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TRAVELING WAVEFRONTS IN A DELAYED FOOD-LIMITED
POPULATION MODEL∗

CHUNHUA OU† AND JIANHONG WU‡

Abstract. In this paper we develop a new method to establish the existence of traveling
wavefronts for a food-limited population model with nonmonotone delayed nonlocal effects. Our
approach is based on a combination of perturbation methods, the Fredholm theory, and the Banach
fixed point theorem. We also develop and theoretically justify Canosa’s asymptotic method for the
wavefronts with large wave speeds. Numerical simulations are provided to show that there exists a
prominent hump when the delay is large.
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1. Introduction. There has been some success in establishing the existence of
traveling wavefronts for the reaction-diffusion equation with nonlocal delayed nonlin-
earity. When the nonlinearity is monotone, the existence of traveling wavefronts can
be obtained by extension of the methods of the super/subsolution pair [1], [7], [29],
homotopy [3], and Leray-Schauder degree [28]. Unfortunately, when the delayed non-
linearity is no longer monotone, very little has been achieved (except for the work in
[9]). While one suspects that the method developed by Wu and Zou [29] and based on
a nonstandard ordering could be applicable, the construction of a supersolution and
subsolution pair is nontrivial, and it is almost as difficult as solving the original given
equations. In this paper we develop a new approach to establish the existence of trav-
eling wavefronts in the case when the delayed nonlinearity is nonmonotone. We shall
demonstrate this approach by considering the following food-limited reaction-diffusion
equation

(1.1)
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + u(t, x)

1 − (f ∗ u)(t, x)

1 + γ(f ∗ u)(t, x)
,

where the parameter γ > 0, and the spatiotemporal convolution f ∗ u is defined by

(1.2) f ∗ u =

∫ t

−∞

∫ ∞

−∞
f(t, s, x, y)u(s, y)dyds,

with the kernel f(t, s, x, y) satisfying the normalization condition∫ t

−∞

∫ ∞

−∞
f(t, s, x, y)dyds = 1.
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104 CHUNHUA OU AND JIANHONG WU

The simplest version of (1.1) without diffusion is the following ODE:

(1.3)
du

dt
= ru(t)

K − u(t)

K + γu(t)
,

where r,K, and γ are positive constants. This equation was first proposed by Smith
[25] as a mathematical model for population of Daphnia (water flea), and a derivation
of this equation is given in [23]. The equation can also be used to study the effects of
environmental toxicants on aquatic populations [16].

The delayed food-limited model

(1.4)
du

dt
= ru(t)

K − u(t− τ)

K + γu(t− τ)
, τ > 0,

has been studied recently by several authors; see [13], [17], [27], [18], and [8]. It seems
that the best result for the local stability of the positive equilibrium u = K is given in
[27]. For the first time, the global stability of the positive equilibrium was established
in [18]; see also [8] for further generalizations.

Equation (1.3) incorporating spatial dispersal was investigated by Feng and Lu
[11]. They considered both the reaction-diffusion equation without time delay

(1.5)
∂u

∂t
−Au(t, x) = r(x)u(t, x)

K(x) − u(t, x)

K(x) + γ(x)u(t, x)

and the corresponding time-delay model

(1.6)
∂u

∂t
−Au(t, x) = r(x)u(t, x)

K(x) − au(t, x) − bu(t− τ, x)

K(x) + aγ(x)u(t, x) + bγ(x)u(t− τ, x)
,

where x = (x1, x2, . . . , xn) ∈ Ω ⊆ Rn, with Ω bounded and the operator A, given by

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

βj(x)
∂

∂xj
,

is uniformly strongly elliptic and has coefficient functions that are uniformly Hölder
continuous in Ω̄. Feng and Lu studied the above problems subject to general boundary
conditions that include both the zero-Dirichlet and zero-Neumann cases, and they
established a global convergence result for the nonzero steady state.

We are here concerned about the general case (1.1), and we first note that this
includes various types of special cases by choosing the kernel function f.

(i) If the kernel f is taken to be

f(t, s, x, y) = δ(t− s)δ(x− y),

(1.1) becomes the reaction-diffusion equation without delay

(1.7)
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + u(t, x)

1 − u(t, x)

1 + γu(t, x)
,

which is a special case of (1.5).
(ii) If the kernel function f has a discrete time lag τ and spatial averaging, that

is,

f(t, s, x, y) =
1√

4π(t− s)
e−(x−y)2/4(t−s)δ(t− s− τ),
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 105

then (1.1) becomes

(1.8)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫∞
−∞

e−(x−y)2/4τ
√

4πτ
u(t− τ, y)dy

1 + γ
∫∞
−∞

e−(x−y)2/4τ√
4πτ

u(t− τ, y)dy
.

A derivation of this type of model, using probabilistic arguments, was given in [4]. In
this model, the movement of individuals to their present positions from where they
have been at previous times is accounted for by a spatial convolution with a kernel
that spreads normally with a dependence on the delay.

(iii) If f(t, s, x, y) = δ(x− y)G(t− s), where

(1.9) G(t) =
1

τ
e−t/τ or G(t) =

t

τ2
e−t/τ ,

(1.1) becomes a model of reaction diffusion equation with distributed delay:

(1.10)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫ t

−∞ G(t− η)u(η, x)dη

1 + γ
∫ t

−∞ G(t− η)u(η, x)dη
.

The parameter τ measures time delay and is comparable to the discrete delay τ in
(1.8). The two kernel functions G in (1.9) are used frequently in the literature on
delay differential equations. The first of the two functions G is sometimes called the
“weak” generic kernel because it implies that the importance of events in the past
decreases exponentially. The second kernel (the “strong” generic case) is different
because it implies that a particular time in the past, namely, τ time units ago, is
more important than any other since this kernel achieves its unique maximum when
t = τ. This kernel can be viewed as a smoothed out version of the case G(t) = δ(t−τ),
which gives rise to the discrete delay model.

