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Abstract

We obtain a new variant of Moser’s small twist theorem and apply this new version to investigate the
boundedness of solutions for the following semilinear Duffing equation

X+ n’x 4 g(x) = p(@),

where p is a 2 -periodic smooth function and limy|— o x_lg(x) = 0. We obtain some sharp sufficient
conditions for the boundedness of all solutions to the above equation at resonance. Unlike many existing
results in the literature where the function g is required to be a bounded function with asymptotic limits,
our main results here allow g be unbounded or oscillatory without asymptotic limits.
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1. Introduction and main results

In this paper, we consider the boundedness of solutions to the Duffing equation

¥+g)=p@), pt+2r)=pQ), (1.0)
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in the semilinear case, to be specified later. This equation, as one of the simplest nontrivial
conservative systems, has been widely investigated and many results have been obtained for
the existence and multiplicity of periodic solutions by various methods, such as the critical point
theory, the phase plane technique and the continuation method based on a degree theory. We
refer the reader to [5,19] and the references therein. We also refer the reader to [1,2] for the
general theory. The serious work on boundedness of solutions to (1.0) dated back to at least
1966, when Littlewood [8] asked whether or not all the solutions of (1.0) are bounded for all time,
i.e., whether there are resonances that might cause the amplitude of the oscillations to increase
without bound. This problem was also raised and studied by Markus [12] and Moser [16].

The first result on the boundedness of solutions in the superlinear case (i.e., x~! g(x) —> 400
as |[x|] — +oo) was due to Morris [14]. On the basis of Moser’s twist theorem [15], Morris
proved that every solution of (1.0) is bounded when g(x) = 2x3 and p is a piecewise continuous
function, here and in what follows, a solution x (¢) is bounded if it exists for all 7 € R and

sup(|x (1) + |x'(1)]) < +o0.

teR

Morris’s result was later improved by several authors (see [3,7] and references there) for a large
class of (1.0) in the superlinear case.
However, in the semilinear case, where
0 < liminf x~'g(x) < limsup x ' g(x) < 400,
|x|——+00 |x|— 00
the situation is quite different and the study of the boundedness is delicate and difficult. To the
best of our knowledge, so far very little has been achieved, and the main difficulty lies in the
well-known phenomenon of linear resonance. See [9,10,17,18]. To be more precise, we consider

)'c'—l—nzx—i-g(x):p(t), (1.1)

where n € N, p(t + 27) = p(¢) and lim}y| 00 x 1 g(x) = 0.
When g is piecewise linear and given by

L, ifx>1,
gx)y={Lx, if|x| <1,
—L, ifx <-1,

and p is 27 -periodic and of class C, Ortega [18] proved that every solution of (1.1) is bounded

if
1 2 .
—f p(He "dr
2 0

2
< —.
T

By using a variant of Moser’s twist theorem due to Ortega [18], Liu [10] obtained a similar result
for the boundedness of solutions to (1.1) with smooth g and p. More precisely, Liu proved the
following'

Theorem 0. Suppose that p € C’(R/27Z) and g € C®(R), and assume that the limits

g(+00):= lim g(x), g(—o0):= lim g(x),
xX—>+00 X—>—00

1 A short proof can also be found in M. Kunze, Remarks on boundedness in semilinear oscillators, In Nonlinear
Analysis and its Applications to Differential Equations, Birkhauser, 2001.
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are finite and

lim x%2©®x) =0.

|x|— 400

Then every solution of (1.1) is bounded provided

27 .
f p(He ™Mdr
0

To state and compare other boundedness results with our main contributions here, we note that
Massera’s theorem [13] shows a close connection between the existence of periodic solutions and
the boundedness of solutions of (1.1). We also note that the auxiliary equation

< 2|g(400) — g(—00)|.

)'c'+n2x+g(x) =0 (1.2)

is equivalent to the following planar autonomous Hamiltonian system

. . 1

X =-ny, y=nx+ Eg(x) (1.3)
with the Hamiltonian function

Ho(x,y) = En(x +y)+ ;G(x),

where G (x) = f(f g(s)ds. For h > 0, we denote by 7(h) the least positive period of the orbit
Iy - Ho(x, y) = h of the system (1.3), and we set

I'h) =vh (r(h) — 27”) . (1.4)

The asymptotic behaviors of the time map t (k) play an important role in some recent work
regarding the existence and multiplicity of periodic solutions of (1.1). In particular, in [5,19] it
was shown that if g is continuous and

limsup I'(h) = 400, liminfI'(h) = —o0,

h—+00 h—+00
then (1.1) has infinitely many 27 -periodic solutions. Moreover, in [5] it was shown that if g is
Lipschitz continuous and

limsup |I'(h)| = 400,

h—+00
then (1.1) has at least one 27 -periodic solution. Therefore, it is natural to ask whether or not
(1.1) admits a 2z -periodic solution under the condition

limsup |I'(h)| < +0o0.

h—+00

A positive answer in some cases is given in [11]. Our main result, stated below, shows that some
sharp sufficient conditions for the boundedness of solutions of (1.1) can also be obtained in terms
of the behaviors at infinity of the time map t (k).

Theorem 1. Assume that p € C'(R/2n7Z) and g € C’(R). In addition, suppose that
lim **1¢®x)=0, 0<k<6 (1.5)

|x|— 400
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and

lim AI”(h) =0, limsup|K*I'® ()| < 400, 2 <k <7. (1.6)

h—+00 h—+00

Then under the condition
2 .
/ p(He " dt
0

every solution of (1.1) is bounded.

< V2r3% limsup |I'(h)| < +o0, (1.7)

h—+00

In the above result, we implicitly state that I'(h) is of class C 7. This is true, since geC 7 (R),
by using the expression of 7 (k) given in the main body of the paper. We shall also note that in
Theorem 1, the condition limy,_, y oo 21" (h) = 0 may by replaced by a weaker condition:

limsup |hI”(h)| < &g,

h—+00

where g9 > 0 is small and can be determined explicitly using the quantities of ) fozn p(H)e " dr

and limsup,_, o [I'(h)].
As consequences of Theorem 1, we shall have the following

Theorem 2. Assume that p € C'(R/2nZ) and g € C3(R). In addition, suppose that the
function g satisfies the following conditions:

lim |x*12¢® @) =0, 0<k <8, (1.8)

|x|— 400
2

lim 0g' (pcosB) cos®6d6 = 0, (1.9)

p—>+00 Jo
2

lim sup [ okg® (pcosh) costt0do| < +00, 2 <k <7. (1.10)
p—+00 |JO

Then every solution of (1.1) is bounded provided
2 .
/ p(He " dt
0

Theorem 3. Assume that p € C’(R/2n7Z) and g € C’(R). In addition, suppose that the
function g satisfies the following conditions:

< lim sup
p—>~+00

2
/ g(pcosf)cosfdl| < +o0. (1.11)
0

lim xg'(x) = lim xg'(x), limsup |[x*¢®P )|, 2<k<7 (1.12)
xX—>+00 X—>—00 |x]— 400

are finite and

lim |x|~?g(x) =0. (1.13)
—+00

x|

Then every solution of (1.1) is bounded provided (1.11) holds.

Remark. Clearly, if g(+00) = limy_ 400 g(x) and g(—00) = lim,_ _ g(x) exist and are
finite, then it follows from the dominated convergence theorem that the inequality (1.7) or (1.11)
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reduces to
2 .
/ p(He " dt
0

Therefore, our Theorem 1 implies Theorem O as a special case. Note, however, in our results,
g is allowed to be unbounded and oscillatory without asymptotic limits. We also note that if,
in addition, g(—o00) < g(x) < g(+o00) or g(+00) < g(x) < g(—o0) for all x € R, then it
is well known (see [6]) that (1.14) is a sufficient and necessary condition for the existence of
27 -periodic solutions of (1.1). So it follows from Massera’s theorem [13] that (1.14) is also a
sufficient and necessary condition for the boundedness of solutions of (1.1). In this sense, we say
that inequalities (1.7) and (1.11) are sharp conditions for the boundedness of solutions of (1.1).

< 2|g(+00) — g(—00)|. (1.14)

Remark. We must emphasize that in contrast with the case for most of the known results
regarding the boundedness of all the solutions of (1.1) that impose conditions of the boundedness
and non-oscillation with asymptotic limits on the function g, i.e.,

sup |g(x)| < +o0, xg(x) >0 (orxg(x) <0), forlx|> M,
xeR

in our main results, the function g may be unbounded and oscillatory without asymptotic
limits. In particular, we note that if p € C7(R/27Z), then from Theorem 2 and the dominated
convergence theorem, it follows that provided

27 .
f p(He "dr
0

then every solution of the following three equations is bounded:

< 2m,

¥ 4+ n’x + arctan x + a sin In(1 + xz) = p(),
¥ 4+ n’x +arctanx + In(1 + x2) - sinIn(1 + x2) = p(r),
¥ 4+ n’x + arctanx + In(1 + x2) = p().

