Re

{
λ(μ0)

} = − ∂

∂η
Re

{
λ(μ0)

} = cnε1(tn)ε2(tn).

Hence,

d

dϑ(ξ)
Re

{
λ(μ0)

} =
√

2

2
ϑ(ξ)∇ Re

{
λ(μ0)

} = √
2|cn|ε1(tn)ε2(tn) cos ξ > 0,

where ϑ(ξ) = (−1)n(cos ξ + sin ξ,− cos ξ + sin ξ) and ξ ∈ (−π/2,π/2). �
Similarly, we can prove

Corollary 2.3. Suppose a12a21 < 0. Then the following statements are true.

(i) detΔ(μ,λ) has a purely imaginary zero if and only if μ = (β, η) ∈ Σ+. The purely imagi-
nary zero is given by iθ , where θ satisfies u(θ) = β and v(θ) = η.

(ii) All zeros of detΔ(μ,λ) have strictly negative real parts if and only if μ = (β, η) ∈ R
2+ is

inside the curve Σ0.
(iii) For each fixed μ0 = (β0, η0) ∈ Σ+, there exist an open δ-neighborhood B(μ0, δ) of μ0

and a smooth function λ : B(μ0, δ) → C such that λ(μ0) = iθ0 and λ(μ) is a zero of
detΔ(μ,λ) for all μ ∈ B(μ0, δ), where θ0 satisfies u(θ0) = β0 and v(θ0) = η0. Moreover,
the directional derivative d

dϑ(ξ)
Re{λ(μ0)} > 0, where ϑ(ξ) = (v′(θ0),−u′(θ0))M(ξ) with

ξ ∈ (−π/2,π/2).
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(iv) If μ = (β, η) ∈ Σ+
0 , then detΔ(μ,λ) has a simple purely imaginary zero and all other zeros

have strictly negative real parts.

Based on Lemmas 2.2 and 2.3, we have the following results about the stability of the trivial
solution of system (1.2).

Corollary 2.4. The trivial solution of system (1.2) is asymptotically stable if and only if one of
the following two conditions holds.

(i) a12a21 > 0 and c1 < β − η < β + η < 1.
(ii) a12a21 < 0 and (β, η) is inside the curve Σ0.

Note that there are stability switches at the trivial solution as μ = (β, η) ∈ R
2+ crosses the crit-

ical lines Ω±
j or the curves Σ+

j , j ∈ N0. Hence, a bifurcation from a stationary point to periodic
solutions occurs. In the following sections, we consider two kinds of bifurcations: codimension
one and codimension two bifurcations.

3. Hopf bifurcation

Hopf bifurcation occurs possibly at μ0 = (β0, η0) ∈ R
2+ where the infinitesimal generator

A(μ) has a pair of purely imaginary eigenvalues, which is true if either μ0 ∈ ⋃
j�1(Ω

+
j ∪ Ω−

j )

when a12a21 > 0, or μ0 ∈ Σ+ when a12a21 < 0.
In this section, we focus on the codimension one Hopf bifurcation, i.e., the infinitesimal gener-

ator A(μ) has only one pair of purely imaginary eigenvalues at μ0 = (β0, η0) ∈ R
2+. Therefore,

throughout this section, we always assume that either (i) there exists j ∈ N such that μ0 =
(β0, η0) ∈ Ω+

j \ {⋃s�0 Ω−
s } or Ω−

j \ {⋃s�0 Ω+
s } when a12a21 > 0, or (ii) μ0 = (β0, η0) ∈ Σ+

when a12a21 < 0. Then A(μ) has exactly a pair of simple conjugate purely imaginary eigen-
values ±iω0 at μ0 = (β0, η0), where ω0 = tj if a12a21 > 0, while ω0 satisfies u(ω0) = β0 and
v(ω0) = η0 if a12a21 < 0.

In order to study the Hopf bifurcation, we need the reduced system on the center manifold
associated with the pair of conjugate purely imaginary solutions ±iω0 of the characteristic equa-
tion (2.2). With the reduced system, we can determine bifurcation direction and the stability of
the bifurcated periodic solutions. For this purpose, we further assume that

(H1) f ∈ C3(R,R) and xf (x) �= 0 when x �= 0.

Let X(t) = (x1(t), x2(t))
T and Xt(θ) = X(t + θ) for θ ∈ [−τ1,0]. Let BC be the set of all

functions from [−τ,0] to R
2 which are uniformly continuous on [−τ,0) and may have a possible

jump discontinuity at 0. Thus, we can rewrite system (1.2) as

Ẋt = A(μ)Xt +R(μ)Xt , (3.1)

where the infinitesimal generator A(μ) : C1([−τ1,0],R
2) → BC is given by

A(μ)ϕ(θ) =
{ dϕ(θ)

dθ
, θ ∈ [−τ1,0),[ −ϕ1(0)+βϕ1(−τ)+a12ϕ2(−τ1)

]
, θ = 0,
−ϕ2(0)+βϕ2(−τ)+a21ϕ1(−τ2)
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and the nonlinear operator R(μ) : C → BC is

R(μ)ϕ = 1

2
f ′′(0)B(μ)(ϕ,ϕ) + 1

6
f ′′′(0)C(μ)(ϕ,ϕ,ϕ) + · · · ,

with B(μ) : C × C → BC and C(μ) : C × C × C → BC being defined as

B(μ)(ϕ,ψ)(θ) = 0, θ ∈ [−τ1,0),

B(μ)(ϕ,ψ)(0) =
[

βϕ1(−τ)ψ1(−τ) + a12ϕ2(−τ1)ψ2(−τ1)

a21ϕ1(−τ2)ψ1(−τ2) + βϕ2(−τ)ψ2(−τ)

]
,

C(μ)(ϕ,ψ,φ)(θ) = 0, θ ∈ [−τ1,0),

C(μ)(ϕ,ψ,φ)(0) =
[

βϕ1(−τ)ψ( − τ)φ1(−τ) + a12ϕ2(−τ1)ψ2(−τ1)φ2(−τ1)

a21ϕ1(−τ2)ψ1(−τ2)φ1(−τ2) + βϕ2(−τ)ψ2(−τ)φ2(−τ)

]
,

for ϕ,ψ,φ ∈ C. By the Riesz representation theorem, there exists a matrix Ξ(θ,μ) whose com-
ponents are functions of bounded variation in θ ∈ [−τ1,0] such that

(
A(μ)ϕ

)
(0) =

0∫
−τ1

dΞ(θ,μ)ϕ(θ) for ϕ ∈ C.

It is easy to check that

q(θ) = (1, d)T eiω0θ , θ ∈ [−τ1,0],

where d = (1 + iω0 −βe−iω0τ )eiω0τ1/a12, is an eigenvector of A(μ0) associated with the eigen-
value iω0. The adjoint operator A∗(μ0) is given by

(
A∗(μ0)ψ

)
(ξ) =

⎧⎨
⎩

− dψ
dξ

, if ξ ∈ (0, τ1],∫ 0
−τ1

ψ(−t) dΞ(t,μ0), if ξ = 0.

For convenience in computation, we shall allow functions with range in C2 instead of in R2.
Thus, the domains of A(μ0) and A∗(μ0) are C1([−τ1,0],C

2) and C1([0, τ1],C
2∗), respec-

tively, where C
2∗ is the space of 2-dimensional complex row vectors. It follows that −iω0 is an

eigenvalue of A∗(μ0) and

A∗(μ0)p(ξ) = −iω0p(ξ)

for some nonzero row-vector function p(ξ), ξ ∈ [0, τ1].
In order to construct coordinates to describe the center manifold Cμ near the origin, we use

the bilinear form (see Hale and Verduyn Lunel [22] and Diekmann et al. [7])

〈ψ,ϕ〉μ = ψ(0)ϕ(0) −
0∫ θ∫

ψ(ξ − θ) dΞ(θ,μ)ϕ(ξ) dξ
θ=−τ1 ξ=0
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for ψ ∈ C([0, τ1],C
2∗) and ϕ ∈ C([−τ1,0],C

2). In particular, let 〈·,·〉 = 〈·,·〉μ0 . Then, as usual,

〈
ψ,A(μ0)ϕ

〉 = 〈
A∗(μ0)ψ,ϕ

〉
for (ϕ,ψ) ∈ Dom

(
A(μ0)

) × Dom
(
A∗(μ0)

)
.

We normalize q and p so that

〈p,q〉 = 1 and 〈p,q〉 = 0.

By direct computation, we obtain that

p(ξ) = D(d,1)eiω0ξ , ξ ∈ [0, τ1],

where D = {2d[1+ τ(1+ iω0)]}−1. For each X ∈ Dom(A(μ)) with sufficiently small ‖μ−μ0‖,
we associate it with the pair (z,w), where z = 〈p,X〉 and w = X − zq − zq = X − 2 Re{zq}.
For a solution Xt of (3.1) at μ with sufficiently small ‖μ − μ0‖, we define z(t) = 〈p,Xt 〉 and
w(z, z,μ) = Xt − 2 Re{z(t)q}. In fact, z and z are local coordinates for Cμ in the directions of p

and p. Note that w is real if Xt is, since we shall deal with real solutions only. It is easy to see
that 〈p,w〉 = 0.

Now, for solutions Xt ∈ Cμ of (3.1), 〈p, Ẋt 〉 = 〈p,A(μ)Xt + R(μ)Xt 〉. Then, on the center
manifold Cμ with sufficiently small ‖μ − μ0‖, we have

ż(t) = iω0z + g(z, z,μ), (3.2)

where the smooth functions g(z, z,μ) = −iω0z + 〈p,A(μ)(w(z, z,μ) + 2 Re{zq})〉 +
〈p,R(μ)(w(z, z,μ) + 2 Re{zq})〉. Let

g(z, z,μ) =
∑

s+k�1

1

s!k!gsk(μ)zszk and w(z, z,μ) =
∑

s+k�1

1

s!k!wsk(μ)zszk.

Similar to the computation in [18], Eq. (3.2) can be transformed by an invertible parameter-
dependent change of complex coordinates into an equation with only cubic term:

ż = λ∗(μ)z + 1

2
e1(μ)z2z + O

(|z|4), (3.3)

where λ∗(μ) = iω0 + (μ − μ0)∇λ(μ0) + O(‖μ − μ0‖2), λ(μ) is a smooth function defined
implicitly in Corollaries 2.2(iv) and 2.3(iii) and satisfies λ(μ0) = iω0, and

e1(μ0) = i

ω0

[
g20(μ0)g11(μ0) − 2

∣∣g11(μ0)
∣∣2 − 1

3

∣∣g02(μ0)
∣∣2

]
+ g21(μ0).

Let z = reiθ . Then we can rewrite the normal form (3.3) as

ṙ = r(μ − μ0)∇ Re
{
λ(μ0)

} + 1

2
r3 Re

{
e1(μ0)

} + h.o.t.,

θ̇ = ω0 + (μ − μ0)∇ Im
{
λ(μ0)

} + 1

2
r2 Im

{
e1(μ0)

} + h.o.t. (3.4)
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Theorem 3.1. Assume that U � Re{e1(μ0)}∇ Re{λ(μ0)} �= 0. If ϑ is a row vector such that
ϑU �= 0 then system (3.2) has a branch of bifurcated periodic solutions for μ = μ0 + sϑ with s

satisfying sϑU < 0. The bifurcated periodic solutions are orbitally stable (respectively, unstable)
if Re{e1(μ0)} < 0 (respectively, > 0). Moreover, the periods of the bifurcated periodic solutions
are > 2π

ω0
(respectively, < 2π

ω0
) if Tϑ < 0 (respectively, > 0), where

Tϑ = Im
{
e1(μ0)

} − ϑ∇Im{λ(μ0)}
ϑ∇Re{λ(μ0)} Re

{
e1(μ0)

}
.

Proof. We consider the following truncated system of (3.4),

ṙ = rsϑ∇ Re
{
λ(μ0)

} + 1

2
r3 Re

{
e1(μ0)

}
,

θ̇ = ω0 + sϑ∇ Im
{
λ(μ0)

} + 1

2
r2 Im

{
e1(μ0)

}
, (3.5)

where sϑ = μ − μ0. System (3.5) exhibits the same local bifurcation in a small neighborhood of
the origin with sufficiently small s. We first consider the amplitude equation,

ṙ = rsϑ∇ Re
{
λ(μ0)

} + 1

2
r3 Re

{
e1(μ0)

}
, (3.6)

as it is decoupled from θ . Equation (3.6) always has the trivial equilibrium r0 = 0. Other equi-
libria r of (3.6) satisfy 2sϑ∇ Re{λ(μ0)} + r2 Re{e1(μ0)} = 0, which has exactly one positive
solution

r1 =
√

−2sϑ∇ Re{λ(μ0)}
Re{e1(μ0)} (3.7)

if and only if sϑU < 0. Obviously, r1 → 0 as s → 0 or equivalently μ → μ0. This implies
that system (3.2) has a branch of periodic solutions bifurcated from the origin and exists for
μ = μ0 + sϑ with sϑU < 0.

Note that the eigenvalue of the linearized operator of the right-hand side of (3.6) at r = r1
is r2

1 Re{e1(μ0)}. As the stability of the bifurcated periodic solutions is the same as that of r1, it
follows that the bifurcated periodic solutions are stable if Re{e1(μ0)} < 0 and unstable otherwise.