(iv) If the kernel f is taken to be

f(t, s, x, y) =
1√

4π(t− s)
e−(x−y)2/4(t−s)G(t− s),

then (1.1) is a reaction diffusion equation with both distributed delay and spatial
averaging. In the distributed delay case with G(t) = 1

τ e
−t/τ , a formal asymptotic

expansion of traveling wavefront to (1.1) when τ is small was found recently by Gourley
and Chaplain by using the so-called linear chain techniques; see [14], [15]. But the
convergence of this series or the proof of validity of this expansion has been absent.
The central idea of this trick is to recast the traveling wave equation into a higher
dimensional system of ODEs without delay. When τ is small, Fenichel’s geometrical
singular perturbation theory (see [12] or part two of [2]) is applicable. As mentioned
in [14], if G(t) = t

τ2 e
−t/τ , linear chain techniques are still applicable, but the system

of traveling wave profile equation is six-dimensional. While the trick remains to be
effective theoretically, it will be much more difficult in practice. Apparently, it is well
known that the drawback of this method is that it is applicable only for models with
the special distributed delays. One cannot extend this technique to the discrete case.
Another disadvantage of this approach is that if the unperturbed system (τ = 0) is a
higher dimensional system, the construction of a traveling wavefront is extraordinarily
difficult.

As mentioned in section 3 of [14], traveling wave solutions to (1.1) in the discrete
case are much more difficult to study than in the distributed case with specific ker-
nels, because we are no longer able to recast the wave profile equation of (1.8) into
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106 CHUNHUA OU AND JIANHONG WU

a nondelay equation, and thus Fenichel’s geometrical singular perturbation theory
cannot be directly used to find a heteroclinic connection in a finite dimensional man-
ifold. Generally, it is well known that in this case the search for traveling wavefronts
becomes a much more difficult task.

The purpose of this paper is to develop a completely new approach suitable for all
of the aforementioned cases for the existence of traveling wavefronts. The principal
result can be stated as follows.

Theorem 1.1. For any fixed constant c ≥ 2, there exists a real number δ =
δ(c) > 0 so that for τ ∈ [0, δ], (1.1) possesses a traveling wavefront u(t, x) = U(x− ct)
satisfying U(−∞) = 1 and U(∞) = 0.

We should remark that our approach here can be developed to study more general
equations including

∂u

∂t
(t, x) =

∂2u

∂t2
(t, x) + u(t, x)H((f ∗ u)(t, x)),

with H(·) a decreasing function; we refer to [20] for this development.
Although the main result should be of interest, we wish to emphasize the novelty

of the approach that we develop. This approach is based on a combination of the
perturbation analysis, the Fredholm operator theory, and the fixed point theorems
and is expected to find applications in other models as well. A detailed proof is given
for case (ii) and is sketched to emphasize the key differences for cases (iii) and (iv).
This approach does not work when the delay is not small. In the case where the delay
is arbitrary, we develop in section 5 Faria, Huang, and Wu’s perturbation method [9]
for traveling wavefronts with large wave speeds. We shall provide both theoretical
justifications and numerical simulations for this method.

2. The discrete-delay and spatial-averaging case. In the discrete-delay and
spatial-averaging case, i.e., the case when the delayed term involves an evaluation
of the dependence exactly time τ ago and a convolution in space to account for the
movement of individuals to their present positions from their past positions at previous
times, (1.1) becomes

(2.1)
∂u

∂t
=

∂2u

∂x2
+ u(t, x)

(
1 −

∫∞
−∞ 1/

√
4πτe−(x−y)2/(4τ)u(t− τ, y)dy

1 + γ
∫∞
−∞ 1/

√
4πτe−(x−y)2/(4τ)u(t− τ, y)dy

)
.

Our intention here is to establish the existence of traveling waves to (2.1) con-
necting the two uniform steady states u = 0 and u = 1. For this purpose, we first
show the existence of such wavefronts when the delay τ is zero.

Letting τ → 0+, we arrive at the following nondelay version of the food-limited
model:

(2.2)
∂u

∂t
=

∂2u

∂x2
+ u

1 − u

1 + γu
,

which is actually a modified version of the well-known Fisher’s equation. Obviously,
(2.2) has two uniform steady-state solutions u = 0 and u = 1. Considering the trav-
eling wavefront form by setting u(t, x) = U0(z) = U0(x − ct) in (2.2), we obtain the
following second-order ODE for U0(z):

(2.3) U ′′
0 + cU ′

0 + U0
1 − U0

1 + γU0
= 0

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

30
.6

3.
17

4.
98

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 107

or equivalently the following first-order coupled system

(2.4)

{
U ′

0 = V0,

V ′
0 = −cV0 − U0

1−U0

1+γU0
.

The existence of traveling wavefronts to (2.4) can be established by using the
standard phase-plane techniques. Here we present only the result below.

Theorem 2.1. If c ≥ 2, then in the (U0, V0) phase plane, a heteroclinic connec-
tion exists between the critical points (U0, V0) = (1, 0) and (0, 0). Furthermore, the
traveling front U0(z) is strictly monotonically decreasing.

It is easy to see that the equilibrium (1, 0) is a saddle and the origin (0, 0) is a
stable node.

To obtain an extension when τ > 0, we need the following estimate on the deriva-
tive of the wave profile U0.

Theorem 2.2. Let U0 be a traveling wavefront solution to (2.3). Then

(2.5) − 1

2
√
γ
< U ′

0(z) ≤ 0 for all z ∈ (−∞,∞).

Proof. Since U0 is strictly monotonically decreasing, it is obvious that U ′
0(z) ≤ 0.

It remains to prove that U ′
0(z) > −1/(2

√
γ). Note that (2.3) can be rewritten as

(2.6) U ′′
0 + cU ′

0 − 1

γ
U0 +

(
1 +

1

γ

)
U0

1 + γU0
= 0.

Let

λ1 =
−c−

√
c2 + 4/γ

2
< 0, λ2 =

−c +
√
c2 + 4/γ

2
> 0.

Then it follows from (2.6) that

U0(z) =
(1 + 1

γ )

λ2 − λ1

[∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds +

∫ ∞

z

eλ2(z−s) U0

1 + γU0
ds

]
,

and hence using the fact that 0 < U0 < 1, we have

U ′
0(z) =

(1 + 1
γ )

λ2 − λ1

[
λ1

∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds + λ2

∫ ∞

z

eλ2(z−s) U0

1 + γU0
ds

]

>
(1 + 1

γ )λ1

λ2 − λ1

∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds

≥
(1 + 1

γ )λ1

λ2 − λ1
max

(
U0

1 + γU0

)∫ z

−∞
eλ1(z−s)ds

= −
(1 + 1

γ )

(1 + γ)
√
c2 + 4/γ

≥ − 1

2
√
γ
.