Remark. It was shown in [6] thatif p € C(R/27Z), g € C(R) is bounded and if

2 .
f p(He "dr
0

< 2 max {lim inf g(x) — limsup g(x), liminf g(x) — lim supg(x)} ,
xX—>—+00 X—>—00

X—>—00 xX—>+00
(1.15)
then Eq. (1.1) has at least one 2 -periodic solution. Moreover, if g is not constant and if
2 .
f p®e ™Mdr| > 2 (sup g(x) — inf g(x)) , (1.16)
0 xeR xeR

then Eq. (1.1) has no 2w -periodic solution. The following result shows that similar results hold
true for boundedness of solutions:

Corollary. Assume that p € C'(R/2nZ) and g € C’(R) is bounded. In addition, suppose that
the quantities:

lim xg’(x)= lim xg'(x), limsup [x*¢® )|, 2<k<7
X—>+00 X——00 |x|]— 400
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are finite. Then

(1) every solution of (1.1) is bounded if (1.15) holds;
(ii) every solution of (1.1) is unbounded if g(x) is not constant and (1.16) holds.

This is an immediate consequence of Theorem 3 and the Massera’s theorem [13], since by
using the Arzela—Ascoli theorem and the dominated convergence theorem, we have

2
lim sup/ g(pcosB)coshdl > 2 <lim inf g(x) — lim sup g(x)) ,
0

p— 400 X—+00 x——00

and

2
lim inff g(pcosB)cosfdd <2 (hm sup g(x) — lim infg(x)) .
p—>+00 Jo x—>+00 X—>—00

We conclude this introduction with a short sketch of the proof. As usual (see [7,9,10,18]),
we will first use standard transformations to rewrite (1.1) as a perturbation of an integrable
Hamiltonian system out of a large disc D = {(x, x') € R? : x> + x> < r?} in the (x, x’)-plane.
The Poincaré map of the transformed system is close to a so-called twist map in R? \ D. Then
we obtain a variant of Moser’s twist theorem that guarantees the existence of arbitrarily large
invariant curves diffeomorphic to circles and surrounding the origin in the (x, x)-plane. Every
such invariant curve is the base of a time-periodic and flow-invariant cylinder in the extended
phase space (x, x, 1) € R2 x R, which confines the solutions in the interior and leads to a bound
for these solutions.

The rest of this paper is organized as follows. In Sections 2 and 3, we give some technical
lemmas which will be employed in the proof of our main theorems. Section 4 is devoted to the
proof of Theorem 1. Finally, we will prove that if (1.8)—(1.10) or (1.12) and (1.13) hold, then
(1.6) also holds. We then conclude with the proofs of Theorem 2 and Theorem 3.

2. Global existence and canonical transformations

Throughout this paper, we will denote by C > 1 a universal positive constant and by &(h)
a universal non-negative function satisfying limy_, ;o £(h) = 0. Throughout this section, we
assume that the hypotheses of Theorem 1 hold.

By introducing a new variable y as y = —n~'x, (1.1) is changed into the following planar
Hamiltonian system

. . 1 1
X =-ny, y=nx+—gx)——p() (2.1)
n n
with the Hamiltonian function
1, 2 1 1
H(x,y, 1) = sn(x"+y9) + -G(x) — —xp(1),
2 n n
and (1.2) is changed into the Hamiltonian system (1.3) with the Hamiltonian function
1 ) ) 1
Ho(x,y) = En(x +y9) + ;G(X),

where G(x) = [ g(s)ds.
First, we deal with the global existence of solutions.
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Lemma 2.1. For any (xo, yo) € R2 and tg € R, the unique solution

(x(®), y(1)) = (x(z; t0, X0, Y0), y(Z; to, X0, Y0))
of (2.1) satisfying (x(to), y(t0)) = (xo, yo) exists on the whole t-axis.

Proof. Since
Go) _ s _

2

’

|[x|]—>00 X |x|>o00 2x

there exists an My > 0 such that
155
|G(x)| < 2 for [x| > M.
Let

M = max |G(x)|+1,

lx|=Mo
and
| ) 1 -

F@) = En(x @) +y=()+ ;G(x(t)) + M.
Then an argument similar to that used in the proof of Lemma 3.1 in [10] can be used to show that

1

71070 + 3 (0) = F@) < Flag) -0l
Therefore, the solution (x(¢), y(¢)) exists on the whole 7-axis and the proof is complete. O

Under the standard symplectic transformation (r, 8) — (x, y) with r > 0 and 6 (mod 2x),
given by

x =+/2rcosf, y=+/2rsiné, (2.2)
systems (2.1) and (1.3) are transformed into the following Hamiltonian systems
; ah(@t) 6 ah(@t) (2.3)
r=—— r? ) ) = r? ’ .
00 or
and
= 8h(e) é—ah(e) (2.4)
r = 89 0 r? ’ - ar 0 ra ’ .
respectively, where
1 1
h(r,0,t) =H(x,y,t) =nr + —G(+/2rcosf) — —~/2rp(t)cos, (2.5)
n n
and
1
ho(r,0) = Ho(x,y) = nr + —G(V2r cos ). (2.6)
n
Observe that

rdd — hdt = —(hdt — rd0), rd0 — hodt = —(hodt — rdd).
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This means that if one can solve for r = r(h, t, 8) from (2.5) and solve for ro = ro(h, ) from
(2.6), then

o e, Yo mie 2.7)

a0~ o Y g Tt :
and

dh 9 a9

- = —— h.0)=0 = — h.0 2.8

a0 8tro(, ) - ahm(’ ) (2.8)

are two Hamiltonian systems with Hamiltonian functions » = r(h,t,0) and ro = ro(h,9),
respectively. Now the action, angle and time variables are &, ¢ and 6 respectively. This trick has
been used by several authors (see [7,9,10]).

It follows from (2.6) and (2.8) that

2 9
h) = —ro(h, 6)do
T(h) fo ahro( )
fZU de
o 2 ho(ro, 0)

2 do
- / , (2.9)
0o n+n1Q2ro)"12g(y/2rgcosf)cosh

where ro = ro(h, 6).
From (2.6), we see that

h 1
lim =2 = lim |:n+ —G(W2r cos@):|

r—>-+o0o r r—+00 nr

1
= lim |(n+ (v2r cosf) cos 9:| =n
r—>+00 |: nv2rg
and

oh 1

—0=n+ g(V2rcosf)cosb > 0,

or n/2r

for r > 1. By the implicit function theorem, we know that there exists a function Ry = Ry (h, 6)
of class C® with | Ry (h, 0)| < e(h)h such that

ro(h,0) =n"'h + Ry (h, 0)

solves the equation
1
h = h(rg,0) = nrg + —G(y/2rgcosf).
n

In a similar way, we can show that there is a function Ry = Ra(h,t,0) of class C7 with
|R2(h, t,0)| < €(h)h such that

r(h,t,0) =n"'h+ Ra(h,t,0)

satisfies

1 1
h=h(rt,0)=nr+ -G 2rcosf) — —~2rp(t)cosb.
n n
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Lemma 2.2. For any smooth function I = 1(h,t,0) with |I(h,t,0)] < e(h)h, let u =
u(h,t,0) =n"Yh+ I(h,t,6), then
lim u)'T g® (v2u cos 6) cost 6 = 0, (2.10)
h— 400

for 0 < k < 6, uniformly for t and 6.

Proof. Since

lim x*1g®x)=0, 0<k<eé,

|x|—o00
for any ¢ > 0, there exist constants My > 0 such that
|xk*]g<k)(x)| < e, for|x| > M.

Since limp— 00 u(h, t,0) = 400 uniformly for t and 6 € [0, 2], there exist positive numbers
Ni > 0O such that for 4 > Ny and any 6 € [0, 2],

max |xkg(k)(x)| < e&.

1
A 2u 1x|=Mj

Therefore, for |v/2u cos 6| > My, we have
)(ZM)ICZ;lg(k)(\/Zu cos 9)005"9‘ < )(x/Zu)k_l cost 1 6g® (v2u cos )| < &,

and, for |+/2u cos 6| < My, we have

1
max |xkg<k)(x)| < €.

k—1
Qu) 2 g™ (V2u cos ) cosk 9‘ <
) V2u 1xI=Mg

This completes the proof. O

Lemma 2.3. Let ri(h,t,0) =r(h,t,0) —ro(h, 0), then

ri(h, t,0) = V220 2 p(t) cos O + R(h, 1, 6), (2.11)
and
aklR(h,t,@) <e(h) - h*F1/2 (2.12)
dhkrm =

for k +m < 6, uniformly for t and 9.

We defer the proof to Section 3.
By Lemma 2.3, we have

r(h,t,0) =ro(h,0) + V22 2 p(t) cos & + R(h, 1, 6).

Now system (2.7) can be written in the form

dh 3
a2,y _%p
o V2n 2R 2 pl (1) cos 6 S R(h.1,6),

dr 9 V2

(2.13)
9

— = —ro(h,0) + —n 2 V2 p(t) cosO + — R(h, t, 0).
a0 ahro(, ) + o p(1) cos +ah (h,t,0)
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Lemma 2.4. There is a canonical transformation ¥ of the form
UV:h=p, t=1t4+T(p,0)
with T (p, 0 + 2m) = T (p, 0) such that the transformed system of (2.13) is of the form

A T N T (2.14)
- = —_—r » Ty ) ——— = r s Ty ) .
o o’ ao o F

where
F(p,7,0) = J(p) + V217 p'2 p(t) cos6 + R(p, 7, 6),

1 2
J(p) = 2—/ ro(p, 0)do.
T Jo

For the new perturbation Ié, we have

———R(p,7,0)| < e(p) - p~ /2 (2.15)

ak+m
' dpkaTm

for k +m < 6, uniformly for T and 6.

