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We consider the effect of the effective timing of a delayed feedback on
the excitatory neuron in a recurrent inhibitory loop, when biological re-
alities of firing and absolute refractory period are incorporated into a
phenomenological spiking linear or quadratic integrate-and-fire neuron
model. We show that such models are capable of generating a large num-
ber of asymptotically stable periodic solutions with predictable patterns
of oscillations. We observe that the number of fixed points of the so-
called phase resetting map coincides with the number of distinct periods
of all stable periodic solutions rather than the number of stable patterns.
We demonstrate how configurational information corresponding to these
distinct periods can be explored to calculate and predict the number of
stable patterns.

1 Introduction

In a living nervous system, recurrent loops involving two or more neurons
are ubiquitous and are particularly prevalent in cortical regions for memory
such as the hippocampal-mesial temporal lobe complex (Traub & Miles,
1991). The simplest recurrent inhibitory loop (see Figure 1) in a neural
network consists of an excitatory neuron E and an inhibitory neuron I ,
where neuron E gives off collateral branches and excites the inhibitory
neuron I , which in turns inhibits the firing of E , in a delay time. (See
Foss, Longtin, Mensour, & Milton, 1996; Mackey & an der Heiden, 1984;
Mackey & Milton, 1987.) These previous studies show that two-neuron
inhibitory loops with delay display similar complex dynamic behaviors
as larger networks such as multistability, and many techniques developed
to deal with two-neuron networks can carry over to large-size networks.
Therefore, the two-neuron recurrent inhibitory loops have been used as
prototypes to improve our understanding of the impact on the network’s
computational performance of the interaction of time delay and inhibitory
feedback.
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Figure 1: A recurrent neuron loop consists of an excitatory neuron E and an
inhibitory neuron I , where neuron E excites the neuron I , which delivers an
inhibitory postsynaptic potential (IPSP) to the neuron E , in a time lag τ .

An interesting computational behavior of a delayed inhibitory loop is
multistability: the coexistence of multiple stable patterns such as equilib-
ria and periodic orbits. The coexistence of multiple equilibria in a neural
network is the basis of the mechanism for (associative) content-addressable
memory and retrieval (Foss et al., 1996; Hopfield, 1982, 1984; Milton, 2000;
Morita, 1993) where each equilibrium is identified with static memory, while
stable periodic orbits are associated with temporally patterned spike trains
(Canavier, Baxter, Clark, & Byrne, 1994; Foss et al., 1996; Foss, Moss, &
Milton, 1997). Multistability in a delayed neural network has been exten-
sively studied in the literature, in particular for delayed neural recurrent
loops (Foss et al., 1996, 1997), and experimentally in electrical circuits (Foss
et al., 1997) and recurrently clamped neurons (Foss & Milton, 2000). The
rigorous mathematical investigation of the coexistence of multiple peri-
odic orbits and the description of the domains of attraction of periodic
solutions as well as the structure of the global attractor can be found in
Chen and Wu (1999, 2000, 2001a, 2001b, 2001c) and Chen, Wu, and Krisztin
(2000).

Time delays, a powerful mechanism for multistability, are intrinsic prop-
erties of the nervous systems and are unavoidable in electronic implemen-
tation due to axonal conduction times, distances of interneurons, and the
finite switching speeds of amplifiers. An essential requirement for delay-
induced multistability in a delayed feedback loop is that the delay must be
longer than the response time of the system or intrinsic period of the spiking
neuron (Foss et al., 1996, 1997; Ikeda & Matsumoto, 1987). An example is
the delay differential equation,

dx(t)
dt

= −αx(t) + F (x(t − τ )), (1.1)
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where α is a positive constant and F is the feedback function. The work of an
der Heiden and Mackey (1992) and Ikeda and Matsumoto (1987) suggested
that multistability occurs when the time delay τ is longer than the intrinsic
timescale of the control mechanism, i.e., τ > α−1, and the feedback function
F is nonmonotonic. Losson (1991) and Losson, Mackey, and Longtin (1993)
studied equation 1.1 with the feedback function

F (x) =
{

c if x ∈ [x1, x2];
0 otherwise (x < x1 or x > x2),

(1.2)

and observed three coexisting attracting nonconstant periodic solutions
when α = 3.25, c = 20.5, x1 = 1, x2 = 2, and τ = 1. The Mackey-Glass delay
differential equation (Mackey & Glass, 1997), given by

dx(t)
dt

= −αx(t) + βx(t − 1)
1 + x(t − 1)10 , (1.3)

and originally introduced to model oscillations in neutrophil populations,
was found to have four coexisting, attracting periodic solutions in sym-
metric positive and negative pairs. Furthermore, Foss et al. (1996) studied
neural recurrent inhibitory loops using the well-known Hodgkin-Huxley
model (see details below) and found three coexisting attracting periodic
solutions.

Another important concept related to multistability is the phase resetting
curve (PRC), which describes the phase shift of an oscillation in response
to a perturbation in the neuron’s spike times. PRC is a powerful tool to
study the effects of perturbations on biological periodic oscillations. Var-
ious mathematical models based on phase-resetting properties have been
extensively used to study the effect of periodic inhibitory stimulation of cor-
tical slices (Schindler, Bernasconi, Stoop, Goodman, & Douglas, 1997) and
the occurrence of multistability in ring circuit models for CPGs (Canavier
et al., 1999), and to explain complex dynamical behaviors of large popula-
tions of neurons (Hoppensteadt & Izhikevich, 1997). In particular, Foss and
Milton (2000) developed a mathematical model that incorporates two mea-
surable parameters involving time delay and phase resetting to investigate
the occurrence of multistability in the delayed recurrent loop, where they
used multiple fixed points in a phase-resetting map to predict the number
of coexistent stable patterns.

