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Abstract

We obtain a new variant of Moser’s small twist theorem and apply this new version to investigate the
boundedness of solutions for the following semilinear Duffing equation

ẍ + n2x + g(x) = p(t),

where p is a 2π-periodic smooth function and lim|x |→∞ x−1g(x) = 0. We obtain some sharp sufficient
conditions for the boundedness of all solutions to the above equation at resonance. Unlike many existing
results in the literature where the function g is required to be a bounded function with asymptotic limits,
our main results here allow g be unbounded or oscillatory without asymptotic limits.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and main results

In this paper, we consider the boundedness of solutions to the Duffing equation

ẍ + ḡ(x) = p(t), p(t + 2π) ≡ p(t), (1.0)
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in the semilinear case, to be specified later. This equation, as one of the simplest nontrivial
conservative systems, has been widely investigated and many results have been obtained for
the existence and multiplicity of periodic solutions by various methods, such as the critical point
theory, the phase plane technique and the continuation method based on a degree theory. We
refer the reader to [5,19] and the references therein. We also refer the reader to [1,2] for the
general theory. The serious work on boundedness of solutions to (1.0) dated back to at least
1966, when Littlewood [8] asked whether or not all the solutions of (1.0) are bounded for all time,
i.e., whether there are resonances that might cause the amplitude of the oscillations to increase
without bound. This problem was also raised and studied by Markus [12] and Moser [16].

The first result on the boundedness of solutions in the superlinear case (i.e., x−1ḡ(x) → +∞
as |x | → +∞) was due to Morris [14]. On the basis of Moser’s twist theorem [15], Morris
proved that every solution of (1.0) is bounded when ḡ(x) = 2x3 and p is a piecewise continuous
function, here and in what follows, a solution x(t) is bounded if it exists for all t ∈ R and

sup
t∈R
(|x(t)| + |x ′(t)|) < +∞.

Morris’s result was later improved by several authors (see [3,7] and references there) for a large
class of (1.0) in the superlinear case.

However, in the semilinear case, where

0 < lim inf|x |→+∞ x−1ḡ(x) ≤ lim sup
|x |→+∞

x−1 ḡ(x) < +∞,

the situation is quite different and the study of the boundedness is delicate and difficult. To the
best of our knowledge, so far very little has been achieved, and the main difficulty lies in the
well-known phenomenon of linear resonance. See [9,10,17,18]. To be more precise, we consider

ẍ + n2x + g(x) = p(t), (1.1)

where n ∈ N, p(t + 2π) = p(t) and lim|x |→∞ x−1g(x) = 0.
When g is piecewise linear and given by

g(x) =
⎧⎨
⎩

L, if x ≥ 1,
Lx, if |x | < 1,
−L, if x ≤ −1,

and p is 2π-periodic and of class C5, Ortega [18] proved that every solution of (1.1) is bounded
if ∣∣∣∣∣ 1

2π

∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < 2L

π
.

By using a variant of Moser’s twist theorem due to Ortega [18], Liu [10] obtained a similar result
for the boundedness of solutions to (1.1) with smooth g and p. More precisely, Liu proved the
following1

Theorem 0. Suppose that p ∈ C7(R/2πZ) and g ∈ C6(R), and assume that the limits

g(+∞) := lim
x→+∞ g(x), g(−∞) := lim

x→−∞ g(x),

1 A short proof can also be found in M. Kunze, Remarks on boundedness in semilinear oscillators, In Nonlinear
Analysis and its Applications to Differential Equations, Birkhauser, 2001.
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are finite and

lim|x |→+∞ x6g(6)(x) = 0.

Then every solution of (1.1) is bounded provided∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < 2|g(+∞)− g(−∞)|.

To state and compare other boundedness results with our main contributions here, we note that
Massera’s theorem [13] shows a close connection between the existence of periodic solutions and
the boundedness of solutions of (1.1). We also note that the auxiliary equation

ẍ + n2x + g(x) = 0 (1.2)

is equivalent to the following planar autonomous Hamiltonian system

ẋ = −ny, ẏ = nx + 1

n
g(x) (1.3)

with the Hamiltonian function

H0(x, y) = 1

2
n(x2 + y2)+ 1

n
G(x),

where G(x) = ∫ x
0 g(s)ds. For h > 0, we denote by τ (h) the least positive period of the orbit

Γh : H0(x, y) = h of the system (1.3), and we set

Γ (h) := √
h

(
τ (h)− 2π

n

)
. (1.4)

The asymptotic behaviors of the time map τ (h) play an important role in some recent work
regarding the existence and multiplicity of periodic solutions of (1.1). In particular, in [5,19] it
was shown that if g is continuous and

lim sup
h→+∞

Γ (h) = +∞, lim inf
h→+∞ Γ (h) = −∞,

then (1.1) has infinitely many 2π-periodic solutions. Moreover, in [5] it was shown that if g is
Lipschitz continuous and

lim sup
h→+∞

|Γ (h)| = +∞,

then (1.1) has at least one 2π-periodic solution. Therefore, it is natural to ask whether or not
(1.1) admits a 2π-periodic solution under the condition

lim sup
h→+∞

|Γ (h)| < +∞.

A positive answer in some cases is given in [11]. Our main result, stated below, shows that some
sharp sufficient conditions for the boundedness of solutions of (1.1) can also be obtained in terms
of the behaviors at infinity of the time map τ (h).

Theorem 1. Assume that p ∈ C7(R/2πZ) and g ∈ C7(R). In addition, suppose that

lim|x |→+∞ xk−1g(k)(x) = 0, 0 ≤ k ≤ 6 (1.5)
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and

lim
h→+∞ hΓ ′(h) = 0, lim sup

h→+∞
|hkΓ (k)(h)| < +∞, 2 ≤ k ≤ 7. (1.6)

Then under the condition∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ <
√

2n5/2 lim sup
h→+∞

|Γ (h)| < +∞, (1.7)

every solution of (1.1) is bounded.

In the above result, we implicitly state that Γ (h) is of class C7. This is true, since g ∈ C7(R),
by using the expression of τ (h) given in the main body of the paper. We shall also note that in
Theorem 1, the condition limh→+∞ hΓ ′(h) = 0 may by replaced by a weaker condition:

lim sup
h→+∞

|hΓ ′(h)| < ε0,

where ε0 > 0 is small and can be determined explicitly using the quantities of
∣∣∣∫ 2π

0 p(t)e−int dt
∣∣∣

and lim suph→+∞ |Γ (h)|.
As consequences of Theorem 1, we shall have the following

Theorem 2. Assume that p ∈ C7(R/2πZ) and g ∈ C8(R). In addition, suppose that the
function g satisfies the following conditions:

lim|x |→+∞ |x |k−1/2g(k)(x) = 0, 0 ≤ k ≤ 8, (1.8)

lim
ρ→+∞

∫ 2π

0
ρg′(ρ cos θ) cos2 θdθ = 0, (1.9)

lim sup
ρ→+∞

∣∣∣∣∣
∫ 2π

0
ρk g(k)(ρ cos θ) cosk+1 θdθ

∣∣∣∣∣ < +∞, 2 ≤ k ≤ 7. (1.10)

Then every solution of (1.1) is bounded provided∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < lim sup
ρ→+∞

∣∣∣∣∣
∫ 2π

0
g(ρ cos θ) cos θdθ

∣∣∣∣∣ < +∞. (1.11)

Theorem 3. Assume that p ∈ C7(R/2πZ) and g ∈ C7(R). In addition, suppose that the
function g satisfies the following conditions:

lim
x→+∞ xg′(x) = lim

x→−∞ xg′(x), lim sup
|x |→+∞

|xkg(k)(x)|, 2 ≤ k ≤ 7 (1.12)

are finite and

lim|x |→+∞ |x |−1/2g(x) = 0. (1.13)

Then every solution of (1.1) is bounded provided (1.11) holds.

Remark. Clearly, if g(+∞) = limx→+∞ g(x) and g(−∞) = limx→−∞ g(x) exist and are
finite, then it follows from the dominated convergence theorem that the inequality (1.7) or (1.11)
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reduces to∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < 2|g(+∞)− g(−∞)|. (1.14)

Therefore, our Theorem 1 implies Theorem 0 as a special case. Note, however, in our results,
g is allowed to be unbounded and oscillatory without asymptotic limits. We also note that if,
in addition, g(−∞) ≤ g(x) ≤ g(+∞) or g(+∞) ≤ g(x) ≤ g(−∞) for all x ∈ R, then it
is well known (see [6]) that (1.14) is a sufficient and necessary condition for the existence of
2π-periodic solutions of (1.1). So it follows from Massera’s theorem [13] that (1.14) is also a
sufficient and necessary condition for the boundedness of solutions of (1.1). In this sense, we say
that inequalities (1.7) and (1.11) are sharp conditions for the boundedness of solutions of (1.1).

Remark. We must emphasize that in contrast with the case for most of the known results
regarding the boundedness of all the solutions of (1.1) that impose conditions of the boundedness
and non-oscillation with asymptotic limits on the function g, i.e.,

sup
x∈R

|g(x)| < +∞, xg(x) > 0 (or xg(x) < 0), for |x | ≥ M,

in our main results, the function g may be unbounded and oscillatory without asymptotic
limits. In particular, we note that if p ∈ C7(R/2πZ), then from Theorem 2 and the dominated
convergence theorem, it follows that provided∣∣∣∣∣

∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < 2π,

then every solution of the following three equations is bounded:

ẍ + n2x + arctan x + a sin ln(1 + x2) = p(t),

ẍ + n2x + arctan x + ln(1 + x2) · sin ln(1 + x2) = p(t),

ẍ + n2x + arctan x + ln(1 + x2) = p(t).

Remark. It was shown in [6] that if p ∈ C(R/2πZ), g ∈ C(R) is bounded and if∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ < 2 max

{
lim inf
x→+∞ g(x)− lim sup

x→−∞
g(x), lim inf

x→−∞ g(x)− lim sup
x→+∞

g(x)

}
,

(1.15)

then Eq. (1.1) has at least one 2π-periodic solution. Moreover, if g is not constant and if∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ ≥ 2

(
sup
x∈R

g(x)− inf
x∈R

g(x)

)
, (1.16)

then Eq. (1.1) has no 2π-periodic solution. The following result shows that similar results hold
true for boundedness of solutions:

Corollary. Assume that p ∈ C7(R/2πZ) and g ∈ C7(R) is bounded. In addition, suppose that
the quantities:

lim
x→+∞ xg′(x) = lim

x→−∞ xg′(x), lim sup
|x |→+∞

|xkg(k)(x)|, 2 ≤ k ≤ 7
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are finite. Then

(i) every solution of (1.1) is bounded if (1.15) holds;
(ii) every solution of (1.1) is unbounded if g(x) is not constant and (1.16) holds.

This is an immediate consequence of Theorem 3 and the Massera’s theorem [13], since by
using the Arzela–Ascoli theorem and the dominated convergence theorem, we have

lim sup
ρ→+∞

∫ 2π

0
g(ρ cos θ) cos θdθ ≥ 2

(
lim inf
x→+∞ g(x)− lim sup

x→−∞
g(x)

)
,

and

lim inf
ρ→+∞

∫ 2π

0
g(ρ cos θ) cos θdθ ≤ 2

(
lim sup
x→+∞

g(x)− lim inf
x→−∞ g(x)

)
.