Finally, we consider the phase equation for the bifurcated periodic solution of (3.5) corre-
sponding to the equilibrium r1. Namely,

θ̇ = ω0 + sϑ∇ Im
{
λ(μ0)

} + 1

2
r2

1 Im
{
e1(μ0)

}
. (3.8)

It follows from (3.7) that

s = − r2
1 Re{e1(μ0)}

.

2ϑ∇ Re{λ(μ0)}
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Substituting the above expression of s into Eq. (3.8) yields

θ̇ = ω0 + 1

2
r2

1 Tϑ .

Then the remaining conclusion of the theorem follows immediately. �
Now apply Theorem 3.1 to Hopf bifurcation analysis for (1.2) under the following additional

assumption:

(H2) f ′′(0) = 0 and f ′′′(0) �= 0.

Then we have g20 = g11 = g02 = 0 and

e1(μ0) = g21(μ0) = f ′′′(0)
〈
p,C(q, q, q)

〉 = Nf ′′′(0)
[
ε2(ω0) + ω0i

]
,

where N = 1
2 (|d|2 + 1)[(1 + τ)2 + τ 2ω2

0]−1 and ε2(·) is the function defined in the proof of
Lemma 2.1(ii). It follows that

Re
{
e1(μ0)

} = Nε2(ω0)f
′′′(0) and Im

{
e1(μ0)

} = Nω0f
′′′(0).

Therefore, if a12a21 < 0 and μ0 = (β0, η0) ∈ Σ+, then it follows from the proof of Lemma 2.1(ii)
that

U = f ′′′(0)ε1(ω0)Nε2(ω0)
(
β0ε2(ω0) + ω0η0, η0ε2(ω0) − ω0β0

)T
. (3.9)

On the other hand, if a12a21 > 0 and μ0 = (β0, η0) ∈ Ω+
j \ [⋃s�0 Ω−

s ] or Ω−
j \ [⋃s�0 Ω+

s ] for
some j ∈ N, then ω0 = tj and it follows from the proof of Corollary 2.2(iv) that

U = f ′′′(0)ε1(tj )Nε2
2(tj )cj (1,±1)T . (3.10)

Corollary 3.2. Assume that a12a21 > 0 and that (H1) and (H2) hold. Then at μ = μ0 ∈ Ω+
j \

[⋃s�0 Ω−
s ] or Ω−

j \ [⋃s�0 Ω+
s ] for some j ∈ N, system (1.2) undergoes a Hopf bifurcation.

Namely, in every neighborhood of (0,μ0) there exists a branch of periodic solutions, which
approach the trivial solution as μ → μ0. Their period ω(μ) satisfies ω(μ) → 2π/tj as μ → μ0.
Furthermore, ω(μ) ∈ [2τ/j,4τ/(2j − 1)]. The direction of the Hopf bifurcation and stability of
the bifurcated periodic solutions are determined by sign{f ′′′(0)}. More precisely:

(i) If f ′′′(0) < 0 (respectively, > 0), then each branch of the bifurcated periodic solutions exists
for μ = μ0 +sϑ±(ξ) with s > 0 (respectively, < 0) and ξ ∈ (−π/2,π/2), and the bifurcated
periodic solutions have the same stability as the trivial solution had before the bifurcation
(respectively, is unstable), where ϑ±(ξ) = (−1)j (1,±1)M(ξ) and the matrix function M(ξ)

is defined in Lemma 2.1(ii).
(ii) If [tj − ε2(tj ) tan ξ ]f ′′′(0) < 0 (respectively, > 0) then the period of the bifurcated periodic

solutions is > 2π
tj

(respectively, < 2π
tj

).
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Proof. It follows from the expression of U in (3.10) that, for ξ ∈ (−π/2,π/2),

ϑ(ξ)U = 2f ′′′(0)ε1(tj )Nε2
2(tj )|cj | cos ξ.

Moreover, we have

Re
{
e1(μ0)

} = Nε2(tj )f
′′′(0) and Tϑ(ξ) = [

tj − ε2(tj ) tan ξ
]
Nf ′′′(0).

Now we can apply Theorem 3.1 directly to complete the proof. �
Corollary 3.3. Assume that a12a21 < 0 and that (H1) and (H2) hold. Then at μ0 = (β0, η0) ∈ Σ+,
system (1.2) undergoes a Hopf bifurcation. Namely, in every neighborhood of (0,μ0) there exists
a branch of periodic solutions, which approach the trivial solution as μ → μ0. Their period
ω(μ) satisfies ω(μ) → 2π/ω0 as μ → μ0, where ω0 ∈ R satisfies u(ω0) = β0 and v(ω0) = η0.
The direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are de-
termined by sign{f ′′′(0)}. More precisely:

(i) If f ′′′(0) < 0 (respectively, > 0), then each branch of the bifurcating periodic solutions
exists for μ = μ0 + sϑ±(ξ) with s > 0 (respectively, < 0) and ξ ∈ (−π/2,π/2), and the
bifurcating periodic solution has the same stability as the trivial solution had before the
bifurcation (respectively, is unstable), where ϑ(ξ) = (v′(θ0),−u′(θ0))M(ξ) and the matrix
function M(ξ) is defined in Lemma 2.1(ii).

(ii) If [ω0 −ε2(ω0) tan ξ ]f ′′′(0) < 0 (respectively, > 0) then the period of the bifurcated periodic
solutions are > 2π

ω0
(respectively, < 2π

ω0
).

Proof. It follows from the expression of U in (3.9) that

ϑ±(ξ)U = 2f ′′′(0)Nε2(ω0) cos ξ

for ξ ∈ (−π/2,π/2). Moreover,

Tϑ±(ξ) = [
ω0 − ε2(ω0) tan ξ

]
Nf ′′′(0).

Again, applying Theorem 3.1 immediately completes the proof. �
Remark 3.4. In Corollaries 3.2 and 3.3, the stability of the bifurcated periodic solutions also
depends on the nonexistence of unstable manifolds containing the trivial solutions. If there ex-
ists an unstable manifold containing the trivial solution, even though the periodic solution on
the center manifold in the neighborhood of the trivial solution is stable, the bifurcated periodic
solution is still unstable. Therefore, under assumptions of Corollary 3.2, only if f ′′′(0) < 0 and
μ0 = (β0, η0) ∈ Ω−

1 and c1 < β0 + η0 < 1, are the bifurcated periodic solutions stable. Under
assumptions of Corollary 3.3, only if f ′′′(0) < 0 and μ0 = (β0, η0) ∈ Σ+

0 , are the bifurcated
periodic solutions stable.
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4. Bautin bifurcation

Throughout this section, as in Section 3, we still assume that either there exists j ∈ N such that
μ0 = (β0, η0) ∈ Ω+

j \ {⋃s�0 Ω−
s } or Ω−

j \ {⋃s�0 Ω+
s } when a12a21 > 0 or μ0 = (β0, η0) ∈ Σ+

when a12a21 < 0. Similar to the analysis of Hopf bifurcation in Section 3, we can perform an
invertible parameter-dependent change of complex coordinates to obtain (3.3) for all sufficiently
small ‖μ − μ0‖. If Re{e1(μ0)} �= 0 then we have obtained some results about the codimen-
sion one Hopf bifurcation in Corollaries 3.2 and 3.3. However, if Re{e1(μ0)} = 0 then the
Bautin bifurcation occurs (see Kuznetsov [27]) and we have to further perform an invertible
parameter-dependent change of complex coordinates smoothly depending on μ to annihilate all
the fourth-order terms in (3.2) with the coefficient of the resonant cubic term e1(μ) untouched
while changing the coefficients of the fifth- and higher-order terms. Finally, we can remove all the
fifth-order terms except the resonant one shown in z|z|4 and obtain the following normal form,

ż = λ∗(μ)z + 1

2
e1(μ)z|z|2 + 1

12
e2(μ)z|z|4 + O

(|z|6), (4.1)

where λ∗(μ) and e1(μ) are the same as those in Section 3 satisfying Re{e1(μ0)} = 0. According
to the center manifold theory, if there exists an unstable manifold containing the trivial solution
of system (1.2), then all bifurcated periodic solutions are unstable. If there exists no unstable
manifold containing the trivial solution, then the bifurcated periodic solutions of system (1.2)
have the same stability as the corresponding periodic solutions of (4.1).

Let z = reiθ . Then we can rewrite the normal form (4.1) as

ṙ = α1r + α2r
3 + Lr5 + h.o.t.,

θ̇ = ω0 + (μ − μ0)∇ Im
{
λ(μ0)

} + 1

2
r2 Im

{
e1(μ0)

} + h.o.t., (4.2)

where α1(μ) = (μ − μ0)∇ Reλ(μ0), α2(μ) = 1
2 Re{e1(μ)} and L = 1

12 Re{e2(μ0)}. It is easy to
see that α = (α1, α2) satisfies α(μ0) = 0. Assume that the map μ �→ α is regular at μ0, i.e., the
Jacobian matrix ∂(α1, α2)/∂(β,η) is nonsingular at μ0. In other words, the map μ �→ α is locally
invertible in a sufficiently small neighborhood of μ0. Thus, we can use α instead of μ to give
a complete bifurcation diagram of (4.2), i.e., existence, multiplicity, and stability of bifurcated
periodic solutions. By a direct computation, we have

12L = Re{g32} + 1

ω0
Im

{
g20g31 − g11(4g31 + 3g22) − 1

3
g02(g40 + g13) − g30g12

}

+ 1

ω2
0

Re

{
g20

[
g11(3g12 − g30) + g02

(
g12 − 1

3
g30

)
+ g02g03

]}

+ 1

ω2
0

Re

{
g11

[
g02

(
5

3
g30 + 3g12

)
+ 1

3
g02g03 − 4g11g30

]}

+ 3

ω2
0

Im{g20g11} Im{g21} + 1

ω3
0

Im
{
g11g02

[
g2

20 − 3g20g11 − 4g2
11

]}

+ 1

ω3
Im{g11g20}

[
3 Re{g11g20} − 2|g02|2

]
,

0
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where all the gkl’s are evaluated at μ0. In deriving this formula, we have taken the equation
Re{e1(μ0)} = 0 (or, equivalently, ω0 Re{g21} = Im{g20g11}) into account.

The first equation in (4.2) is uncoupled from the second one. The equation for θ describes a
rotation around (0,0) with almost constant angular velocity θ̇ ≈ ω0 for ‖μ − μ0‖ small. Thus,
to understand the bifurcations in (4.2), it suffices to study the scalar equation for r , that is,

ṙ = α1r + α2r
3 + Lr5 + O

(
r6). (4.3)

Rescaling r = |L|−1/4√ρ and defining the parameters γ1 = α1 and γ2 = α2/
√|L|, we obtain the

following truncated equation for ρ without the O(ρ4) terms,

ρ̇ = 2ρ
(
γ1 + γ2ρ − ρ2) if L < 0 (4.4)

and

ρ̇ = 2ρ
(
γ1 + γ2ρ + ρ2) if L > 0. (4.5)

It follows that the trivial equilibrium ρ = 0 of (4.4) or (4.5) corresponds to the equilibrium z = 0
of (4.1), and the existence and stability of positive equilibria of (4.4) or (4.5) determine the
existence and stability of periodic solutions of (4.1) and hence of the original system (1.2). In the
remaining part of this section, we depict the complete bifurcation diagrams of (4.4) and (4.5) on
the (γ1, γ2)-parameter plane.

We first consider (4.4). Positive equilibria of (4.4) satisfy γ1 + γ2ρ − ρ2 = 0, which can have
zero, one, or two positive solutions. These solutions branch from the trivial one along the line l1
on the (γ1, γ2)-parameter plane and collide and disappear at the half-parabola l2 (see Fig. 2(a)),
where

l1 : γ1 = 0 and l2 : γ 2
2 + 4γ1 = 0 with γ2 > 0.

The detail is summarized below.

(1) In the region D11 = {(γ1, γ2): γ 2
2 + 4γ1 < 0 or γ1 < 0 and γ2 < 0}, (4.4) has no positive

equilibria. Thus, the equilibrium ρ = 0 is globally asymptotically stable, which means that
system (4.1) has no periodic solutions in a sufficiently small neighborhood of the stable
equilibrium z = 0.

Fig. 2. Bifurcation sets for (4.4) and (4.5).
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(2) In the region D12 = {(γ1, γ2): γ1 > 0}, (4.4) has only one positive equilibrium, which is
stable. This means that system (4.1) has exactly one stable periodic solution in a sufficiently
small neighborhood of the unstable equilibrium z = 0.

(3) In the region D13 = {(γ1, γ2): γ1 < 0, γ2 > 0, and γ 2
2 + 4γ1 > 0}, (4.4) has two positive

equilibria, one stable and the other unstable. This means that system (4.1) has one stable
periodic solution and one unstable periodic solution in a sufficiently small neighborhood of
the stable equilibrium z = 0.

Therefore, on the (γ1, γ2)-parameter plane, the line l1 and the half-parabola l2 are bifurcation
curves. The bifurcation scenario is explained below.

(i) On the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l1 from region D11 to
region D12, then (4.1) undergoes a Hopf bifurcation and a stable limit cycle bifurcates from
z = 0.

(ii) On the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l1 from region D12 to
region D13, then (4.1) undergoes a Hopf bifurcation and an unstable limit cycle bifurcates
from z = 0.