Most of this work on inhibitory loops and feedbacks has been based on
the consideration of the dynamical behaviors of the single excitatory neuron
in the two-neuron inhibitory loop, and hence the model equation takes the
form of a scalar delay differential equation that can also arise in modeling
of a single neuron with delayed self-feedback. Many of the results require
the signal function to be nonmonotone. There are also two popular models
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for a single neuron in theoretical neuroscience: phenomenological spiking
neuron models and detailed conductance-based neuron models. In com-
parison with simple phenomenological spiking neuron models, detailed
conductance-based neuron models have a high degree of accuracy to mea-
sure the intrinsic complexity of a single neuron, such as firing and inhibitory
rebound spikes. A well-known example of the detailed conduction-based
models is the following Hodgkin-Huxley differential equation:

Cx′(t) = Iion(x, m, n, h) + Isyn(t) + Is(t),

Iion =−gNam3h(x(t) − ENa) − gK n4(x(t) − Ek) − gL (x(t) − EL ), (1.4)

where x(t) is the membrane potential of the neuron under considera-
tion at time t, C is the membrane capacitance, and Iion is the sum of
currents through sodium ion channel, potassium ion channel, and leak-
age channel. The applied currents have two parts: postsynaptic current
Isyn (PSC) and external stimulus Is . Constants gNa and gK are the maxi-
mum conductance of sodium and potassium ion channels, the constant
gL is the conductance of leakage channel, and constants ENa, EK , and EL

are empirical parameters called the reversal potential. Parameters com-
monly used are C = 1, gNa = 120, gK = 36, gL = 0.3, ENa = 115, EK = −12,
and EL = 10.613. There are three (gating) variables (m, n, h) that describe
the probability that a certain channel is open, and these variables evolve
according to the following differential equations:




m′(t) = αm(x)(1 − m) − βm(x)m,

n′(t) = αn(x)(1 − n) − βn(x)n,

h′(t) = αh(x)(1 − h) − βh(x)h,

(1.5)

where the functions α and β indexed by (m, n, h) are given by




αn = 0.1−0.01x
exp(1−0.1x)−1 , βn = 0.125

exp(x/80)

αm = 2.5−0.1x
exp(2.5−0.1x)−1 , βm = 4

exp(x/18)

αh = 0.07
exp(x/20) , βh = 1

exp(3−0.1x)+1 .

(1.6)

Unfortunately, the intrinsic complexity of the conductance-based model
makes it difficult for a careful theoretical and qualitative analysis. Thus,
simple phenomenological spiking neuron models are introduced especially
for the study of neural coding, memory, and network dynamics, in addition
to facilitation of engineering implementation. A widely used such model
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is the following linear integrate-and-fire model (LIF) for the membrane
potential,

dx(t)
dt

= −βx(t) + Isyn + Is(t), (1.7)

with the reset condition limt→t+
f

x(t) = Vr , where β is the decay rate, Vr is
the reset potential, and the firing time t f is defined by a threshold criterion,

t f : x(t) = ϑ1 and x′(t)|t=t f > 0, (1.8)

with ϑ1 being the firing threshold. Such a model can be seen as a reduced
neural model with a mean excitatory and inhibitory membrane potential
(averaged over the neuron). A nonlinear analog is the following quadratic
integrate-and-fire model (QIF), given by

dx(t)
dt

= β(x − µ)(x − γ ) + Isyn + Is(t) (1.9)

t f : x(t) = ϑ1 and x′(t)|t=t f > 0,

with the reset condition limt→t+
f

x(t) = Vr , where β is a constant, µ is the
critical reversal potential of resting state or inhibitory rebound, and γ is the
critical reversal potential of firing. (See Feng, 2001; Hansel & Mato, 2001;
Latham, Richmond, Nelson, & Nirenberg, 2000; and discussions below.)

However, simple phenomenological models alone are unable to capture
some important biological features exhibited by the detailed conduction-
based models, such as the absolute refractory period, which seems to be
an important factor for the occurrence of a large number of stable patterns,
and as the inhibitory rebound that enables spikes in initial functions to
propagate in future time.

This letter analyzes effects of these biological features on multistability
in phenomenological models in order to provide effective mechanisms for
phenomenological models to generate a huge number of coexisting stable
periodic solutions. The core to these mechanisms is the interaction of time
lag, inhibitory feedback, firing, rebound, and absolute refractory period,
incorporated in a (QIF) model with delayed feedback.

The relative simplicity of the phenomenological QIF model enables us to
formulate analytically the relevant phase-resetting map, based on which we
find that the number of fixed points of the phase-resetting map coincides
exactly with the number of distinct periods of stable periodic solutions
rather than with the number of distinct stable patterns. However, using
the configurational information corresponding to these distinct periods, we
can calculate the number of distinct periodic solutions and precisely predict
their patterns.
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Basic frameworks of the QIF models with delayed feedback are discussed
in section 2, and detailed discussions about QIF models are given in section
3, along with the description of numerical simulations and the connections
with phase-resetting techniques. Further comments are presented in the
final section.

2 Recurrent Inhibitory Loops: Model Formulation

A recurrent inhibitory loop is composed of two neurons: an excitatory
neuron E and an inhibitory neuron I . Injecting a large enough stimulus Is

into the dendrite of the neuron E causes its membrane potential to increase
until it reaches its firing threshold ϑ1. The neuron E fires and emits an action
potential or spike, and then the membrane potential is reset to a certain
value Vr (called reset membrane potential). In the absence of stimulus, a single
neuron is at rest, and the corresponding membrane potential is called the
resting membrane potential V0. The perpetuated stimulus causes the neuron
to emit a sequence of spikes called a spike train. In the absence of recurrent
inhibition, the period of spikes in the spike train is called the intrinsic spiking
period of the excitatory neuron E , denoted by T in the remaining part of this
article. The firing of neuron E excites the inhibitory interneuron I , which
delivers an inhibitory postsynaptic potential (IPSP) to the excitatory neuron
E .