We conclude this introduction with a short sketch of the proof. As usual (see [7,9,10,18]),
we will first use standard transformations to rewrite (1.1) as a perturbation of an integrable
Hamiltonian system out of a large disc D = {(x, x ′) ∈ R2 : x2 + x ′2 ≤ r2} in the (x, x ′)-plane.
The Poincaré map of the transformed system is close to a so-called twist map in R2 \ D. Then
we obtain a variant of Moser’s twist theorem that guarantees the existence of arbitrarily large
invariant curves diffeomorphic to circles and surrounding the origin in the (x, x ′)-plane. Every
such invariant curve is the base of a time-periodic and flow-invariant cylinder in the extended
phase space (x, x ′, t) ∈ R2 ×R, which confines the solutions in the interior and leads to a bound
for these solutions.

The rest of this paper is organized as follows. In Sections 2 and 3, we give some technical
lemmas which will be employed in the proof of our main theorems. Section 4 is devoted to the
proof of Theorem 1. Finally, we will prove that if (1.8)–(1.10) or (1.12) and (1.13) hold, then
(1.6) also holds. We then conclude with the proofs of Theorem 2 and Theorem 3.

2. Global existence and canonical transformations

Throughout this paper, we will denote by C > 1 a universal positive constant and by ε(h)
a universal non-negative function satisfying limh→+∞ ε(h) = 0. Throughout this section, we
assume that the hypotheses of Theorem 1 hold.

By introducing a new variable y as y = −n−1 ẋ , (1.1) is changed into the following planar
Hamiltonian system

ẋ = −ny, ẏ = nx + 1

n
g(x)− 1

n
p(t) (2.1)

with the Hamiltonian function

H (x, y, t) = 1

2
n(x2 + y2)+ 1

n
G(x)− 1

n
x p(t),

and (1.2) is changed into the Hamiltonian system (1.3) with the Hamiltonian function

H0(x, y) = 1

2
n(x2 + y2)+ 1

n
G(x),

where G(x) = ∫ x
0 g(s)ds.

First, we deal with the global existence of solutions.
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Lemma 2.1. For any (x0, y0) ∈ R2 and t0 ∈ R, the unique solution

(x(t), y(t)) = (x(t; t0, x0, y0), y(t; t0, x0, y0))

of (2.1) satisfying (x(t0), y(t0)) = (x0, y0) exists on the whole t-axis.

Proof. Since

lim|x |→∞
G(x)

x2
= lim|x |→∞

g(x)

2x
= 0,

there exists an M0 > 0 such that

|G(x)| ≤ 1

4
n2x2, for |x | ≥ M0.

Let

M̄ = max|x |≤M0
|G(x)| + 1,

and

F(t) = 1

2
n(x2(t)+ y2(t))+ 1

n
G(x(t))+ M̄ .

Then an argument similar to that used in the proof of Lemma 3.1 in [10] can be used to show that

1

4
n(x2(t)+ y2(t)) ≤ F(t) ≤ F(t0) · eE |t−t0|.

Therefore, the solution (x(t), y(t)) exists on the whole t-axis and the proof is complete. �

Under the standard symplectic transformation (r, θ) �→ (x, y) with r > 0 and θ(mod 2π),
given by

x = √
2r cos θ, y = √

2r sin θ, (2.2)

systems (2.1) and (1.3) are transformed into the following Hamiltonian systems

ṙ = − ∂

∂θ
h(r, θ, t), θ̇ = ∂

∂r
h(r, θ, t) (2.3)

and

ṙ = − ∂

∂θ
h0(r, θ), θ̇ = ∂

∂r
h0(r, θ), (2.4)

respectively, where

h(r, θ, t) = H (x, y, t) = nr + 1

n
G(

√
2r cos θ)− 1

n

√
2r p(t) cos θ, (2.5)

and

h0(r, θ) = H0(x, y) = nr + 1

n
G(

√
2r cos θ). (2.6)

Observe that

rdθ − hdt = −(hdt − rdθ), rdθ − h0dt = −(h0dt − rdθ).
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This means that if one can solve for r = r(h, t, θ) from (2.5) and solve for r0 = r0(h, θ) from
(2.6), then

dh

dθ
= − ∂

∂ t
r(h, t, θ),

dt

dθ
= ∂

∂h
r(h, t, θ) (2.7)

and

dh

dθ
= − ∂

∂ t
r0(h, θ) = 0,

dt

dθ
= ∂

∂h
r0(h, θ) (2.8)

are two Hamiltonian systems with Hamiltonian functions r = r(h, t, θ) and r0 = r0(h, θ),
respectively. Now the action, angle and time variables are h, t and θ respectively. This trick has
been used by several authors (see [7,9,10]).

It follows from (2.6) and (2.8) that

τ (h) =
∫ 2π

0

∂

∂h
r0(h, θ)dθ

=
∫ 2π

0

dθ
∂
∂r h0(r0, θ)

=
∫ 2π

0

dθ

n + n−1(2r0)−1/2g(
√

2r0 cos θ) cos θ
, (2.9)

where r0 = r0(h, θ).
From (2.6), we see that

lim
r→+∞

h0

r
= lim

r→+∞

[
n + 1

nr
G(

√
2r cos θ)

]

= lim
r→+∞

[
n + 1

n
√

2r
g(

√
2r cos θ) cos θ

]
= n

and

∂h0

∂r
= n + 1

n
√

2r
g(

√
2r cos θ) cos θ > 0,

for r 
 1. By the implicit function theorem, we know that there exists a function R1 = R1(h, θ)
of class C8 with |R1(h, θ)| ≤ ε(h)h such that

r0(h, θ) = n−1h + R1(h, θ)

solves the equation

h = h(r0, θ) = nr0 + 1

n
G(
√

2r0 cos θ).

In a similar way, we can show that there is a function R2 = R2(h, t, θ) of class C7 with
|R2(h, t, θ)| ≤ ε(h)h such that

r(h, t, θ) = n−1h + R2(h, t, θ)

satisfies

h = h(r, t, θ) = nr + 1

n
G(

√
2r cos θ)− 1

n

√
2r p(t) cos θ.
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Lemma 2.2. For any smooth function I = I (h, t, θ) with |I (h, t, θ)| ≤ ε(h)h, let u =
u(h, t, θ) = n−1h + I (h, t, θ), then

lim
h→+∞(2u)

k−1
2 g(k)(

√
2u cos θ) cosk θ = 0, (2.10)

for 0 ≤ k ≤ 6, uniformly for t and θ .

Proof. Since

lim|x |→∞ xk−1g(k)(x) = 0, 0 ≤ k ≤ 6,

for any ε > 0, there exist constants Mk > 0 such that

|xk−1g(k)(x)| < ε, for |x | > Mk .

Since limh→∞ u(h, t, θ) = +∞ uniformly for t and θ ∈ [0, 2π], there exist positive numbers
Nk > 0 such that for h > Nk and any θ ∈ [0, 2π],

1√
2u

max|x |≤Mk
|xkg(k)(x)| < ε.

Therefore, for |√2u cos θ | > Mk , we have∣∣∣(2u)
k−1

2 g(k)(
√

2u cos θ) cosk θ

∣∣∣ ≤
∣∣∣(√2u)k−1 cosk−1 θg(k)(

√
2u cos θ)

∣∣∣ < ε,

and, for |√2u cos θ | ≤ Mk , we have∣∣∣(2u)
k−1

2 g(k)(
√

2u cos θ) cosk θ

∣∣∣ ≤ 1√
2u

max|x |≤Mk
|xkg(k)(x)| < ε.

This completes the proof. �

Lemma 2.3. Let r1(h, t, θ) = r(h, t, θ)− r0(h, θ), then

r1(h, t, θ) = √
2n−5/2h1/2 p(t) cos θ + R(h, t, θ), (2.11)

and ∣∣∣∣ ∂k+m

∂hk∂ tm
R(h, t, θ)

∣∣∣∣ ≤ ε(h) · h−k+1/2 (2.12)

for k + m ≤ 6, uniformly for t and θ .

We defer the proof to Section 3.
By Lemma 2.3, we have

r(h, t, θ) = r0(h, θ)+ √
2n−5/2h1/2 p(t) cos θ + R(h, t, θ).

Now system (2.7) can be written in the form⎧⎪⎨
⎪⎩

dh

dθ
= −√

2n−5/2h1/2 p′(t) cos θ − ∂

∂ t
R(h, t, θ),

dt

dθ
= ∂

∂h
r0(h, θ)+

√
2

2
n−5/2h−1/2 p(t) cos θ + ∂

∂h
R(h, t, θ).

(2.13)
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Lemma 2.4. There is a canonical transformation Ψ of the form

Ψ : h = ρ, t = τ + T (ρ, θ)

with T (ρ, θ + 2π) = T (ρ, θ) such that the transformed system of (2.13) is of the form

dρ

dθ
= − ∂

∂τ
r̃(ρ, τ, θ),

dτ

dθ
= ∂

∂ρ
r̃(ρ, τ, θ), (2.14)

where

r̃(ρ, τ, θ) = J (ρ)+ √
2n−5/2ρ1/2 p(τ ) cos θ + R̃(ρ, τ, θ),

J (ρ) = 1

2π

∫ 2π

0
r0(ρ, θ)dθ.

For the new perturbation R̃, we have∣∣∣∣ ∂k+m

∂ρk∂τm
R̃(ρ, τ, θ)

∣∣∣∣ ≤ ε(ρ) · ρ−k+1/2 (2.15)

for k + m ≤ 6, uniformly for τ and θ .

Proof. The transformation Ψ is defined implicitly by

Ψ : ρ = h + ∂

∂τ
S(h, τ, θ), t = τ + ∂

∂h
S(h, τ, θ),

where the generating function S = S(h, τ, θ) will be determined later.
Under this canonical transformation Ψ , (2.13) is transformed into the system

dρ

dθ
= − ∂

∂τ
r̃(ρ, τ, θ),

dτ

dθ
= ∂

∂ρ
r̃(ρ, τ, θ),

where the Hamiltonian function r̃ is of the form

r̃ = r0(h, θ)+ √
2n−5/2h1/2 p(t) cos θ + R(h, t, θ) − ∂S

∂θ
.

Now we choose

S =
∫ θ

0
[r0(h, s) − J (h)]ds. (2.16)

Obviously, S does not depend on τ and is 2π-periodic in θ . Hence, ρ = h. Let

T (h, θ) = ∂S

∂h
. (2.17)

Then the canonical transformation Ψ is of the form

h = ρ, t = τ + T (ρ, θ).

Let

R̃(ρ, τ, θ) = R(ρ, τ + T (ρ, θ), θ)

+ √
2n−5/2ρ1/2 cos θ

∫ 1

0
p′(τ + μT (ρ, θ))T (ρ, θ)dμ. (2.18)
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Then the transformed Hamiltonian function r̃ is of the form

r̃(ρ, τ, θ) = J (ρ)+ √
2n−5/2ρ1/2 p(τ ) cos θ + R̃(ρ, τ, θ).

Now we prove (2.15). By a direct computation, we know that (∂k+m/∂ρk∂τm)(R(ρ, τ +
T (ρ, θ), θ)) is a sum of the following terms

∂ p+q+m

∂h p∂ tm+q
R(ρ, τ + T (ρ, θ), θ) ·

q∏
s=1

∂ js

∂ρ js
T (ρ, θ), (2.19)

where

p + q ≤ k, j1, j2, . . . , jq ≥ 0,
q∑

s=1

js = k − p.

Lemma 2.5. Let T (ρ, θ) be given by (2.17), then∣∣∣∣ ∂k

∂ρk
T (ρ, θ)

∣∣∣∣ ≤ ε(ρ)ρ−k, 0 ≤ k ≤ 6. (2.20)

Proof. Let

qh(θ) = q(h, θ) = n + n−1(2h)−1/2g(
√

2h cos θ) cos θ,

q(k)h (θ) = ∂k

∂hk
q(h, θ).