The proof is complete.
Now we are in a position to establish the existence of traveling wavefronts to

(2.1). We will show that the traveling fronts to (2.1) can be approximated by the
corresponding wavefronts U0(z) of (2.3) when τ is small. First, we introduce some
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108 CHUNHUA OU AND JIANHONG WU

notations. Let C(R,R) be the Banach space of continuous and bounded functions
from R to R equipped with the standard norm ||φ||C = sup{|φ(t)|, t ∈ R}. Let C1 =
C1(R,R) = {φ ∈ C : φ′ ∈ C}, C2 = {φ ∈ C : φ′′ ∈ C}, C0 = {φ ∈ C : limt→±∞ φ =
0}, and C1

0 = {φ ∈ C0 : φ′ ∈ C0}, where the corresponding norms are defined by

||φ||C0 = ||φ||C , ||φ||C1 = ||φ||C1
0

= ||φ||C + ||φ′||C ,

and

||φ||C2 = ||φ||C + ||φ′||C + ||φ′′||C .

Set u(t, x) = U(z) = U(x− ct) in (2.1). Then U(z) satisfies the profile equation

(2.7) −cU ′ = U ′′ + U
1 −H(U)(z)

1 + γH(U)(z)
,

where

H(U)(z) =

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)U(z − y + cτ)dy.

We suppose that U can be approximated by U0 and hence assume that U = U0 +W.
Then an equation for W is given by

(2.8) −cW ′ = W ′′ + (U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)
− U0

1 − U0(z)

1 + γU0(z)
.

Applying Taylor’s expansions to

(U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)

yields

(U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)
= U0

1 −H(U0)

1 + γH(U0)

+W
1 −H(U0)

1 + γH(U0)
− (1 + γ)U0

(1 + γH(U0))2
H(W )

+R1(z, τ,W ),(2.9)

where R1(z, τ,W ) is the remainder (higher order terms) of this expansion, and for
the time being we write it as

R1(z, τ,W ) = (U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)

−U0
1 −H(U0)

1 + γH(U0)
(2.10)

−W
1 −H(U0)

1 + γH(U0)
+

(1 + γ)U0

(1 + γH(U0))2
H(W ).

Let g(x) = x 1−x
1+γx . Then we have

g′(x) =
1 − x

1 + γx
− (1 + γ)x

(1 + γx)2
.
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 109

Therefore, by (2.9), (2.8) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(2.11)
+ R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R2(z, τ) = U0
1 −H(U0)

1 + γH(U0)
− g(U0),

and

R3(z, τ,W ) = W
1 −H(U0)

1 + γH(U0)
− (1 + γ)U0

(1 + γH(U0))2
H(W ) − g′(U0(z))W (z).

Next we transform (2.11) into an integral equation as follows. Recall that the
equation

W ′′ + cW ′ −W = 0

has the characteristic equation

λ2 + cλ− 1 = 0

that has two real roots

λ1 =
−c−

√
c2 + 4

2
< 0, λ2 =

−c +
√
c2 + 4

2
> 0.

Thus (2.11) is equivalent to the following integral equation:

(2.12) W =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

⎞
⎠ .

We will study the existence of a solution W ∈ C0 to (2.12). For this purpose, we
define a linear operator L : C0 → C0 by

L(W )(z) = W −
∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

λ2 − λ1

−
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))W (s)ds

λ2 − λ1
.

It is obvious that L(W ) ∈ C0 if W ∈ C0. In order to verify the existence of a solution
W ∈ C0 to (2.12), we need to establish some estimates for the terms in the right-hand
side of (2.12) when W ∈ C0. We have the following.

Lemma 2.3. For each δ > 0, there is a σ > 0 such that

(2.13) ||R1(z, τ, φ) −R1(z, τ, ϕ)||C0
≤ δ||φ− ϕ||C0

and∫ z

−∞
eλ1(z−s)|R1(s, τ, φ) −R1(s, τ, ϕ)|ds +

∫ ∞

z

eλ2(z−s)|R1(s, τ, φ) −R1(s, τ, ϕ)|ds

≤ δ||φ− ϕ||C0

(2.14)
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110 CHUNHUA OU AND JIANHONG WU

for all finite τ and all φ, ϕ ∈ B(σ), where B(σ) is the ball in C0 with radius σ and
the center at the origin.

Proof. Since R1 is the remainder of Taylor’s expansion and ||Hφ|| ≤ ||φ|| for any
φ ∈ C, we have

(2.15) ||R1(·, τ, φ)|| = O(||φ||2C0
) as ||φ||C0

→ 0,

uniformly for all finite τ. Obviously R1(·, τ, φ), (R1)φ(·, τ, φ) (the derivative of R1 with
respect to φ), and (R1)φφ(·, τ, φ) (the second derivative of R1 with respect to φ) are
continuous for φ in a neighborhood of the origin in C0, and τ ∈ [0, τ0], where τ0 is a
positive number. Therefore, (2.13) and (2.14) follow from (2.15).

Lemma 2.4. As τ → 0, we have∣∣∣∣
∫ z

−∞
eλ1(z−s)R2(s, τ)ds +

∫ ∞

z

eλ2(z−s)R2(s, τ)ds

∣∣∣∣ = O(
√
τ)

uniformly for all z ∈ (−∞,∞).
Proof. Since

R2(z, τ) = U0
1 −H(U0)

1 + γH(U0)
− g(U0)

= U0
1 −H(U0)

1 + γH(U0)
− U0

1 − U0

1 + γU0
,

we need to show only that when τ is small, the following:

(2.16)

∫ z

−∞
eλ1(z−s) |H(U0)(s) − U0(s)| ds = O(

√
τ)

and

(2.17)

∫ ∞

z

eλ1(z−s) |H(U0)(s) − U0(s)| ds = O(
√
τ)

hold. In fact, we have∫ z

−∞
eλ1(z−s) |H(U0)(s) − U0(s)| ds

=

∫ z

−∞
eλ1(z−s)

∣∣∣∣
∫ ∞

−∞

1√
4πτ

e−y2/4τU0(s− y + cτ)dy − U0(s)

∣∣∣∣ ds
=

∫ z

−∞
eλ1(z−s)

∣∣∣∣
∫ ∞

−∞

1√
4πτ

e−y2/4τ [U0(s− y + cτ) − U0(s)] dy

∣∣∣∣ ds
≤

∫ z

−∞
eλ1(z−s)

∫ ∞

−∞

1√
4πτ

e−y2/4τ (|y| + cτ)dyds||U ′
0||

= O(
√
τ).