Proof. The transformation ¥ is defined implicitly by
a a
V.:p=h+—S",t,0), t=t+ —S(,1,60),
ot oh

where the generating function S = S(h, t, ) will be determined later.
Under this canonical transformation ¥, (2.13) is transformed into the system
dop J . dr 9 .
d_49 = —ar(P, 7,0), d_49 = %”(,0» 7,0),
where the Hamiltonian function 7 is of the form
7 =ro(h,0) +2n"2h' 2 p(t) cos 6 + R(h, t,0) — %.

Now we choose

0
S = f [ro(h, s) — J(h)]ds. (2.16)
0
Obviously, S does not depend on 7 and is 2 -periodic in . Hence, p = h. Let
T(h,0)= o8 (2.17)
K - ah . .

Then the canonical transformation ¥ is of the form
h=p, t=1t+T(p,09).
Let
R(p,7,0) = R(p, T+ T(p,H),0)

1
+ 20732 p1/2 cos@/o p'(t+uT(p,0))T(p,0)du. (2.18)
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Then the transformed Hamiltonian function 7 is of the form
F(p.7.0) = J(p) +v2np' 2 p(t) cosd + R(p. 7. 0).

Now we prove (2.15). By a direct computation, we know that (8k+’”/8pk8rm)(R(,o, T+
T(p,0),0)) is a sum of the following terms
grtatm

ohPotmta

9q a]s
R(p. T +T(0.0).0)- [[ 375 T(0.0), (2.19)
s=1 ’

where

q
pHa sk jijr...jgz00 Y js=k—p.
s=1

Lemma 2.5. Let T (p, 0) be given by (2.17), then

ak
—T(p,0)| <ep)p™*, 0<k<6. (2.20)
9pk
Proof. Let
gn©) = q(h,0) =n+n"'2h)~"?g(v/2h cos ) cos ¥,
8k

®) gy _

q, 0) = Wq(h,e).

Then it is not difficult to show thatfor 1 <k <6
k
L '
g0 =07 e ;@) T gV (V2hcos6) cosH 6,
j=0
where

coo=1, cro=ck—10-(2k+1), crr=1,
Ckj = Ck—1j-1FCk—1j - (Z2k+1+j), 1=<j<k-1

Let ro = ro(p, 0). It follows from (2.6) that

9 9 - .
%ro(l(h 9) = [Eho(’% 9)|r=r0:| = [Clro(e)] .

By a direct computation, we see that (8"/8,0")[41,0 (9)]’] is a sum of the following terms

k 7
[, @177 - T [laS @)1”, .21)
s=1
where

k+1<p<2+1, ji,j2..jk >0,

M~

k
sojs=k Y ji=p—k-1.
=1 s=1

©

Since ro = ro(p,0) = n~'h + Ri(p,0), |R1(p,0)| <e(p)p, by Lemma 2.2, we have
g6 < e(p)p™", 1<s5<6,
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which together with (2.21) yields

k k .
'W[Qro(e)]_l < S]:[]a(p)p_s"s
< e(p)p~ T4 = g(p)p. (2.22)

It follows from (2.9) and (2.16) that

9 a [?
T(p,0) = %S(p,é’) = %/0 [ro(p,s) — J(p)lds

T 9

=f [a—row,s)—f’(p)} ds
0 14
6 1 1

- /0 [(qm(s)) —Erm)} ds

% | 0 2 |
= fo [gry ()] ds — E/o [gry(s)]™ " ds,
which, together with (2.22), implies that
k

B]
—T(p,0
o0k (0,0)

<e(pp ¥, 1<k<eé.

Moreover, by the dominated convergence theorem, we have

lim T(p,0) = 0.

p—+o0
Thus the proof is complete. [
Therefore, by (2.19) and (2.20) and Lemma 2.3, it follows that for k +m < 6,
8k+m
' dpkaT™

IA

q
e(p)p P2 T Te(pp™
s=1

R(p,r+T(p,9),9)‘

—p+1/2 —k+1/2

IA

e(p)p pm Tk = e(p)p

Similarly, we can prove that

ak+m - 1
pkaT™ («/En 5/2p1/2c059/0 p’(T+ILT(,0,9))T(,0,9)d;L>

<e(p)p 2.

Therefore, (2.15) holds. This completes the proof of Lemma 2.4. O
Let & = nv, then system (2.14) is transformed into the form

dp S hp.ro). o Liag e (2.23)
Te — T a_ » T, 5 Ta — A » T, ) .
aw - o P w P

where
H(p,t,9) =ni(p,t,nd) =nJ(p) +vV2n"32p 2 p(x) cosn® + nR(p, 7, n?).

As n is a positive integer, the function H(p,t,9)is 2m-periodic in ¥
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3. Proof of Lemma 2.3

In this section, we shall give a proof of Lemma 2.3. Throughout this section, we assume the
hypotheses of Theorem 1 hold.

It is convenient to introduce the following notation. Forn =0, 1,...,00andr, s € R, we say
that a function f = f(h, t, 0) belongs to the class C(r) if | f| < Ch” for h > 1, uniformly for ¢
and 0, and f belongs to the class C(r, €) if | f| < e(h)h" for h > 1, uniformly for # and 6. Then
we have the following observations.

Lemma 3.1. (i) C(r,e) C C(r).
(1) If r1 < rp, then C(r1) C C(r2) and C(r1,€) C C(r2, €).
(i) If o, 8B € Rand fi € C(r), f2 € C(r), then afi + Bfr € C(max{ry,r2}) and
fi- fa € C(r1 +r2).
V) If a, B € Rand fi € C(r1,€), o € C(rn,¢€), then af) + Bfa € C(max{ry, 2}, €) and
S1- f2eC(r1 +r2,6).
(V) If f1 € C(}”l, E), f2 € C(rg), then f1 . f2 € C(r1 —+ 1, E).
We say that a C”*-smooth function f = f(h, t, 6) belongs to the class C! (r) if
aker
erC(—k—i—r), fork—l—mﬁn,mzl,

and

8k
er C(—k+r+s), fork<n.

We say that a C"-smooth function f = f(h, ¢, 6) belongs to the class C' (r, €) if
gk+m

WfGC(—k-FV), fork+m<n, m>1,
and

8k
er C(—k+r+s,¢), fork<n.

Then it is not hard to show the following

Lemma 3.2. (i) C{(r,e) C C}(r).

(ii) If r1 < ra, then C¥(r1) C Ci(r2) and C} (r1,€) C CJ (r2, €).

(iii) If o, B € Rand fi € C§ (1), f2 € C5,(r2), thenafi + Bf2 € C;ﬁax{sl’sz}(max{rl, ) and
fi f2 € Cg iy, (r1 +12).

iV If o.p € R and fi € C}(r,€),fr € C}(ra€), then afi + pfa €
Cﬁm{sl,sz}(max{rl,rz}, €)and f1- fr € C§’1+S2(r1 + 1, €).

W) If fi € C§ (r1,€), f2 € CL (r2), then fi - f> € C§\ 4, (r1 + 12, €).

Lemma 3.3. Suppose that a smooth function 1 = I (h, t, 0) satisfies I € C]q/z(l/Z, €)forq <6.
Let

g=gh,1,0) =120 "h+ D1 V?g(v2(n=h + I) cos6) cos,
then g € Cf/2(—1/2, €).
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Proof. Letu = u(h,t,0) =n~—'h + I(h,t,0), then

g = Qu) ?g(~2ucos) cosb, (3.1)
du ) A LS TR L |

= B PR L = T k Z 27

T TR T

ak+m u aker I

= , > 1.
ankarm  ankarm® =

Since I € C1/2(1/2 €), we can easily see that u € C1/2(1/2).
For0 <k <gq,let

k . . )
O = Qu(h.1.6) =Y e u) ™' ) (v2u cos 6) cos’ 1 6, (3.2)

j=0
where

ko =ck-1,0(=2k+1), crr=1,
Ckj = Ck—1j-1FCh—1j - (=2k+1+j), 1<j<k—1

Then we have
0 ou 0 u
Qo =g, ng = Qk+15, %Q = Qk+1 P (3.3)
Furthermore, it follows from (3.2) and Lemma 2.2 that Q; € C(—k, €). In particular, we have
g=0p€ C(0,¢).

For 1 <k +m < g, by (3.3) and a direct computation, we find

ak+m k+m

2= Q;P,.(h1), (3.4)
j=1

ankarm S

and Pk’m = ij’m(h, t) is a sum of the following terms

: | P 3.5
() Mo 33

r=1

pr=>=0, r=1,....k, r¢>0, g —rs>1, s=1,...,j—p,

and

k j=p k j—p k j=p
ZPr:P, er—i—err:k, Z%‘i‘zrpr:m‘i‘k, Z(‘]s_rs):mo
r=1 s=1 r=1 s=1 r=1 s=1

We notice thatm > l ifandonlyif j — p > landm = 0Oif and onlyif p = j.
Since u € C1/2(1/2), it follows from (3.5) that

Pl,eC(j—k—=1/2), k+m=<qgm=>1, (3.6)
and

PloeC(j—k., 1<k=q. 3.7)
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Hence, Q- P, € C(—k—1/2,¢),m > 1and Q; - Pj0 € C(—k, €). Therefore, we have
aker
Sigm8 € Ck=1/2, CC=k=1/2), kdm=gq.mz=1 (3.8)
and
ak
WgeC(—k,e), 1<k=gq, 3.9

which, together with the fact that g € C(0,¢), yields g € C1/2( 1/2,€). The proof is
complete. [

Lemma 3.4. Assume that a smooth function I = I (h, t, ) satisfies (3.2) and (3.3). Let
Sh,t,0) =12(n""h + D172 p(t) cos b,
then § € CJ(—1/2) C Cl/z( 1/2, €).