Then it is not difficult to show that for 1 ≤ k ≤ 6

q(k)h (θ) = n−1
k∑

j=0

ck, j (2h)−k+ j−1
2 g( j )(

√
2h cos θ) cos j+1 θ,

where

c0,0 = 1, ck,0 = ck−1,0 · (−2k + 1), ck,k = 1,

ck, j = ck−1, j−1 + ck−1, j · (−2k + 1 + j), 1 ≤ j ≤ k − 1.

Let r0 = r0(ρ, θ). It follows from (2.6) that

∂

∂ρ
r0(ρ, θ) =

[
∂

∂r
h0(r, θ)|r=r0

]−1

= [qr0(θ)]−1.

By a direct computation, we see that (∂k/∂ρk)[qr0(θ)]−1 is a sum of the following terms

[qr0(θ)]− p̃ ·
k∏

s=1

[q(s)r0
(θ)] j̃s , (2.21)

where

k + 1 ≤ p̃ ≤ 2k + 1, j̃1, j̃2, . . . , j̃k ≥ 0,
k∑

s=1

s · j̃s = k,
k∑

s=1

j̃s = p̃ − k − 1.

Since r0 = r0(ρ, θ) = n−1h + R1(ρ, θ), |R1(ρ, θ)| ≤ ε(ρ)ρ, by Lemma 2.2, we have

|q(s)r0
(θ)| ≤ ε(ρ)ρ−s , 1 ≤ s ≤ 6,
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which together with (2.21) yields∣∣∣∣ ∂k

∂ρk
[qr0(θ)]−1

∣∣∣∣ ≤
k∏

s=1

ε(ρ)ρ−s· j̃s

≤ ε(ρ)ρ−∑k
s=1 s· j̃s = ε(ρ)ρ−k . (2.22)

It follows from (2.9) and (2.16) that

T (ρ, θ) = ∂

∂ρ
S(ρ, θ) = ∂

∂ρ

∫ θ

0
[r0(ρ, s) − J (ρ)]ds

=
∫ θ

0

[
∂

∂ρ
r0(ρ, s)− J ′(ρ)

]
ds

=
∫ θ

0

[
(qr0(s))

−1 − 1

2π
τ(ρ)

]
ds

=
∫ θ

0
[qr0(s)]−1ds − θ

2π

∫ 2π

0
[qr0(s)]−1ds,

which, together with (2.22), implies that∣∣∣∣ ∂k

∂ρk
T (ρ, θ)

∣∣∣∣ ≤ ε(ρ)ρ−k , 1 ≤ k ≤ 6.

Moreover, by the dominated convergence theorem, we have

lim
ρ→+∞ T (ρ, θ) = 0.

Thus the proof is complete. �

Therefore, by (2.19) and (2.20) and Lemma 2.3, it follows that for k + m ≤ 6,∣∣∣∣ ∂k+m

∂ρk∂τm
R(ρ, τ + T (ρ, θ), θ)

∣∣∣∣ ≤ ε(ρ)ρ−p+1/2 ·
q∏

s=1

ε(ρ)ρ− js

≤ ε(ρ)ρ−p+1/2 · ρ−∑q
s=1 js = ε(ρ)ρ−k+1/2.

Similarly, we can prove that∣∣∣∣∣ ∂
k+m

∂ρk∂τm

(√
2n−5/2ρ1/2 cos θ

∫ 1

0
p′(τ + μT (ρ, θ))T (ρ, θ)dμ

)∣∣∣∣∣ ≤ ε(ρ)ρ−k+1/2.

Therefore, (2.15) holds. This completes the proof of Lemma 2.4. �

Let θ = nϑ , then system (2.14) is transformed into the form

dρ

dϑ
= − ∂

∂τ
H̃ (ρ, τ, ϑ),

dτ

dϑ
= ∂

∂ρ
H̃(ρ, τ, ϑ), (2.23)

where

H̃ (ρ, τ, ϑ) = nr̃(ρ, τ, nϑ) = n J (ρ)+ √
2n−3/2ρ1/2 p(τ ) cos nϑ + n R̃(ρ, τ, nϑ).

As n is a positive integer, the function H̃ (ρ, τ, ϑ) is 2π-periodic in ϑ .
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3. Proof of Lemma 2.3

In this section, we shall give a proof of Lemma 2.3. Throughout this section, we assume the
hypotheses of Theorem 1 hold.

It is convenient to introduce the following notation. For n = 0, 1, . . . ,∞ and r, s ∈ R, we say
that a function f = f (h, t, θ) belongs to the class C(r) if | f | ≤ Chr for h 
 1, uniformly for t
and θ , and f belongs to the class C(r, ε) if | f | ≤ ε(h)hr for h 
 1, uniformly for t and θ . Then
we have the following observations.

Lemma 3.1. (i) C(r, ε) ⊂ C(r).
(ii) If r1 < r2, then C(r1) ⊂ C(r2) and C(r1, ε) ⊂ C(r2, ε).

(iii) If α, β ∈ R and f1 ∈ C(r1), f2 ∈ C(r2), then α f1 + β f2 ∈ C(max{r1, r2}) and
f1 · f2 ∈ C(r1 + r2).

(iv) If α, β ∈ R and f1 ∈ C(r1, ε), f2 ∈ C(r2, ε), then α f1 + β f2 ∈ C(max{r1, r2}, ε) and
f1 · f2 ∈ C(r1 + r2, ε).

(v) If f1 ∈ C(r1, ε), f2 ∈ C(r2), then f1 · f2 ∈ C(r1 + r2, ε).

We say that a Cn-smooth function f = f (h, t, θ) belongs to the class Cn
s (r) if

∂k+m

∂hk∂ tm
f ∈ C(−k + r), for k + m ≤ n, m ≥ 1,

and

∂k

∂hk
f ∈ C(−k + r + s), for k ≤ n.

We say that a Cn-smooth function f = f (h, t, θ) belongs to the class Cn
s (r, ε) if

∂k+m

∂hk∂ tm
f ∈ C(−k + r), for k + m ≤ n, m ≥ 1,

and

∂k

∂hk
f ∈ C(−k + r + s, ε), for k ≤ n.

Then it is not hard to show the following

Lemma 3.2. (i) Cn
s (r, ε) ⊂ Cn

s (r).
(ii) If r1 < r2, then Cn

s (r1) ⊂ Cn
s (r2) and Cn

s (r1, ε) ⊂ Cn
s (r2, ε).

(iii) If α, β ∈ R and f1 ∈ Cn
s1
(r1), f2 ∈ Cn

s2
(r2), then α f1 + β f2 ∈ Cn

max{s1,s2}(max{r1, r2}) and
f1 · f2 ∈ Cn

s1+s2
(r1 + r2).

(iv) If α, β ∈ R and f1 ∈ Cn
s1
(r1, ε), f2 ∈ Cn

s2
(r2, ε), then α f1 + β f2 ∈

Cn
max{s1,s2}(max{r1, r2}, ε) and f1 · f2 ∈ Cn

s1+s2
(r1 + r2, ε).

(v) If f1 ∈ Cn
s1
(r1, ε), f2 ∈ Cn

s2
(r2), then f1 · f2 ∈ Cn

s1+s2
(r1 + r2, ε).

Lemma 3.3. Suppose that a smooth function I = I (h, t, θ) satisfies I ∈ Cq
1/2(1/2, ε) for q ≤ 6.

Let

ḡ = ḡ(h, t, θ) = [2(n−1h + I )]−1/2g(
√

2(n−1h + I ) cos θ) cos θ,

then ḡ ∈ Cq
1/2(−1/2, ε).
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Proof. Let u = u(h, t, θ) = n−1h + I (h, t, θ), then

ḡ = (2u)−1/2g(
√

2u cos θ) cos θ, (3.1)

∂u

∂h
= n−1 + ∂ I

∂h
,

∂ku

∂hk
= ∂k I

∂hk
, k ≥ 2,

∂k+m u

∂hk∂ tm
= ∂k+m I

∂hk∂ tm
, m ≥ 1.

Since I ∈ Cq
1/2(1/2, ε), we can easily see that u ∈ Cq

1/2(1/2).
For 0 ≤ k ≤ q , let

Qk = Qk(h, t, θ) =
k∑

j=0

ck, j (2u)−k+ j−1
2 g( j )(

√
2u cos θ) cos j+1 θ, (3.2)

where

ck,0 = ck−1,0 · (−2k + 1), ck,k = 1,

ck, j = ck−1, j−1 + ck−1, j · (−2k + 1 + j), 1 ≤ j ≤ k − 1.

Then we have

Q0 = ḡ,
∂

∂ t
Qk = Qk+1

∂u

∂ t
,

∂

∂h
Qk = Qk+1

∂u

∂h
. (3.3)

Furthermore, it follows from (3.2) and Lemma 2.2 that Qk ∈ C(−k, ε). In particular, we have
ḡ = Q0 ∈ C(0, ε).

For 1 ≤ k + m ≤ q , by (3.3) and a direct computation, we find

∂k+m

∂hk∂ tm
ḡ =

k+m∑
j=1

Q j P j
k,m(h, t), (3.4)

and P j
k,m := P j

k,m (h, t) is a sum of the following terms

k∏
r=1

(
∂r u

∂hr

)pr

·
j−p∏
s=1

∂qs u

∂hrs ∂ tqs−rs
, (3.5)

where

pr ≥ 0, r = 1, . . . , k, rs ≥ 0, qs − rs ≥ 1, s = 1, . . . , j − p,

and

k∑
r=1

pr = p,
j−p∑
s=1

rs +
k∑

r=1

r pr = k,
j−p∑
s=1

qs +
k∑

r=1

r pr = m + k,
j−p∑
s=1

(qs − rs) = m.

We notice that m ≥ 1 if and only if j − p ≥ 1 and m = 0 if and only if p = j .
Since u ∈ Cq

1/2(1/2), it follows from (3.5) that

P j
k,m ∈ C( j − k − 1/2), k + m ≤ q,m ≥ 1, (3.6)

and

P j
k,0 ∈ C( j − k), 1 ≤ k ≤ q. (3.7)
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Hence, Q j · P j
k,m ∈ C(−k − 1/2, ε),m ≥ 1 and Q j · P j

k,0 ∈ C(−k, ε). Therefore, we have

∂k+m

∂hk∂ tm
ḡ ∈ C(−k − 1/2, ε) ⊂ C(−k − 1/2), k + m ≤ q,m ≥ 1 (3.8)

and

∂k

∂hk
ḡ ∈ C(−k, ε), 1 ≤ k ≤ q, (3.9)

which, together with the fact that ḡ ∈ C(0, ε), yields ḡ ∈ Cq
1/2(−1/2, ε). The proof is

complete. �

Lemma 3.4. Assume that a smooth function I = I (h, t, θ) satisfies (3.2) and (3.3). Let

S̄(h, t, θ) = [2(n−1h + I )]−1/2 p(t) cos θ,

then S̄ ∈ Cq
0 (−1/2) ⊂ Cq

1/2(−1/2, ε).