(iii) On the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l2 from region D13 to
region D11, then limit cycles of (4.1) undergo a fold bifurcation, i.e., the two limit cycles
collide and then disappear.

Now we come to the complete bifurcation diagram of (4.5). Positive equilibria of (4.5) satisfy
γ1 + γ2ρ + ρ2 = 0, which can have zero, one, or two positive solutions. These solutions branch
from the trivial one along the line l1 on the (γ1, γ2)-parameter plane and collide and disappear at
the half-parabola l3: γ 2

2 −4γ1 = 0 and γ2 < 0 (see Fig. 2(b)). We have the following conclusions.

(1) In the region D21 = {(γ1, γ2): γ 2
2 − 4γ1 < 0 or γ1 > 0 and γ2 > 0}, (4.5) has no positive

equilibrium. Thus, the equilibrium ρ = 0 is unstable. This means that system (4.1) has no
periodic solutions in a sufficiently small neighborhood of the unstable equilibrium z = 0.

(2) In the region D22 = {(γ1, γ2): γ1 < 0}, (4.5) has only one positive equilibrium, which is
unstable. This means that system (4.1) has exactly one unstable periodic solution in a suffi-
ciently small neighborhood of the stable equilibrium z = 0.

(3) In the region D23 = {(γ1, γ2): γ1 > 0, γ2 < 0, and γ 2
2 − 4γ1 > 0}, (4.4) has two positive

equilibria, one stable and the other unstable. This means that system (4.1) has one stable
periodic solution and one unstable periodic solution in a sufficiently small neighborhood of
the unstable equilibrium z = 0.

Therefore, on the parameter plane (γ1, γ2), the line l1 and the half-parabola l3 are bifurcation
curves. More specifically, we have

(i) on the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l1 from region D21 to
region D22, then (4.1) undergoes a Hopf bifurcation and an unstable limit cycle bifurcates
from z = 0;

(ii) on the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l1 from region D22 to
region D23, then (4.1) undergoes a Hopf bifurcation and a stable limit cycle bifurcates from
z = 0;
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(iii) on the (γ1, γ2)-parameter plane, if the point (γ1, γ2) crosses the line l3 from region D23 to
region D21, then limit cycles of (4.1) undergo a fold bifurcation, i.e., the two limit cycles
collide and then disappear.

5. Fold bifurcation

When a12a21 > 0, a fold bifurcation may occur at μ0 = (β0, η0) ∈ {Ω+
0 \ [⋃s�0 Ω−

s ]} ∪
{Ω−

0 \ [⋃s�0 Ω+
s ]}, where the infinitesimal generator A(μ0) may have a simple eigenvalue

zero. In this section, we only consider the first case because the second one can be discussed
analogously. Therefore, throughout this section, we always assume that

(H3) a12a21 > 0 and μ0 = (β0, η0) ∈ Ω+
0 \ [⋃s�0 Ω−

s ].

Under assumption (H3), β0 + η0 = 1 and β0 − η0 �= cn for all n ∈ N0. It follows from Corol-
lary 2.2 that A(μ) has a simple real eigenvalue λ(μ) for all sufficiently small ‖μ − μ0‖, where
λ is a smooth function of μ such that λ(μ0) = 0. Thus, A(μ) has a real eigenvector Q(μ) ∈ C,
smoothly dependent on the parameter and corresponding to the eigenvalues λ(μ):

A(μ)Q(μ) = λ(μ)Q(μ).

Moreover, λ(μ) is also an eigenvalue of the adjoint operator A∗(μ) with adjoint eigenvector
defined by

A∗(μ)P(μ) = λ(μ)P(μ).

We normalize the eigenvectors such that 〈P(μ),Q(μ)〉μ = 1 for all sufficiently small ‖μ − μ0‖.
For simplicity, in the sequel, let q = Q(μ0) and p = P(μ0). In fact, we can choose P(μ) and
Q(μ) such that q(θ) = (1, d0)

T for θ ∈ [−τ1,0], and p(ξ) = D0(d0,1) for ξ ∈ [0, τ1], where
d0 = η0/a12 and D0 = [2d0(1 + τ)]−1. Obviously, 〈p,q〉 = 1.

We associate each X ∈ Dom(A(μ)) with the pair (x,w), where x = 〈p,X〉 and w = X − xq .
For a solution Xt of (3.1) at μ, we define x(t) = 〈p,Xt 〉 and w(x,μ) = Xt − xq . It is easy to see
that 〈p,w〉 = 0. Now, for solutions Xt ∈ Cμ of (3.1), 〈p, Ẋt 〉 = 〈p,A(μ)Xt + R(μ)Xt 〉. Then,
on the center manifold Cμ, we have

ẋ(t) = g(x,μ), (5.1)

where the real smooth function g is given as follows,

g(x,μ) = 〈
p,A(μ)

(
w(x,μ) + xq

) +R(μ)
(
w(x,μ) + xq

)〉 = ∑
j�1

1

j !gj (μ)xj .

By a direct computation, we have

g1(μ) = (μ − μ0)∇λ(μ0) + O
(‖μ − μ0‖2),

g2(μ0) = f ′′(0)
〈
p,B(q, q)

〉 = 1

2
f ′′(0)(1 + τ)−1(1 + d0),

g3(μ0) = 〈
p,f ′′′(0)C(q, q, q) + 3f ′′(0)B(w2, q)

〉
.
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We still need to compute w2(θ) for θ ∈ [−τ1,0). Indeed, on the center manifold C0, at μ = μ0,
ẇ = Ẋt − ẋq = A(μ0)w +R(μ0)(xq0 + w) − g(x,μ0)q0. We rewrite this as

ẇ = A(μ0)w + h(x), (5.2)

where h(x)(θ) = −g(x,μ0)q(θ) for θ ∈ [−τ1,0), and h(x)(0) = R(μ0)(xq + w)(0) −
g(x,μ0)q(0). Therefore, h2(θ) = −g20q(θ) for θ ∈ [−τ1,0).

Let w(x,μ0) = 1
2w2x

2 + 1
6w3x

3 + · · · and h(x) = 1
2h2x

2 + 1
6h3x

3 + · · · . Comparing the
coefficients, we obtain (A(μ0)w2)(θ) = −h2(θ). Thus, for θ ∈ [−τ1,0),

ẇ2(θ) = g2(μ0)q(θ).

Solving for w2(θ), we obtain w2(θ) = g2(μ0)θq(θ) + E0, where E0 is a 2-dimensional vector
and it can be determined by the equation h(x)(0) = R(μ0)(xq +w)(0)−g(x,μ0)q(0). Namely,

h2(0) = −g2(μ0)q(0) + f ′′(0)
(
β + a12d

2
0 , a21 + βd2

0

)T
.

This, together with (5.2), implies that

−w1
2(0) + βw1

2(−τ) + a12w
2
2(−τ1) = g2(μ0) − f ′′(0)

(
β + a12d

2
0

)
,

−w2
2(0) + a21w

1
2(−τ2) + βw2

2(−τ) = g2(μ0)d0 − f ′′(0)
(
a21 + βd2

0

)
,

where w1
2 and w2

2 are the components of w2. Substituting w2(θ) = g2(μ0)θq(θ) + E0 into the
above equation and noticing that Δ(μ0,0)q0(0) = 0, we have

E0 = e0(1,−d0)
T and e0 =

[
(1 + d0)(τ2 − τ1)

8(1 + τ)
− (d0 − 1)(1 − 2η0)

4η0

]
f ′′(0).

If f ′′(0) �= 0, then the truncated form of (5.1) is

ẋ = (μ − μ0)∇λ(μ0)x + 1

2
g2(μ0)x

2, (5.3)

where ∇λ(μ) = ( ∂λ
∂β

, ∂λ
∂η

)T . It follows from the proof of Corollary 2.2 that

∇λ(μ0) = (1 + τ)−1(1,1)T .

Therefore, (5.3) is equivalent to the following equation,

(1 + τ)ẋ = (β + η − 1)x + 1

4
f ′′(0)(1 + d0)x

2. (5.4)

It is easy to see that (5.4) has two equilibria: x1 = 0 and x2 = 4(1 − β − η)/[(1 + d0)f
′′(0)].

Moreover, if β + η > 1 then x1 is unstable and x2 is stable. If β + η < 1, then x1 is stable and x2
is unstable. These two equilibria coalesce at μ = μ0. Thus, we obtain a transcritical bifurcation
of equilibria of system (1.2).
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Theorem 5.1. Under assumptions (H1) and (H3), if f ′′(0) �= 0, then system (1.2) undergoes a
transcritical bifurcation near μ0. Namely, besides the trivial solution, system (1.2) has a nonzero
equilibrium, which continuously depends on μ for all sufficiently small ‖μ−μ0‖. Moreover, this
nonzero equilibrium is stable if β +η > 1 and μ0 = (β0, η0) satisfies c1 < β0 −η0 < β0 +η0 = 1,
and unstable otherwise.

In what follows, we investigate the case where assumption (H2) holds. Then the truncated
form of (5.1) is

(1 + τ)ẋ = (β + η − 1)x + 1

6
g3(μ0)x

3, (5.5)

where g3(μ0) = 〈p0, f
′′′(0)C(q0, q0, q0)〉 = 1

2f ′′′(0)(1 + d2
0 )/(1 + τ). It is easy to see that (5.4)

has only one equilibrium x1 = 0 if (β + η − 1)f ′′′(0) > 0, and otherwise, three equilibria x1 = 0
and x2,3 = ±√

6(1 − β − η)/g3(μ0). Namely, there exists a pitchfork bifurcation at μ = μ0.
More precisely, if f ′′′(0) < 0, then, for β + η < 1, (5.5) has the stable equilibrium x1; for
β + η > 1, x1 is still an equilibrium, but two new equilibria x2 and x3 appear. In this process, x1

becomes unstable for β + η > 1 while the other two equilibria are stable. Therefore, we have the
following conclusion:

Theorem 5.2. Under assumptions (H1)–(H3), system (1.2) undergoes a pitchfork bifurcation
near μ0. More precisely, we have the following statements.

(i) If f ′′′(0) < 0, two nontrivial equilibria exist for μ with β + η > 1 (which are stable if c1 <

β0 − η0 < 1 and unstable otherwise) and only the trivial equilibrium continues existing for
β + η < 1. Moreover, the two nontrivial equilibria coalesce into zero as μ goes to μ0.

(ii) If f ′′′(0) > 0, two nontrivial equilibria exist for μ with β + η < 1 (which are unstable) and
only the trivial equilibrium continues existing for β + η > 1. Moreover, the two nontrivial
equilibria coalesce into zero as μ goes to μ0.

6. Fold–Hopf bifurcation

Assume that a12a21 > 0. If μ0 = (β0, η0) ∈ Ω+
0 ∩Ω−

n or μ0 = (β0, η0) ∈ Ω−
0 ∩Ω+

n for some
n ∈ N, then zero and ±itn are simple eigenvalues of the infinitesimal generator A(μ0). Thus,
a fold–Hopf bifurcation, which is a type of codimension two bifurcations, may occur. Again,
we only consider the first case because the second one can be discussed analogously. Therefore,
throughout this section, we always assume that

(H4) a12a21 > 0 and μ0 = (β0, η0) ∈ Ω+
0 ∩ Ω−

n for some n ∈ N.

It follows from Corollary 2.2 that A(μ) has simple eigenvalues λ0(μ), λ1(μ), and λ1(μ) for
all sufficiently small ‖μ − μ0‖, where the real function λ0(μ) and the complex function λ1(μ)

respectively satisfy

λ0(μ0) = 0 and λ1(μ0) = itn. (6.1)
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Thus, A(μ) has two eigenvectors Q0(μ) ∈ C and Q1(μ) ∈ C, smoothly dependent on the para-
meter and corresponding to the eigenvalues λ0(μ) and λ1(μ), respectively:

A(μ)Q0(μ) = λ0(μ)Q0(μ), A(μ)Q1(μ) = λ1(μ)Q1(μ).

Moreover, λ0(μ) and λ1(μ) are also eigenvalues of the adjoint operator A∗(μ) with adjoint
eigenvectors defined by

A∗(μ)P0(μ) = λ0(μ)P0(μ), A∗(μ)P1(μ) = λ1(μ)P1(μ).

We normalize the eigenvectors such that 〈Pj (μ),Qk(μ)〉μ = δjk for all sufficiently small
‖μ − μ0‖, where δjk is the Kronecker delta. For simplicity, in the sequel, let pj = Pj (μ0) and
qj = Qj (μ0), j = 0,1. In view of (6.1), we can choose

q0(θ) = (1, d0)
T , q1(θ) = (1, d1)

T eitnθ , θ ∈ [−τ1,0],

and

p0(ξ) = D0(d0,1), p1(ξ) = D1(d1,1)eitnξ , ξ ∈ [0, τ1],

where d0 = η0/a12 and d1 = −η0e
itn(τ1−τ)/a12, D0 = [2d0(1 + τ)]−1, and D1 = {2d1[1 +

τ(1 + itn)]}−1.
We again associate each X ∈ Dom(A(μ)) with the triple (x, z,w), where x = 〈p0,X〉,

z = 〈p1,X〉, and w = X − xq0 − zq1 − zq1 = X − xq0 − 2 Re{zq1}. For a solution Xt of (3.1)
at μ, we define x(t) = 〈p0,Xt 〉, z(t) = 〈p1,Xt 〉, and w(x, z, z,μ) = Xt − xq0 − 2 Re{z(t)q1}.
In fact, x, z, and z are local coordinates for Cμ in the directions of p0, p1 and p1. It is easy
to see that 〈p0,w〉 = 0 and 〈p1,w〉 = 0. Now, for solutions Xt ∈ Cμ of (3.1), 〈pj , Ẋt 〉 =
〈pj ,A(μ)Xt +R(μ)Xt 〉, j = 0,1. Then, on the center manifold Cμ, we have

ẋ(t) = g(x, z, z,μ),

ż(t) = itnz(t) + h(x, z, z,μ), (6.2)

where the smooth functions g and h are given as follows,

g(x, z, z,μ) = 〈
p0,A(μ)

(
w(x, z, z,μ) + xq0 + 2 Re{zq1}

)〉
+ 〈

p0,R(μ)
(
w(x, z, z,μ) + xq0 + 2 Re{zq1}

)〉
,

h(x, z, z,μ) = 〈
p1,A(μ)

(
w(x, z, z,μ) + xq0 + 2 Re{zq1}

)〉 − itnz

+ 〈
p1,R(μ)

(
w(x, z, z,μ) + xq0 + 2 Re{zq1}

)〉
.