Proof. Clearly, S € C(—1/2).Setu =n~'h + I(h,t,0), then

S(h,t,0) = Qu)~?p(t) cosb. (3.10)
Fork > 1, let
Ok = (—=D*@2k = DNQu) 172, (3.11)
Then we have Q; € C(—k — 1/2) and
0 Q _ Q ou 0 Q Q du (3.12)
A direct computation shows that
k+m 8k+m i 2 (')
1
TP ———S(h,1.0) = ZcmW(z u)~ (1) cos @
m ) k+m—i _ ) )
=Y .Ch > QP _i(h.t)- pP () cost. (3.13)
i=0 j=1

By (3.6) and (3.7), we have ij,m—i eC(j—k—1/2)fori <m —1and PI%{O e C(j —k).So
wehave 0 P/, ;€ C(—k—1)C C(— k—1/2)fori <m—1,and Q- P/, € C(=k —1/2).
Therefore, it follows from (3.13) that ahka mS € C(—k — 1/2) for k > 1. Thus, we have

Se C0 (1/2). The proof is complete. [

Lemma 3.5. Suppose that a smooth function I = I(h, t, 0) satisfies

[(h,1,0) = —n"2G(/2(nh + I)cos®) +n2V/2(n1h + ) p(t) cos 0
and

[1(h,t,0)| <e(h)h.
Then I € C{,(1/2, €).
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Proof. Letu = u(h,t,0) =n~—'h + I(h,t,0), then
du ;I  du A
— =n + PR ~ = >
oh on’ ot ot

and

lim u/h =n"",
h— 00

uniformly for any ¢ and 6 € [0, 27 ]. Let
g1 =gi(h.1.0) =n">Qu)'"*p'(¢t) cos 0,
g2 =go(h,1,0) = —n>u) " ?[g(v/2u cos ) cos O — p(t) cos O],
A=1—=nga(h,t,0) =1+n"2Qu)""*[g(~2ucosf) cosd — p(r) cosb].
Then by Lemma 2.2, we have
g1l < C-h'2 gl <e(h), A= 1—e(h). (3.14)
When k +m = 1, we have
A %I(h, t,0) =gi(h,t,0), A- aa—hl(h, t,0) = ga(h,t,0). (3.15)
Hence, for & > 1, we have
1]a7 ‘_

2ot
Thatis, I € C:/2(1/2 €).In general,if I € C1/2(1/2, €) for g < 6, then by virtue of Lemmas 3.3

and 3.4, we have g», A — 1 € C? ,(—=1/2, €). Similarly, we can prove that g1 € Cg(l/Z).
By (3.15) and a direct computation, we find thatfor0 <k +m < g,

181 I
<C-n'? S| <Al | = = g2l < eh).
lg1l z'ah'_l I ‘ah lg2] < e(h)

gk+m+1 gk+m m=1 k . gktm—i—j giti+l
Ahkom ! = guigm® ;}Z_}) nCi gi=rgm= A~ Vgpramr!
-~y ¢ akfj.(A— T (3.16)
= ok dhiarm+1

form>1,k+m <gq,

ak+m+l ak+m , k+m—i—j giti+l

A I= — (A—-1)———1
hk+1gem ankarm 52 ;]X_;) m kahk Jorm= 7 )8h-/+18t’
; am+j+l
- Z Cigp=r A= oniFigm
; ak+m J aj+1
- Z apisram A= Dyl (3.17)
andform =0and0 <k < g,
8k+l ak k—1 . 8k_j 8./+1
_ _ J .
Aahkﬂl = onk8? Z;)C" ahk*/'A ah1+11' (3-18)
]=
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A e C(—j+1/2)for0<i<m—1,0<

P f e C(—j 4+ 1/2)for0 < j < k— 1, it

dnJ grm+l

Since 2T (A 1)y e C(—k+j —1/2)

ank= /atm',
j<kyoand 22(A —1) € C(—k + j, €),

follows that
akerfifj i+j+1
W( - )Bhfa =71 € C(=k) C C(—k+1/2),

forO0<i<m-—-1, 0=<j <k,
akfj m+j+1
orFT 2 D ghrgemn
which, together with (3. 16) and the fact that 500 g1 € C(—k+1/2), implies that A2 1
C(—k +1/2), and hence ahka erlI e C(—k+1/2)forO0<k+m <gq.
By using (3.17) and (3.18) and a similar argument, we can show that ahk+lazm I € C(—k —
1/2) = C(—tk+ 1) +1/2) form = 1,0 < k+m < g, and athrlI € C(—k,e) =

C(—(k+ 1)+ 1,¢€) for 0 < k < g. Therefore, we have I € C(ll;;] (1/2, €). Thus, the conclusion
follows by induction and the proof is complete. [

hk/

IeC(—k+1/2,€) C C(=k+1/2), for0<j<k—1,

3++

Proof to Lemma 2.3. Clearly, we have

Ri(h,0) = —n2G(/2(n~'h + Ry) cosb),
and
Ry(h,t,0) = —n"2G(/2(n~'h + Ry) cosO) + n~2[2(n""h + R2)1"?p(t) cos 6.

Since |Ry(h, 0)|, |Ry(h, t,0)| < e(h)h, Lemma 3.5 implies that R; € C1/2(1/2 €), j=1,2.
Let Ri2 = Ria(h,t,0) = R1(h,0) — Ra(h,t,0), then it follows that

A-Ria(h,t,0) =g, (3.19)
where

g=-n"20"'h+ R)1?p(t) cosb,

and

1
A=1+ n*zf R+ R)IV2g(v2(=1h + R 1) cos 6) cos Ody,
0
Ry =Ryu(h,t,0) = uRi(h,0) + (1 — w)Ra(h,1,0).
Clearly, we have
gl < Ch'2, A= 1 —e(h). (3.20)
Moreover, an argument similar to that used in the proof of Lemma 3.3 shows that g € Cg(l /2)

and A — 1 € CJ 5 (—1/2, ).
We claim that
R € CO(I/Z) (3.21)
Since R; € C1/2(1/2 €), j =1,2,wehave Rip = R — Ry € c’ /2(1/2 €). Therefore,
we have ahkatm Rip € C(—=k +1/2) form > 1,k +m < 6. So it suffices to show that

ahlez € C(—k +1/2) fork < 6.
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When k = 0, by (3.19) and (3.20), we have that for & > 1
1 ~ -
SRl < 1AL [Rio| = 18] < C A2,

Thatis, Rjp € C(1/2). In general, if
by (3.19), we obtain

~ 8k+1 ak+1 k ak+] j
A

8h’<R12 e C(—k+1/2)for0 <k <g < 6,thenfork < g,

kY
ahk+lR12 ahk+]g ch+lahk+1](A 1) WRIZ (3.22)

Since -2
that

(A HeC(—k—-1+], e)andathlzeC( j+1/2)for0 < j <k, it follows

ahk+l J

8k+l—j

ahkT—/( 1) - —R12€C( k—1/2,€) C C(—k —1/2), for0<j <k,

which, together with (3.22) and the fact that ;’hk%g e C(—k+1)+1/2) = C(—k—1/2), yields
5 ak+l
Aah’”” RpeC(—k—-1/2) =C(—(k+ 1)+ 1/2).

Therefore, by induction, we conclude that
On the other hand, we have

R(h,1,0) = r(h,t,0) —ro(h,0) — V2n">"*h' 2 p(t) cos 6
= Ry(h,t,0) — Ri(h,0) — N2n>?h' 2 p(1) cos 6

=n2GHW2n"h + Ry) cosO) —n>GH/2(n~'h + Ry) cosH)

+n72 20 h 4+ RV p(t) cos & — V2n 2R 2 p(1) cos 6
1
= n_2/ R '+ R)IV2g(/2(n=1h + Ry) cos0) cosOdu - Ry2
0

1
+n*2/ 2 'h+ R)1Y?p(r) cosdv - R, (3.23)
0

ahkR12 € C(—k+1/2)fork <6.

where R, = R, (h,t,0) = uRi(h,0)+(1—pu)Ra(h,t,0) and R, = R,(h, t,0) = vRa(h, t,0).
Set

1
8= n*Z/ ¢ 'h+ R 2g(/2(n=1h + R,) cos ) cos Odpu,
0

and
R 1
S = n*Z/ 2 'h+ R)1™Y?p(r) cos Odv.

Recall that R, € CZ/2(1/2 €)and R, € c/ /2(1/2 €), it follows from Lemmas 3.3 and 3.4 that
g€ C1/2(—1/2, €), Se CO(—1/2). (3.24)

Clearly, (3.21) and (3.24) imply that g - R € CI/Z(O €) and S- Ry € C1/2(0, €). Therefore, it
follows from (3.23) that

R(h,1,0) =g -Riz+ 5 Ry € C5(0,€),
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from which we conclude that

8k+m
'WR(h, 1,0) <Ch™* <emh V2 form>1, k+m<6
and
ak
WR(h, 1,0)| <e(h™12 fork <.

This completes the proof of Lemma 2.3. O
4. Proof of Theorem 1

In this section, we will prove Theorem 1 by using a variant of Moser’s small twist theorem.

We first state a new version of Moser’s small twist theorem below. Its proof is similar to that
of a small twist theorem due to Ortega [18] and, for the reader’s convenience, will be given in
the Appendix.