Similarly we can show (2.17).
Lemma 2.5. There exists an M0 > 0 such that for all W ∈ C0, the following

inequality:

(2.18)

∣∣∣∣
∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds +

∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM0||W ||C0
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 111

holds. Furthermore for any two elements φ and ϕ in C0, we have∣∣∣∣
∫ z

−∞
eλ1(z−s)(R3(s, τ, φ) −R3(s, τ, ϕ))ds +

∫ ∞

z

eλ2(z−s)(R3(s, τ, φ) −R3(s, τ, ϕ))ds

∣∣∣∣
= O(

√
τ)||φ− ϕ||C0 .

(2.19)

Proof. We rewrite R3 as

R3(z, τ,W ) = W

(
1 −H(U0)

1 + γH(U0)
− 1 − U0

1 + γU0

)

−H(W )

(
(1 + γ)U0

(1 + γH(U0))2
− (1 + γ)U0

(1 + γU0)2

)

− (1 + γ)U0

(1 + γU0)2
(H(W ) −W ) .(2.20)

Therefore, for the integrations of the first and the second lines on the right-hand side
of (2.20), we have from (2.16) the following estimates:∣∣∣∣

∫ z

−∞
eλ1(z−s)W

(
1 −H(U0)

1 + γH(U0)
− 1 − U0

1 + γU0

)
ds

∣∣∣∣ = O(
√
τ ||W ||),(2.21)

and ∣∣∣∣
∫ z

−∞
eλ1(z−s)H(W )

(
(1 + γ)U0

(1 + γH(U0))2
− (1 + γ)U0

(1 + γU0)2

)
ds

∣∣∣∣ = O(
√
τ ||W ||),(2.22)

due to the fact ||H(W )|| ≤ ||W ||. For the integration of the function in the last line
of (2.20), if W ∈ C1

0 , by exchanging the order of integration and integration by parts,
we have ∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2
(H(W ) −W ) ds

=

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ) (W (s− y + cτ) −W (s)) dyds

=

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

W ′(s + η)dηdyds

=

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2
W ′(s + η)dsdηdy

=
(1 + γ)U0(z)

(1 + γU0(z))2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

W (z + η)dηdy

−
∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

∫ z

−∞
W (s + η)

[
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

]′
dsdηdy

= O(
√
τ ||W ||).

(2.23)

To obtain the above result, we have used the fact that∫ z

−∞

∣∣∣∣ dds
[
eλ1(z−s) (1 + γ)U0(s)

(1 + γU0(s))2

]∣∣∣∣ ds
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112 CHUNHUA OU AND JIANHONG WU

is uniformly bounded for all z ∈ (−∞,∞). Therefore, from (2.21), (2.22), and (2.23)
it follows that there exists a constant M1 such that

(2.24)

∣∣∣∣
∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM1||W ||C0 .

Similarly, we can prove that there exists a constant M2 so that

(2.25)

∣∣∣∣
∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM2||W ||C0 .

Therefore, it follows from (2.24) and (2.25) that for any W ∈ C1
0 , we have∣∣∣∣

∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds +

∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM0||W ||C0 ,

with

M0 =

2∑
j=1

Mj .

Since C1
0 is dense in C0, the inequality (2.18) holds for all W ∈ C0. Thus (2.19) is

satisfied due to the fact that R3(s, τ,W ) is a linear functional of W.
We should mention that for each τ > 0 and W ∈ C0, we have R1, R2, and R3 ∈ C0

and hence∫ z

−∞
eλ1(z−s)(R1 + R2 + R3)ds +

∫ ∞

z

eλ2(z−s) [R1 + R2 + R3] ds ∈ C0.

Now we are ready to prove our main result.
Theorem 2.6. For any c ≥ 2, there exists a constant δ = δ(c) > 0 so that

for any τ ∈ [0, δ], (2.1) possesses a traveling wavefront u(t, x) = U(x− ct) satisfying
U(−∞) = 1 and U(∞) = 0.

Proof. Define an operator T : Ψ ∈ C2 → C from the homogeneous part of (2.11)
as follows:

(2.26) TΨ(z) = cΨ′(z) + Ψ′′(z) + g′(U0(z))Ψ(z).

The formal adjoint equation of TΨ = 0 is given by

(2.27) −cΦ′(z) + Φ′′(z) + g′(U0(z))Φ(z) = 0, z ∈ R.

We now divide our proof into five steps.
Step 1. We claim that if Φ ∈ C is a solution of (2.27) and Φ is C2-smooth, then

Φ = 0. Moreover, we have 
(T ) = C, where 
(T ) is the range space of T.
Indeed, when z → ∞, U0(z) → 0 and g′(U0(z)) → 1. Then (2.27) tends asymp-

totically to an equation with constant coefficients

(2.28) −cΦ′(z) + Φ′′(z) + Φ(z) = 0.

The corresponding characteristic equation of (2.28) is

(2.29) λ2 − cλ + 1 = 0.
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 113

Both roots of (2.29) have a positive real part as c ≥ 2, and thus we can conclude that
any bounded solution to (2.28) must be the zero solution. So as z → ∞, any solution
to (2.27) other than the zero solution must grow exponentially for large z. Then the
only solution satisfying Φ(±∞) = 0 is the zero solution. By the Fredholm theory (see
Lemma 4.2 in [22]) we have that 
(T ) = C.

Step 2. Let Θ ∈ C0 be given. We conclude that if Ψ is a bounded solution of
TΨ = Θ, then we have limz→±∞ Ψ(z) = 0.

In fact when z → ∞, the equation

(2.30) cΨ′(z) + Ψ′′(z) + g′(U0(z))Ψ(z) = Θ

tends asymptotically to

(2.31) cΨ′(z) + Ψ′′(z) + Ψ(z) = 0.

Note for (2.31), the ω-limit set of every bounded solution is just the critical point
Ψ = 0. Using Theorem 1.8 from [19], we find that every bounded solution of (2.30)
also satisfies

lim
z→∞

Ψ(z) = 0.