According to the center manifold theory, if there exists an unstable manifold containing the
trivial solution of system (1.2), then all bifurcated equilibria, periodic solutions, and invariant
tori (quasi-periodic solutions) are unstable. If there exists no unstable manifold containing the
trivial solution, then the bifurcated equilibria, periodic solutions, or invariant tori of system (1.2)
have the same stability as the corresponding solution of (6.2) has.
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System (6.2) is a system of ordinary differential equations and has a fold–Hopf singularity
at μ = μ0. The unfoldings of this singularity have been studied by several authors [1,5,8,11,12,
14–16,27,34–36]. Here we present a different description of the singularity as well as the normal
form for the unfoldings of this singularity.

We leave the detailed derivations of normal form of (6.2) to Appendix A. Thus, under the
nondegeneracy conditions that g200(μ0)g011(μ0) �= 0, system (6.2) can be simplified to

ẏ = e10(μ)y + e11(μ)y2 + e12(μ)|ν|2 + O
(∥∥(y, ν, ν)

∥∥4)
,

ν̇ = itnν + e20(μ)ν + e21(μ)yν + e22(μ)y2ν + O
(∥∥(y, ν, ν)

∥∥4)
, (6.3)

where e1j (μ) (j = 0,1,2) and e22(μ) are smooth real-valued functions, while e2j (j = 0,1) are
smooth complex-valued functions.

Let ν = reiξ . Then the above equations can be rewritten as

ẏ = (μ − μ0)∇λ0(μ0)y + e11(μ0)y
2 + e12(μ0)r

2 + O
(∣∣(y, r)

∣∣4)
,

ṙ = (μ − μ0)∇ Re
{
λ1(μ0)

}
r + a1yr + a2y

2r + O
(∣∣(y, r)

∣∣4)
,

ξ̇ = tn + (μ − μ0)∇ Im
{
λ1(μ0)

} + b1y + O
(∣∣(y, r)

∣∣3)
, (6.4)

where a1 + ib1 = e21(μ0) and a2 = e22(μ0). Let α1(μ) = (μ − μ0)∇λ0(μ0) and α2(μ) = (μ −
μ0)∇ Re{λ1(μ0)}, i.e.,

α1 = (β + η − 1)/(1 + τ), α2 = (β − η − cn)cnε1(tn)ε2(tn).

It follows from the proof of Corollary 2.2 that∣∣∣∣∂(α1, α2)

∂(β, η)

∣∣∣∣
μ=μ0

= −2(1 + τ)−1cnε1(tn)ε2(tn) �= 0.

This means that the mapping μ → (α1, α2) is regular at μ0. Thus, system (6.4) can be rewritten
as

ẏ = α1y + e11(μ0)y
2 + e12(μ0)r

2 + O
(∣∣(y, r)

∣∣4)
,

ṙ = α2r + a1yr + a2y
2r + O

(∣∣(y, r)
∣∣4)

,

ξ̇ = tn + (μ − μ0)∇ Im
{
λ(μ0)

} + b1y + O
(∣∣(y, r)

∣∣3)
. (6.5)

The first two equations of (6.5) are decoupled from the third one. The equation for ξ describes
a rotation around the y-axis with almost constant angular velocity ξ̇ ≈ tn for y and ‖μ − μ0‖
small. Thus, to understand the bifurcations in (6.5), we only need to study the planar system for
(y, r) with r � 0:

ẏ = α1y + e11(μ0)y
2 + e12(μ0)r

2 + O
(∣∣(y, r)

∣∣4)
,

ṙ = α2r + a1yr + a2y
2r + O

(∣∣(y, r)
∣∣4)

. (6.6)

This system is often called an amplitude system.
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If considered in the whole (y, r)-plane, system (6.6) is Z2-symmetric, since the reflection
r → −r leaves it invariant. Using the following linear scalings of the variables and time,

y = e11(μ0)

a2
y∗, r =

√
|e3

11(μ0)|ρ
|e12(μ0)|a2

2

, t = a2

e2
11(μ0)

t∗, (6.7)

and then dropping ∗, we obtain the following truncated system of (6.6) without the O(|(y,ρ2)|4)
terms,

ẏ = γ1y + y2 + ερ,

ρ̇ = 2ρ
(
γ2 + γ3y + y2), (6.8)

where ε = sign{e12(μ0)}, γ1 = a2α1e
−2
11 (μ0), γ2 = a2α2e

−2
11 (μ0), and γ3 = a1e

−1
11 (μ0). Since

e11(μ0)e12(μ0) �= 0 due to g200(μ0)g011(μ0) �= 0, we have only to assume that a2 = e22(μ0) �= 0
for the rescaling (6.7) to be valid. Notice that t∗ has the same direction as t only if a2 > 0. We
should keep this in mind when interpreting stability results. Using the Implicit Function The-
orem, we can show that, for sufficient small ‖(γ1, γ2)‖, system (6.8) exhibits the same local
bifurcations in a small neighborhood of the origin in the phase plane as (6.6) does with suffi-
ciently small ‖μ − μ0‖. In fact, an equilibrium (ỹ,0) of (6.8) corresponds to an equilibrium of
(6.3); an equilibrium (ỹ, ρ̃) of (6.8) with ρ̃ > 0 corresponds to a limit cycle of (6.3); a limit cycle
of (6.8) corresponds to an invariant torus of (6.3); a heteroclinic orbit corresponds to a sphere-
like surface of (6.3). Moreover, they have the same (respectively, contrary) stability if a2 > 0
(respectively, a2 < 0).

In the remaining part of this section, we assume that ε = 1 because the case where ε = −1
can be discussed similarly. Thus, we shall describe the complete bifurcation diagram of

ẏ = γ1y + y2 + ρ,

ρ̇ = 2ρ
(
γ2 + γ3y + y2), (6.9)

which has a rich dynamics. Nevertheless, we only consider the case where ‖(γ1, γ2)‖ is suffi-
ciently small because of the local equivalence between systems (6.9) and (6.2).

It is easy to see that system (6.9) always has two equilibria: E1 = (0,0) and E2 = (−γ1,0),
and that there always exists one orbit connecting E1 and E2 due to the symmetry that the y-axis
is always invariant. Other equilibria (y,ρ) of (6.9) with ρ > 0 satisfy

γ1y + y2 + ρ = 0 and γ2 + γ3y + y2 = 0, (6.10)

which can have zero, one, two solutions in the interior of the quadrants with ρ > 0. Moreover, if
(y,ρ) is an equilibrium of (6.9), then its stability is determined by the signs of the two eigenval-
ues of the following matrix [

γ1 + 2y 1
2ρ(γ3 + 2y) 2(γ2 + γ3y + y2)

]
.

Since we only consider the dynamics of (6.9) with γ1 and γ2 sufficiently close to 0, we can
require the parameters (γ1, γ2) be in J = {(γ1, γ2): |γ1| < 1 |γ3| and |γ2| < 1γ 2}. Thus, the
2 4 3



466 S. Guo et al. / J. Differential Equations 244 (2008) 444–486
second equation of (6.10) has two solutions y1 and y2 with y1 < y2. Moreover, y1 < y2 < 0 if
γ2 > 0 and y1 < 0 < y2 if γ2 < 0. Next, we determine the signs of ρj = −y2

j − γ1yj , j = 1,2,
because we only consider the equilibrium (y,ρ) of (6.9) with ρ � 0.

We first consider the case where γ3 > 0. We divide the region J into six parts:

J11 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ2 > 0

}
,

J12 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ2 < 0 and γ 2

1 − γ1γ3 + γ2 > 0
}
,

J13 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ 2

1 − γ1γ3 + γ2 < 0
}
,

J14 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ 2

1 − γ1γ3 + γ2 > 0
}
,

J15 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ2 > 0 and γ 2

1 − γ1γ3 + γ2 < 0
}
,

J16 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ2 < 0

}
.

These regions are illustrated in Fig. 3(a), where the bold curve l4 represents the parabola γ 2
1 −

γ1γ3 + γ2 = 0.

Lemma 6.1. Suppose γ3 > 0. Then in the interior of the quadrants of the (y,ρ)-plane with
ρ > 0, system (6.10) has no solution (respectively, one solution (y2, ρ2) with y2 > 0, one solution
(y2, ρ2) with y2 < 0) for parameters (γ1, γ2) in J \ (J12 ∪J15) (respectively, J12, J15).

Proof. We distinguish two cases:
Case 1: γ1 < 0. Then y2 + γ1y is negative if 0 < y < −γ1 and positive otherwise. If

(γ1, γ2) ∈ J11, then y1 < y2 < 0 and hence ρj = −y2
j − γ1y1 < 0, j = 1,2. If (γ1, γ2) ∈ J12,

then y1 < 0 < y2 < −γ1 and hence ρ1 < 0 and ρ2 > 0. If (γ1, γ2) ∈ J13, then y1 < 0 < −γ1 < y2

and hence ρj = −y2
j − γ1y1 < 0, j = 1,2.

Case 2: γ1 > 0. Then y2 + γ1y is negative if −γ1 < y < 0 and positive otherwise. If
(γ1, γ2) ∈ J14, then y1 < y2 < −γ1 < 0 and hence ρj < 0, j = 1,2. If (γ1, γ2) ∈ J15, then
y1 < −γ1 < y2 < 0 and hence ρ1 < 0 and ρ2 > 0. If (γ1, γ2) ∈ J16, then y1 < −γ1 < 0 < y2 and
hence ρ1 < 0 and ρ2 < 0. The proof is complete. �

Fig. 3. Bifurcation sets for (6.9).
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Moreover, for parameters (γ1, γ2) ∈ J12 ∪ J15, the characteristic polynomial of (6.9) at the
equilibrium E3 = (y2, ρ2) is

ς2 − (γ1 + 2y2)ς − 2ρ2(γ3 + 2y2) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ2(γ3 + 2y2). For (γ1, γ2) ∈ J12, it follows from the
proof of Lemma 6.1 that y2 > 0, and so ς1ς2 < 0. For (γ1, γ2) ∈ J15, it follows from the proof
of Lemma 6.1 that − 1

2γ3 < −γ1 < y2 < 0, and hence ς1ς2 < 0. Thus, we obtain the following:

Proposition 6.2. Suppose γ3 > 0. Then, in the quadrants of the (y,ρ)-plane with ρ � 0, we have
the following information on the equilibria of system (6.9).

(i) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J11, where E1 is a saddle and E2 is a
source.

(ii) There are three equilibria E1, E2, and E3 for (γ1, γ2) ∈ J12, where E1 is a sink, E2 is a
source, E3 = (y2, ρ2) satisfying y2 > 0 and ρ2 > 0 is a saddle.

(iii) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J13, where E1 is a sink and E2 is a
saddle.

(iv) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J14, where E1 is a source and E2 is a
saddle.

(v) There are three equilibria E1, E2, and E3 for (γ1, γ2) ∈ J15, where E1 is a source, E2 is a
sink, E3 = (y2, ρ2) satisfying y2 < 0 and ρ2 > 0 is a saddle.

(vi) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J16, where E1 is a saddle and E2 is a
sink.

The following theorem follows immediately from the equivalence mentioned before.

Theorem 6.3. Suppose γ3 > 0. Then a semi-stable limit cycle of (6.2) appears as (γ1, γ2) crosses
the negative γ1-axis from J11 to J12, which is always present for (γ1, γ2) ∈ J12, and then dis-
appears as (γ1, γ2) crosses the parabola l4 from J12 to J13. Similarly, a semi-stable limit cycle
of (6.2) appears as (γ1, γ2) crosses the parabola l4 from J14 to J15, which is always present for
(γ1, γ2) ∈ J15, and then disappears as (γ1, γ2) crosses the positive γ1-axis from J15 to J16.

Now, we consider the case where γ3 < 0. Again, we divide the region J into six parts:

J21 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ2 > 0

}
,

J22 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ2 < 0 and γ 2

1 − γ1γ3 + γ2 > 0
}
,

J23 = {
(γ1, γ2) ∈ J : γ1 > 0 and γ 2

1 − γ1γ3 + γ2 < 0
}
,

J24 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ 2

1 − γ1γ3 + γ2 > 0
}
,

J25 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ2 > 0 and γ 2

1 − γ1γ3 + γ2 < 0
}
,

J26 = {
(γ1, γ2) ∈ J : γ1 < 0 and γ2 < 0

}
.