Let A = [a, b] x S! be a finite cylinder with universal cover A = [a, b] x R. The coordinates
in A and A are denoted by (r, 8) and (r, #) respectively, and the circle S! is identified with the
quotient space R/27Z. Functions defined on A will be identified with functions defined on A
and satisfying the periodicity condition F(r,0 + 2w) = F(r,0) for all (r,0) € A.

Consider the map

f:A—)]RxSl.

By an invariant curve of £, we understand a Jordan curve I' C A that is homotopic to the circle
{r = constant} and satisfies f(ﬁ) =T.

We assume that f has the intersection property. By this we mean that every Jordan curve
I' C A that is homotopic to the circle {r = constant} satisfies f(f) nr # (). Besides the
intersection property we shall assume that f is a continuous mapping that is one-to-one and
isotopic to the identity. We sum up all these properties by saying that f belongs to the class
M(A).

A lift of f will be denoted by

fiA>RxR,  f(r0) =.0)

and we shall assume that f can be expressed in the form

{9/ =0 42N + 801, 0) + 89} (1, 0), (4.1)

r=r 4 803(r,0) + 803 (r, 0),

where N is an integer, § € (0, 1) is a parameter, and E; e C7(A) and Eg, gog,cpg € C3(A) are
functions satisfying

1

BV
liminf min £:(r,0) >0, liminf min —2(r,0) > 0, limsup ¢} < 400,
50+ (r.0)eA 3(r:6) 5—0+ (r.0)eA ar 9 a»o+p allcraa

4.2)
and

lim sup [|€5]| ¢5 ) < +00. (4.3)
§—0+
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In addition, we assume that there exists a function I5 € C7(A) satisfying

0l
liminf min —(,0) >0, limsup]|/ < +o00. 4.4
SO oes Br (r,0) 5—>0+p 11117 a) (4.4)

Set
os(r,0) = Ea(r 9) (r 0) +€3(r 9) (r 0), (r,0)eA, 4.5)
we then assume that
li =0. 4.6
8_1)f61+ llosllcs ay (4.6)

Define the functions
Is(r) = max [s(r,0),  Ly(r) =min[s(r,0), € [a,b],

[(r) =limsupIs(r), I(r) =liminfl4(r), r € [a,b].
=0+ §—>0+

Theorem 4.}. Let f be given so that (4.1)—(4.3) hold. Assume, in addition, that there exist
numbers a, b, ay, b1, which are independent of §, and a function Is satisfying (4.4)—(4.6) such
that

a<da<a<b <b<b, I()<I@ <Ia)<I®b)<I®b) <I®b). (4.7)

Then there exist ¢ > 0 and A > 0 such that if § < A and ”‘/’31”C5(A) + ||‘p§||C5(A) < &, the map

f has an invariant curve I'. The constants € and A are independent of 8. Furthermore, if we
denote by u(I', 8) € S' the rotation number of the restriction of f on I, then

li I,8 =0.
33&#( )

Remark. It follows from the proof of the theorem that the invariant curve has the form r = (6),
where u € C3(Sh).

Remark. The change of variables 6 = —6, 7 = r shows that the condition (4.2) in the theorem
can be replaced by
1
lim sup max E](r, 0) <0, limsup max —(r f) <0, Ilimsu ||£ le7cay < +00.
sa0+p(h9)€A ’ a»o+p (rno)eA Or 550+ Pltslcra
(4.8)

Remark. It is not necessary to assume in the statement of the theorem that f is a mapping that
is one-to-one and isotopic to the identity because, for small §, this follows from the remaining
conditions. In other words, the assumption f € M(A) can be replaced by the weaker condition:
f has the intersection property.

Before giving a proof of our main theorem, we first give an expression for the Poincaré map
of system (2.23).

In order to calculate the Poincaré map, we introduce a new variable v and a small positive
parameter § by the formula
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p=682v, velb lal, (4.9)

where b > a > 0 are independent of § and will be specified later.
In the new action and angle variables (v, 7), the system (2.23) can be written in the form

dv d A dr 9 A
T — __H(U3 T, ﬁ? 8)7 o _H(U7 T, ﬁ? 8)7 (4'10)
dv ot dg  ov

where
H,7,9,8) =8*HG v, 7,9) = 8°nJ (8 2v) + 28032012 p(1) cos nty
+8%nR(8 v, T, n?).
Let
R(v, 1,8,8) = 8?nR(©S v, 7, nd).

By virtue of Lemma 2.4, it is easy to show that

ak-‘rm R
5 | ——— R, 1,9,8)| <ne( 212 50 ass — 0+ (4.11)
dvkgrm
fork +m < 6.

Since
2
(6 20) = L 4 sv 1205 2),
n

we may rewrite the system (4.10) explicitly as

d aR

@ —V25n7 3212 p/ (2) cos ny — —,

319 1 y it o8 (4.12)
R

£ =1+ Z(Snv_l/zf(é_zv) + 7811_3/21)_1/2]9(1) cosnt + 30

In the following, we use the notation o5(1) and Os(1). A function f (v, 7, ¥, §) is said to be
of order 05(1) if it is C? in (v, 7) and

ak+m

dukarm

fl, T, 19,3)‘ — 0, asdé — 0+,

for k + m < 5, uniformly in . Similarly, a function f (v, t, ¥, §) is said to be of order Os(1) if
itis C7 in (v, v) and

ak-‘rm

—f(v, 1, 0,9)

P <C forédkl1,

for k + m < 5, uniformly in ¥
Denote by (v(9, vo, 79), T(J, vo, 79)) the solution of (4.12) with the initial condition

(v(0, vo, 10), T(0, v, T0)) = (vo, T0)-

From (4.11), we know that for § < 1, the solution (v(?9, vg, t9), T(¥, vo, T9)) exists in [0, 477]
for any (vo, 70) € [b~!, a=11 x [0, 27r]. Moreover,

1
0< Eb—l <v(® v, T0) <2a”', Vo el0,4n).
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Assume that the solution (v (¥, vo, 79), T (%, vo, T0)) has the following expression
v(¥, vo, T0) = vo + 6 F2 (0, vo, T0), T(VY, vo, T0) = T0 + U + §F1 (P, vo, T0). (4.13)
Then the Poincaré map of (4.12), denoted by P, has the form
P(vo, ©0) = (vo + § F2(2m, vo, T0), To + 2 4+ 8 F1 (27, vo, T0)).

From the above discussions, we know that if § < 1, this map is well defined in the region
[b~!, a1 x [0, 27].

If there exists a sequence {(Sm};lo:] with §,, — 0 as m — oo, such that for every § = §,,
the map P has an invariant curve which is diffeomorphic to the circle {vg = constant}, then
boundedness of all the solutions of (1.1) follows from the standard arguments (see [3,9,10,18]
etc.). In order to prove the existence of such invariant curves for every § = §,,, it suffices to
verify that for every 6 = &, the Poincaré map P satisfies all the assumptions of Theorem 4.1.

Since (v(¥, vo, T0), T (¥, vo, To)) is the solution of (4.12), we have

dr 1 2
bl —nI' (8 % (vo+ 8F»)) + £1173/2]9(r)cosn19 (vo 4 8F>)~1/2
dd 2w 2
dR
L0k 4.14)
av
dF JR
—2 = V203 vy + 8F2) 2 p/ () cos o — 57 =

do at
As in the proof in [3], we can show from (4.11) and (4.14) that

km kt-m
ook Fi (9, v, 10)| Do Fr (9, v, 10)| < C
for all k +m < 5, uniformly in ©. Hence
v(¥, vy, T0) = vo +805(1), T(V, v0, T0) = 70 + ¥ + 8O05(1). @.15)

Notice that F; (0, vo, 79) = F>(0, vo, 19) = 0, it follows from (1.6), (4.11), (4.14) and (4.15)
that

S -2 V2 —-3/2
Fi1(2m, vo, T9) = Enf(a (vo+686F2)) + 7” p(t(9)) cosn}
0

x (vo + 8F>) " 12dw + 0s5(1)

12 1o V2 32, -1)2 2
=nv, ""I'(6 "vo) + 7’1 v, p(to + ¥) cosnrdyr + o5(1),
0

2
Fr(27, vo, T0) = — Zn_3/2f (vo + 8 F2)'/? p' (1 (9)) cos n*d® + o5(1)
0

2
— —«/En_3/2v(])/2/ P (to + ) cos n¥dd + os(1).
0

Set

2 2
j2 :=f p(@)cosnddd, p; :=f p(¥) sinn¥dv.
0 0
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Then, we obtain
2 2
/ p(to + 9) cosnddy = [ p (@) cosn(¥ — t9)dd
0 0
= p.cosnty + p) sinnt,

2 2
/ p'(to + ) cosnd¥dd = f p'(®) cosn(d — 19)dv
0 0

2
= n/ p(¥) sinn(¥ — 19)dd
0
= n(p} cosntg — p;, sinntp).

Now we get an expression of the Poincaré map P as

Py {rl = 10 + 27 + 841 (v0. 70, 8) + 81 (0. 70, 9). 4.16)
v1 = vg — 842(vo, 10, 8) + §¢p2(vo, T0, §),
where
- _ 2
£1(vo, T0, §) = ny, 1/2 {F(SZUO) + %”5/2(]?2 cosnty + pfl sinnto)} s @17

05 (vo, 70, 8) = x/zn_lﬂvé/z(pfl cosnty — p), Sinntp).

and the functions (51 and q~52 are of order o5(1).