When z → −∞, (2.30) tends asymptotically to

(2.32) cΨ′(z) + Ψ′′(z) + g′(1)Ψ(z) = 0.

Since g′(1) = −1, the characteristic equation of (2.32) has two eigenvalues: λ̄1 < 0
and λ̄2 > 0. Thus every bounded solution of (2.32) must satisfy

lim
z→−∞

Ψ(z) = 0.

Inverting the time from z to −z and using the result in [19] again, we know that any
bounded solution to (2.30) satisfies limz→−∞ Ψ(z) = 0. Hence the claim of Step 2
holds.

Step 3. For a linear operator L : C0 → C0 defined by

L(W )(z) = W − 1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))W (s)ds

⎞
⎠ ,

we want to prove that 
(L) = C0; that is, for each Z ∈ C0, we have a W ∈ C0 so that

W − 1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s))W (s))ds

⎞
⎠ = Z(z).

To see this, we assume that ξ(z) = W (z) − Z(z) and obtain an equation for ξ as
follows:

ξ(z) =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))ξ(s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))ξ(s)ds

⎞
⎠

+
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))Z(s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))Z(s)ds

⎞
⎠ .
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114 CHUNHUA OU AND JIANHONG WU

Differentiating both sides twice yields

(2.33) −cξ′ − ξ′′(z) − g′(U0(z))ξ(z) = (1 + g′(U0(z)))Z(z).

Using the results that 
(T ) = C in Step 1 and Z ∈ C0, we obtain by Step 2 that there
exists a solution ξ(z) satisfying (2.33) and ξ(±∞) = 0. Returning to the variable W,
we have W = ξ + Z ∈ C0.

Step 4. Let N(L) be the null space of operator L. By Lemma 5.1 in [9], there is
a subspace N⊥(L) in C0 so that

C0 = N⊥(L) ⊕N(L);

see also [10]. It is clear that N⊥(L) is a Banach space. If we let S = L|N⊥(L) be

the restriction of L to N⊥(L), then S : N⊥(L) → C0 is one-to-one and onto. By the
well-known Banach inverse operator theorem, we have that S−1 : C0 → N⊥(L) is a
linear bounded operator.

Step 5. When L is restricted to N⊥(L), (2.12) can be written as

S(W )(z) =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [R1 + R2 + R3] ds

⎞
⎠ .

Since the norm ||S−1|| is independent of τ, it follows from Lemmas 2.3, 2.4, and
2.5 that there exist σ > 0, δ > 0, and 0 < ρ < 1 such that for all τ ∈ (0, δ] and
W,ϕ, ψ ∈ B(σ) ∩N⊥(L),

||F (z,W ) || ≤ 1

3
(||W || + σ)

and

||F (z, ϕ) − F (z, ψ)|| ≤ ρ||ϕ− ψ||,

where

F (z,W ) =
1

λ2 − λ1
S−1

⎛
⎝

∫ z

−∞ eλ1(z−s) [R1 + R2 + R3(τ, s,W )] ds

+
∫∞
z

eλ2(z−s) [R1 + R2 + R3(τ, s,W )] ds

⎞
⎠ .

It is easy to know that for any W ∈ B(σ) ∩N⊥(L), we have

||F (z,W ) || ≤ 1

3
(||W || + σ) ≤ σ.

Hence F (z, ϕ) is a uniform contractive mapping for W ∈ N⊥(L)∩B(σ). By using the
Banach contraction principle, it follows that for τ ∈ [0, δ], equation (2.12) has a unique
solution W ∈ N⊥(L). Returning to the original variable, W + U0 is a heteroclinic
connection between the two equilibria 1 and 0. This completes the proof.

3. The distributed delay case. In this section we consider (1.1) with the
kernel function

f(t, s, x, y) = G(t− s)δ(x− y),
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 115

where

(3.1) G(t) =
1

τ
e−t/τ or G(t) =

t

τ2
e−t/τ .

We shall focus on the following equation

(3.2)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫ t

−∞
t−η
τ2 e−(t−η)/τu(η, x)dη

1 + γ
∫ t

−∞
t−η
τ2 e−(t−η)/τu(η, x)dη

since the corresponding analysis for the weak kernel G(t) = 1
τ e

−t/τ is much easier.
Instead of using the linear chain trick which is valid only for the kernels in (3.1), we
shall use the approach in section 2 to prove rigorously that traveling fronts exist when
τ is small.

As in section 2, assume that u(t, x) = U(z), z = x− ct, where c ≥ 2. Substituting
u = U(z) into (3.2), we have a wave equation for U

−cU ′ = U ′′ + U
1 −

∫∞
0

η
τ2 e

−η/τU(z + cη)dη

1 + γ
∫∞
0

η
τ2 e−η/τU(z + cη)dη

.

Let U = U0 +W, where U0 is the traveling fronts for (2.4). Then we have an equation
for W of the form

(3.3) −cW ′ = W ′′ −W + (U0 + W )h[U0 + W ] − U0
1 − U0

1 + γU0
,

where the functional h is defined by

h[U ](z) =
1 −

∫∞
0

η
τ2 e

−η/τU(z + cη)dη

1 + γ
∫∞
0

η
τ2 e−η/τU(z + cη)dη

.

Applying Taylor’s expansion to h[U0 + W ], we have

h[U0 + W ](z) =
1 −

∫∞
0

η
τ2 e

−η/τ [U0(z + cη) + W (z + cη]dydη

1 + γ
∫∞
0

η
τ2 e−η/τ [U0(z + cη) + W (z + cη]dydη

= h[U0](z) −
(1 + γ)(

1 + γ
∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
∫ ∞

0

η

τ2
e−η/τW (z + cη)dη + · · · .

Thus (3.3) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(3.4) + R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R1(z, τ,W ) = (U0 + W )h[U0 + W ](z) − U0h[U0](z)

+U0
(1 + γ)(

1 + γ
∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
∫ ∞

0

η

τ2
e−η/τW (z + cη)dη(3.5)

−h[U0]W,

(3.6) R2(z, τ) = U0h[U0](z) − U0
1 − U0

1 + γU0
,
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116 CHUNHUA OU AND JIANHONG WU

and

R3(z, τ,W ) =
(1 + γ) U0

∫∞
0

η
τ2 e

−η/τW (z + cη)dη(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
(3.7)

+h[U0]W (z) − g′(U0(z))W (z).