These regions are illustrated in Fig. 3(b), where the bold curve l4 and the dot curve l5 represent
the parabolas γ 2 − γ1γ3 + γ2 = 0 and γ 2 − 2γ1γ3 + 4γ2 = 0, respectively. Similarly, we have
1 1
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Lemma 6.4. Suppose γ3 < 0. Then, in the interior of the quadrants of the (y,ρ)-plane with
ρ > 0, system (6.10) has no solution (respectively, one solution (y1, ρ1) with y1 < 0, one solution
(y1, ρ1) with y1 > 0) for parameters (γ1, γ2) in J \ (J22 ∪J25) (respectively, J22, J25).

Moreover, for parameters (γ1, γ2) ∈ J22 ∪ J25, the characteristic polynomial of (6.9) at the
equilibrium E4 = (y1, ρ1) is

ς2 − (γ1 + 2y1)ς − 2ρ1(γ3 + 2y1) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ1(γ3 + 2y1), which can be shown to be positive.
Then, we need to consider the sign of ς1 + ς2 in order to discuss the stability of the equilib-
rium E4. In fact

ς1 + ς2 = γ1 + 2y1 = γ1 − γ3 −
√

γ 2
3 − 4γ2.

It follows from 2|γ1| < |γ3| and γ3 < 0 that γ1 − γ3 > 0 and hence

sign(ς1 + ς2) = sign
{
(γ1 − γ3)

2 − γ 2
3 + 4γ2

}
= sign

{
γ 2

1 − 2γ1γ3 + 4γ2
}
.

Let

J + = {
(γ1, γ2): γ 2

1 − 2γ1γ3 + 4γ2 > 0
}

and

J − = {
(γ1, γ2): γ 2

1 − 2γ1γ3 + 4γ2 < 0
}
.

Then we have the following:

Lemma 6.5. Suppose γ3 < 0. For parameters (γ1, γ2) ∈ J22 ∪J25, besides equilibria E1 and E2,
system (6.10) has a third equilibrium E4, which is a sink if (γ1, γ2) ∈ J − ∩ (J22 ∪J25) and is a
source if (γ1, γ2) ∈ J + ∩ (J22 ∪J25).

Proposition 6.6. Suppose γ3 < 0. Then, in the quadrants of the (y,ρ)-plane with ρ � 0, we have
the following information about equilibria of system (6.9).

(i) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J21, where E1 is a source and E2 is a
saddle.

(ii) There are three equilibria E1, E2, and E4 for (γ1, γ2) ∈ J22, where E1 and E2 are saddles,
and E4 = (y1, ρ1) satisfying y1 < 0 and ρ1 > 0 is a sink if γ 2

1 − 2γ1γ3 + 4γ2 < 0 and is
a source otherwise. Namely, in the region J22, as (γ1, γ2) crosses the parabola l5 from the
region J22 ∩ J + to the region J22 ∩ J −, the equilibrium E4 gains stability and hence
system (6.9) undergoes a Hopf bifurcation and a stable limit cycle appears; as (γ1, γ2)

varies further, this limit cycle can approach a heteroclinic cycle formed by the separatrices
of the two saddles E1 and E2, i.e., its period tends to infinity and the cycle disappears.
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(iii) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J23, where E1 is a saddle and E2 is a
sink.

(iv) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J24, where E1 is a saddle and E2 is a
source.

(v) There are three equilibria E1, E2, and E4 for (γ1, γ2) ∈ J25, where E1 and E2 are saddles,
and E4 = (y1, ρ1) satisfying y1 > 0 and ρ1 > 0 is a sink if γ 2

1 − 2γ1γ3 + 4γ2 < 0 and
is a source otherwise. Namely, in the region J25, as (γ1, γ2) crosses the parabola l5 from
the region J25 ∩ J + to the region J25 ∩ J −, equilibrium E4 gains stability and hence
system (6.9) undergoes a Hopf bifurcation and a stable limit cycle appears; as (γ1, γ2)

varies further, this limit cycle can approach a heteroclinic cycle formed by the separatrices
of the two saddles E1 and E2, i.e., its period tends to infinity and the cycle disappears.

(vi) There are two equilibria E1 and E2 for (γ1, γ2) ∈ J26, where E1 is a sink and E2 is a
saddle.

Theorem 6.7. Suppose that γ3 < 0. Then the following statements are true.

(i) An unstable limit cycle O1 of (6.3) appears as (γ1, γ2) crosses the positive γ1-axis from
J21 to J22. As (γ1, γ2) crosses the parabola l5 from J22 ∩ J + to J22 ∩ J −, this limit
cycle O1 becomes stable and generates an unstable torus T1. Under further variation of the
parameter (γ1, γ2) in J22 ∩ J −, this torus T1 degenerates to a sphere-like surface S1 and
then disappears. As (γ1, γ2) crosses the parabola l4 from J22 ∩ J − to J23, the stable limit
circle O1 disappears.

(ii) An unstable limit cycle O2 of (6.3) appears as (γ1, γ2) crosses the parabola l4 from J24 to
J25. As (γ1, γ2) crosses the parabola l5 from J25 ∩ J + to J25 ∩ J −, this limit cycle O2
becomes stable and generates an unstable torus T2. Under further variation of the para-
meter (γ1, γ2) in J25 ∩ J −, this torus T2 degenerates to a sphere-like surface S2 and then
disappears. As (γ1, γ2) crosses the negative γ1-axis from J25 ∩ J − to J26, the stable limit
circle O2 disappears.

7. Hopf–Hopf bifurcation

In this section, we consider another type of codimension two bifurcation: Hopf–Hopf bifurca-
tion, which may occur when the infinitesimal generator A(μ) has two pairs of purely imaginary
eigenvalues at some μ. This is the case if a12a21 > 0 and μ0 = (β0, η0) ∈ Ω+

n ∩ Ω−
m for some

n,m ∈ N, m �= n, where the two pairs of purely imaginary eigenvalues are ±itn and ±itm. There-
fore, throughout this section, we always assume that

(H5) a12a21 > 0 and μ0 = (β0, η0) ∈ Ω+
n ∩ Ω−

m for n,m ∈ N such that cn > cm.

Under assumption (H5), β0 = 1
2 (cn + cm) and η0 = 1

2 (cn − cm). It is easy to see that there exists
an unstable manifold containing the trivial solution, and hence all bifurcated periodic solutions
and invariant cycles are unstable. Let ω1 = tn and ω2 = tm. The following result indicates that
ω1 and ω2 are not in low order resonance.

Lemma 7.1. kω1 − sω2 �= 0 for all integers k and s such that 0 < |k| + |s| � 4.

Proof. Since η0 > 0, we have ω1 �= ω2. Without loss of generality, we assume that ω1 < ω2.
It suffices to exclude the resonances of orders 2 and 3, i.e., ω2/ω1 cannot be 2 or 3. In fact, if
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ω2 = 2ω1, then it follows from tan τωj = −ωj (j = 1,2) that

2ω1 = ω2 = − tan(2τω1) = − 2 tan(τω1)

1 − tan2(τω1)
= 2ω1

1 − ω2
1

which is impossible since ω1 > 0. If ω2 = 3ω1, then, similarly,

3ω1 = ω2 = − tan(3τω1) = tan3(τω1) − 3 tan(τω1)

1 − 3 tan2(τω1)
= 3ω1 − ω3

1

1 − 3ω2
1

,

which implies ω1 = 0, a contradiction. �
Since the eigenvalues ±iω1 and ±iω2 of the infinitesimal generator A(μ0) are simple, it

follows from Corollary 2.2 that A(μ) has simple eigenvalues λ1(μ), λ1(μ), λ2(μ), and λ2(μ)

for all sufficiently small ‖μ−μ0‖, where λ1(μ) and λ2(μ) satisfy λj (μ0) = iωj , j = 1,2. Then,
A(μ) has two eigenvectors Q1(μ) ∈ C and Q2(μ) ∈ C, smoothly dependent on the parameter
and corresponding to the eigenvalues λ1(μ) and λ2(μ), respectively:

A(μ)Qj (μ) = λj (μ)Qj (μ), j = 1,2.

Moreover, λj (μ), j = 1,2, are also eigenvalues of the adjoint operator A∗(μ) with adjoint eigen-
vectors defined by

A∗(μ)Pj (μ) = λj (μ)Pj (μ), j = 1,2.

The eigenvectors will be normalized such that

〈
Pj (μ),Qk(μ)

〉
μ

= δjk

for all sufficiently small ‖μ − μ0‖. For simplicity, let pj = Pj (μ0) and qj = Qj (μ0), j = 1, 2.
In fact, we can choose

qj (θ) = (1, dj )
T eiωj θ , θ ∈ [−τ1,0], j = 1,2,

and

pj (ξ) = Dj(dj ,1)eiωj ξ , ξ ∈ [0, τ1], j = 1,2,

where dj = (−1)j−1η0e
iωj (τ1−τ)/a12 and Dj = {2dj [1 + τ(1 + iωj )]}−1.

We associate each X ∈ Dom(A(μ)) with (z1, z1, z2, z2,w), where zj = 〈pj ,X〉, j = 1,2,
and w = X − z1q1 − z1q1 − z2q2 − z2q2 = X − 2 Re{z1q1 + z2q2}. For a solution Xt of (3.1)
at μ, we define zj (t) = 〈pj ,Xt 〉, j = 1,2, and w(z,μ) = Xt − 2 Re{z1(t)q1 + z2(t)q2}, where
z = (z1, z2) ∈ C

2. In fact, zj and zj are local coordinates for Cμ in the directions of pj and pj ,
j = 1,2. It is easy to see that 〈pj ,w〉 = 0. Now, for solutions Xt ∈ Cμ of (3.1), 〈pj , Ẋt 〉 =
〈pj ,A(μ)Xt +R(μ)Xt 〉, j = 1,2. Then, on the center manifold Cμ, we have

ż(t) = Λz(t) + g(z,μ), (7.1)
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where Λ = diag(iω1, iω2), and g = (g1, g2) with the smooth functions gj given by

gj (z,μ) = 〈
pj ,A(μ)

(
w(z,μ) + 2 Re{z1q1 + z2q2}

)〉 − iωj zj

+ 〈
pj ,R(μ)

(
w(z,μ) + 2 Re{z1q1 + z2q2}

)〉
for (z,μ) ∈ C

2 × R
2. Let

gj (z,μ) =
∑

l+s+r+k�1

1

l!s!r!k!g
j
lsrk(μ)zl

1z
s
1z

r
2z

k
2.

Elphick et al. [9] showed that there is a normal form

ν̇ = Λν + G(ν,μ), (7.2)

which commutes with eΛθ , where the action of eΛθ on C
2 is given by

eΛθ · (z1, z2) = (
eiω1θ z1, e

iω2θ z2
)
, θ ∈ R, z = (z1, z2) ∈ C

2.

The following lemma shows that the group {eΛθ : θ ∈ R} is either the torus group T
2 = S

1 × S
1

or the cyclic group S
1.

Lemma 7.2. (See [40].)

(i) Suppose ω2/ω1 is irrational, that is, kω1 − sω2 �= 0 for any nonzero integers k and s, then
the normal form, computed up to any finite order, is equivariant with respect to T

2. Namely,
the normal form for the nonresonant Hopf–Hopf bifurcation is of the form

żj = iωj zj + zjPj

(|z1|2, |z2|2,μ
)
, j = 1,2, (7.3)

where P1 and P2 are complex polynomials in |z1|2, |z2|2, and μ.
(ii) Suppose ω2/ω1 is rational, that is, kω1 − sω2 = 0 for some nonzero integers k and s, with k

and s relatively prime, then the normal form, computed up to any finite order, is equivariant
with respect to S

1. Namely, the normal form takes the following form

ż1 = iω1z1 + z1P1
(|z1|2, |z2|2, zk

1z̄
s
2,μ

) + z̄k−1
1 zs

2P2
(|z1|2, |z2|2, z̄k

1z
s
2,μ

)
,

ż2 = iω2z2 + z2Q1
(|z1|2, |z2|2, z̄k

1z
s
2,μ

) + zk
1z

s−1
2 Q2

(|z1|2, |z2|2, zk
1z̄

s
2,μ

)
, (7.4)

where P1, P2, Q1, and Q2 are complex polynomials in their arguments.

In view of Lemmas 7.1 and 7.2, by a near identity transformation

z = ν + ψ(ν, ν), ψ = O
(|ν|2), ν = (ν1, ν2) ∈ C

2, (7.5)
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system (7.1) can be simplified to (7.2), where ψ is at least second order in ν1, ν1, ν2, and ν2,
and some resonant cubic terms of (7.2) can be removed under certain nondegeneracy conditions.
Thus, G in the normal form (7.2) takes the form

G(ν,μ) =
(

e10(μ)ν1 + e11(μ)|ν1|2ν1 + e12(μ)|ν2|2ν1 + O(|ν|5)
e20(μ)ν2 + e21(μ)|ν2|2ν2 + e22(μ)|ν1|2ν2 + O(|ν|5)

)
.

In Appendix B, we derived the concrete expressions for ejk(μ0), j, k = 1,2, under the nondegen-
eracy conditions that Ajk = Re{ejk(μ0)} �= 0 for all j, k = 1,2. Moreover, it is easy to see that
e10(μ) = (μ−μ0)∇λ1(μ0)+O(‖μ−μ0‖2) and e20(μ) = (μ−μ0)∇λ2(μ0)+O(‖μ−μ0‖2).