Since P is the Poincaré map of the Hamiltonian system (4.12), it is symplectic and has the
intersection property in the cylinder [b~!,a~!] x S!. Moreover, the intersection property is
preserved under a homeomorphism.

Under the diffeomorphism

the symplectic map P is transformed into the form

1 =10+ 27 + 8¢} (uo, 70) + 8¢1 (1o, 0, 8), 4.18)
" ur = uo + 865 (uo, 7o) + 8¢ (uo, 10, 8), '
where (ug, 19) € [a, b] x S!, and
2
Eé(uo, 70) = ,m(l)/2 {F((S_zual) + %”_5/2(;7; cosntg + p; sinnt) ¢ , .19

Zg(uo, 70) = \/Erf]/zug/z(pf1 cosntg — py, sinnt),
and
110, 70, 8) = g1y, 0, 8),

. Sullla(uy ", 10, 8) + da(uy ', 0, 81
¢ (uo, 10, 8) = —uda(uy ', 10, 8) + ————L g

1= Suola(uy ', 10, 8) + Suoda(uy ' 70, 8)

By (1.6), we know that the functions ¢; and ¢, are of order os5(1).
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By (1.7), we may assume, without loss of generality, that

2 2 .

limsup I'(h) > £;1—5/2 f p(H)e "dt| . (4.20)

h—+00 2 0
Let w > 0 be such that

2 2 .
w < limsup I'(h) — £n*S/2 / p(He M dr] .
h—>+00 2 0

Since hI"(h) — 0 as h — +o0o, there exists a number 4 > 0 such that

W) <min| 7@ (421)

mny——, — .
- 4@ ' —=b"1)" 16

holds for all > h. )
By (4.20), we can choose a sequence {hy,}5>_ | withh < hy, — +00 as m — +00 such that

b
Bst > —hp (4.22)
a

2 .
f p(He "dr
0

Take 6,, = (bhm)’l/z. Then we have §,, — 0 as m — +o0. It follows from (4.22) that

and

V2 -5/2

3
I'Chy) > il + " . (4.23)

-2, —1 -1 b
8, =b " )=hn|——1) Zhpy1 — hn,
a
and hence
18,2071, 8,241 C [hm. hy1)-

We claim that for any & € [8,,2b~", 8,2a~'],
P} 2 .
f —-5/2 f p(t)e—ln[dt
0

1
In fact, since h,, = 8,;219’], it follows from (4.23) that (4.24) holds for & > h,,, with |h — hy,|
sufficiently small. Suppose that there is an %, € [8,,26~", 8,,2a~!] such that

1 D) 2 .
\/— —-5/2 f p(t)e_lmdt
0

rm;) = Zw + Tn
Then it follows from (4.21) and (4.23) that

: (4.24)

%w < [L(h%) — ()

= |I"(hm + p(hy, — )| (hy, — hi) (e € [0, 11)

_ G A by = b DT i + 1 (i, — o)) (= )
b + e (hsyy = hm)
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b 'w
S -
4(a~ ! — b*])hm
b~ lw
4@~ — b~15,,2b"1 o

(hyy — hm)

IA

-1 _ —1_@
( )_47

which is a contradiction. Therefore, (4.24) holds for all € [§,,2b~!, 6,,2a~'].
Since lim sup,,_, , o, |I'(h)| < +00, we can assume, without loss of generality, that

sup |I'(h)] < M. (4.25)
h>h

For simplicity, we set Efn(uo, T0) = Efsm (1o, 70), i = 1, 2. Since

9 1 _ _
— ! (uo, 10) = Enuo {F(B 2ughy — 28, %uy ' (8, 2ug )

dug
V2

+7n_5/2(p; cosnty + p; sinnro)} ,
and

2
|ps, cosnty + pi sinnty| </ (pS)? + (p)? = [ p(He " dr
0

it follows from (4.19), (4.21) and (4.24) that for ug € [a, b],

e} (uo, ) > %ué/z > VLN 0,
and
9 nwo 12 —12
ﬁ ,T0) = —b / 0.
B m (140 T0) = o = T g

Furthermore, by (4.21) and (4.25), we also have

2w .
/ p(He " dt :| ,
0
27 .
/ p(He "dt :| )
0

Notice that fork = 1,2, ...,7, limsup;,_, , o, |hkF(k) (h)| < +o00, a similar argument can be
used to show that

2
€} (uo, ©) < nb'? [M + %ns/z

and

9 1 L _ip o V2 5p
Mﬂm(uo,m)fina / M+§+7n /

hmsup el llc7¢ay < +00, limsup 1% lescay < +o0,

m——+ m——+00

here and in what follows, we always denote by A the set [a, b] x S L
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Let

\/E -5/2

Ly (uo, 70) = |:F(8 2 _1) + — S (ps cosnty + p)) sinnro):|

uo
—/ 8y tu™ 2 (8 2u Ydu,  ug € [a, b].
a

Then it follows from (4.21) and (4.24) that

9 L L, V2 : :
—In(uo, ©0) = Fu 3/2 |:F(8 2ugh) + = 7" n=2(pS cosntg + pl smnro)j|

auo
> Zuy?? = T2 s 0,
8 8
Clearly, by (4.21), (4.24) and (4.25), we can also obtain
2 2 .
20 b —a) = In(uo. ) = —a”'? | M + V2,50 [ p()e ™ dr
16 > A
“ygd @
and
d 1 2 2 )
— Ly (uo, 10) < =a 32| M + in*S/Z / p(HeMdr| | .
duo 2 2 0

In a similar way, we can show that

lim sup || I, ||C7(A) < 4o00.
m——+00

Moreover, we have
om (1o, 10) : = 0s,, (U0, T0)

0 0
1 2
= £, (uo, To)—afo Iy (uo, 70) + £;, (1o, 70) o Ly (ug, 10)

N2 .
= {F(S ~2 ]) + ~Zn 2 (pS cosnty + pe sinntg)

2

V2, ~3/2
2
+ «/zn_l/zug/ (p; cosnty — p), sinntp)

(p sinnty — p) cosntp)

1 _3p
'EMO
=0.

2 '
{F(a Zugy + { =/2(pE cosnty + p’ sinnro)}

|

On the other hand, for any x, y € [a, b], we have

- 2 2 .
Im(x) = —x71/2 {F(amle) — £n*5/2 / p(t)eﬂ”tdt
0

2

225
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x
- f 8- 2u™ (8 2u"Ydu,
a
and

2
£n75/z
2

27 .
/ p(He " dt
0

L,(y) = —y~'/? {F(ﬁmzy‘) +

|

Therefore, by virtue of (1.6) and the dominated convergence theorem, we obtain

2 )
/ p(He ™Mdr
0

y
—/ 8 2u™ (8 2u" du.
a

_ _ 2
I(x) = limsup I, (x) < —x Y2 Y liminf I'(8,,%x 1) — £;1*5/2
m—>—+00 2

|

m——+00
and
2 2 )
I(y) = liminf 1,,(y) = —y~ V2 Mimsup I'(5,, 2y~ + — V2 n=3/? / p(r)e ™ ds }
m—>+00 00 2 0
If
256 M7
yix = T, (4.26)
w
then it follows from (4.24)—(4.26) that
- 2 2 )
Iy) —1(x) > x {11mmfF(8 ~2x~ 1y — £;1—5/2 f p(t)e_"”dt}
m——+o0 2 0
2 2 )
y]/z{llmsupf(é 2y 4+ = V2,5 f p(t)e"”dt}
m——+00 2 0
2 2 .
= (x" V24712 {1iminfr(am2x‘)— £n*5/2 f p(He " dr
m——+00 2 0
—;[hmmfl“@ x~ 1 + limsup I'(8, %y ‘)}
1+ (y/x)]/Z m—>+ m——+00
1 1
> (x V24 yTl2 [Zw — §w1|
_ E(xfl/z Y12y > D12 0,
8 4
and hence
I(x) < L(y). (4.27)

Now we choose the constants a and b as

_ 4096M*(M + 1)

3 > 1, a=b""
o
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Set

_16(M + 1 _ 16M
po M D Gy M
w w

Then we have
a<d<a <by<b<b,
and, by (4.26) and (4.27), we also have
(@) < 1@ < I(a1) < L) < 1(b) < L(b).

Therefore, for the map Q, all the conditions of Theorem 4.1 are fulfilled. Hence for every
positive integer m large enough, the map Q, and so the map P, has an invariant closed curve
which is diffeomorphic to {zg = constant}. This completes the proof of Theorem 1.

5. Proofs of Theorems 2 and 3
In this section, we will give proofs of Theorems 2 and 3. We start with a few technical lemmas.

Lemma 5.1. Let
Ie(h) =W~ P (mn®, foro <k <7.