Proof. Clearly, S̄ ∈ C(−1/2). Set u = n−1h + I (h, t, θ), then

S̄(h, t, θ) = (2u)−1/2 p(t) cos θ. (3.10)

For k ≥ 1, let

Q̄k = (−1)k(2k − 1)!!(2u)−k−1/2. (3.11)

Then we have Q̄k ∈ C(−k − 1/2) and

∂

∂ t
Q̄k = Q̄k+1

∂u

∂ t
,

∂

∂h
Q̄k = Q̄k+1

∂u

∂h
. (3.12)

A direct computation shows that

∂k+m

∂hk∂ tm
S̄(h, t, θ) =

m∑
i=0

Ci
m
∂k+m−i

∂hk∂ tm−i
(2u)−1/2 · p(i)(t) cos θ

=
m∑

i=0

Ci
m

k+m−i∑
j=1

Q̄ j P j
k,m−i (h, t) · p(i)(t) cos θ. (3.13)

By (3.6) and (3.7), we have P j
k,m−i ∈ C( j − k − 1/2) for i ≤ m − 1 and P j

k,0 ∈ C( j − k). So

we have Q̄ · P j
k,m−i ∈ C(−k − 1) ⊂ C(−k − 1/2) for i ≤ m − 1, and Q̄ · P j

k,0 ∈ C(−k − 1/2).

Therefore, it follows from (3.13) that ∂k+m

∂hk∂tm S̄ ∈ C(−k − 1/2) for k ≥ 1. Thus, we have

S̄ ∈ Cq
0 (1/2). The proof is complete. �

Lemma 3.5. Suppose that a smooth function I = I (h, t, θ) satisfies

I (h, t, θ) = −n−2G(
√

2(n−1h + I ) cos θ)+ n−2
√

2(n−1h + I )p(t) cos θ

and

|I (h, t, θ)| ≤ ε(h)h.

Then I ∈ C7
1/2(1/2, ε).
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Proof. Let u = u(h, t, θ) = n−1h + I (h, t, θ), then

∂u

∂h
= n−1 + ∂ I

∂h
,

∂u

∂ t
= ∂ I

∂ t
,

and

lim
h→∞ u/h = n−1,

uniformly for any t and θ ∈ [0, 2π]. Let

g1 = g1(h, t, θ) = n−2(2u)1/2 p′(t) cos θ,

g2 = g2(h, t, θ) = −n−3(2u)−1/2[g(√2u cos θ) cos θ − p(t) cos θ ],
Δ = 1 − ng2(h, t, θ) = 1 + n−2(2u)−1/2[g(√2u cos θ) cos θ − p(t) cos θ ].

Then by Lemma 2.2, we have

|g1| ≤ C · h1/2, |g2| ≤ ε(h), |Δ| ≥ 1 − ε(h). (3.14)

When k + m = 1, we have

Δ · ∂
∂ t

I (h, t, θ) = g1(h, t, θ), Δ · ∂
∂h

I (h, t, θ) = g2(h, t, θ). (3.15)

Hence, for h 
 1, we have

1

2

∣∣∣∣∂ I

∂ t

∣∣∣∣ ≤ |Δ| ·
∣∣∣∣∂ I

∂ t

∣∣∣∣ = |g1| ≤ C · h1/2,
1

2

∣∣∣∣∂ I

∂h

∣∣∣∣ ≤ |Δ| ·
∣∣∣∣∂ I

∂h

∣∣∣∣ = |g2| ≤ ε(h).

That is, I ∈ C1
1/2(1/2, ε). In general, if I ∈ Cq

1/2(1/2, ε) for q ≤ 6, then by virtue of Lemmas 3.3

and 3.4, we have g2,Δ − 1 ∈ Cq
1/2(−1/2, ε). Similarly, we can prove that g1 ∈ Cq

0 (1/2).
By (3.15) and a direct computation, we find that for 0 ≤ k + m ≤ q ,

Δ
∂k+m+1

∂hk∂ tm+1 I = ∂k+m

∂hk∂ tm g1 −
m−1∑
i=0

k∑
j=0

Ci
mC j

k
∂k+m−i− j

∂hk− j ∂ tm−i (Δ − 1)
∂ i+ j+1

∂h j∂ t i+1 I

−
k−1∑
j=0

C j
k
∂k− j

∂hk− j
(Δ − 1)

∂m+ j+1

∂h j∂ tm+1
I, (3.16)

for m ≥ 1, k + m ≤ q ,

Δ
∂k+m+1

∂hk+1∂ tm
I = ∂k+m

∂hk∂ tm
g2 −

m−1∑
i=1

k∑
j=0

Ci
mC j

k
∂k+m−i− j

∂hk− j ∂ tm−i
(Δ − 1)

∂ i+ j+1

∂h j+1∂ t i
I

−
k−1∑
j=0

C j
k
∂k− j

∂hk− j
(Δ − 1)

∂m+ j+1

∂h j+1∂ tm
I

−
k∑

j=0

C j
k
∂k+m− j

∂hk− j ∂ tm
(Δ − 1)

∂ j+1

∂h j+1
I. (3.17)

and for m = 0 and 0 ≤ k ≤ q ,

Δ
∂k+1

∂hk+1
I = ∂k

∂hk
g2 −

k−1∑
j=0

C j
k
∂k− j

∂hk− j
Δ · ∂

j+1

∂h j+1
I. (3.18)
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Since ∂k+m−i− j

∂hk− j ∂tm−i (Δ − 1) ∈ C(−k + j − 1/2), ∂ i+ j+1

∂h j ∂t i+1 I ∈ C(− j + 1/2) for 0 ≤ i ≤ m − 1, 0 ≤
j ≤ k, and ∂k− j

∂hk− j (Δ − 1) ∈ C(−k + j, ε), ∂m+ j+1

∂h j ∂tm+1 I ∈ C(− j + 1/2) for 0 ≤ j ≤ k − 1, it
follows that

∂k+m−i− j

∂hk− j ∂ tm−i
(Δ − 1)

∂ i+ j+1

∂h j∂ t i+1
I ∈ C(−k) ⊂ C(−k + 1/2),

for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ k,

∂k− j

∂hk− j
(Δ − 1)

∂m+ j+1

∂h j∂ tm+1
I ∈ C(−k + 1/2, ε) ⊂ C(−k + 1/2), for 0 ≤ j ≤ k − 1,

which, together with (3.16) and the fact that ∂k+m

∂hk∂tm g1 ∈ C(−k+1/2), implies that Δ ∂k+m+1

∂hk∂tm+1 I ∈
C(−k + 1/2), and hence ∂k+m+1

∂hk∂tm+1 I ∈ C(−k + 1/2) for 0 ≤ k + m ≤ q .

By using (3.17) and (3.18) and a similar argument, we can show that ∂k+m+1

∂hk+1∂tm I ∈ C(−k −
1/2) = C(−(k + 1) + 1/2) for m ≥ 1, 0 ≤ k + m ≤ q , and ∂k+1

∂hk+1 I ∈ C(−k, ε) =
C(−(k + 1)+ 1, ε) for 0 ≤ k ≤ q . Therefore, we have I ∈ Cq+1

1/2 (1/2, ε). Thus, the conclusion
follows by induction and the proof is complete. �

Proof to Lemma 2.3. Clearly, we have

R1(h, θ) = −n−2G(
√

2(n−1h + R1) cos θ),

and

R2(h, t, θ) = −n−2G(
√

2(n−1h + R2) cos θ)+ n−2[2(n−1h + R2)]1/2 p(t) cos θ.

Since |R1(h, θ)|, |R2(h, t, θ)| ≤ ε(h)h, Lemma 3.5 implies that R j ∈ C7
1/2(1/2, ε), j = 1, 2.

Let R12 = R12(h, t, θ) = R1(h, θ)− R2(h, t, θ), then it follows that

Δ̃ · R12(h, t, θ) = g̃, (3.19)

where

g̃ = −n−2[2(n−1h + R2)]1/2 p(t) cos θ,

and

Δ̃ = 1 + n−2
∫ 1

0
[2(n−1h + Rμ)]−1/2g(

√
2(n−1h + R mu) cos θ) cos θdμ,

Rμ = Rμ(h, t, θ) = μR1(h, θ)+ (1 − μ)R2(h, t, θ).

Clearly, we have

|g̃| ≤ Ch1/2, |Δ̃| ≥ 1 − ε(h). (3.20)

Moreover, an argument similar to that used in the proof of Lemma 3.3 shows that g̃ ∈ C6
0 (1/2)

and Δ̃ − 1 ∈ C6
1/2(−1/2, ε).

We claim that

R12 ∈ C6
0 (1/2). (3.21)

Since R j ∈ C7
1/2(1/2, ε), j = 1, 2, we have R12 = R1 − R2 ∈ C7

1/2(1/2, ε). Therefore,

we have ∂k+m

∂hk∂tm R12 ∈ C(−k + 1/2) for m ≥ 1, k + m ≤ 6. So it suffices to show that
∂k

∂hk R12 ∈ C(−k + 1/2) for k ≤ 6.
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When k = 0, by (3.19) and (3.20), we have that for h 
 1,

1

2
|R12| ≤ |Δ̃| · |R12| = |g̃| ≤ C · h1/2.

That is, R12 ∈ C(1/2). In general, if ∂k

∂hk R12 ∈ C(−k + 1/2) for 0 ≤ k ≤ q < 6, then for k ≤ q ,
by (3.19), we obtain

Δ̃
∂k+1

∂hk+1
R12 = ∂k+1

∂hk+1
g̃ −

k∑
j=0

C j
k+1

∂k+1− j

∂hk+1− j
(Δ̃ − 1) · ∂

j

∂h j
R12. (3.22)

Since ∂k+1− j

∂hk+1− j (Δ̃ − 1) ∈ C(−k − 1 + j, ε) and ∂ j

∂h j R12 ∈ C(− j + 1/2) for 0 ≤ j ≤ k, it follows
that

∂k+1− j

∂hk+1− j
(Δ̃ − 1) · ∂

j

∂h j
R12 ∈ C(−k − 1/2, ε) ⊂ C(−k − 1/2), for 0 ≤ j ≤ k,

which, together with (3.22) and the fact that ∂k+1

∂hk+1 g̃ ∈ C(−(k +1)+1/2)= C(−k −1/2), yields

Δ̃
∂k+1

∂hk+1 R12 ∈ C(−k − 1/2) = C(−(k + 1)+ 1/2).

Therefore, by induction, we conclude that ∂k

∂hk R12 ∈ C(−k + 1/2) for k ≤ 6.
On the other hand, we have

R(h, t, θ) = r(h, t, θ)− r0(h, θ)− √
2n−5/2h1/2 p(t) cos θ

= R2(h, t, θ)− R1(h, θ)− √
2n−5/2h1/2 p(t) cos θ

= n−2G(
√

2(n−1h + R1) cos θ)− n−2G(
√

2(n−1h + R2) cos θ)

+ n−2[2(n−1h + R2)]1/2 p(t) cos θ − √
2n−5/2h1/2 p(t) cos θ

= n−2
∫ 1

0
[2(n−1h + Rμ)]−1/2g(

√
2(n−1h + Rμ) cos θ) cos θdμ · R12

+ n−2
∫ 1

0
[2(n−1h + Rν)]−1/2 p(t) cos θdν · R2, (3.23)

where Rμ = Rμ(h, t, θ) = μR1(h, θ)+(1−μ)R2(h, t, θ) and Rν = Rν(h, t, θ) = νR2(h, t, θ).
Set

ĝ = n−2
∫ 1

0
[2(n−1h + Rμ)]−1/2g(

√
2(n−1h + Rμ) cos θ) cos θdμ,

and

Ŝ = n−2
∫ 1

0
[2(n−1h + Rν)]−1/2 p(t) cos θdν.