Foss et al. (1996) described the membrane potential of the excitatory
neuron E using the Hodgkin-Huxley model (HH) by considering the effect
of IPSP as self-feedback. They obtained the following delay differential
system,




Cx′(t) = −gNam3h(x(t) − ENa) − gK n4(x(t) − Ek) − gL (x(t) − EL )

−F (x(t − τ )) + Is(t),

m′(t) = αm(x)(1 − m) − βm(x)m,

n′(t) = αn(x)(1 − n) − βn(x)n,

h′(t) = αh(x)(1 − h) − βh(x)h,

(2.1)

where F (x) is the signal function that describes the effect of the inhibitory
neuron I on the membrane potential of the excitatory neuron E , and τ is
the time lag. The corresponding linear integrate-and-fire model (LIF) and
quadratic integrate-and-fire model (QIF) are given by

x′(t) = −βx(t) − F (x(t − τ )) + Is(t), (2.2)

x′(t) = β(x − µ)(x − γ ) − F (x(t − τ )) + Is(t), (2.3)
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with firing time t f ,

t f : x(t) = ϑ1 and x′(t)|t=t f > 0,

and firing threshold ϑ1.
In order to specify a solution of the above delay differential equations,

it is necessary to give an initial function φ in the interval [−τ, 0]. In what
follows, the initial function has the form of neural spike trains. Namely, it
is given by a sum of square pulse functions as follows:

φ(t) =
∑

ψ(t − ti ), (2.4)

where

ψ(t) =
{

c if t ∈ [0, d];
0 otherwise,

(2.5)

with c being the amplitude of the action potential (e.g., c = 100 mV in the
Hodgkin-Huxley model) and d the duration of a spike. We shall use the
following piecewise nondecreasing constant function,

F1(x) =
{

a if x ≥ ϑ1;
0 otherwise,

(2.6)

where a is a positive constant. For simplification, we set the resting mem-
brane potential to zero (V0 = 0).

3 Simulations and Analysis

In what follows, we address the multistability issue in two regions classified
by the nature of the stimulus Is : the excitable regime where Is cannot make
the neuron fire and the periodic regime where Is makes the neuron fire
successively.

3.1 Hodgkin-Huxley Model (HH). When τ = 116 msec and the signal
function F (x) = µx with a constant µ, Foss et al. (1996) found that in the
excitable region Is = 0, each initial function φ gives rise to a solution that
is eventually periodic. These eventually periodic solutions are stable, but
the model has no coexisting attractor. In the periodic regime Is = 10 µA,
however, they found three coexisting attracting periodic solutions.

We obtained similar results using the piecewise constant function
F (x) = F1(x). In particular, for the piecewise constant function and in the
excitable regime Is = 0, we found that different initial functions give rise
to different, eventually periodic, solutions that are stable and there is no
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Figure 2: Four coexisting attracting periodic solutions generated by the exci-
tatory neuron E for the Hodgkin-Huxley model (HH) given by equations 2.1
with the piecewise constant signal function F1(x) when I = 10 µA, τ = 116 msec,
ϑ1 = 18.6 mV, and a = 16. Spikes in the initial function φ on the interval (−τ, 0)
are 4 msec in duration. After 50τ of transients, the periodic solutions are output
in six delay intervals. The right-hand side is the blow-up of the solutions in a
given period (not delay τ ) to clearly illustrate the patterns of solutions.

coexisting attractor. But in the periodic regime Is = 10 µA with parameters
τ = 116 msec, ϑ1 = 18.6 mV, and a = 16, we found four coexisting periodic
attractors shown in Figure 2. The corresponding trajectories exhibit exotic
transient behaviors but eventually become periodic.

3.2 LIF Model with Firing and Absolute Refractoriness. Each time
the excitatory neuron fires a spike, a feedback is delivered at time τ later.
Since the exact time course of action potential carries no information, for
most of our study of the simple phenomenological spiking neuron models,
the form of action potential may be neglected and the action potential
is characterized by firing time t f and the reset condition. For our linear
and quadratic integrate-and-fire models, the type of multistability not only
depends on the time delay τ but also on the effective timing of the feedback
that affects the excitatory neuron. The total timing of the feedback, denoted
by Tϑ , is the portion of the duration when the spike is above the firing
threshold. This total timing of the feedback is not characterized by the
reset condition and firing time mentioned in the simple phenomenological
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spiking neuron models. To simplify our presentation and simulations, we
now introduce an approximation of the spike time course.

3.3 Firing. If the membrane potential reaches its firing threshold ϑ1 from
below at a moment t f , an action potential (spike) is generated, and then the
membrane potential is reset to the reset potential Vr < 0. As the shapes of
spikes vary little and the form of an action potential is insignificant to the
LIF model, we can represent the time course of the membrane potential by
any function that increases from ϑ1 to c first and then decreases to Vr . In
our work, we choose the following continuous linear function,

x f (t) = x̂1(t) =
{

ϑ1 + c−ϑ1
s1−t f

(t − t f ) if t ∈ [t f , s1)

Vr + c−Vr
s2−s1

(s2 − t) if t ∈ [s1, s2],
(3.1)

or the continuous exponential function,

x f (t) = x̂2(t) =




ϑ1eα1(t−t f ) if t ∈ [t f , s1]

e−α2(s2−t)
[

Vr
s2−s1

(t − s1) + c eα2(s2−s1)

s2−s1
(s2 − t)

]
if t ∈ (s1, s2],

(3.2)

where c is the amplitude of action potential and s1 < s2 are the times when
x(t) = c and x(t) = Vr , respectively. All simulation results reported below
are based on the function x̂1. To simplify our simulation, we take c = 10 mV
for the rest of this article. We emphasize again that we introduce explicitly
the firing time course of the membrane potential in order to have the con-
tinuity for the action potential; all that is really needed for the analysis and
simulations is the timing for firing and the three parameters ϑ1, c, and Vr .