To obtain the existence of the traveling fronts when τ is small, we need to prove that
Lemmas 2.3, 2.4, and 2.5 hold. The proofs are quite similar to those in the discrete
case, so we shall prove only Lemma 2.5 as an illustration and leave the proofs of
Lemmas 2.3 and 2.4 to interested readers.

Proof of Lemma 2.5 in the case of distributed delay. Note that

g′(U0(z)) =
1 − U0

1 + γU0
− (1 + γ)U0

(1 + γU0)2
.

So

R3(z, τ,W ) = F̄ (U0)(z)

(∫ ∞

0

η

τ2
e−η/τW (z + cη)dη −W (z)

)

−
(

(1 + γ) U0(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2 − (1 + γ)U0

(1 + γU0)2

)
W

+

(
h[U0] −

1 − U0

1 + γU0

)
W,

where

F̄ (U0)(z) = − (1 + γ)U0(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2 .
We note that when τ is small,∫ ∞

0

η

τ2
e−η/τU0(z + cη)dη − U0(z) = O(τ)

holds uniformly for any z ∈ (−∞,∞). Therefore, we have

∫ z

−∞
eλ1(z−s)

(
(1 + γ) U0(

1 + γ
∫∞
0

η
τ2 e−η/τU0(s + cη)dη

)2 − (1 + γ)U0

(1 + γU0)2

)
W (s)ds

= O(τ ||W ||)

and ∫ z

−∞
eλ1(z−s)

(
h[U0] −

1 − U0

1 + γU0

)
W (s)ds = O(τ ||W ||).

We now prove that∫ z

−∞
eλ1(z−s)F̄ (U0)(s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds = O(τ ||W ||).

Using the fact that

F̄ (U0)(s) = O(1)
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 117

for any s ∈ (−∞,∞), we need only prove that∫ z

−∞
eλ1(z−s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds = O(τ ||W ||).

Indeed, when W ∈ C1
0 , we have

W (s + cη) −W (s) =

∫ cη

0

W ′(s + v)dv.

Exchanging the order of integration and using the integration by parts, we obtain∫ z

−∞
eλ1(z−s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds

=

∫ ∞

0

η

τ2
e−η/τ

(∫ cη

0

∫ z

−∞
eλ1(z−s)W ′(s + v)dsdv

)
dη

= O(τ ||W ||C0
).

Continuing the process as in section 2, we can show that Lemma 2.5 remains true,
and so does the result in Theorem 2.6 for (3.2).

Similarly, we can prove that Theorem 2.6 is true if the kernel function is re-
placed by

f(t, s, x, y) =
1

τ
e−(t−s)δ(x− y).

4. The distributed delay and spatial-averaging case. In this section, we
consider (1.1) with the distributed delay and spatial averaging. Namely, we study the
following equation:

(4.1)

∂u

∂t
=

∂2u

∂x2
+ u(t, x)

⎛
⎜⎝1 −

∫ 0

−∞
t−η
τ2 e−(t−η)/τ

∫∞
−∞

exp(−(x−y)2/(4(t−η)))√
4π(t−η)

u(η, y)dydη

1 +
∫ 0

−∞
t−η
τ2 e−(t−η)/τ

∫∞
−∞

exp(−(x−y)2/(4(t−η)))√
4π(t−η)

u(η, y)dydη

⎞
⎟⎠ .

As before, by a traveling wavefront, we mean a solution u(t, x) = U(z) = U(−ct+x),
where c > 0 is the wave speed. Thus this specific kind of solution satisfies the following
second-order ODE:

(4.2) −cU ′ = U ′′ + U
1 −H1(U)(z)

1 + γH1(U)(z)
,

where

H1(U)(z) =

∫ ∞

0

η

τ2
e−η/τ

∫ ∞

−∞

1√
4πη

e−y2/4ηU(z − y + cη)dydη.

We suppose that U can be approximated by U0 and hence assume that U = U0 +W.
Then we obtain the equation for W as follows:

(4.3) −cW ′ = W ′′ + (U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
− U0

1 − U0(z)

1 + γU0(z)
.
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118 CHUNHUA OU AND JIANHONG WU

Applying Taylor’s expansions to

(U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
,

we have

(U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
= U0

1 −H1(U0)

1 + γH1(U0)

+W
1 −H1(U0)

1 + γH1(U0)
− (1 + γ) U0

(1 + γH1(U0))2
H1(W )

+R1(z, τ,W ),(4.4)

where R1(z, τ,W ) is the remainder (higher order terms) of this expansion, and this
can be rewritten as

R1(z, τ,W ) = (U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)

−U0
1 −H1(U0)

1 + γH1(U0)

−W
1 −H1(U0)

1 + γH1(U0)
+

(1 + γ)U0

(1 + γH1(U0))2
H1(W ).(4.5)

Recall that

g(x) = x
1 − x

1 + γx
and g′(x) =

1 − x

1 + γx
− (1 + γ)x

(1 + γx)2
.

Therefore, in view of (4.4), (4.3) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(4.6) + R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R2(z, τ) = U0
1 −H1(U0)

1 + γH1(U0)
− g(U0)

and

R3(z, τ,W ) = W
1 −H1(U0)

1 + γH1(U0)
− (1 + γ)U0

(1 + γH1(U0))2
H1(W ) − g′(U0(z))W (z).

As before, we transform (4.6) into the following integral equation

(4.7) W =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

⎞
⎠ .

Now the above argument can be repeated to show that Theorem 2.6 holds for (4.1).
Similarly, we can prove Theorem 2.6 for (1.1) with the kernel function

(4.8) f(t, s, x, y) =
1

τ
e−(t−s) 1√

4π(t− s)
e−(x−y)2/(4(t−s)).
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 119

5. Traveling wavefronts with large wave speed. In section 2, we obtained
a traveling wavefront for our model by assuming that the maturation time τ is small.
In this section we utilize the idea of Canosa [6] to investigate the existence of traveling
wavefront for (2.1) without the smallness requirement of τ . Although the method is
originally a formal asymptotic analysis as the front speed approaches infinity, it is
known that for Fisher’s equation the method generates a solution that is accurate
within a few percent of the true solution, even at the minimum speed. The method
has also been applied to other reaction-diffusion equations, including coupled systems,
with a very good accuracy; see [21] and [24]. The main purpose here is to give a
theoretical justification of the method for our food-limited model by showing the fact
that when the wave speed tends to infinity, our traveling wavefront approaches a
heteroclinic solution (the leading term of Canosa’s expansions) of the original model
without diffusion. The main idea of this section is from [9], except that we use some
known results of global stability of the positive equilibrium instead of applying Smith
and Thieme’s order preserving semiflows theory [26].