Recall that Rμ ∈ C7
1/2(1/2, ε) and Rν ∈ C7

1/2(1/2, ε), it follows from Lemmas 3.3 and 3.4 that

ĝ ∈ C6
1/2(−1/2, ε), Ŝ ∈ C6

0 (−1/2). (3.24)

Clearly, (3.21) and (3.24) imply that ĝ · R12 ∈ C6
1/2(0, ε) and Ŝ · R2 ∈ C6

1/2(0, ε). Therefore, it
follows from (3.23) that

R(h, t, θ) = ĝ · R12 + Ŝ · R2 ∈ C6
1/2(0, ε),
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from which we conclude that∣∣∣∣ ∂k+m

∂hk∂ tm R(h, t, θ)

∣∣∣∣ ≤ Ch−k ≤ ε(h)h−k+1/2, for m ≥ 1, k + m ≤ 6

and ∣∣∣∣ ∂k

∂hk
R(h, t, θ)

∣∣∣∣ ≤ ε(h)h−k+1/2, for k ≤ 6.

This completes the proof of Lemma 2.3. �

4. Proof of Theorem 1

In this section, we will prove Theorem 1 by using a variant of Moser’s small twist theorem.
We first state a new version of Moser’s small twist theorem below. Its proof is similar to that

of a small twist theorem due to Ortega [18] and, for the reader’s convenience, will be given in
the Appendix.

Let A = [a, b]× S1 be a finite cylinder with universal cover A = [a, b]× R. The coordinates
in A and A are denoted by (r, θ̄ ) and (r, θ) respectively, and the circle S1 is identified with the
quotient space R/2πZ. Functions defined on A will be identified with functions defined on A

and satisfying the periodicity condition F(r, θ + 2π) = F(r, θ) for all (r, θ) ∈ A.
Consider the map

f̄ : A → R × S1.

By an invariant curve of f̄ , we understand a Jordan curve Γ̄ ⊂ A that is homotopic to the circle
{r = constant} and satisfies f̄ (Γ̄ ) = Γ̄ .

We assume that f̄ has the intersection property. By this we mean that every Jordan curve
Γ̄ ⊂ A that is homotopic to the circle {r = constant} satisfies f̄ (Γ̄ ) ∩ Γ̄ �= ∅. Besides the
intersection property we shall assume that f̄ is a continuous mapping that is one-to-one and
isotopic to the identity. We sum up all these properties by saying that f̄ belongs to the class
M(A).

A lift of f̄ will be denoted by

f : A → R × R, f (r, θ) = (r ′, θ ′)

and we shall assume that f can be expressed in the form{
θ ′ = θ + 2Nπ + δ�1

δ (r, θ)+ δϕ1
δ (r, θ),

r ′ = r + δ�2
δ(r, θ)+ δϕ2

δ (r, θ),
(4.1)

where N is an integer, δ ∈ (0, 1) is a parameter, and �1
δ ∈ C7(A) and �2

δ , ϕ
1
δ , ϕ

2
δ ∈ C5(A) are

functions satisfying

lim inf
δ→0+ min

(r,θ)∈A
�1
δ(r, θ) > 0, lim inf

δ→0+ min
(r,θ)∈A

∂�1
δ

∂r
(r, θ) > 0, lim sup

δ→0+
‖�1
δ‖C7(A) < +∞,

(4.2)

and

lim sup
δ→0+

‖�2
δ‖C5(A) < +∞. (4.3)
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In addition, we assume that there exists a function Iδ ∈ C7(A) satisfying

lim inf
δ→0+ min

(r,θ)∈A

∂ Iδ
∂r
(r, θ) > 0, lim sup

δ→0+
‖Iδ‖C7(A) < +∞. (4.4)

Set

�δ(r, θ) := �1
δ (r, θ)

∂ Iδ
∂θ
(r, θ)+ �2

δ (r, θ)
∂ Iδ
∂r
(r, θ), (r, θ) ∈ A, (4.5)

we then assume that

lim
δ→0+ ‖�δ‖C5(A) = 0. (4.6)

Define the functions

Īδ(r) = max
θ

Iδ(r, θ), I δ(r) = min
θ

Iδ(r, θ), r ∈ [a, b],
Ī (r) = lim sup

δ→0+
Īδ(r), I (r) = lim inf

δ→0+ I δ(r), r ∈ [a, b].

Theorem 4.1. Let f̄ be given so that (4.1)–(4.3) hold. Assume, in addition, that there exist
numbers ã, b̃, a1, b1, which are independent of δ, and a function Iδ satisfying (4.4)–(4.6) such
that

a < ã < a1 < b1 < b̃ < b, Ī (a) < I (ã) ≤ Ī (a1) < I (b1) ≤ Ī (b̃) < I (b). (4.7)

Then there exist ε > 0 and Δ > 0 such that if δ < Δ and ‖ϕ1
δ ‖C5(A) + ‖ϕ2

δ ‖C5(A) < ε, the map

f̄ has an invariant curve Γ̄ . The constants ε and Δ are independent of δ. Furthermore, if we
denote by μ(Γ̄ , δ) ∈ S1 the rotation number of the restriction of f̄ on Γ̄ , then

lim
δ→0+μ(Γ̄ , δ) = 0.

Remark. It follows from the proof of the theorem that the invariant curve has the form r = μ(θ̄),
where μ ∈ C3(S1).

Remark. The change of variables θ̃ = −θ, r̃ = r shows that the condition (4.2) in the theorem
can be replaced by

lim sup
δ→0+

max
(r,θ)∈A

�1
δ (r, θ) < 0, lim sup

δ→0+
max
(r,θ)∈A

∂�1
δ

∂r
(r, θ) < 0, lim sup

δ→0+
‖�1
δ‖C7(A) < +∞.

(4.8)

Remark. It is not necessary to assume in the statement of the theorem that f̄ is a mapping that
is one-to-one and isotopic to the identity because, for small δ, this follows from the remaining
conditions. In other words, the assumption f̄ ∈ M(A) can be replaced by the weaker condition:
f̄ has the intersection property.

Before giving a proof of our main theorem, we first give an expression for the Poincaré map
of system (2.23).

In order to calculate the Poincaré map, we introduce a new variable v and a small positive
parameter δ by the formula
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ρ = δ−2v, v ∈ [b−1, a−1], (4.9)

where b > a > 0 are independent of δ and will be specified later.
In the new action and angle variables (v, τ ), the system (2.23) can be written in the form

dv

dϑ
= − ∂

∂τ
Ĥ(v, τ, ϑ, δ),

dτ

dϑ
= ∂

∂v
Ĥ(v, τ, ϑ, δ), (4.10)

where

Ĥ(v, τ, ϑ, δ) = δ2 H̃(δ−2v, τ, ϑ) = δ2n J (δ−2v)+ √
2δn−3/2v1/2 p(τ ) cos nϑ

+ δ2n R̃(δ−2v, τ, nϑ).

Let

R̂(v, τ, ϑ, δ) = δ2n R̃(δ−2v, τ, nϑ).

By virtue of Lemma 2.4, it is easy to show that

δ−1 ·
∣∣∣∣ ∂k+m

∂vk∂τm
R̂(v, τ, ϑ, δ)

∣∣∣∣ ≤ nε(δ−2v)v−k+1/2 → 0 as δ → 0+ (4.11)

for k + m ≤ 6.
Since

τ (δ−2v) = 2π

n
+ δv−1/2Γ (δ−2v),

we may rewrite the system (4.10) explicitly as⎧⎪⎪⎨
⎪⎪⎩

dv

dϑ
= −√

2δn−3/2v1/2 p′(τ ) cos nϑ − ∂ R̂

∂τ
,

dτ

dϑ
= 1 + 1

2π
δnv−1/2Γ (δ−2v)+

√
2

2
δn−3/2v−1/2 p(τ ) cos nϑ + ∂ R̂

∂v
.

(4.12)

In the following, we use the notation o5(1) and O5(1). A function f (v, τ, ϑ, δ) is said to be
of order o5(1) if it is C5 in (v, τ ) and∣∣∣∣ ∂k+m

∂vk∂τm
f (v, τ, ϑ, δ)

∣∣∣∣ → 0, as δ → 0+,

for k + m ≤ 5, uniformly in ϑ . Similarly, a function f (v, τ, ϑ, δ) is said to be of order O5(1) if
it is C5 in (v, τ ) and∣∣∣∣ ∂k+m

∂vk∂τm
f (v, τ, ϑ, δ)

∣∣∣∣ ≤ C for δ � 1,

for k + m ≤ 5, uniformly in ϑ .
Denote by (v(ϑ, v0, τ0), τ (ϑ, v0, τ0)) the solution of (4.12) with the initial condition

(v(0, v0, τ0), τ (0, v0, τ0)) = (v0, τ0).

From (4.11), we know that for δ � 1, the solution (v(ϑ, v0, τ0), τ (ϑ, v0, τ0)) exists in [0, 4π]
for any (v0, τ0) ∈ [b−1, a−1] × [0, 2π]. Moreover,

0 <
1

2
b−1 ≤ v(ϑ, v0, τ0) ≤ 2a−1, ∀ϑ ∈ [0, 4π].
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Assume that the solution (v(ϑ, v0, τ0), τ (ϑ, v0, τ0)) has the following expression

v(ϑ, v0, τ0) = v0 + δF2(ϑ, v0, τ0), τ (ϑ, v0, τ0) = τ0 + ϑ + δF1(ϑ, v0, τ0). (4.13)

Then the Poincaré map of (4.12), denoted by P , has the form

P(v0, τ0) = (v0 + δF2(2π, v0, τ0), τ0 + 2π + δF1(2π, v0, τ0)).

From the above discussions, we know that if δ � 1, this map is well defined in the region
[b−1, a−1] × [0, 2π].

If there exists a sequence {δm}∞m=1 with δm → 0 as m → ∞, such that for every δ = δm

the map P has an invariant curve which is diffeomorphic to the circle {v0 = constant}, then
boundedness of all the solutions of (1.1) follows from the standard arguments (see [3,9,10,18]
etc.). In order to prove the existence of such invariant curves for every δ = δm , it suffices to
verify that for every δ = δm , the Poincaré map P satisfies all the assumptions of Theorem 4.1.

Since (v(ϑ, v0, τ0), τ (ϑ, v0, τ0)) is the solution of (4.12), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dF1

dϑ
=
[

1

2π
nΓ (δ−2(v0 + δF2))+

√
2

2
n−3/2 p(τ ) cos nϑ

]
(v0 + δF2)

−1/2

+ δ−1 ∂ R̂

∂v
,

dF2

dϑ
= −√

2n−3/2(v0 + δF2)
1/2 p′(τ ) cos nϑ − δ−1 ∂ R̂

∂τ
.

(4.14)

As in the proof in [3], we can show from (4.11) and (4.14) that∣∣∣∣∣ ∂
k+m

∂vk
0∂τ

m
0

F1(ϑ, v0, τ0)

∣∣∣∣∣ ,
∣∣∣∣∣ ∂

k+m

∂vk
0∂τ

m
0

F2(ϑ, v0, τ0)

∣∣∣∣∣ ≤ C

for all k + m ≤ 5, uniformly in ϑ . Hence

v(ϑ, v0, τ0) = v0 + δO5(1), τ (ϑ, v0, τ0) = τ0 + ϑ + δO5(1). (4.15)

Notice that F1(0, v0, τ0) = F2(0, v0, τ0) = 0, it follows from (1.6), (4.11), (4.14) and (4.15)
that

F1(2π, v0, τ0) =
∫ 2π

0

[
1

2π
nΓ (δ−2(v0 + δF2))+

√
2

2
n−3/2 p(τ (ϑ)) cos nϑ

]

× (v0 + δF2)
−1/2dϑ + o5(1)

= nv−1/2
0 Γ (δ−2v0)+

√
2

2
n−3/2v

−1/2
0

∫ 2π

0
p(τ0 + ϑ) cos nϑdϑ + o5(1),

F2(2π, v0, τ0) = −√
2n−3/2

∫ 2π

0
(v0 + δF2)

1/2 p′(τ (ϑ)) cos nϑdϑ + o5(1)

= −√
2n−3/2v

1/2
0

∫ 2π

0
p′(τ0 + ϑ) cos nϑdϑ + o5(1).