Then
k k—1 o
KT ® (hy = ¥ 12 0 () — 2% 1_[(_2]' + DI'(h) — ng’jh/ 9D, 5.1)
Jj=1 j=1
where
2k — 1 k 2j—1
C =c _ . - — _ ~ — 1
Ck,0 = Ck—1,0 < > ) ]1:[1< 3 ), Ch.k ,
~ ~ ~ 2k—1 | )
Chj=C-tj1tC-1j | ———+Jj). 1=j=k-1L
Proof. It is easy to see that
k
I (h) = ng,,/h7%+jr<j)(h).
j=0
Hence
k—1 ‘ '
F(k)(h) = h]/sz(h) _ ng’jh*k+][v(j)(h)’
j=0

from which the conclusion follows. O

Lemma 5.2. Let

gn =qh,0) =n~+n"'2h)""?g(v/2h cos ) cos 0,
k
a5 = =7 (h,0).
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Then
k o ,
g\ =n"! Z cx,j(2h) T g (V2h cos 0) cos' T 6, (5.2)
Jj=0

for1 <k <8, where

k
c0=1 ao=c10-(=2%k+1) =) (=2j+1), ar=1
=1

Ckj = Ch—1,j—1+Ch—1,j - (=2k+1+j), 1<j<k-1
If; in addition, (1.8) holds, then
gy < e(mh ™14 1<k <8, (5.3)

Proof. The proof is easy and is omitted. O

Lemma 5.3. If (1.8) holds, then
2
T (h) = —n_k_2[ gVdo +e(h 12 1<k <7, (5.4)
0

where ry = ro(h, 9).
Proof. By (2.9), we see that

2 2 2
To(h) = k=2 (h) = t(h) — 7” =/ i 7”
0 ro
Notice that
) .6 1 1
_”0 ’ = 5 . =
oh D ho(ro.0)  ar

by using a direct computation, we can easily check that

2, (k) k—1
h,0
Ti(h) = _f an il + k045 1 <k <7, (5.5)
0 [qr()] +
where
k s i)
O 0)=> | > Cuelijd[[an |ah= 1<k=7.
s=2 \{ij}€Ps j=1
where Py = {(i1,12,...,0); 1 <i; <k —1, ijl ij =k} and Cy,{i;} are constants.
It follows from (1.8) and (5.3) that
g < emh™ 14 1<k <7, (5.6)
and hence
|Qk(h,0)] < e(h™* 12 1<k =<7 (5.7)
Set

8ro = &(+/2rpcos ) cosb.
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Notice that
|gr, —nl =n""1(2ro)""/2g(y/2rg cos ) cos 6| < e(h)h /4,
it follows from (5.5)—(5.7) that

I (h)

o, ® i
- 046 + e(h)h %
/o [qry 12

2 (k)
— _n—k—2f qr() de
o [14+n"2Q2ro)~1/2g,1+2

2w
= —n_k_2f a1l — n=2Q2ro) " 2g, 1M H2d0 + e(hyh K12
0

2
= —p k2 /0 aPdo + e(hyh 172,

The proof is complete. O

Now, we are in the position to prove Theorem 2.

Proof of Theorem 2. Notice that R; (h, 6) = ro(h, 8) — n~'h satisfies

Ri(h,0) = —n"2G(/2(n~'h+ Ry)cosB), |Ri(h,0)| < e(h)h,

it follows that
A-Ri(h,0) = —n"2G(2n"h cos ),

where

A=14n"220""h+ uRD1"?g(/2(n="h + uR}) cosO) cosb,

Since |R1(h, 0)| < e(h)h, we have

A=1+4¢(h).
From (5.8) and (5.9) and the rule of L’Hospital, it follows that

I Ry (h,0) . ARl(h,e)
im ——% = lim A——"—
h>+oo  h3/4 h— 400 h3/4
5 G(V2n~hcos®)
= —-n 1
h— 400 h3/4
4 4n~'g(v2n=1h cos @) cos 0

im
h—:+oo 32n—1h . h—1/4
272
3
=0.
Hence,

IR (h, 0)| < e(h)h/*.

n3/2 . lim A~ '4g(v/2n—1hcos6) cos
—+00

229

(5.8)

(5.9)

(5.10)
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For1 < k <7, we have
1
k k k+1

7)) = qr(zjlh +/o qrE*IhlaRlda " R1.

Therefore, (5.3) and (5.10) imply that
1

(k+1)

[0 qn*lh+aR1da R

and hence, from (5.4), it follows that

< e~ ®ED=VA omn3 < e(myn 12,

2
Ii(h) = —n*H[ g, do+emr 12 1<k <7 (5.11)
0
Therefore, by (5.2) and (1.10), we have

2
i#mnw=—fHA W 2g 0,06 + e (h)

k 2w
= _zikfl/z’fs/zzck,j/ n~'h)I? gD (V/2n=1h cos ) cos’ ! d6
._0 O
+e(h)

2
= —2—’<—1/2n—5/2ck,0[ g(v2n=1h cos0) cos0d6 + (h)
0

k 2
= k12,572 ]‘[(—2;’ + 1)[ g(vV2n=1h cos @) cos0dO + (h).
0

j=l1

(5.12)
On the other hand, by using a similar argument, we can show that
2
I'(h) = —2_1/211_5/2/ 2(v2n=1h cos0) cos6dd + ¢(h). (5.13)
0

By (5.1), (5.12) and (5.13), we have
I r®my) < eth), 1<k<7.

That is, (1.6) holds. Clearly, (1.5) also holds and the conclusion of Theorem 2 follows from (1.7)
and (5.13). The proof is complete. [

Proof of Theorem 3. Firstly, we notice that if (1.12) and (1.13) hold, then (1.8), and hence (5.3)
holds for 1 < k < 7. Therefore, (5.4) and (5.13) also hold and we can prove that

k 2
2 0(h) = —2 k172,572 l_[(_zj +1 [ g(v2n=1hcos®)cos6dd
0

j=1

k 2 k+1/2

h ; . .

—n—"—3zck,jf0 [%} (2r0)?"%g)(y/2rg cos 6) cos’ T 6do
j=1

+e(h), |
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which, together with (1.12), (5.1) and (5.13), yields (1.6). Now the conclusion of Theorem 3
follows from Theorem 1. [

Appendix

In this appendix, we sketch the proof of Theorem 4.1 in three steps. For more details, we refer
the reader to [18].

1. The New Coordinates. Foreach® € Rand h € [Is (a), L 5(b)], we denote by Rs = Rs(h, 6)
the unique solution of I5(Rs(h, 6),0) = h. Then the implicit function theorem and (4.4) imply
that Rs is well defined and of class C”. Moreover, a < Rj (h,0) < b, Rs is 2w -periodic in 0
and satisfies Rs(I5(r, 0),0) = r for all (r,0) € A with Is(r,0) € [Is(a), 1 5(b)]. By using an
induction argument, we can show that

lim sup ||R5||C7([18(a) L;B)x[0.27]) < +o00. (A.1)

§—0+
Define

de

2
Ty : [Is(a), L5(b)] > R, Ts(h) = T Rah oy o
52 [Is(a), Ls(b)] — s(h) /0 £} (Rs(h,0),0)

and

21 -
ws(h) = ——, forh e [I5(a), I5(b)].

Then T3 and ws are of class C7, and by using (4.2) and (4.4), we can show that

liminf  min ws(h) >0, liminf  min ws(h) > 0, (A2)
§=0+ hells(a),15(b)] §=0+ hells(a),15(b)]

and
lim sup ||a)3||c7 s (@), 15 (b)] < +o00. (A.3)
6—0+

Next we consider the region A= {(r,0) :0 € R,a <r < b} and define the function

ds
€5 (Rs(I5(r, 0), 5), )

0
Ks : A >R, Ka(r,@):/
0

It follows from (4.7) that it is well defined. Moreover, it is of class C” and satisfies
Ks(r,0 + 27) = Ks(r, 0) + Ts(Is(r, 0)), forall (r,0) € A.
Moreover, it is easily seen that the derivatives of Kg are given by

aK‘s( = 0 s, Ko = L6 0)s50r0) (A4)
o) a0 ar T g RO, :

where Ss(r, 0) is of class C® and given by

Ss(r, 0) /0 : Bﬁé( ) (1 )d
r,60) = _ .S , $)ds.
’ 0 C§(Rs,s)2 dr Ry ’
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From (4.2) and (4.4) and (B.1), we can easily obtain

lim sup ||S5||C6([a,15]x[0,2n]) < 400, limsup ||K5||C7<[&’5]X[0’2n]> < +o00. (A.5)
§—0+ —0+

Finally, we define
5 A— R, 15(r,0) = ws(s(r, 0)Ks(r, 6).

This function is of class C7 and satisfies

5(r,0 + 2m) = 15(r,0) + 27, forall (r,0) € A, (A.6)
and
lim sup ||75||C7([a,13]x[0,2n]) < 400. (A7)
§—0+

By using (4.5) and a direct computation, it can be easily checked that

¢! aﬁ 2% —

Y90 T Var

If os = 0, then all the functions previously defined have an interpretation in terms of the
differential equation

0 =y 9),
r' =6, 0).

+¢ ws o Is + [(wj o I5)Ks + (w5 o 15)Ss]0s. (A.8)

For each 4 the equation r = Rs(h, ) describes an orbit with period T (h) and frequency ws(h).
Given (r, 0), the quantity Ks(r, 6) is the time employed by an orbit to go from the horizontal axis
6 = 0 to the point (r, 6).