Let ν1 = r1e
iξ1 and ν2 = r2e

iξ2 . Then Eq. (7.2) can be rewritten as

ṙ1 = α1r1 + A11r
3
1 + A12r1r

2
2 + O

(∥∥(r1, r2)
∥∥5)

,

ṙ2 = α2r2 + A21r
3
2 + A22r2r

2
1 + O

(∥∥(r1, r2)
∥∥5)

,

ξ̇1 = ω1 + (μ − μ0)∇ Im
{
λ1(μ0)

} + B11r
2
1 + B12r

2
2 + O

(∥∥(r1, r2)
∥∥4)

,

ξ̇2 = ω2 + (μ − μ0)∇ Im
{
λ2(μ0)

} + B21r
2
2 + B22r

2
1 + O

(∥∥(r1, r2)
∥∥4)

, (7.6)

where α1 = (μ − μ0)∇ Re{λ1(μ0)}, α2 = (μ − μ0)∇ Re{λ2(μ0)}, and Bjk = Im{ejk(μ0)},
j, k = 1,2. From the proof of Corollary 2.2, we know

α1 = (β + η − cn)cnε1(ω1)ε2(ω1), α2 = (β − η − cm)cmε1(ω2)ε2(ω2).

Obviously, ∣∣∣∣∂(α1, α2)

∂(β, η)

∣∣∣∣
μ=μ0

= −2cncmε1(ω1)ε2(ω1)ε1(ω2)ε2(ω2) �= 0.

This means that the mapping μ → (α1, α2) is regular at μ0, and hence we can unfold this degen-
erate case by varying α1 and α2 in a full neighborhood of (0,0). Such unfoldings are studied
by several authors (see, for example, [2,15,16,23,26,36]). However, our analysis here is the
first complete investigation of the double Hopf bifurcation as it occurs in a system of delay-
differential equations, and the relationship between unfolded flows on a four-dimensional center
manifold and the original system of delay-differential equations: previous investigations only
considered simpler bifurcations of a scalar delay-differential equation (to name a few, see [2,3,
11]).

Note that, up to O(‖(r1, r2)‖4), the amplitude and phase variables of (7.6) decouple. As a
result, the bifurcation and asymptotic behavior of solutions of (1.2) under assumption (H5) can
be studied via the two-dimensional amplitude equations alone. That is, we consider the following
truncated system of amplitude equations in (7.6):

ṙ1 = α1r1 + A11r
3
1 + A12r1r

2
2 ,

ṙ2 = α2r2 + A21r
3
2 + A22r2r

2
1 . (7.7)

The relation between equilibria of (7.7) and bifurcations of (7.6) is as follows.
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(i) If (7.7) has an asymptotically stable (respectively, unstable) equilibrium (r̃1,0) (respec-
tively, (0, r̃2)) on either axis, then (7.6) has an asymptotically stable (respectively, unstable)
periodic orbit of frequency ω1 + O(

√|α1| ) (respectively, ω2 + O(
√|α2| )) and hence sys-

tem (1.2) has a periodic solution in the neighborhood of the origin, which is unstable
because of the existence of unstable manifolds of (1.2) containing the origin.

(ii) If (7.7) has an asymptotically stable (respectively, unstable) equilibrium (r̃1, r̃2) in the
interior of the positive quadrant, then (7.6) has an asymptotically stable (respectively, un-
stable) two-dimensional invariant torus, i.e., (7.6) has quasi-periodic solutions and hence
system (1.2) has an unstable quasi-periodic solution in the neighborhood of the origin.

(iii) If (7.7) has an asymptotically stable (respectively, unstable) limit cycle in the interior
of the positive quadrant, then (7.6) has an asymptotically stable (respectively, unstable)
three-dimensional invariant torus and hence system (1.2) has an unstable three-dimensional
invariant torus in the neighborhood of the origin.

From the above, we see that sufficiently close to the Hopf–Hopf bifurcation points μ0, system
(1.2) will exhibit either periodic or quasi-periodic motions. Thus, if we can find combinations
of parameters αj and Aij (i, j = 1,2) which yield stable equilibria (r̃1, r̃2) with r̃1r̃2 �= 0, we
can conclude that the stable quasi-periodic motions should occur for the corresponding parame-
ter values of system (1.2). Therefore, from now on, we concentrate on describing the behavior
of the coupled amplitude equation (7.7) in the (α1, α2)-parameter plane. The mode interaction
equations (7.7) have been investigated by many researchers. See, for example, Guckenheimer
and Holmes [16, Section 7.5]. Here, for the sake of completeness, we shall employ some tech-
niques from the classical work of Guckenheimer and Holmes [16] (including rescaling in time
and variables) to investigate the qualitative behavior of the mode interaction equations (7.7) in
the parameter ranges of interest. We discuss these case by case.

Firstly, we consider the case where A11 < 0 and A21 < 0. Introducing new phase variables
and rescaling time in (7.7) according to

r∗
1 = √|A11|r1, r∗

2 = √|A21|r2, t∗ = 2t, (7.8)

and then dropping ∗ yield

ṙ1 = α1r1 − r3
1 − θr1r

2
2 ,

ṙ2 = α2r2 − r3
2 − Δr2r

2
1 , (7.9)

where θ = A12/A21 and Δ = A22/A11. Notice that the r1- and r2-axes are invariant lines for
the flow of (7.9). If (r̃1, r̃2) is an equilibrium of (7.9), then its stability is determined by the two
eigenvalues of the following characteristic matrix of (7.9) at (r̃1, r̃2):

M(r̃1, r̃2) =
[

α1 − 3r̃2
1 − θ r̃2

2 −2θ r̃1r̃2

−2Δr̃1r̃2 α2 − 3r̃2
2 − Δr̃2

1

]
.

Obviously,

detM(r̃1, r̃2) = 4(1 − θΔ)r̃2
1 r̃2

2 and trM(r̃1, r̃2) = −2
(
r̃2

1 + r̃2
2

)
.

Simple linear analysis reveals the following results about equilibria of (7.9):
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(i) (r1, r2) = (0,0) is always an equilibrium. It is a stable sink if max{α1, α2} < 0, a saddle if
α1α2 < 0, and an unstable source if min{α1, α2} > 0.

(ii) (r1, r2) = (
√

α1,0) is an equilibrium if α1 > 0. If, in addition, Δα1 > α2, then it is a sink;
otherwise it is a saddle.

(iii) (r1, r2) = (0,
√

α2 ) is an equilibrium if α2 > 0. If, in addition, θα2 > α1, then it is a sink;
otherwise it is a saddle.

(iv) (r1, r2) = (
√[α1 − θα2]/[1 − θΔ],√[α2 − Δα1]/[1 − θΔ] ) is an equilibrium if both radi-

cand are positive. It is a saddle if θΔ > 1 and a sink if θΔ < 1.

Therefore, we deduce that bifurcations to the pure modes (
√

α1,0) and (0,
√

α2 ) occur on
the lines α1 = 0 and α2 = 0, whereas bifurcations to the mixed mode occur on the line α1 = θα2

and α2 = Δα1 if they exist. In addition, we need check that no closed orbits (or limit cycles)
can occur. Since the r1- and r2-axes are invariant, any such closed orbit would have to lie in the
interior of the positive quadrant and must enclosed at least one equilibrium with Poincaré index
equal to 1.

If θΔ > 1 and α1 − θα2 < 0 and α2 − Δα1 < 0, then system (7.9) has an equilibrium (r̃1, r̃2)

with r̃1r̃2 �= 0. Recall that (r̃1, r̃2) is a saddle with the Poincaré index equal to −1. We imme-
diately see that no closed orbit can occur around (r̃1, r̃2). If θΔ < 1 and α1 − θα2 > 0 and
α2 − Δα1 > 0, then system (7.9) has an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0, which is a sink. In
what follows, we distinguish several cases to conclude that no closed orbits can occur around
the sink (r̃1, r̃2) when θΔ < 1 and (α1, α2) is in the sector E = {(α1, α2): α1 − θα2 > 0 and
α2 − Δα1 > 0}.

Case 1: θ > 0 and Δ > 0. We follow a directional arc �l1 crossing the line α1 = θα2 > 0 and
then passing through the sector D and finally crossing the line α2 = Δα2 > 0. When (α1, α2) ∈ �l1
crosses the line α1 = θα2 > 0, the sink (0,

√
α2 ) becomes a saddle and a sink (r̃1, r̃2) bifurcates

from (0,
√

α2 ) and the unstable separatrix of the saddle (0,
√

α2 ) limits in this bifurcated sink
(r̃1, r̃2). Thus, after bifurcation there is no closed orbit around this sink. The only way where the
closed orbit can appear in the positive quadrant is by Hopf bifurcation from (r̃1, r̃2). But this is
impossible because (r̃1, r̃2) remains stable for all (α1, α2) ∈ E .

Case 2: θ > 0 > Δ. Similar arguments as those in Case 1 show that there is no closed orbit
in the positive quadrant when (α1, α2) is in the sector 0 < α2 < α1/θ . In order to rule out the
existence of closed orbits in the positive quadrant when (α1, α2) is in the sector Δα1 < α2 < 0,
we follow another directional arc �l2 crossing the line α2 = Δα1 and then passing through the
sector Δα1 < α2 < 0. When (α1, α2) ∈ �l2 crosses the line α2 = Δα1, the sink (

√
α1,0) becomes

a saddle and a sink (r̃1, r̃2) bifurcates from (
√

α1,0) and the unstable separatrix of the saddle
(
√

α1,0) limits in this bifurcated sink (r̃1, r̃2). Thus, after bifurcation there is no closed orbit
around this sink. Similarly, no Hopf bifurcation can occur from (r̃1, r̃2) as it remains stable for
all (α1, α2) ∈ E .

Case 3: θ < 0 < Δ. Similar arguments as those in Case 1 tell us that there is no closed orbit
in the positive quadrant when (α1, α2) is in the sector θα2 < α1 < 0; while arguments as those in
Case 2 produce that there is no closed orbit in the positive quadrant when (α1, α2) is in the sector
0 < α1 < α2/Δ.

Case 4: θ < 0 and Δ < 0. The discussion is similar to that in Case 1 and hence is omitted.
In summary, we have proved the following

Theorem 7.3. No closed orbit of system (7.9) can occur around the mixed mode (r̃1, r̃2).
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Secondly, for the case where A11 > 0 and A21 > 0, we introduce new phase variables and
rescaling time in (7.7) according to

r∗
1 = √|A11|r1, r∗

2 = √|A21|r2, t∗ = −2t. (7.10)

After dropping ∗, we obtain

ṙ1 = −α1r1 − r3
1 − θr1r

2
2 ,

ṙ2 = −α2r2 − r3
2 − Δr2r

2
1 , (7.11)

where θ and Δ are the same as before. System (7.11) is quite similar to (7.9) and hence similar
arguments can be employed. We omit the detail here.

Thirdly, for the case where A11 > 0 and A21 < 0, we introduce new phase variables and
rescaling time in (7.7) as (7.8). After dropping ∗, we obtain

ṙ1 = α1r1 + r3
1 − θr1r

2
2 ,

ṙ2 = α2r2 − r3
2 + Δr2r

2
1 , (7.12)

where θ and Δ are the same as before. Again, notice that the r1- and r2-axes are invariant lines
for the flow of (7.12). If (r̃1, r̃2) is an equilibrium of (7.12), then its stability is determined by the
two eigenvalues of the following characteristic matrix of (7.12) at (r̃1, r̃2):

N (r̃1, r̃2) =
[

α1 + 3r̃2
1 − θ r̃2

2 −2θ r̃1r̃2

2Δr̃1r̃2 α2 − 3r̃2
2 + Δr̃2

1

]
.

Obviously,

detN (r̃1, r̃2) = 4(θΔ − 1)r̃2
1 r̃2

2 and trN (r̃1, r̃2) = 2
(
r̃2

1 − r̃2
2

)
.

Simple linear analysis produces the following results:

(i) (r1, r2) = (0,0) is always an equilibrium. It is a stable sink if max{α1, α2} < 0, a saddle if
α1α2 < 0, and an unstable source if min{α1, α2} > 0.

(ii) (r1, r2) = (
√−α1,0) is an equilibrium if α1 < 0. If, in addition, Δα1 < α2, then it is a

source; otherwise it is a saddle.
(iii) (r1, r2) = (0,

√
α2 ) is an equilibrium if α2 > 0. If, in addition, θα2 > α1, then it is a sink;

otherwise it is a saddle.
(iv) (r1, r2) = (

√[α1 − θα2]/[θΔ − 1],√[Δα1 − α2]/[θΔ − 1] ) is an equilibrium if both radi-
cands are positive. If θΔ < 1 then it is a saddle; if θΔ > 1 and r̃1 > r̃2 then it is a source; if
θΔ > 1 and r̃1 < r̃2 then it is a sink.