Set

pc
n :=

∫ 2π

0
p(ϑ) cos nϑdϑ, ps

n :=
∫ 2π

0
p(ϑ) sin nϑdϑ.
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Then, we obtain∫ 2π

0
p(τ0 + ϑ) cos nϑdϑ =

∫ 2π

0
p(ϑ) cos n(ϑ − τ0)dϑ

= pc
n cos nτ0 + ps

n sin nτ0,∫ 2π

0
p′(τ0 + ϑ) cos nϑdϑ =

∫ 2π

0
p′(ϑ) cos n(ϑ − τ0)dϑ

= n
∫ 2π

0
p(ϑ) sin n(ϑ − τ0)dϑ

= n(ps
n cos nτ0 − pc

n sin nτ0).

Now we get an expression of the Poincaré map P as

P :
{
τ1 = τ0 + 2π + δ�̃1(v0, τ0, δ)+ δφ̃1(v0, τ0, δ),

v1 = v0 − δ�̃2(v0, τ0, δ)+ δφ̃2(v0, τ0, δ),
(4.16)

where⎧⎪⎪⎨
⎪⎪⎩
�̃1(v0, τ0, δ) = nv−1/2

0

{
Γ (δ−2v0)+

√
2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

}
,

�̃2(v0, τ0, δ) = √
2n−1/2v

1/2
0 (ps

n cos nτ0 − pc
n sin nτ0).

(4.17)

and the functions φ̃1 and φ̃2 are of order o5(1).
Since P is the Poincaré map of the Hamiltonian system (4.12), it is symplectic and has the

intersection property in the cylinder [b−1, a−1] × S1. Moreover, the intersection property is
preserved under a homeomorphism.

Under the diffeomorphism

τ = τ, u = v−1,

the symplectic map P is transformed into the form

Q :
{
τ1 = τ0 + 2π + δ�1

δ(u0, τ0)+ δφ1(u0, τ0, δ),

u1 = u0 + δ�2
δ (u0, τ0)+ δφ2(u0, τ0, δ),

(4.18)

where (u0, τ0) ∈ [a, b] × S1, and⎧⎪⎪⎨
⎪⎪⎩
�1
δ (u0, τ0) = nu1/2

0

{
Γ (δ−2u−1

0 )+
√

2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

}
,

�2
δ (u0, τ0) = √

2n−1/2u3/2
0 (ps

n cos nτ0 − pc
n sin nτ0),

(4.19)

and ⎧⎪⎨
⎪⎩
φ1(u0, τ0, δ) = φ̃1(u

−1
0 , τ0, δ),

φ2(u0, τ0, δ) = −u2
0φ̃2(u

−1
0 , τ0, δ)+ δu2

0[�̃2(u
−1
0 , τ0, δ)+ φ̃2(u

−1
0 , τ0, δ)]2

1 − δu0�̃2(u
−1
0 , τ0, δ)+ δu0φ̃2(u

−1
0 , τ0, δ)

.

By (1.6), we know that the functions φ1 and φ2 are of order o5(1).
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By (1.7), we may assume, without loss of generality, that

lim sup
h→+∞

Γ (h) >

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ . (4.20)

Let � > 0 be such that

� ≤ lim sup
h→+∞

Γ (h)−
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ .
Since hΓ ′(h) → 0 as h → +∞, there exists a number h̄ > 0 such that

|hΓ ′(h)| ≤ min

{
b−1�

4(a−1 − b−1)
,
�

16

}
, (4.21)

holds for all h ≥ h̄.
By (4.20), we can choose a sequence {hm}∞m=1 with h̄ ≤ hm → +∞ as m → +∞ such that

hm+1 >
b

a
hm (4.22)

and

Γ (hm) ≥ 3

4
� +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ . (4.23)

Take δm = (bhm)
−1/2. Then we have δm → 0 as m → +∞. It follows from (4.22) that

δ−2
m (a−1 − b−1) = hm

(
b

a
− 1

)
≤ hm+1 − hm,

and hence

[δ−2
m b−1, δ−2

m a−1] ⊂ [hm, hm+1].
We claim that for any h ∈ [δ−2

m b−1, δ−2
m a−1],

Γ (h) >
1

4
� +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ . (4.24)

In fact, since hm = δ−2
m b−1, it follows from (4.23) that (4.24) holds for h ≥ hm with |h − hm |

sufficiently small. Suppose that there is an h∗
m ∈ [δ−2

m b−1, δ−2
m a−1] such that

Γ (h∗
m) = 1

4
� +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ .
Then it follows from (4.21) and (4.23) that

1

2
� ≤ |Γ (h∗

m)− Γ (hm)|
= |Γ ′(hm + μ(h∗

m − hm))|(h∗
m − hm) (μ ∈ [0, 1])

= |(hm + μ(h∗
m − hm))Γ ′(hm + μ(h∗

m − hm))|
hm + μ(h∗

m − hm)
(h∗

m − hm)
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≤ b−1�

4(a−1 − b−1)hm
(h∗

m − hm)

≤ b−1�

4(a−1 − b−1)δ−2
m b−1

δ−2
m (a−1 − b−1) = �

4
,

which is a contradiction. Therefore, (4.24) holds for all h ∈ [δ−2
m b−1, δ−2

m a−1].
Since lim suph→+∞ |Γ (h)| < +∞, we can assume, without loss of generality, that

sup
h≥h̄

|Γ (h)| ≤ M. (4.25)

For simplicity, we set �i
m(u0, τ0) = �i

δm
(u0, τ0), i = 1, 2. Since

∂

∂u0
�1

m(u0, τ0) = 1

2
nu−1/2

0

{
Γ (δ−2

m u−1
0 )− 2δ−2

m u−1
0 Γ ′(δ−2

m u−1
0 )

+
√

2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

}
,

and

|pc
n cos nτ0 + ps

n sin nτ0| ≤
√
(pc

n)
2 + (ps

n)
2 =

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣ ,
it follows from (4.19), (4.21) and (4.24) that for u0 ∈ [a, b],

�1
m(u0, τ0) ≥ n�

4
u1/2

0 ≥ n�

4
a1/2 > 0,

and

∂

∂u0
�1

m(u0, τ0) ≥ n�

16
u−1/2

0 ≥ n�

16
b−1/2 > 0.

Furthermore, by (4.21) and (4.25), we also have

�1
m(u0, τ0) ≤ nb1/2

[
M +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
]
,

and

∂

∂u0
�1

m(u0, τ0) ≤ 1

2
na−1/2

[
M + �

8
+

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
]
.

Notice that for k = 1, 2, . . . , 7, lim suph→+∞ |hkΓ (k)(h)| < +∞, a similar argument can be
used to show that

lim sup
m→+∞

‖�1
m‖C7(A) < +∞, lim sup

m→+∞
‖�2

m‖C5(A) < +∞,

here and in what follows, we always denote by A the set [a, b] × S1.
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Let

Im(u0, τ0) = −u−1/2
0

[
Γ (δ−2

m u−1
0 )+

√
2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

]

−
∫ u0

a
δ−2

m u−5/2Γ ′(δ−2
m u−1)du, u0 ∈ [a, b].

Then it follows from (4.21) and (4.24) that

∂

∂u0
Im(u0, τ0) = 1

2
u−3/2

0

[
Γ (δ−2

m u−1
0 )+

√
2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

]

≥ �

8
u−3/2

0 ≥ �

8
b−3/2 > 0.

Clearly, by (4.21), (4.24) and (4.25), we can also obtain

�

16
a−3/2(b − a) ≥ Im(u0, τ0) ≥ −a−1/2

[
M +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
]

− �

16
a−3/2(b − a)

and

∂

∂u0
Im(u0, τ0) ≤ 1

2
a−3/2

[
M +

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
]
.

In a similar way, we can show that

lim sup
m→+∞

‖Im‖C7(A) < +∞.

Moreover, we have

�m(u0, τ0) : = �δm (u0, τ0)

= �1
m(u0, τ0)

∂

∂τ0
Im(u0, τ0)+ �2

m(u0, τ0)
∂

∂u0
Im(u0, τ0)

= nu1/2
0

{
Γ (δ−2

m u−1
0 )+

√
2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

}

·
√

2

2
n−3/2u−1/2

0 (pc
n sin nτ0 − ps

n cos nτ0)

+ √
2n−1/2u3/2

0 (ps
n cos nτ0 − pc

n sin nτ0)

·1

2
u−3/2

0

{
Γ (δ−2

m u−1
0 )+

√
2

2
n−5/2(pc

n cos nτ0 + ps
n sin nτ0)

}

= 0.

On the other hand, for any x, y ∈ [a, b], we have

Īm(x) = −x−1/2

{
Γ (δ−2

m x−1)−
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}
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−
∫ x

a
δ−2

m u−5/2Γ ′(δ−2
m u−1)du,

and

I m(y) = −y−1/2

{
Γ (δ−2

m y−1)+
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}

−
∫ y

a
δ−2

m u−5/2Γ ′(δ−2
m u−1)du.

Therefore, by virtue of (1.6) and the dominated convergence theorem, we obtain

Ī (x) = lim sup
m→+∞

Īm(x) ≤ −x−1/2

{
lim inf
m→+∞ Γ (δ−2

m x−1)−
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}
,

and

I (y) = lim inf
m→+∞ I m(y) ≥ −y−1/2

{
lim sup
m→+∞

Γ (δ−2
m y−1)+

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}
.

If

y/x ≥ 256M2

� 2
, (4.26)

then it follows from (4.24)–(4.26) that

I (y)− Ī (x) ≥ x−1/2

{
lim inf
m→+∞ Γ (δ−2

m x−1)−
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}

− y−1/2

{
lim sup
m→+∞

Γ (δ−2
m y−1)+

√
2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
}

= (x−1/2 + y−1/2)

{
lim inf
m→+∞ Γ (δ−2

m x−1)−
√

2

2
n−5/2

∣∣∣∣∣
∫ 2π

0
p(t)e−int dt

∣∣∣∣∣
− 1

1 + (y/x)1/2

[
lim inf
m→+∞ Γ (δ−2

m x−1)+ lim sup
m→+∞

Γ (δ−2
m y−1)

]}

≥ (x−1/2 + y−1/2)

[
1

4
� − 1

8
�

]

= �

8
(x−1/2 + y−1/2) ≥ �

4
b−1/2 > 0,

and hence

Ī (x) < I (y). (4.27)

Now we choose the constants a and b as

b = 4096M2(M + 1)

� 3
> 1, a = b−1.
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Set

b̃ = 16(M + 1)

�
, ã = b̃−1, b1 = 16M

�
, a1 = b−1

1 .

Then we have

a < ã < a1 < b1 < b̃ < b,

and, by (4.26) and (4.27), we also have

Ī (a) < I (ã) ≤ Ī (a1) < I (b1) ≤ Ī (b̃) < I (b).