3.4 Absolute Refractory Period. The second factor determining the
effective timing of the feedback is the absolute refractory period, a short
period after the firing of a spike during which the neuron is not affected by
inputs at all. Without the input term I (t) = Is(t) − F (x(t − τ )), equation 2.2
becomes

dx
dt

= −βx, (3.3)

with the corresponding solution given by

xabs(t) = Vr e−β(t−s2), (3.4)
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Figure 3: Three coexisting attracting periodic solutions (patterns 3w8v,
1w2v2w6v, 1w3v1w3v1w2v) generated by the LIF model given by equation 2.2
with the signal function F1(x) for Is = 0.38 µA. Parameters are τ = 116 msec, β =
0.08, c = 10 mV, a = 0.6, s1 − t f = 0.60 msec, s2 − s1 = 2.7 msec, ϑ1 = 1.2 mV,
Vr = −1.1 mV, and dabs = 1.1 msec. The right-hand side is the blow-up of the
solutions in a given period (not delay τ ) to clearly illustrate the patterns of
solutions.

for t ∈ [s2, s2 + dabs], where dabs is the length of this period. The solution
xabs(t) = Vr e−β(t−s2) is the same as the function η, which describes the form of
the spike and spike afterpotential in the spike response model (SRM) when
mapping the integrate-and-fire model to the SRM (Gerstner & Kistler, 2002).
The absolute refractoriness allows the membrane potential to decay back
from the hyperpolarization (afterpotential) to the resting potential even if
feedback is delivered during this period.

In the periodic regime such as Is = 0.38 µA, we observe multiple co-
existing attracting periodic solutions shown in Figure 3, with parameters
τ = 116 msec, β = 0.08, c = 10 mV, a = 0.6, s1 − t f = 0.60 msec, s2 − s1 =
2.7 msec, ϑ1 = 1.2 mV, Vr = −1.1 mV, and dabs = 1.1 msec. Trajectories are
output in six delay intervals after 50τ of transients. The right-hand side
is the blow-up of the solutions in a given period (not delay τ ) to clearly
illustrate the patterns of solutions.

Ignoring the action potential and focusing on the small oscillatory part
of these solutions, we found that there exist only two shapes, denoted by w
and v, respectively. Because all solutions are composed of w and v, we can
describe patterns in terms of the number and order where w and v appear
within one period. Therefore, Figure 3 has three different patterns denoted
by 3w8v, 1w2v2w6v, and 1w3v1w3v1w2v, respectively. Figure 4 lists three
other patterns: 3w2v, 4w1v2w3v, and all v. These numerical observations
clearly show the capacity of the LIF model for generating a large number
of attracting periodic solutions.
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Figure 4: Three other asymptotically stable periodic patterns (3w2v, 4w1v2w3v
and all v) generated by the LIF model given by equation 2.2 with the signal
function F1(x) for Is = 0.38 µA and other parameters identical to those used in
Figure 3. The right-hand side is the blow-up of the solutions in a given period
(not delay τ ) to clearly illustrate the patterns of solutions.

The advantage of the LIF model is that the equation can be analytically in-
tegrated, and such a dynamic system exhibits multistability in the periodic
regime. Two important biological features of a single neuron are incorpo-
rated in the LIF model: the firing and absolute refractory period. The firing
determines the possible timing Tϑ of the corresponding feedback, and the
absolute refractoriness determines whether such a feedback has impact on
the excitatory neuron. If a feedback arrives at time s3 during the absolute re-
fractory period (s3 ∈ [s2, s2 + dabs)), then the feedback affects the membrane
potential of the excitatory neuron in only a small time interval, that is, the
effective timing is of the duration Tϑ − (s2 + dabs − s3).

In contrast to results of the work of Foss et al. (1996), in the excitable
regime and using various signal functions F including the one used in the
work of Foss et al., spikes in an initial function for the LIF model cannot
propagate in the subsequent delay intervals, and spike train patterns cannot
be generated. The reason is that another important biological function of
a single neuron, inhibitory rebound, is not captured by the LIF model.
The quadratic integrate-and-fire model, incorporating a rebound equation,
naturally solves this problem.

3.5 Quadratic Integrate-and-Fire Model. The quadratic integrate-and-
fire model (QIF) was proposed in Feng (2001), Hansel and Mato (2001), and
Latham et al. (2000):

τ
dx
dt

= a0(x − xrest)(x − xc) + RI (t), (3.5)
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where xrest is the resting membrane potential, a0 and R are positive con-
stants, and xc > xrest. When there is no external stimulus (I (t) = 0) and the
initial condition x(t) < xc , the membrane potential converges to the resting
membrane potential xrest. For x(t) > xc , the membrane potential increases
so that an action potential is triggered. The parameter xc can therefore be
interpreted as the critical potential for firing. From a biophysical point of
view, xc can be considered as a reversal potential due to the different ion
concentrations between the interior of cell membrane and its surrounding
liquid. In the QIF model, the relationship between a weak stimulus and the
equilibrium of the membrane potential is a quadratic function.

One of the motivations for us to introduce the QIF model is to have a
similar equation for the inhibitory rebound mechanism; another reason is
to use the QIF instead of the LIF model is the capability of a QIF model
to generate a large number of stable periodic patterns. In particular, we
have used both LIF and QIF models for intensive simulations, and our
simulations show that in the excitable region, both LIF and QIF models with
an inhibitory rebound mechanism (described below) can generate similar
results. However, in the periodic region, the QIF model can generate much
more stable patterns than the LIF model. Furthermore, it is much easier
to choose relevant parameter values to generate stable patterns by the QIF
model, and the generated patterns are more distinguishable.