Linearizing (2.7) for U far ahead of the front, where U → 0, gives

−cU ′(z) = U ′′(z) − U(z).

To ensure that we are studying ecologically realistic fronts that are positive for all
values of z, we assume, as in Fisher’s equation, that the wave speed c ≥ 2. Following
Canosa’s approach, we introduce the small parameter

ε = 1/c2 ≤ 1

4

and seek a solution of the form

U(z) = G(ζ), ζ =
√
εz.

Equation (2.7) becomes

(5.1) εG′′ + G′ + G
1 −

∫∞
−∞

1√
4πτ

e−y2/4τG(ζ −
√
εy + τ)dy

1 + γ
∫∞
−∞

1√
4πτ

e−y2/4τG(ζ −
√
εy + τ)dy

= 0.

When ε = 0, (5.1) reduces to

(5.2) G′ + G
1 −G(ζ + τ)

1 + γG(ζ + τ)
= 0.

For (5.2), we have the following result concerning the heteroclinic orbit connecting
the two equilibria G = 0 and G = 1.

Theorem 5.1. Assume τ/(1 + γ) < 3
2 . Then (5.2) has a heteroclinic orbit g0(ζ)

connecting the two equilibria G = 1 and G = 0.
Proof. When ε = 0, we set g0(ζ) = G(−ζ) to invert (5.2) into a delay differential

equation

(5.3) g′0 = g0
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
.

By the result in [18] or [8], we know that the equilibrium g0 = 1 is a global attractor
as long as the initial value g0(s) = φ(s), s ∈ [−τ, 0], satisfies

φ(0) > 0 and φ(s) ≥ 0 for s ∈ [−τ, 0].
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120 CHUNHUA OU AND JIANHONG WU

Linearizing (5.3) around g0 = 0, we have

(5.4) g′0 = g0.

Therefore, the unstable space Eu of the trivial solution in the usual phase space
Cτ = C([−τ, 0];R) of continuous functions equipped with the sup-norm ||·|| is spanned
by χ(s) = es, s ∈ [−τ, 0]. Let Es be the subspace in Cτ so that Cτ = Es ⊕ Eu; then
there exists ε0 > 0 and a C1-map w : Eu → Es, with w(0) = 0 and Dw(0) = 0 so that
a local unstable manifold of g0 = 0 is given by εχ + w(εχ) for ε ∈ (−ε0, ε0). Choose
ε0 > 0 sufficiently small so that the operator norm ||Dw(εχ)|| < e−τ for ε ∈ (0, ε0).
Then pick up ε ∈ (0, ε0) and consider φ = εχ + w(εχ). We have

φ(s) = εes + w(εχ)(s) > εes − e−τ ε||χ|| ≥ ε(e−τ − e−τ ) ≥ 0.

So the solution from the point φ on the local unstable manifold of g0 = 0 is positive
and tends to 1 due to the global attractivity of the positive equilibrium g0 = 1.
Returning to the original variable, we have an orbit G connecting the two equilibria
G = 1 and G = 0. This completes the proof.

For (5.3), the positive equilibrium 1 is a node, and all of the conditions in Theorem
1.1 in [9] are satisfied. Thus direct application of this result gives the following.

Theorem 5.2. Assume τ/(1 + γ) < 3
2 . There is a constant c∗ > 0 such that for

any c > c∗, (5.1) has a traveling wave solution G(x− ct) connecting the two equilibria
0 and 1. When the wave speed c → ∞, the wave profile G(ξ) converges to a solution
to (5.2).

Although the result is a consequence of Theorem 1.1 in [9], for the completeness
of this paper and the convenience of readers, we outline the proof of this theorem as
follows.

For (5.1), set Ḡ(ζ) = G(−ζ). Then Ḡ satisfies the equation

εḠ′′ − Ḡ′ + Ḡ
1 −

∫∞
−∞

1√
4πτ

e−y2/4τ Ḡ(ζ +
√
εy − τ)dy

1 + γ
∫∞
−∞

1√
4πτ

e−y2/4τ Ḡ(ζ +
√
εy − τ)dy

= 0.

Now when ε is small, we use g0 to approximate the wavefront Ḡ(ζ) in (5.1). Let
Ḡ = g0 + W . Then we have an equation for W

(5.5) W ′ = εW ′′ + εg′′0 + (g0 + W )
1 − h1(g0 + W )

1 + γh1(g0 + W )
− g0

1 − g0(ζ − τ)

1 + γg0(ζ − τ)
,

where the functional h1 is given by

(5.6) h1[U ](ζ) =

∫ ∞

−∞

1√
4πτ

e−η2/4τU(ζ +
√
εη − τ)dη.

By means of Taylor’s expansion, we have

(g0 + W )
1 − h1(g0 + W )(ζ)

1 + γh1(g0 + W )(ζ)
= g0

1 − h1(g0)

1 + γh1(g0)

+W
1 − h1(g0)

1 + γh1(g0)
− (1 + γ)g0

(1 + γh1(g0))2
h1(W )(5.7)

+R1(ζ, τ,W ),
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 121

where R1(ζ, τ,W ) is the remainder (higher order terms) of this expansion. Therefore
by (5.7), (5.5) becomes

(5.8) W ′ = εW ′′ + P 0W (z) + R1(ζ, τ,W ) + R2(ζ, τ) + R3(ζ, τ,W ),

where the linear operator P 0 : C → C is defined by

P 0W (ζ) =
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
W (ζ) − g0

(1 + γ)

(1 + γg0(ζ − τ))2
W (ζ − τ) ,

R2(ζ, τ) = g0
1 − h1(g0)

1 + γh1(g0)
− g0

1 − g0(ζ − τ)

1 + γg0(ζ − τ)
+ εg′′0 ,

and

R3(ζ, τ,W ) = W
1 − h1(g0)

1 + γh1(g0)
− g0

(1 + γ)

(1 + γh1(g0))2
h1(W )

−W
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
+ g0

(1 + γ)

(1 + γg0(ζ − τ))2
h1(W ).