Therefore, for the map Q, all the conditions of Theorem 4.1 are fulfilled. Hence for every
positive integer m large enough, the map Q, and so the map P , has an invariant closed curve
which is diffeomorphic to {u0 = constant}. This completes the proof of Theorem 1.

5. Proofs of Theorems 2 and 3

In this section, we will give proofs of Theorems 2 and 3. We start with a few technical lemmas.

Lemma 5.1. Let

Γk(h) := [h−1/2Γ (h)](k), for 0 ≤ k ≤ 7.

Then

hkΓ (k)(h) = hk+1/2Γk(h)− 2−k
k∏

j=1

(−2 j + 1)Γ (h)−
k−1∑
j=1

c̃k, j h
j Γ ( j )(h), (5.1)

where

c̃k,0 = c̃k−1,0 ·
(

−2k − 1

2

)
=

k∏
j=1

(
−2 j − 1

2

)
, c̃k,k = 1,

c̃k, j = c̃k−1, j−1 + c̃k−1, j ·
(

−2k − 1

2
+ j

)
, 1 ≤ j ≤ k − 1.

Proof. It is easy to see that

Γk(h) =
k∑

j=0

c̃k, j h
− 2k+1

2 + jΓ ( j )(h).

Hence

Γ (k)(h) = h1/2Γk(h)−
k−1∑
j=0

c̃k, j h
−k+ j Γ ( j )(h),

from which the conclusion follows. �

Lemma 5.2. Let

qh = q(h, θ) = n + n−1(2h)−1/2g(
√

2h cos θ) cos θ,

q(k)h = ∂k

∂hk
q(h, θ).
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Then

q(k)h = n−1
k∑

j=0

ck, j (2h)−k+ j−1
2 g( j )(

√
2h cos θ) cos j+1 θ, (5.2)

for 1 ≤ k ≤ 8, where

c0,0 = 1, ck,0 = ck−1,0 · (−2k + 1) =
k∑

j=1

(−2 j + 1), ck,k = 1,

ck, j = ck−1, j−1 + ck−1, j · (−2k + 1 + j), 1 ≤ j ≤ k − 1.

If, in addition, (1.8) holds, then

|q(k)h | ≤ ε(h)h−k−1/4, 1 ≤ k ≤ 8. (5.3)

Proof. The proof is easy and is omitted. �

Lemma 5.3. If (1.8) holds, then

Γk(h) = −n−k−2
∫ 2π

0
q(k)r0

dθ + ε(h)h−k−1/2, 1 ≤ k ≤ 7. (5.4)

where r0 = r0(h, θ).

Proof. By (2.9), we see that

Γ0(h) = h−1/2Γ (h) = τ (h)− 2π

n
=
∫ 2π

0

1

qr0

dθ − 2π

n
.

Notice that
∂

∂h
r0(h, θ) = 1

∂
∂r h0(r0, θ)

= 1

qr0

,

by using a direct computation, we can easily check that

Γk(h) = −
∫ 2π

0

q(k)r0 [qr0]k−1 + Qk(h, θ)

[qr0]2k+1
dθ, 1 ≤ k ≤ 7, (5.5)

where

Qk(h, θ) =
k∑

s=2

⎛
⎝ ∑

{i j }∈Ps

Cks {i j }
s∏

j=1

q
(i j )
r0

⎞
⎠ qk−s

r0
, 1 ≤ k ≤ 7,

where Ps = {(i1, i2, . . . , is); 1 ≤ i j ≤ k − 1,
∑s

j=1 i j = k} and Cks{i j } are constants.
It follows from (1.8) and (5.3) that

|q(k)r0
| ≤ ε(h)h−k−1/4, 1 ≤ k ≤ 7, (5.6)

and hence

|Qk(h, θ)| ≤ ε(h)h−k−1/2, 1 ≤ k ≤ 7. (5.7)

Set

gr0 = g(
√

2r0 cos θ) cos θ.
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Notice that

|qr0 − n| = n−1|(2r0)
−1/2g(

√
2r0 cos θ) cos θ | ≤ ε(h)h−1/4,

it follows from (5.5)–(5.7) that

Γk(h) = −
∫ 2π

0

q(k)r0

[qr0]k+2
dθ + ε(h)h−k−1/2

= −n−k−2
∫ 2π

0

q(k)r0

[1 + n−2(2r0)−1/2gr0]k+2
dθ

= −n−k−2
∫ 2π

0
q(k)r0

[1 − n−2(2r0)
−1/2gr0]k+2dθ + ε(h)h−k−1/2

= −n−k−2
∫ 2π

0
q(k)r0

dθ + ε(h)h−k−1/2.

The proof is complete. �

Now, we are in the position to prove Theorem 2.

Proof of Theorem 2. Notice that R1(h, θ) = r0(h, θ)− n−1h satisfies

R1(h, θ) = −n−2G(
√

2(n−1h + R1) cos θ), |R1(h, θ)| ≤ ε(h)h,

it follows that

Δ̄ · R1(h, θ) = −n−2G(
√

2n−1h cos θ), (5.8)

where

Δ̄ = 1 + n−2[2(n−1h + μR1)]−1/2g(
√

2(n−1h + μR1) cos θ) cos θ, μ ∈ [0, 1].
Since |R1(h, θ)| ≤ ε(h)h, we have

Δ̄ = 1 + ε(h). (5.9)

From (5.8) and (5.9) and the rule of L’Hospital, it follows that

lim
h→+∞

R1(h, θ)

h3/4
= lim

h→+∞ Δ̄
R1(h, θ)

h3/4

= −n−2 lim
h→+∞

G(
√

2n−1h cos θ)

h3/4

= −n−2 lim
h→+∞

4n−1g(
√

2n−1h cos θ) cos θ

3
√

2n−1h · h−1/4

= −2
√

2

3
n−5/2 lim

h→+∞ h−1/4g(
√

2n−1h cos θ) cos θ

= 0.

Hence,

|R1(h, θ)| ≤ ε(h)h3/4. (5.10)
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For 1 ≤ k ≤ 7, we have

q(k)r0
= q(k)

n−1h
+
∫ 1

0
q(k+1)

n−1h+αR1
dα · R1.

Therefore, (5.3) and (5.10) imply that∣∣∣∣∣
∫ 1

0
q(k+1)

n−1h+αR1
dα · R1

∣∣∣∣∣ ≤ ε(h)h−(k+1)−1/4 · ε(h)h3/4 ≤ ε(h)h−k−1/2,

and hence, from (5.4), it follows that

Γk(h) = −n−k−2
∫ 2π

0
q(k)

n−1h
dθ + ε(h)h−k−1/2, 1 ≤ k ≤ 7. (5.11)

Therefore, by (5.2) and (1.10), we have

hk+1/2Γk(h) = −n−k−2
∫ 2π

0
hk+1/2q(k)

n−1h
dθ + ε(h)

= −2−k−1/2n−5/2
k∑

j=0

ck, j

∫ 2π

0
(2n−1h) j/2g( j )(

√
2n−1h cos θ) cos j+1 θdθ

+ ε(h)
= −2−k−1/2n−5/2ck,0

∫ 2π

0
g(
√

2n−1h cos θ) cos θdθ + ε(h)

= −2−k−1/2n−5/2
k∏

j=1

(−2 j + 1)
∫ 2π

0
g(
√

2n−1h cos θ) cos θdθ + ε(h).

(5.12)

On the other hand, by using a similar argument, we can show that

Γ (h) = −2−1/2n−5/2
∫ 2π

0
g(
√

2n−1h cos θ) cos θdθ + ε(h). (5.13)

By (5.1), (5.12) and (5.13), we have

|hkΓ (k)(h)| ≤ ε(h), 1 ≤ k ≤ 7.

That is, (1.6) holds. Clearly, (1.5) also holds and the conclusion of Theorem 2 follows from (1.7)
and (5.13). The proof is complete. �

Proof of Theorem 3. Firstly, we notice that if (1.12) and (1.13) hold, then (1.8), and hence (5.3)
holds for 1 ≤ k ≤ 7. Therefore, (5.4) and (5.13) also hold and we can prove that

hk+1/2Γk(h) = −2−k−1/2n−5/2
k∏

j=1

(−2 j + 1)
∫ 2π

0
g(
√

2n−1h cos θ) cos θdθ

− n−k−3
k∑

j=1

ck, j

∫ 2π

0

[
h

2r0

]k+1/2

(2r0)
j/2g( j )(

√
2r0 cos θ) cos j+1 θdθ

+ ε(h),
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which, together with (1.12), (5.1) and (5.13), yields (1.6). Now the conclusion of Theorem 3
follows from Theorem 1. �

Appendix

In this appendix, we sketch the proof of Theorem 4.1 in three steps. For more details, we refer
the reader to [18].

1. The New Coordinates. For each θ ∈ R and h ∈ [ Īδ(a), I δ(b)], we denote by Rδ = Rδ(h, θ)
the unique solution of Iδ(Rδ(h, θ), θ) = h. Then the implicit function theorem and (4.4) imply
that Rδ is well defined and of class C7. Moreover, a ≤ Rδ(h, θ) ≤ b, Rδ is 2π-periodic in θ
and satisfies Rδ(Iδ(r, θ), θ) = r for all (r, θ) ∈ A with Iδ(r, θ) ∈ [ Īδ(a), I δ(b)]. By using an
induction argument, we can show that

lim sup
δ→0+

‖Rδ‖C7([ Īδ(a),I δ(b)]×[0,2π]) < +∞. (A.1)

Define

Tδ : [ Īδ(a), I δ(b)] → R, Tδ(h) =
∫ 2π

0

dθ

�1
δ(Rδ(h, θ), θ)

,

and

ωδ(h) = 2π

Tδ(h)
, for h ∈ [ Īδ(a), I δ(b)].

Then Tδ and ωδ are of class C7, and by using (4.2) and (4.4), we can show that

lim inf
δ→0+ min

h∈[ Īδ(a),I δ(b)]
ωδ(h) > 0, lim inf

δ→0+ min
h∈[ Īδ (a),I δ(b)]

ω′
δ(h) > 0, (A.2)

and

lim sup
δ→0+

‖ωδ‖C7[ Īδ (a),I δ(b)] < +∞. (A.3)

Next we consider the region Ã = {(r, θ) : θ ∈ R, ã ≤ r ≤ b̃} and define the function

Kδ : Ã → R, Kδ(r, θ) =
∫ θ

0

ds

�1
δ (Rδ(Iδ(r, θ), s), s)

.

It follows from (4.7) that it is well defined. Moreover, it is of class C7 and satisfies

Kδ(r, θ + 2π) = Kδ(r, θ)+ Tδ(Iδ(r, θ)), for all (r, θ) ∈ Ã.

Moreover, it is easily seen that the derivatives of Kδ are given by

∂Kδ
∂θ

(r, θ) = 1

�1
δ(r, θ)

+ ∂ Iδ
∂θ
(r, θ)Sδ(r, θ),

∂Kδ
∂r

(r, θ) = ∂ Iδ
∂θ
(r, θ)Sδ(r, θ), (A.4)

where Sδ(r, θ) is of class C6 and given by

Sδ(r, θ) = −
∫ θ

0

1

�1
δ(Rδ, s)2

∂�1
δ

∂r
(Rδ, s)

∂Rδ
∂h

(Iδ, s)ds.
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From (4.2) and (4.4) and (B.1), we can easily obtain

lim sup
δ→0+

‖Sδ‖C6([ã,b̃]×[0,2π]) < +∞, lim sup
δ→0+

‖Kδ‖C7([ã,b̃]×[0,2π]) < +∞. (A.5)

Finally, we define

τδ : Ã → R, τδ(r, θ) = ωδ(Iδ(r, θ))Kδ(r, θ).