3.6 Inhibitory Rebound Spike. When an inhibitory input is imposed
on a group of neurons for a short period of time and is then removed,
some neurons respond with one or more inhibitory rebound spikes. The
rebound occurs at the rebound time tb , when the inhibitory input makes the
membrane potential less than the so-called rebound threshold ϑ2 and when
the input is switched off so that I (t−

b ) < 0 and 0 ≤ I (tb) < Imax, where Imax

is the maximum value of an input that cannot make a neuron fire.
The QIF model alone, does not give inhibitory rebound spikes that seem

to be a very important factor to permit the spike propagation in the excitable
regime of recurrent inhibitory loops. To provide this inhibitory rebound
mechanism, we need to introduce the following rebound equation,

τ
dx
dt

= a0(x − xI )(x − xc) + RI (t), (3.6)

where xc > xI , xI is the critical reversal potential of inhibitory rebound
and xc is the critical reversal potential of the firing introduced above. The
rebound equation describes the dynamical behavior of the neuron from
the rebound time tb to the next spiking time. After the inhibitory input
is switched off, if x < xI and if xI < ϑ1, then the membrane potential x(t)
increases and finally approaches its equilibrium xI when I (t) = 0, or reaches
higher potential than xI when I (t) > 0. If xI > ϑ1 (the firing threshold) and
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when the membrane potential reaches its firing threshold ϑ1, the neuron
fires and creates an action potential.

We can now formulate our rules that govern the evolution of the neuron
potential for recurrent inhibitory loops. Let xrest = 0. Then we have

x′(t) = β(x − µ)(x − γ ) − F (x(t − τ )) + Is, (3.7)

where

µ =
{

xI if x(t) ≤ ϑ2 and the inhibitory input is switched off

xrest = 0 otherwise,

(3.8)

where β is a positive constant, ϑ2 < 0 is the rebound threshold, xI > ϑ1 is
the reversal potential of inhibitory rebound, and γ is the reversal potential
of the firing. After the membrane potential reaches the firing threshold ϑ1

at t = t f , the potential time course is given by

x(t) = x f (t), t ∈ [t f , s2]

x(t) = xabs(t), t ∈ [s2, s2 + dabs],

where xabs(t) is given by

dxabs(t)
dt

= β(xabs − xrest)(xabs − γ ), t ∈ [s2, s2 + dabs], (3.9)

with dabs being the length of the absolute refractory period. Consequently,
the rebound mechanism, the firing mechanism, and the absolute refractory
period as intrinsic properties of a neuron are all incorporated into the QIF
model.

Figure 5 shows three spike patterns (left) in the excitable regime Is = 0
generated by the quadratic integrate-and-fire model, in comparison with
the Hodgkin-Huxley model (right). For the QIF model, parameters are
τ = 116 msec, β = 0.08, c = 10 mV, a = 0.9, s1 − t f = 0.60 msec, s2 − s1 =
2.7 msec, ϑ1 = 1.2 mV, Vr = −1.1 mV, ϑ2 = −0.8 mV, xI = 2.5, γ = 3.0, and
dabs = 1.1 msec. We note that solutions of the QIF model are very similar
to those of the HH model. If spikes in an initial function φ are sufficiently
separated, spikes will propagate and finally form stable periodic solutions
as shown in Figures 5a and 5b. In such cases, different initial functions give
rise to different solutions. If spikes in an initial function φ are too close, as
in Figure 5c, spikes will eventually merge. There are no coexisting periodic
attractors in the excitable regime. We point out that the rebound mechanism
enables IPSP to bring the system state across the firing threshold separatrix,
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Figure 5: Three spike train patterns generated by the QIF model (left), in
comparison with the Hodgkin-Huxley model (right) in the excitable regime
Is = 0. For the QIF model, parameters are τ = 116 msec, β = 0.08, c = 10 mV,
a = 0.9, s1 − t f = 0.60 msec, s2 − s1 = 2.7 msec, ϑ1 = 1.2 mV, Vr = −1.1 mV,
ϑ2 = −0.8 mV, xI = 2.5, γ = 3.0, and dabs = 1.1 msec. In order to compare with
the HH model, values of the QIF model are amplified 10 times. If spikes in an
initial function are sufficiently separated (a, b), spikes will propagate without
merging. If spikes are too close (c), spikes will merge.

following the release of an inhibition so that spikes in initial functions can
propagate in future time.

Figure 6 shows, in the periodic regime Is = 0.38 µA, five coexisting
attracting periodic solutions generated by the QIF model with parameters
τ = 116 msec, β = 0.08, c = 10 mV, a = 0.9, s1 − t f = 0.60 msec, s2 − s1 =
2.7 msec, ϑ1 = 1.2 mV, Vr = −1.1 mV, ϑ2 = −0.8 mV, xI = 2.5, γ = 3.0, and
dabs = 1.1 msec. After 50τ of transients, the periodic solutions are output in
six delay intervals. The number of attractive periodic solutions composed
of two w oscillations and nine v oscillations within one period is 5, and this
is not a coincidence. It is equal to the number of different ways to arrange

two w’s and nine v’s in a ring: (11
2 )(9

9)
11 = 5, and all possible arrangements of

two w’s and nine v’s in a ring are

{
wwvvvvvvvvv, wvwvvvvvvvv, wvvwvvvvvvv,

wvvvwvvvvvv, wvvvvwvvvvv

}
.
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Figure 6: Five coexisting attracting periodic solutions of patterns: 2w9v,
1w1v1w8v, 1w2v1w7v, 1w3v1w6v, and 1w4v1w5v, generated by the QIF model
in the periodic regime Is = 0.38 µA. Parameters are the same as those used in
Figure 5. The right-hand side is the blow-up of the solutions in a given period
(not delay τ ) to clearly illustrate the patterns of solutions.
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Figure 7: Five other patterns generated by the QIF model in the periodic regime
Is = 0.38 µA. Parameters are identical to those in Figure 6. (a) Pattern 4w6v.
(b) Pattern 5w5v. (c) Pattern 4w1v2w2v. (d) Pattern 6w1v1w1v. (e) Pattern
wwwwwwwww. The right-hand side is the blow-up of the solutions in a given
period (not delay τ ) to clearly illustrate the patterns of solutions.