Now we prove that there exists a W ∈ C0 satisfying (5.8) when ε is small. Equa-
tion (5.8) can be transformed into an integral equation as follows. We first write (5.8)
as

(5.9) εW ′′ −W ′ −W = −W − P 0W −R1 −R2 −R3.

Since the equation

ελ2 − λ− 1 = 0

has two real zeros λ1 and λ2, with

(5.10) λ1 =
1 −

√
1 + 4ε

2ε
< 0, λ2 =

1 +
√

1 + 4ε

2ε
> 0,

(5.9) is equivalent to the integral equation

W (ζ) =
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[R1 + R2 + R3 ]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[R1 + R2 + R3]dt.(5.11)

It is easy to show that

lim
ε→0+

λ1 = −1, lim
ε→0+

λ2 = +∞.
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122 CHUNHUA OU AND JIANHONG WU

Thus we have, from (5.11), that

W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt

=

∫ ζ

−∞

[
eλ1(ζ−t)

√
1 + 4ε

− e−(ζ−t)

]
[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[R1 + R2 + R3 ]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[R1 + R2 + R3]dt.(5.12)

For the right-hand side of (5.12), in a similar manner as in section 2, we can prove
that ∫ ζ

−∞

[
eλ1(ζ−t)

√
1 + 4ε

− e−(ζ−t)

]
[W (t) + P 0W (t)]dt = O(

√
ε||W ||C0),

1√
1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt = O(
√
ε||W ||C0),

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R1 dt +

∫ ∞

ζ

eλ2(ζ−t)R1dt

)
= O(||W ||2),

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R2 dt +

∫ ∞

ζ

eλ2(ζ−t)R2dt

)
= O(

√
ε),

and

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R3 dt +

∫ ∞

ζ

eλ2(ζ−t)R3dt

)
= O(

√
ε||W ||C0).

Let L be the linear operator defined by the left-hand side of (5.12), namely,

[LW ](ζ) = W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt.

It is obvious that if W ∈ C0, then LW ∈ C0. In order to use the argument in section 2
to prove our result, we need to prove that 
(L) = C0, where 
(L) is the range space
of L; that is, for each u ∈ C0, we need to show that equation LW = u or, equivalently,

W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt = u(ζ), ζ ∈ (−∞,∞)

has a solution in C0. For this purpose, we set w = W −u. Upon substitution, we have
an equation for w :

(5.13) w′ = P 0w(ζ) + u(ζ) + P 0u(ζ).

Define an operator T :C1
0 → C0 by

[Tw](ζ) = w′(ζ) − P 0w(ζ)
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TRAVELING WAVEFRONTS IN A FOOD-LIMITED MODEL 123

and the formal adjoint equation of Tw = 0 by

(5.14) φ′(t) = − 1 − g0(t− τ)

1 + γg0(t− τ)
φ(t) +

g0(1 + γ)

(1 + γg0(t− τ))2
φ (t + τ) , t ∈ (−∞,∞).

When t → ∞, (5.14) tends asymptotically to

φ′(t) =
1

1 + γ
φ(t + τ).

When τ/(1 + γ) < π
2 , it is easy to see that if φ is a bounded solution to (5.14), then

φ = 0. From p. 7 of Chow, Lin, and Mallet-Paret [5], we see that T is Fredholm and

(T ) = C0. Therefore, (5.13) has a solution w ∈ C0. From now on we can use the
same argument as in sections 4 and 5 in [9] to verify that (5.12) has a solution W ∈ C0.

6. Summary and simulations. In this paper we have studied the existence of
traveling wavefronts for the food-limited population model that involves nonmonotone
delayed nonlocal response. The classical phase-plane approach or super/subsolution
technique does not work for this type of model due to the lack of monotonicity.
Hence, we develop a perturbation argument based on some analytical tools such as
the contraction mapping principle and the Fredholm theory to establish the existence
of traveling wavefronts. We consider three cases with spatiotemporal averaging when
the delay is small. In the general case where the smallness condition on the delay is no
longer required, we also developed Canosa’s method to establish traveling wavefronts
with large wave speeds.

Our work shows how our perturbation analyses based on some analytical tools
are particularly useful for models with small delay or for wavefronts with large wave
speeds. We believe the smallness condition on τ and the largeness condition on the
wave speed can be removed by a certain homotopy argument, and this remains to be
a subject for future study.

We should emphasize the difficulty caused by the nonmonotonicity of the delayed
nonlocal response. In particular, we note that the traveling wavefronts obtained have
prominent humps as the following two numerical simulations show.

The first numerical simulation, reported in Figure 1, is for (2.1), carried out by
using Matlab on a spatial domain −L0 ≤ x ≤ L0 (for some L0 > 0) with homogeneous
Neumann boundary conditions at both ends. For initial data, we set a nonzero steady
state value 1 at the left side and zero elsewhere for all t ∈ [−τ, 0]. The solution
stabilizes to a wavefront when time t goes on. For τ sufficiently small, the resulting
traveling fronts appear to be strictly monotone. Increasing the value τ, we find that
the monotonicity is lost and a prominent hump is exhibited. When γ = 1 and τ = 2,
the solutions at two different times are shown in Figure 1.

The second numerical simulation is about (4.1) with the kernel given by (4.8).
Set

v(t, x) =

∫ t

−∞

1

τ
e−(t−s)

∫ ∞

−∞

1√
4π(t− s)

e−(x−y)2/(4(t−s))u(s, y)dyds.

Then it is easy to recast (1.1) into the form⎧⎨
⎩

ut = uxx + u 1−v
1+γv

vt = vxx + 1
τ (u− v).
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Fig. 1. γ = 1, τ = 2. There exists a prominent hump in the front.

–200 –150 –100 –50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u(
t,x

)

Fig. 2. γ = 1, τ = 1. There exists a prominent hump in the front.

Using the method of lines, we find again the solution to the above equations with step
initial functions and the Neumann boundary conditions stabilizes to a wavefront with
a hump. The solution pattern at three different times with γ = 1, τ = 1 are shown in
Figure 2.
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