It follows from the above results that bifurcations to the pure modes (
√−α1,0) and (0,

√
α2 )

occur on the lines α1 = 0 and α2 = 0, whereas bifurcations to the mixed modes occur on the lines
α1 = θα2 and α2 = Δα1 if they exist. Since the r1- and r2-axes are invariant, any such closed
orbit would have to lie in the interior of the positive quadrant and must enclosed at least one
equilibrium with Poincaré index equal to 1. If θΔ < 1 and α1 − θα2 < 0 and α2 − Δα1 > 0,
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then system (7.12) has an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0, which is a saddle with the Poincaré
index equal to −1. We immediately conclude that

Theorem 7.4. Assume that θΔ < 1 and α1 − θα2 < 0 and α2 − Δα1 > 0. Then no closed orbit
of system (7.12) can occur around (r̃1, r̃2).

If θΔ > 1 and (α1, α2) is in the sector I = {(α1, α2): α1 − θα2 > 0 and α2 − Δα1 < 0}, then
system (7.12) has an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0. It follows from the expressions for r̃1 and
r̃2 that sign(r̃1 − r̃2) = sign(1 − θ) sign{α2 − χα1}, where χ = (1 − Δ)/(θ − 1). Furthermore,
if θ > 1 then χ < 1/θ and χ < Δ; if θ < 1, then χ > 1/θ and χ > Δ. Therefore, we have the
following observations:

Lemma 7.5. If Δ > 1/θ > 0 and (α1, α2) ∈ I , then system (7.12) has a mixed mode (r̃1, r̃2).
Moreover, it is a sink (respectively, source) if (α1, α2) is in the sector I1 (respectively, I2), where

I1 =
{ {(α1, α2): χα1 < α2 < α1/θ} if θ > 1,

{(α1, α2): α2 < χα1 and α2 < α1/θ} if θ < 1,

I2 =
{ {(α1, α2): α2 < χα1 and α2 < Δα1} if θ > 1,

{(α1, α2): χα1 < α2 < Δα1} if θ < 1.

Lemma 7.6. If Δ < 1/θ < 0 and (α1, α2) ∈ I , then system (7.12) has a mixed mode (r̃1, r̃2).
Moreover, it is a sink (respectively, source) if (α1, α2) is in the sector I3 (respectively, I4), where

I3 = {
(α1, α2): α1/θ < α2 < χα1

}
,

I4 = {
(α1, α2): χα1 < α2 < Δα1

}
.

The following result describes the phase portrait of (7.12).

Theorem 7.7. Assume θΔ > 1. Then, for some points (α1, α2) ∈ I , system (7.12) has closed
orbits surrounding the mixed mode (r̃1, r̃2).

Proof. Here, we only consider the case where θ > 1 > Δ > 1/θ > 0, because other cases can
be handled similarly. If θΔ > 1 and θ > 1, then (α1, α2) ∈ I , system (7.12) has a mixed mode
(r̃1, r̃2). We follow a directional arc in the (α1, α2)-parameter plane, which starts from a point in
the sector α1/θ < α2 < Δα1, then crosses the line α1 = θα2 > 0 into the sector I1, and finally
successively crosses the line α2 = χα1 > 0 and the positive α1-axis. When the point (α1, α2) is in
the sector α1/θ < α2 < Δα1, system (7.12) has a source (0,0) and a sink (0,

√
α2 ). As (α1, α2)

crosses the line α1 = θα2 > 0, a mixed mode (r̃1, r̃2) (which is a sink) bifurcates from (0,
√

α2 )

and the unstable separatrix of the saddle (0,
√

α2 ) limits in the newly bifurcated mixed mode.
Thus, immediately after bifurcation no closed orbit can surround the mixed mode. However, as
(α1, α2) crosses the line α2 = χα1 > 0, the mixed mode (r̃1, r̃2) losses its stability and hence
system (7.12) undergoes a Hopf bifurcation, i.e., a stable closed orbit appears in the positive
quadrant. Moreover, as (α1, α2) crosses the positive α1-axis, the pure mode (0,

√
α2 ) collides

with (0,0) and disappears. �
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Theorem 7.7 implies that crossing the line α2 = χα1 in the sector I results in the branching
of a three-dimensional torus from the two-dimensional torus of system (7.7). Under certain con-
ditions on the higher-order terms of (7.7) (see [16,27]), this three-dimensional torus may have
up to three frequencies and hence chaotic motions are even possible near such a Hopf–Hopf
bifurcation point.

Finally, for the case where A11 < 0 and A21 > 0, we can obtain the reparametrized equation
of the form (7.12) by reversing time and hence the detail is omitted.

To conclude this section, we relate the above results to the dynamical behavior of (1.2) under
assumptions (H1), (H2), and (H5). By a direct computation,

e11(μ0) = 1

4
f ′′′(0)

(|d1|2 + 1
)[

(1 + τ)2 + τ 2ω2
1

]−1[
ε2(ω1) + i

]
,

e12(μ0) = 1

2
f ′′′(0)

(|d2|2 + 1
)[

(1 + τ)2 + τ 2ω2
1

]−1[
ε2(ω1) + i

]
,

e21(μ0) = 1

4
f ′′′(0)

(|d2|2 + 1
)[

(1 + τ)2 + τ 2ω2
2

]−1[
ε2(ω2) + i

]
,

e22(μ0) = 1

2
f ′′′(0)

(|d1|2 + 1
)[

(1 + τ)2 + τ 2ω2
2

]−1[
ε2(ω2) + i

]
.

Therefore,

A11 = 1

4
f ′′′(0)

(|d1|2 + 1
)[

(1 + τ)2 + τ 2ω2
1

]−1
ε2(ω1),

A12 = 1

2
f ′′′(0)

(|d2|2 + 1
)[

(1 + τ)2 + τ 2ω2
1

]−1
ε2(ω1),

A21 = 1

4
f ′′′(0)

(|d2|2 + 1
)[

(1 + τ)2 + τ 2ω2
2

]−1
ε2(ω2),

A22 = 1

2
f ′′′(0)

(|d1|2 + 1
)[

(1 + τ)2 + τ 2ω2
2

]−1
ε2(ω2).

Observe that all Aij ’s and Bij ’s have the same sign as that of f ′′′(0). Here, we only consider the
case where f ′′′(0) < 0 because in the case where f ′′′(0) > 0 we can obtain the same amplitude
equation (7.7) by reversing the time and replacing αj by −αj for j = 1,2. Under the assumption
that f ′′′(0) < 0, Aij < 0 and Bij < 0 for all i, j . By changing variables in (7.8), we can obtain
(7.7) with θ = 2(|d2|2 + 1)/(|d1|2 + 1) and Δ = 2(|d1|2 + 1)/(|d2|2 + 1). Note that θΔ = 4 > 1.
Then the mixed mode exists for (α1, α2) in the region III of Fig. 4.

It follows from the existence of an unstable manifold containing the trivial solution that all
bifurcated periodic solutions and invariant tori are unstable. For sufficiently small ‖(α1, α2)‖,
we obtain the following results about the local dynamical behaviors of system (1.2) near the
Hopf–Hopf bifurcation point μ0.

Theorem 7.8. In addition to the assumptions (H1), (H2), and (H5), assume that f ′′′(0) < 0.
Then on the (α1, α2)-parameter plane depicted in Fig. 4, anticlockwise, there is a cycle with
sufficiently small radius.
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Fig. 4. Bifurcation sets for the amplitude equation (7.7).

(i) Crossing the negative α1-axis from below, an unstable periodic solution O1 appears by Hopf
bifurcation from the trivial solution. This periodic solution O1 is persistent for (α1, α2) in
regions I, II, III, and IV.

(ii) Crossing the positive α2-axis from left, another unstable periodic solution O2 appears by
Hopf bifurcation from the trivial solution. This new bifurcated periodic solution O2 is per-
sistent for (α1, α2) in regions II, III, IV, and V.

(iii) Crossing the line α2 = Δα1 > 0 from above, an unstable invariant torus T appears by
Neimark–Sacker bifurcation from the periodic solution O1. This invariant torus T is per-
sistent for (α1, α2) in region III.

(iv) Crossing the line α1 = θα2 > 0 from above, the unstable invariant torus T collides with the
periodic solution O2 and then disappears.

(v) Crossing the positive α1-axis from above, the periodic solution O1 collides with the trivial
solution and then disappears.

(vi) Crossing the negative α2-axis from right, the periodic solution O2 collides with the trivial
solution and then disappears.
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Appendix A. Derivation of normal form (6.3)

The purpose of this appendix is to derive the concrete expressions for ejk , j , k = 1, 2. Let

g(x, z, z,μ) =
∑

j+s+k�1

1

j !s!k!gjsk(μ)xj zszk,

h(x, z, z,μ) =
∑

j+s+k�1

1

j !s!k!hjsk(μ)xj zszk.

Since g must be real, we have gjsk(μ) = gjks(μ). Therefore, gjsk is real for s = k.
When μ = μ0, system (6.2) takes the form of

ẋ(t) = g(x, z,μ0),

ż(t) = itnz(t) + h(x, z,μ0). (A.1)

In addition, we have, at μ = μ0,

ẇ = Ẋt − ẋq0(μ0) − żq1(μ0) − żq1(μ0)

= A(μ0)w − g(x, z, z,μ0)q0(μ0) − 2 Re
{
h(x, z, z,μ0)q1(μ0)

}
+R(μ0)

(
w + xq0(μ0) + zq1(μ0) + zq1(μ0)

)
.

Lemma A.1. Assume that g200(μ0) �= 0. Then there is a locally defined smooth, invertible vari-
able transformation, smoothly depending on μ, which for all sufficiently small ‖μ−μ0‖ reduces
(6.2) into the following form:

ẏ = G100(μ)y + 1

2
G200(μ)y2 + G011(μ)|ν|2 + 1

6
G300y

3

+ G111(μ)y|ν|2 + O
(∥∥(y, ν, ν)

∥∥4)
,

ν̇ = H010(μ)ν + H110(μ)yν + 1

2
H210(μ)y2ν + 1

2
H021(μ)ν|ν|2

+ O
(∥∥(y, ν, ν)

∥∥4)
, (A.2)

where y ∈ R, ν ∈ C, ‖(y, ν, ν)‖2 = |y|2 + |ν|2, Gjkl are real-valued smooth functions, while
Hjkl are complex-valued smooth functions. Moreover, G100(μ0) = 0, H010(μ0) = itn, and
G200(μ0) = g200(μ0), G011(μ0) = g011(μ0), H110(μ0) = h110(μ0), and

G300(μ0) = g300(0) − 6

tn
Im

{
g110(μ0)h200(μ0)

}
,

G110(μ0) = g111(0) − 1

tn

[
2 Im

{
g110(μ0)h011(μ0)

} + Im
{
g020(μ0)h101(μ0)

}]
,

H210(μ0) = h210(μ0) + i

tn
h200(μ0)

[
h020(μ0) − 2g110(μ0)

]
− i [∣∣h101(μ0)

∣∣2 + h011h200(μ0)
]
,

tn
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H021(μ0) = h021(μ0) − i

3tn

∣∣h002(μ0)
∣∣2

+ i

2tn

[
2h011(μ0)h020(μ0) − g020(μ0)h101(μ0) − 4

∣∣h011(μ0)
∣∣2]

.

Proof. Consider the action of S
1 on R × C given by

θ · (x, z) = (
x, ze−itnθ

)
, θ ∈ S

1, (x, z) ∈ R × C.

According to normal form theorem in [25], by a near identity transformation

x = y + V (y, ν, ν,μ), z = ν + W(y, ν, ν,μ), (A.3)

with

V (y, ν, ν,μ) =
∑

j+s+k�1

1

j !s!k!Vjsk(μ)yj νsνk,

W(y, ν, ν,μ) =
∑

j+s+k�1

1

j !s!k!Wjsk(μ)yj νsνk,

system (6.2) can be simplified to

ẏ = G(y, ν,μ),

ν̇ = itnν + H(y, ν,μ), (A.4)

where V and W are at least second order in y, ν, and ν, (G,H) is S
1-equivariant, i.e., for all

t ∈ R,

G
(
y, νe−itnt , νeitnt ,μ

) = G(y, ν, ν,μ),

H
(
y, νe−itnt , νeitnt ,μ

) = e−itntH(y, ν, ν,μ).

Therefore, there exist real smooth functions Q1,Q2,Q3 : R × R × R
2 → R such that

G(y, ν, ν,μ) = Q3
(
y, |ν|2,μ)

, H(y, ν, ν,μ) = νQ1
(
y, |ν|2,μ) + iνQ2

(
y, |ν|2,μ)

.

Namely, system (A.4) takes the form of (A.2). Let us first prove the lemma for μ = μ0. We can
reduce (A.1) into the form (A.2) with μ = μ0 by performing a nonlinear invertible transformation
(A.3) with μ = μ0 and

V020(μ0) = −g020

2itn
, V002(μ0) = g002

2itn
, V110(μ0) = −g110

itn
,

V101(μ0) = g101

itn
, W200(μ0) = h200

itn
, W020(μ0) = −h020

itn
,

W101(μ0) = h101
, W002(μ0) = h002

, W011(μ0) = h011
,

2itn 3itn itn
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where all the gjkl and hjkl have to be evaluated at μ0. These coefficients are selected exactly in
order to annihilate all the quadratic terms in the resulting system except those present in (A.2).
Then, one can eliminate all nonresonant order-three terms without changing the coefficients
in front of the resonant ones displayed in (A.2). To prove the lemma for μ �= μ0 with small
‖μ − μ0‖, we have to perform a parameter-dependent transformation (A.3) coinciding with
Wjkl(μ0) given above. To prove that it is possible to select the parameter-dependent coefficients
of (A.3) to eliminate all linear and quadratic terms except those shown in (A.2), for all small
‖μ − μ0‖, one has to apply the Implicit Function Theorem as well as the assumption (H4) and
condition of Lemma A.1. �

Making a nonlinear time reparametrization in (A.4) and performing an extra variable trans-
formation allows one to simplify the system further. According to the paper by Gavrilov [13],
we have the following lemma, which shows that all but one resonant cubic term can be removed
under certain nondegeneracy conditions.