Figure 7 displays five other patterns: 4w6v, 5w5v, 4w1v2w2v, 6w1v1w1v,
and wwwwwwwww.

Similar to the linear integrate-and-fire model, equation 3.7 can be inte-
grated analytically. Let I = Is − F (x(t − τ )). In the intervals where I is a
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Table 1: Number of Stable Patterns and Number of Distinct Periods When
τ = nT .

Number of Number of Number of Number of
τ Patterns Periods τ Patterns Periods

T 1 1 5T 4 3
2T 2 2 6T 6 4
3T 2 2 7T 8 4
4T 3 3 8T 13 5

constant, equation 3.7 can be written in the form

dx
dt

= β(x − λ1)(x − λ2), (3.10)

where

λ1 = µ + γ

2
+

√(
µ − γ

2

)2

− I
β

and λ2 = µ + γ

2
−

√(
µ − γ

2

)2

− I
β

.

The solution of the above equation is given by

x(t) =




µ+γ

2 + x(t0)− µ+γ

2

1−β(x(t0)− µ+γ

2 )(t−t0)
if (µ − γ )2 = 4I

β
;

λ2 + (x(t0)−λ2)(λ1−λ2)
x(t0)−λ2−(x(t0)−λ1)eβ(λ1−λ2)(t−t0) if (µ − γ )2 > 4I

β
,

(3.11)

where t0 is an initial time. A similar but slightly more complicated formula
can be derived if (µ − γ )2 < 4I

β
. Therefore, the trajectory for a given initial

function φ can be analytically obtained. However, for most initial functions,
it seems that trajectories exhibit quite exotic transient behaviors before they
eventually become periodic.

Using the above analytical expression for solutions of the QIF model,
we can calculate the number of stable periodic patterns and the number of
distinct periods of stable periodic patterns, listed in Table 1 when τ = nT ,
n is an integer from 1 to 8, and T is the intrinsic spiking period.

We explain how Table 1 is obtained at the end of this section. We point
out that when τ �= nT , the results become more complicated due to two
different types of W oscillation coexisting in one stable pattern and due to
the transition from one subset of stable patterns to another at certain critical
values of the time delay τ . We defer detailed discussions to future work
but list in Tables 2, 3, and 4 some illustrative examples when τ ∈ (T, 2T),
τ ∈ (2T, 3T), and τ ∈ (3T, 4T). In particular, in the region (T, 2T), mul-
tistability occurs only in the subinterval τ ∈ (T + 0.5488T, T + 0.5552T].
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Table 2: Number of Stable Patterns and Number of Distinct Periods When
τ ∈ (T, 2T).

τ Number of Patterns Number of Periods

(T, T + 0.1815T] 1 1
(T + 0.1815T, T + 0.3890T] 1 1
(T + 0.3890T, T + 0.5488T] 1 1
(T + 0.5488T, T + 0.5552T] 2 2
(T + 0.5552T, T + 0.6329T] 1 1
(T + 0.6329T, 2T) 1 1

Table 3: Number of Stable Patterns and Number of Distinct Periods When
τ ∈ (2T, 3T).

τ Number of Patterns Number of Periods

(2T, 2T + 0.1815T] 2 2
(2T + 0.1815T, 2T + 0.3890T] 2 2
(2T + 0.3890T, 2T + 0.5488T] 2 2
(2T + 0.5488T, 2T + 0.5552T] 4 3
(2T + 0.5552T, 2T + 0.6329T] 3 2
(2T + 0.6329T, 2T + 0.7586T] 2 2
(2T + 0.7586T, 2T + 0.8486T] 1 1
(2T + 0.8486T, 2T + 0.8767T] 2 2
(2T + 0.8767T, 2T + 0.9290T] 2 2
(2T + 0.9290T, 3T) 1 1

Table 4: Number of Stable Patterns and Number of Distinct Periods When
τ ∈ (3T, 4T).

τ Number of Patterns Number of Periods

(3T, 3T + 0.1815T] 2 2
(3T + 0.1815T, 3T + 0.3890T] 2 2
(3T + 0.3890T, 3T + 0.5488T] 2 2
(3T + 0.5488T, 3T + 0.5552T] 5 3
(3T + 0.5552T, 3T + 0.6329T] 4 2
(3T + 0.6329T, 3T + 0.8486T] 3 3
(3T + 0.8486T, 3T + 0.8767T] 6 4
(3T + 0.8767T, 3T + 0.9290T] 4 4
(3T + 0.9290T, 4T) 2 2

In the region (2T, 3T), multistability cannot occur in the intervals τ ∈
(2T + 0.7586T, 2T + 0.8486T] ∪ (2T + 0.9290T, 3T). And in region (3T, 4T),
multistability occurs everywhere.

3.7 Phase Resetting Properties. The effect of the IPSP in the QIF model
can be summarized by the phase reset curve (PRC). PRC describes the phase
shift related to the phase at which the IPSP arrives in the neuron’s spike
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Figure 8: The phase-resetting curve (point curve), its approximation (solid
curve) of the QIF model, and the dotted line of no phase resetting (
′ = 
).

time. The phase 
 at which the IPSP arrives is


 = tp − t f

T
, (3.12)

where tp is the time that the IPSP is delivered, t f is the firing time of the last
spike, and T is the intrinsic spiking period (Foss & Milton, 2000). Following
the arrival of the IPSP, the phase has been reset by an amount � called the
phase reset, which is defined by

� = 1 − t1 − t f

T
, (3.13)

where t1 is the firing time of the next spike. The new phase 
′ is easily
calculated by


′ = 
 + �. (3.14)

Figure 8 shows the phase-resetting curve (point curve) of the QIF model,
a plot of the new phase 
′ versus the original phase 
, and the approx-
imation (solid curve) and the dotted line of no phase resetting (
′ = 
)
when T = 10.54 msec and other parameters are identical to those used in
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Figure 7. From the original point (0,0) to point A, the new phase is equal to
the original phase (
′ = 
) because the IPSP does not affect the membrane
potential during the period of firing. From point A to B, the new phase (
′)
decreases as the original phase (
) increases because the absolute refractori-
ness reduces the effective timing of the feedback that affects the excitatory
neuron. After the absolute refractoriness, from point B to point C, the full
IPSP affects the excitatory neuron, and the new phase increases. The ap-
proximation was obtained by a least-square fitting to the phase-reset curve
that gives rise to

�(
) =
{

0 if 
 < 0.1575
a3


3 + a2

2 + a1
 + a0 otherwise, (3.15)

where a3 = −0.8287, a2 = 1.7939, a1 = −2.0261, and a0 = 0.27859, and the
root mean square (rms) error is 0.003577.