We can now define the mapping

Us: A >R (r0) > (Is5(r.0), T5(r. 0)). (A.9)
The periodicity of /5 and (B.5) imply that ¥; satisfies
Us(r, 0 + 27) = Ws(r,0) + (0,27), forall (r,60) € A. (A.10)

Therefore, ¥y is the lift of a mapping s : A — R x S'.
From (4.5), we obtain (Is)g = —(Zg/ﬁ;)(lg)r + 05/¢}, and combining this with (A.6), we get

det U5 = (I5),(t5)g — (I5)a(Ts);

I5),
= (@ w)e + B’ ;1)
8

Qs
- g('@)r

ws o Is 05 /

/ Is)r + E_l{[(w‘s 0 Is)Ks + (ws o Is)S51(Is)r — (T8)r},
3 3

which, together with (4.2), (4.4), (4.6), (A.2), (A.3), (A.5) and (A.7), implies that

lim inf min det U5 > 0, limsup || det ¥l -5~ 7 < +00. (A.11)
§—0+ (1.0)ela,b]x[0,27] 50+ €@ 61x10,2z1)

By using (A.5), (A.7) and (A.11) and an argument similar to that used in [18], we can show
that W is a change of variables. More precisely, we have the following
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Proposition A.1. Let Us be defined by (A.9). Then

(i) YsisaC 5 -diffeomorphism from A onto s (A);
(ii) the following inclusion holds:

= [Is(a1), L5(b1)] x R C ¥s([a1, bi] x R);

>iii) Y5 and W({ can be expressed in the form

g [T=0HUC0. o [0=T+y D),
D U=ravnee). 0 r=1+y20,0),

with im supg_, o [V ”cS(A) < +00 and lim sups_, |y lcscaxy < +o0.

2. The New Mapping. Define

Ap=A, A ={r6):0ecRa <r<b},
Ay =A*"={I,7): T eR, Is(a) <1 < Lgby)}.

Then
A Cc Ay, Ay Fs(A). (A.12)
From now on, we set

Ly =limsup |€}llccay, L2 = limsup [[€3]lcca),
§—0+ §—0+

and assume, without loss of generality, that
los llescay + 93 llescay < 1. (A.13)
Choose A1 > 0 with
ay—a b— by }
24+ Ly 24+ Ly

Aq §min=

such that for 0 < § < Ay,
Iedllcey < Li+1, 16 lcwm < La+1.

Notice that L, L, and A; are independent of §. A computation based on (4.1) shows that if
0 <8 < Ay, then

f(A) C Ao. (A.14)
We can now define
g: A > RxR, g=Wsofow !

Then it is easily seen that g is the lift of a mapping g : A» — R x S!. Moreover, we have the
following observation:

Proposition A.2. In the above settmg, g has the intersection property in Az. Moreover, if Y is
an invariant curve of g, then I' = f (Z) is an invariant curve of f.

By virtue of Proposition A.2, it suffices to show that g has an invariant curve in A;. To this
end, we express the mapping g in terms of the new variables (/, 7).
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Proposition A.3. Assume that (A.13) holds and § < A;. Let g(I, 1) = (I', ') be the mapping
defined above. Then

v =14 2Nmw 4 Sws(I) + S}, T),
I'=1+883,1),

where Sg, Sg belong to c’ (A3) and satisfy
155 llcsaz) + 1S5 llescayy < kUI@s llescay + 195 escay + losllesay + 8-
Here k is a constant and is independent of & and (pg , (pg.

By (4.6) and (A.13) and Proposition A.3, we can further restrict the size of A; in such a way
that A is still independent of § and if 0 < § < Ay, then g € M(A»). ~

To prove Proposition A.3, we need a preliminary result. Given a function F : A — R we
define

F*: Al >R, F*r0)=F@F0),

thatis, F* = F o f.If § < Ay, then F* is well defined.

Lemma A.4. Assume that F € C’(A), ”F”C7(/§) < H and § < Ay. Then, for each (r,0) € A,

F*(r,@)=F(r,9)+8F(r,9)+8R(r,9), (A.15)
with

Fr0) = 2200k, 0) + 22,032, 6)

r,0) = —:(r, 7, —(r, 7,
36 s ar 8

and

IRl esca,y < Kllogllesca + 105 llescay + 8).
where K depends on H, L1, L. In particular, K is independent of .

Proof. We prove by induction that for each j = 0,1,2,3,4,5and F € C J “‘2(1&) the identity
(A.15) holds with

IRNcicay < Killloslcica + 195 cicay +8). (A.16)
where K; depends on H, Ly, L.
Assume j = 0. By (4.1) and (A.13) and the mean value theorem, we obtain

OF IF
F*(r.6) = F(r.0) = 52, 0)(8' =6 = 2N7) = —— (. 6)("" =)
r

< H[|0' =0 —2Nw| 4+ |r' —r|]* < H(L1 + Ly + 4)>5°.
Combining this estimate with (4.1), we obtain

¥ ¢ ST B_F 1 202

|[F*"—F —38F| <3¢ a9 75 + H(Ly + Ly +4)76°.

+5|2E 2
Br(p‘s

Let Ko = H(L{ + Ly + 4)2, then the estimate (A.16) follows for j=0.
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‘We now prove that (A.16) is also valid for j > 1 when it holds for 0, 1, ..., j — 1. First we
apply the induction hypothesis to d F /96 and d F'/dr to obtain

(Fg)* = Fy+8Fy + 8R,, (F)*=F, +8F, + R,
with

IR lci1a,) < KX (@i llcioiay + 1931 ci1a) +8),  fori = 1,2,
where K* depends on H, L1, L>. Now,

IF*  (9F *ae’+ aF\* or'
30 \ a9 /) a0 ar ] 00

AF\* el Bl AF\* [ 062  d¢?
- = 1 +8—=8 4§18 - 5% it}
(ae) ( 0% 0% +<8r> 20 %0

Fy+8F)+§ FM‘%JFFB% + S8R
= I'g 0 939 r89 3

0 .
F §—|{F SR3,
0+ 89{}+ 3

with

et dg) dp) . foaet gl
Ri=Ri[14+6=2L +6-22 )+ Fp—L2 +6F | -2 + -2
3 ‘(+ae+ae trogg T\ Gg T e

dp3 . A 0¢3
F,=2+8(F+R) [ =2+ 2.
+ 20 +8(F + R2) 9 + 20

The remainder Rj satisfies an estimate of the form

IRsllci-10a,) < KiUl@sllcicay + 195l csa + 6),
where K ; depends on H, L1, L. (Notice that we have used (A.13).)
In a similar way, we obtain
oF*
or

with R4 satisfying the same estimate as R3.
This completes the proof because the remainder in (A.15) satisfies

IR OR
30 " ar

Proof of Proposition A.3. Since

d .
= F, +3—{F}+ Ry,
ar

Ry, O

lim sup ||T5||C7([a,15]x[0,2n]) < 400, limsup 1251l c7ay < +o0,
§—0+ §—0+

for small §, we can apply the previous lemma to the functions a5(r, ) = 75(r, 6) —6 and Is(r, 6)
and obtain, in A,

7§ =15+ 2Nmw + 815 +6R§,

13* =1Is+ Bja + 5R§,
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where R;, Rg satisfy

IR N escayy < Killlgsllescay + 193 lescay + ). (A.17)

fori = 1, 2, with K; independent of §. )
From (4.5) and (A.8), s = ws o Is + [(a)é o Is)Ks + (ws o I5)Ss]os and Is = ps. Thus

13 (r,0) = 15(r, 0) + 2N + Sws (I5(r, 0)) + 88} (r, 6),
{lg‘(r, 0) = Is(r, 0) + 8S2(r, ), (A.18)
where
§3(r,0) = Ry (r, 0) + [ws(I5(r, 0)) K5 (r, 6) + w5 (I5(r, 6))S5(r, 0)]0s (r, 6),
{Sf(r, 0) = R3(r,0) + 0s(r, 0).
By (4.4), (A.3), (A.5) and (A.17), we obtain
155l cscay < Kilgsllesa + 195 Iescay + leslescay +9). (A.19)

fori =1, 2, with K ; independent of §.
The mapping ¥5 o f : Aj — R x R is given by WUs o f(r,0) = (I5(r,0), 75 (r,0)) and,
denoting by (1, 7) the independent variables in A;, we have

(' ') = g, 1) = (¥ (1, D), 5 (¥ (1, D).
This identity, together with (A.18), allows us to obtain the expansion of the proposition with
S5 =S50 %_1. It is easy to see that
' Gi —1)5
IS lleseay < CISHescap & I3s e,
where C is a constant independent of §. An application of Proposition A.1 ends the proof. O

3. The Proof of Theorem4.1. To prove Theorem 4.1, we give a version of the small twist
theorem, whose proof is similar to that of Theorem 3.6 in [18] and is omitted.

Proposition A.5. Let f € M(A) be a mapping with a lift f that can be written in the form

60 =6+ 2N + Sas(r) + 8¢. (. 6),
r=r48¢3(r,0),

where § € (0, 1) is a parameter and

dog
as € C° a,b], limsup |« < 400, liminf min —(r) > 0,
’ .01 v s llesta.e e R

¢i € Cla,bl, ¢3 € C*a, bl

Then there exist constants ¢ > 0 and A > 0 such that if § < A and
165 llescay + 165 ey < &

the map f has an invariant curve.

Theorem 4.1 is now a consequence of Proposition A.5. We apply the latter to the mapping
described in Proposition A.3 to find an invariant curve of g = ¥s o f o ¥y Uin A,. According
to [4], this curve has rotation number oy and can be expressed in the form I = 5(7), where
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Vs is a 2m -periodic function of class C3 such that ¥ is small. So ¥y ! (¥s(t), T) is an invariant
curve of f, which is defined implicitly by the equation

Is(r, 0) = ¥5(vs(r, 0)).

It also has rotation number ¢, and can be explicitly described as r = () by the implicit
function theorem and (4.4), where p independent of §. This proves the first remark after
Theorem4.1. O
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