Lemma A.2. Assume that G200(μ0)G011(μ0) �= 0. Then, system (A.4) is locally smoothly or-
bitally equivalent near the origin to system (6.3) with e1j (μ) (j = 0,1,2) and e22(μ) being
smooth real-valued functions, while e2j (j = 1,2) being smooth complex-valued functions.
Moreover, e10(μ0) = e20(μ0) = 0, and

e11(μ0) = 1

2
G200(μ0), e12(μ0) = G011(μ0),

e21(μ0) = H110(μ0) − itn
G300(μ0)

3G200(μ0)
,

e22(μ0) = 1

2
Re

[
H210(μ0) + H021(μ0)G200(μ0)

2G011(μ0)

]

+ 1

2
Re

[
H110(μ0)

(
ReH021(μ0)

G011(μ0)
− G300(μ0)

G200(μ0)
+ G111(μ0)

G011(μ0)

)]
.

Proof. As stated before, we start with μ = μ0. Make the following time reparametrization in
(A.4):

t = (
1 + σ1y + σ2|ν|2)s (A.5)

with the constant σ1, σ2 ∈ R to be determined later. Simultaneously introduce new variables,
u and z, via the invertible transformation

u = y + 1

2
σ3y

2, z = ν + σ4yν, (A.6)

where σ3 ∈ R and σ4 ∈ C to be determined later too. In the new variables and time, system (A.4)
takes the form of

u̇ = e11(μ0)u
2 + e12(μ0)|z|2 + O

(∥∥(u, z, z)
∥∥4)

,

ż = itnz + e21(μ0)uz + e22(μ0)u
2z + O

(∥∥(u, z, z)
∥∥4)

. (A.7)
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Set

σ1 = − G300(μ0)

3G200(μ0)
, σ3 = 2 Re(σ4) − σ1 − G111(μ0)

G011(μ0)
, σ4 = −2itnσ2 + H021(μ0)

2G011(μ0)
,

and then use the free parameter σ2 to annihilate the imaginary part of the coefficient of the
u2z-term so that the coefficient e22(μ0) is a real number given in the lemma statement. A similar
construction can be carried out for small ‖μ−μ0‖ with the help of the Implicit Function Theorem
if one considers σ1 and σ2 in (A.5) as functions of μ and replaces (A.6) by

u = y + σ5(μ)y + 1

2
σ3(μ0)y

2, z = ν + σ4(μ0)yν,

for smooth function σj (j = 3,4,5) satisfying σj (μ0) = σj (j = 3,4) and σ5(μ0) = 0. �
Appendix B. Derivation of normal form (7.2)

In this appendix, we derive the concrete expressions for ejk(μ0), j, k = 1,2. Recall that, at
μ = μ0, for each j = 1, 2,

żj (t) = 〈pj , u̇t 〉 = 〈
pj ,A(μ0)Xt

〉 + 〈
pj ,R(μ0)Xt

〉
= iωj zj (t) + 〈

pj (μ0),R(μ0)Xt

〉
.

Thus, gj (z,μ0) = 〈pj ,R(μ0)Xt 〉. In addition, we have, at μ = μ0,

ẇ = Ẋt − ż1q1 − ż1q1 − ż2q2 − ż2q2

= A(μ0)w − 2 Re
{
g1(z,μ0)q1 + g2(z,μ0)q2

}
+R(μ0)(w + z1q1 + z1q1 + z2q2 + z2q2).

The normal form of (7.2) becomes

ν̇ = Λν + G(ν,μ0). (B.1)

Substituting (7.5) into (7.1) and using (B.1), we obtain

iω1[ψν1ν1 − ψν1ν1] + iω2[ψν2ν2 − ψν2ν2] − Λ(μ0)ψ

= g(ν + ψ,μ0) − G(ν,μ0) − ψν1G1(ν,μ0)

− ψν1G1(ν,μ0) − ψν2G2(ν,μ0) − ψν2G2(ν,μ0), (B.2)

where subscripts denote partial differentiations. We now express ψ as a Taylor series with
ψjksl = ∂ψj+i+s+l/∂ν

j

1 ∂ν1
k∂νs

2∂ν2
l :

ψ(ν, ν) =
∑

ψjksl

ν
j

1 ν1
kνs

2ν2
l

j !k!s!l! + O
(|ν|4).
2�j+k+s+l�3
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Next, using the facts that the normal form G1(z,μ0) = e11|ν1|2ν1 + e12|ν2|2ν1 + O(|ν|5) and
G2(z,μ0) = e21|ν2|2ν2 + e22|ν1|2ν2 + O(|ν|5), and substituting the above equations into (B.2),
we obtain

[
2iω1I2 − Λ(μ0)

]
ψ2000ν

2
1 − [

2iω1I2 + Λ(μ0)
]
ψ0200ν1

2

+ [
2iω2I2 − Λ(μ0)

]
ψ0020ν

2
2 − [

2iω2I2 + Λ(μ0)
]
ψ0002ν2

2

+ 2
[
i(ω1 + ω2) − Λ(μ0)

]
ψ1010ν1ν2 + 2

[
i(ω1 − ω2) − Λ(μ0)

]
ψ1001ν1ν2

− 2
[
i(ω1 − ω2) + Λ(μ0)

]
ψ0110ν1ν2 − 2

[
i(ω1 + ω2) + Λ(μ0)

]
ψ0101ν1ν2

− 2Λ(μ0)ψ0011ν2ν2 − 2Λ(μ0)ψ1100ν1ν1

= 2
∑

j+k+s+l=2

(j !k!s!l!)−1hjkslν
j

1 ν1
kνs

2ν2
l + O

(|ν|3).
Equating coefficients yields the leading terms in the transform:

[
2iω1I2 − Λ(μ0)

]
ψ2000 = g2000, −[

2iω1I2 + Λ(μ0)
]
ψ0200 = g0200,

−Λ(μ0)ψ0011 = g0011, −2Λ(μ0)ψ1100 = g1100,[
2iω2I2 − Λ(μ0)

]
ψ0020 = g0020, −[

2iω2I2 + Λ(μ0)
]
ψ0002 = g0002,[

i(ω1 + ω2) − Λ(μ0)
]
ψ1010 = g1010,

[
i(ω1 − ω2) − Λ(μ0)

]
ψ1001 = g1001,

−[
i(ω1 − ω2) + Λ(μ0)

]
ψ0110 = g0110, −[

i(ω1 + ω2) + Λ(μ0)
]
ψ0101 = g0101,[

2iω1I2 − Λ(μ0)
]
ψ2000 = g2000, −[

2iω1I2 + Λ(μ0)
]
ψ0200 = g0200,

−Λ(μ0)ψ0011 = g0011, −2Λ(μ0)ψ1100 = g1100,[
2iω2I2 − Λ(μ0)

]
ψ0020 = g0020, −[

2iω2I2 + Λ(μ0)
]
ψ0002 = g0002,[

i(ω1 + ω2) − Λ(μ0)
]
ψ1010 = g1010,

[
i(ω1 − ω2) − Λ(μ0)

]
ψ1001 = g1001,

−[
i(ω1 − ω2) + Λ(μ0)

]
ψ0110 = g0110, −[

i(ω1 + ω2) + Λ(μ0)
]
ψ0101 = g0101.

We now carry out the expansion to higher order and equate the coefficients of the normal form
terms (|ν1|2ν1, |ν2|2ν2)

T and (|ν2|2ν1, |ν1|2ν2)
T . It is easy to see that for these two terms, some

coefficients on the right-hand of (B.2) vanish identically. For the terms |ν1|2ν1, we have

0 = g1
2000ψ

1
1100 + 1

2
g1

0200ψ
1
0200 + g1

1100

[
ψ1

1100 + 1

2
ψ2000

]
+ 1

2
g1

2100

+ g1
1010ψ

2
1100 + g1

1001ψ
2
1100 + 1

2
g1

0110ψ
2
2000 + 1

2
g1

0101ψ
2
0200 − e11

and

1

2
i(ω1 − ω2)ψ

2
2100 = g2

2000ψ
1
1100 + 1

2
g2

0200ψ
1
0200 + g2

1100

[
ψ1

1100 + 1

2
ψ2000

]
+ 1

2
g2

2100

+ g2
1010ψ

2
1100 + g2

1001ψ
2
1100 + 1

g2
0110ψ

2
2000 + 1

g2
0101ψ

2
0200.
2 2
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For the terms |ν2|2ν1, we have

0 = g1
2000ψ

1
0011 + g1

0020ψ
2
1001 + g1

0002ψ
2
0101 + g1

1100ψ
1
0011 + g1

1010

[
ψ2

0011 + ψ1
1001

]
+ g1

1001ψ
2
0011 + g1

0110ψ
1
0110 + g1

0101ψ
1
0101 + g1

0011

[
ψ2

0110 + ψ2
1010

] − e12

and

i(ω1 − ω2)ψ
2
1011 = g2

2000ψ
1
0011 + g2

0020ψ
2
1001 + g2

0002ψ
2
0101 + g2

1100ψ
1
0011

+ g2
1010

[
ψ2

0011 + ψ1
1001

] + g2
1001ψ

2
0011 + g2

0110ψ
1
0110

+ g2
0101ψ

1
0101 + g2

0011

[
ψ2

0110 + ψ2
1010

]
.

For the terms |ν2|2ν2, we have

0 = g1
2000ψ

1
0011 + g1

0020ψ
2
1001 + g1

0002ψ
2
0101 + g1

1100ψ
1
0011 + g1

1010

[
ψ2

0011 + ψ1
1001

]
+ g1

1001ψ
2
0011 + g1

0110ψ
1
0110 + g1

0101ψ
1
0101 + g1

0011

[
ψ2

0110 + ψ2
1010

] − e12

and

0 = g2
0020ψ

1
0011 + 1

2
g2

0002ψ
1
0002 + g2

0011

[
ψ1

0011 + 1

2
ψ0020

]
+ 1

2
g2

0021

+ g2
1010ψ

2
0011 + g2

0110ψ
2
0011 + 1

2
g2

1001ψ
2
0020 + 1

2
g2

0101ψ
2
0002 − e21.

For the terms |ν1|2ν2, we have

i(ω2 − ω1)ψ
2
1110 = g1

0020ψ
1
1100 + g1

2000ψ
2
0110 + g1

0200ψ
2
0101 + g1

0011ψ
1
1100

+ g1
1010

[
ψ2

1100 + ψ1
0110

] + g1
0110ψ

2
1100 + g1

1001ψ
1
1001

+ g1
0101ψ

1
0101 + g1

1100

[
ψ2

1001 + ψ2
1010

]
and

0 = g2
0020ψ

1
1100 + g2

2000ψ
2
0110 + g2

0200ψ
2
0101 + g2

0011ψ
1
1100 + g2

1010

[
ψ2

1100 + ψ1
0110

]
+ g2

0110ψ
2
1100 + g2

1001ψ
1
1001 + g2

0101ψ
1
0101 + g2

1100

[
ψ2

1001 + ψ2
1010

] − e22.

Therefore, we have

e11 = 1

2
g1

2100 + i

2ω1
g1

1100g
1
2000 + i

ω2

(
g1

1010g
2
1100 − g1

1001g
2
1100

) − i

4ω1 + 2ω2
g1

0101g
2
0200

− i
g1

0110g
2
2000 − i ∣∣g1

1100

∣∣2 − i ∣∣g1
0200

∣∣2
,

4ω1 − 2ω2 ω1 6ω1
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e12 = g1
1011 + i

ω2

(
g1

1010g
2
0011 − g1

1001g
2
0011

)
+ i

ω1

(
g1

2000g
1
0011 − g1

1100g
1
0011 − g1

0011g
2
0110 − g1

0011g
1
1010

) − i

ω1 + 2ω2
g1

0002g
2
0101

− i

ω1 − 2ω2
g0020g

2
1001 − i

2ω1 − ω2

∣∣g1
0110

∣∣2 − i

2ω1 + ω2

∣∣g1
0101

∣∣2
,

e21 = 1

2
g2

0021 + i

2ω2
g2

0011g
2
0020 + i

ω1

(
g1

0011g
2
1010 − g1

0011g
2
0110

) − i

4ω2 − 2ω1
g1

0020g
2
1001

− i

4ω2 + 2ω1
g1

0002g
2
0101 − i

ω2

∣∣g2
0011

∣∣2 − i

6ω2

∣∣g2
0002

∣∣2
,

e22 = g2
1110 + i

ω1

(
g1

1100g
2
1010 − g1

1100g
2
0110

)
+ i

ω2

(
g2

0020g
2
1100 − g2

0011g
2
1100 − g1

1010g
2
1100 − g1

1001g
2
1100

) − i

2ω1 + ω2
g1

0101g
2
0200

+ i

2ω1 − ω2
g1

0110g
2
2000 + i

ω1 − 2ω2

∣∣g2
1001

∣∣2 − i

ω1 + 2ω2

∣∣g2
0101

∣∣2
.
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