Each time the neuron fires a spike, an IPSP or feedback is delivered at
time τ later. We denote 
n as the phase of the nth IPSP due to a spike Sn.
The phase 
n is determined by


n = τ

T
+

k∑
i=1

�(
n−i ) − N, (3.16)

where k is the number of other IPSPs in the interval between 
n and the
spike Sn, and N is the number of spikes in this interval (see details in Foss
& Milton, 2000). We introduce a new variable �, defined by

� = 
 + N. (3.17)

Then equation 3.16 can be rewritten as

�n = τ

T
+

k∑
i=1

�(
n−i ) = F (�n−1, �n−1, ..., �n−k), (3.18)

where 
i = �i mod 1. When a pattern is asymptotically approached, �

approaches one of its fixed points �∗, which are the solutions of the equation

f (�) = g(�), (3.19)

where

f (�) = � − τ

T
, and g(�) = k�(�),
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Figure 9: Critical points of equation 3.19 for different values of the time delay
τ . Function f (�) is the dotted line, and function g(�) is the solid curve. Critical
points for equation 3.19 are 1 for τ = T , 2 for τ = 2T , 2 for τ = 3T , 3 for τ = 4T ,
3 for τ = 5T , 4 for τ = 6T , 4 for τ = 7T , and 5 for τ = 8T . We label three critical
points (D, E, F) for τ = 4T and four points (G, H, I, J) for τ = 6T .

k is the nearest integer that � is rounded down to. Foss and Milton (2000)
suggested that the condition for these solutions to be stable is that the slope
S∗ of �(
) evaluated at the fixed point satisfies −1 < S∗ < k−1.

Figure 9 shows the plot of f (�) and g(�) as functions of �, where the
approximation 3.15 is used. Critical points for equation 3.19 are 1 for τ = T ,
2 for τ = 2T , 2 for τ = 3T , 3 for τ = 4T , 3 for τ = 5T , 4 for τ = 6T , 4 for
τ = 7T , and 5 for τ = 8T . Having only one fixed point when τ < T implies
that multistability seems unlikely to arise in such a case. These numbers
of critical points coincide exactly with the numbers of distinct periods of
stable patterns listed in Table 1. This coincidence suggests that each critical
point represents a subset of stable periodic solutions, in which different
periodic solutions have the same period rather than just one stable pattern.
All periodic solutions in such a subset have the same configuration; they
are composed of the same number of w oscillations and the same number
of v oscillations within one period, but the orders where w and v appear
may be different.

Knowing the configuration of each subset, we are able to calculate the
number of periodic solutions in the subset and predict the patterns of these
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periodic solutions. To be more precise, we denote the set of all periodic
solutions of τ = nT as 
nT and a subset composed of m w oscillations
and h v oscillations within one period as 
m,h , where m + h ≤ n. When
τ = 4T , 
4T = 
1,0 ∪ 
0,1 ∪ 
3,1. There is only one periodic solution 1w in

1,0 and one periodic solution 1v in 
0,1. The number of periodic solutions

in 
3,1 is (4
3)(3

3)
4 = 1 and 
3,1 = {3w1v}. Hence, 
4T = {1w, 1v, 3w1v}. When

τ = 6T , 
6T = 
1,0 ∪ 
0,1 ∪ 
1,1 ∪ 
3,3. For the subset 
1,1, the number of

periodic solutions is (2
1)(1

1)
2 = 1, and the periodic solution is 1w1v1w1v1w1v.

For the subset 
3,3, the number of periodic solutions composed of three

w’s and three v’s is (6
3)(3

3)−2
6 = 3 because two possible arrangements for

pattern 1w1v (actually 1w1v1w1v1w1v has been counted in the subset 
1,1)
must be deducted; hence, 
3,3 = {3w3v, 2w2v1w1v, 2w1v1w2v}. Using this
approach to calculate the number of periodic solutions in a subset, we can

calculate the number of periodic solutions for τ = 8T as 1 + 1 + (8
3)(5

5)
8 +

(7
5)(2

2)
7 + (7

6)(1
1)

7 = 13.
From Table 1, we conclude that both the number of stable patterns and the

number of distinct periods of stable patterns increase as n increases when
τ = nT and n is an integer. However, when τ = nT + t0 and 0 < t0 < T ,
the stable periodic patterns become more complicated because in addition
to a v oscillation, two types of w oscillation may coexist in one pattern
in a certain region (a neighborhood around t0 = 0.6T), which are denoted
by W1 (down and up) and W2 (up, down, and up) (the notation is intro-
duced to demonstrate the shape of oscillations after the absolute refrac-
tory period (from time s2 + dabs to the next firing time t f )). The coexis-
tence of two types of w oscillations significantly increases the number of
stable patterns, though it does not increase the number of distinct peri-
ods of stable patterns. This suggests that as far as multistability is con-
cerned, we need to pay more attention to the distinct periods of stable
patterns.

Compared with the linear integrate-and-fire model (LIF), the neural in-
trinsic inhibitory rebound mechanism is incorporated into the quadratic
integrate-and-fire model, and it allows spikes in an initial function to prop-
agate in subsequent delay intervals in the excitable regime. In the peri-
odic regime, both the firing and absolute refractory period are the key for
simple phenomenological spiking neuron models to generate a large num-
ber of coexisting stable patterns. The firing determines the possible timing
of the feedback, and the absolute refractory period determines whether
the feedback has an impact on the excitatory neuron. The coexistence of
three different oscillations W1, W2, and v significantly increases the num-
ber of stable periodic patterns but does not affect the number of distinct
periods of stable periodic patterns. The number of critical points of the
phase-resetting map coincides exactly with the number of the distinct peri-
ods of stable patterns we analytically calculated. Properties of the multiple
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distinct periods of stable patterns seem to be an important issue in the study
of multistability.

Perhaps it is worth mentioning that the quadratic integrate-and-fire neu-
ron is closely related to the so-called θ -neuron, a type of canonical type I
neuron (Latham et al., 2000), given by

dϕ

dt
= (1 − cos ϕ) + �I (1 + cos ϕ), (3.20)

where �I = I − Iθ and Iθ denotes the minimal current necessary for repet-
itive firing of the model.

3.8 More on the Number of Periodic Patterns. We now briefly explain
how the results in Table 1 were obtained. The key is to determine what kind
of subsets 
m,h (composed of m W oscillations and h V oscillations) can exist
when τ = nT for a given integer n. Once this is done, we use the approach
described above to calculate the number of stable patterns.

First, we note that 
0,1 ⊆ 
nT for any positive integer n, that is, periodic
pattern 1V, can always be generated. Second, we remark that 
1,0 ⊆ 
nT

when n ≥ 2, that is, periodic pattern 1W can always be generated when
n ≥ 2. The existence of the other subset 
m,h with m, h ≥ 1 depends on
variables T , TF R, and Tϑ determined by the QIF model, where T is the
intrinsic spiking period, Tϑ is the possible feedback timing, and TF R is the
sum of the firing period and absolute refractory period. For a periodic
pattern in 
m,h , all W oscillations have the same shape, characterized by
(tup, Tϑ , t1ϑ )(up, down, up). Here the notation means that after the absolute
refractoriness, the membrane potential first increases for tup msec, then
decreases for Tϑ msec due to a feedback, and finally increases to the firing
threshold ϑ1 for t1ϑ msec. The condition of the existence of such periodic
patterns is

0 < tup = (n + 1 − m − h)T − [TF R + (m − 1)(Tϑ + t1ϑ − T + TF R)]
m

≤ Tc

for a parameter Tc determined by the QIF model. We are able to use the re-
lationship among T , TF R, and Tϑ in our simulations to determine what kind
of subset 
m,h can exist for a given n. For example, when τ = 4T , the above
condition for the subset 
3,1 is satisfied. Therefore, 
4T = {1w, 1v, 3w1v}.

4 Discussion

We have focused on the asymptotic behaviors of the excitation neuron
in a recurrent inhibitory loop, and our emphasis is on the capability of
such a single loop to generate multiple stable patterns. Although the well-
known Hodgkin-Huxley model has been previously used to address this



2146 J. Ma and J. Wu

multistability issue in Foss et al. (1996), such a dynamic system of four de-
grees of freedom is difficult to visualize and analyze. Our study shows that
the key to generating a large number of coexisting stable patterns in simple
phenomenological models is the incorporation of firing and the absolute
refractory period. The effect of both time delay and effective timing of the
feedback on the excitatory neuron determines the type of the multistability.
The firing procedure determines the possible timing of the feedback that
affects the excitatory neuron. The absolute refractoriness increases the com-
plexity of stable periodic patterns by changing the effective timing of the
feedback on the excitatory neuron.

Our simulation results show that a recurrent inhibitory loop based on the
simple phenomenological spiking neuron models exhibits coexisting multi-
ple attracting periodic solutions in the periodic regime. These solutions can
be categorized in terms of the symbols w and v, and the corresponding pe-
riodic patterns can be predicted by considering different ways of arranging
w and v in a ring.

The inhibitory rebound mechanism seems to play a very important role in
spike propagation in the excitable regime for recurrent inhibitory loops. The
quadratic integrate-and-fire model (QIF) captures very well this inhibitory
rebound period using the rebound equation.

The phase-resetting curve provides a powerful tool to study multistabil-
ity in recurrent inhibitory loops based on simple phenomenological spiking
neuron models. Our study shows that the number of fixed points of the
phase-resetting map coincides with the number of distinct periods of stable
patterns rather than the number of stable patterns when τ = nT and n is
an integer. With the help of the configurational information corresponding
to these critical points, we are able to calculate the number of the stable
periodic patterns and predict these stable periodic patterns.

For the recurrent inhibitory loop discussed in this article, the effect of
the inhibitory postsynaptic potential (IPSP) from the inhibitory neuron I
to the excitatory neuron E is simplified as a delayed self-feedback of the
membrane potential of the excitatory neuron E . Under this simplification,
we need only to consider dynamical behaviors of the single excitatory
neuron E , and hence the model equation takes the form of a scalar delay
differential equation. However, a more realistic approach for such a two-
neuron network must be based on the coupled differential equations,

{
x′(t) = β(x − µ)(x − γ ) − F (y(t)) + Is

y′(t) = β(y − µ)(y − γ ) + F (x(t − τ )),
(4.21)

with the firing time t fx and t fy

{
t fx : x(t) = ϑ1 and x′(t)|t=t fx

> 0
t fy : y(t) = ϑ1 and y′(t)|t=t fy

> 0,
(4.22)



Multistability in Neuron Models 2147

for the excitatory neuron and the inhibitory neuron, where x(t) is the mem-
brane potential of the excitatory neuron E , y(t) is the membrane potential
of the inhibitory neuron I , and F (x) is the signal function. Detailed study
of equations 4.21 remains a challenging task for the future.
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