This function is of class C7 and satisfies

τδ(r, θ + 2π) = τδ(r, θ)+ 2π, for all (r, θ) ∈ Ã, (A.6)

and

lim sup
δ→0+

‖τδ‖C7([ã,b̃]×[0,2π]) < +∞. (A.7)

By using (4.5) and a direct computation, it can be easily checked that

�1
δ

∂τδ

∂θ
+ �2

δ

∂τδ

∂r
= ωδ ◦ Iδ + [(ω′

δ ◦ Iδ)Kδ + (ωδ ◦ Iδ)Sδ]�δ. (A.8)

If �δ ≡ 0, then all the functions previously defined have an interpretation in terms of the
differential equation{

θ ′ = �1
δ (r, θ),

r ′ = �2
δ (r, θ).

For each h the equation r = Rδ(h, θ) describes an orbit with period Tδ(h) and frequency ωδ(h).
Given (r, θ), the quantity Kδ(r, θ) is the time employed by an orbit to go from the horizontal axis
θ = 0 to the point (r, θ).

We can now define the mapping

Ψδ : Ã → R
2, (r, θ) → (Iδ(r, θ), τδ(r, θ)). (A.9)

The periodicity of Iδ and (B.5) imply that Ψδ satisfies

Ψδ(r, θ + 2π) = Ψδ(r, θ)+ (0, 2π), for all (r, θ) ∈ Ã. (A.10)

Therefore, Ψδ is the lift of a mapping Ψ̄δ : Ã → R × S1.
From (4.5), we obtain (Iδ)θ = −(�2

δ/�
1
δ )(Iδ)r + �δ/�

1
δ , and combining this with (A.6), we get

det Ψ ′
δ = (Iδ)r (τδ)θ − (Iδ)θ (τδ)r

= (�1
δ(τδ)θ + �2

δ(τδ)r )
(Iδ)r
�1
δ

− �δ

�1
δ

(τδ)r

= ωδ ◦ Iδ
�1
δ

(Iδ)r + �δ

�1
δ

{[(ω′
δ ◦ Iδ)Kδ + (ωδ ◦ Iδ)Sδ](Iδ)r − (τδ)r },

which, together with (4.2), (4.4), (4.6), (A.2), (A.3), (A.5) and (A.7), implies that

lim inf
δ→0+ min

(r,θ)∈[ã,b̃]×[0,2π]
det Ψ ′

δ > 0, lim sup
δ→0+

‖ det Ψ ′
δ‖C5([ã,b̃]×[0,2π]) < +∞. (A.11)

By using (A.5), (A.7) and (A.11) and an argument similar to that used in [18], we can show
that Ψδ is a change of variables. More precisely, we have the following
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Proposition A.1. Let Ψδ be defined by (A.9). Then

(i) Ψδ is a C5-diffeomorphism from Ã onto Ψδ(Ã);
(ii) the following inclusion holds:

A
∗ := [ Īδ(a1), I δ(b1)] × R ⊂ Ψδ([a1, b1] × R);

(iii) Ψδ and Ψ−1
δ can be expressed in the form

Ψδ :
{
τ = θ + ψ1(r, θ),
I = r + ψ2(r, θ),

Ψ−1
δ :

{
θ = τ + ψ1(I, τ ),
r = I + ψ2(I, τ ),

with lim supδ→0+ ‖ψi ‖C5( Ã) < +∞ and lim supδ→0+ ‖ψ i ‖C5(A∗) < +∞.

2. The New Mapping. Define

A0 = Ã, A1 = {(r, θ) : θ ∈ R, a1 ≤ r ≤ b1},
A2 = A

∗ = {(I, τ ) : τ ∈ R, Īδ(a1) ≤ I ≤ I δ(b1)}.
Then

A1 ⊂ A0, A2 ⊂ Ψδ(A1). (A.12)

From now on, we set

L1 = lim sup
δ→0+

‖�1
δ‖C(A), L2 = lim sup

δ→0+
‖�2
δ‖C(A),

and assume, without loss of generality, that

‖ϕ1
δ ‖C5(A) + ‖ϕ2

δ ‖C5(A) < 1. (A.13)

Choose Δ1 > 0 with

Δ1 ≤ min

{
a1 − ã

2 + L2
,

b̃ − b1

2 + L2

}
,

such that for 0 < δ < Δ1,

‖�1
δ‖C(A) < L1 + 1, ‖�2

δ‖C(A) < L2 + 1.

Notice that L1, L2 and Δ1 are independent of δ. A computation based on (4.1) shows that if
0 < δ < Δ1, then

f (A1) ⊂ A0. (A.14)

We can now define

g : A2 → R × R, g = Ψδ ◦ f ◦ Ψ−1
δ .

Then it is easily seen that g is the lift of a mapping ḡ : A2 → R × S1. Moreover, we have the
following observation:

Proposition A.2. In the above setting, ḡ has the intersection property in A2. Moreover, if Σ̄ is
an invariant curve of ḡ, then Γ̄ = Ψ̄−1

δ (Σ̄ ) is an invariant curve of f̄ .

By virtue of Proposition A.2, it suffices to show that ḡ has an invariant curve in A2. To this
end, we express the mapping ḡ in terms of the new variables (I, τ ).
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Proposition A.3. Assume that (A.13) holds and δ < Δ1. Let g(I, τ ) = (I ′, τ ′) be the mapping
defined above. Then{

τ ′ = τ + 2Nπ + δωδ(I )+ δS1
δ (I, τ ),

I ′ = I + δS2
δ (I, τ ),

where S1
δ , S2

δ belong to C5(A2) and satisfy

‖S1
δ ‖C5(A2)

+ ‖S2
δ ‖C5(A2)

≤ k[‖ϕ1
δ ‖C5(A) + ‖ϕ2

δ ‖C5(A) + ‖�δ‖C5(A) + δ].
Here k is a constant and is independent of δ and ϕ1

δ , ϕ
2
δ .

By (4.6) and (A.13) and Proposition A.3, we can further restrict the size of Δ1 in such a way
that Δ1 is still independent of δ and if 0 < δ < Δ1, then ḡ ∈ M(A2).

To prove Proposition A.3, we need a preliminary result. Given a function F : Ã → R we
define

F∗ : A1 → R, F∗(r, θ) = F(r ′, θ ′),

that is, F∗ = F ◦ f . If δ < Δ1, then F∗ is well defined.

Lemma A.4. Assume that F ∈ C7( Ã), ‖F‖C7( Ã) ≤ H and δ < Δ1. Then, for each (r, θ) ∈ A1,

F∗(r, θ) = F(r, θ)+ δ Ḟ(r, θ)+ δR(r, θ), (A.15)

with

Ḟ(r, θ) = ∂F

∂θ
(r, θ)�1

δ (r, θ)+
∂F

∂r
(r, θ)�2

δ (r, θ)

and

‖R‖C5(A1)
≤ K (‖ϕ1

δ‖C5(A) + ‖ϕ2
δ ‖C5(A) + δ),

where K depends on H, L1, L2. In particular, K is independent of δ.

Proof. We prove by induction that for each j = 0, 1, 2, 3, 4, 5 and F ∈ C j+2( Ã) the identity
(A.15) holds with

‖R‖C j (A1)
≤ K j (‖ϕ1

δ ‖C j (A) + ‖ϕ2
δ ‖C j (A) + δ), (A.16)

where K j depends on H, L1, L2.
Assume j = 0. By (4.1) and (A.13) and the mean value theorem, we obtain∣∣∣∣F∗(r, θ)− F(r, θ)− ∂F

∂θ
(r, θ)(θ ′ − θ − 2Nπ) − ∂F

∂r
(r, θ)(r ′ − r)

∣∣∣∣
≤ H [|θ ′ − θ − 2Nπ | + |r ′ − r |]2 ≤ H (L1 + L2 + 4)2δ2.

Combining this estimate with (4.1), we obtain

|F∗ − F − δ Ḟ | ≤ δ

∣∣∣∣∂F

∂θ
ϕ1
δ

∣∣∣∣+ δ

∣∣∣∣∂F

∂r
ϕ2
δ

∣∣∣∣+ H (L1 + L2 + 4)2δ2.

Let K0 = H (L1 + L2 + 4)2, then the estimate (A.16) follows for j = 0.
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We now prove that (A.16) is also valid for j ≥ 1 when it holds for 0, 1, . . . , j − 1. First we
apply the induction hypothesis to ∂F/∂θ and ∂F/∂r to obtain

(Fθ )
∗ = Fθ + δ Ḟθ + δR1, (Fr )

∗ = Fr + δ Ḟr + δR2

with

‖Ri‖C j−1(A1)
≤ K ∗(‖ϕ1

δ ‖C j−1(A) + ‖ϕ2
δ ‖C j−1(A) + δ), for i = 1, 2,

where K ∗ depends on H, L1, L2. Now,

∂F∗

∂θ
=
(
∂F

∂θ

)∗
∂θ ′

∂θ
+
(
∂F

∂r

)∗
∂r ′

∂θ

=
(
∂F

∂θ

)∗(
1 + δ

∂�1
δ

∂θ
+ δ

∂ϕ1
δ

∂θ

)
+
(
∂F

∂r

)∗ (
δ
∂�2
δ

∂θ
+ δ

∂ϕ2
δ

∂θ

)

= Fθ + δ Ḟθ + δ

{
Fθ
∂�1
δ

∂θ
+ Fr

∂�2
δ

∂θ

}
+ δR3

= Fθ + δ
∂

∂θ
{Ḟ} + δR3,

with

R3 = R1

(
1 + δ

∂�1
δ

∂θ
+ δ

∂ϕ1
δ

∂θ

)
+ Fθ

∂ϕ1
δ

∂θ
+ δ Ḟθ

(
∂�1
δ

∂θ
+ ∂ϕ1

δ

∂θ

)

+ Fr
∂ϕ2

δ

∂θ
+ δ(Ḟr + R2)

(
∂�2
δ

∂θ
+ ∂ϕ2

δ

∂θ

)
.

The remainder R3 satisfies an estimate of the form

‖R3‖C j−1(A1)
≤ K j (‖ϕ1

δ ‖C j (A) + ‖ϕ2
δ ‖C j (A) + δ),

where K j depends on H, L1, L2. (Notice that we have used (A.13).)
In a similar way, we obtain

∂F∗

∂r
= Fr + δ

∂

∂r
{Ḟ} + δR4,

with R4 satisfying the same estimate as R3.
This completes the proof because the remainder in (A.15) satisfies

∂R

∂θ
= R3,

∂R

∂r
= R4. �

Proof of Proposition A.3. Since

lim sup
δ→0+

‖τδ‖C7([ã,b̃]×[0,2π]) < +∞, lim sup
δ→0+

‖Iδ‖C7(A) < +∞,

for small δ, we can apply the previous lemma to the functions αδ(r, θ) = τδ(r, θ)−θ and Iδ(r, θ)
and obtain, in A1,{

τ ∗
δ = τδ + 2Nπ + δτ̇δ + δR1

δ ,

I ∗
δ = Iδ + δ İδ + δR2

δ ,
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where R1
δ , R2

δ satisfy

‖Ri
δ‖C5(A1)

≤ Ki (‖ϕ1
δ‖C5(A) + ‖ϕ2

δ ‖C5(A) + δ), (A.17)

for i = 1, 2, with Ki independent of δ.
From (4.5) and (A.8), τ̇δ = ωδ ◦ Iδ + [(ω′

δ ◦ Iδ)Kδ + (ωδ ◦ Iδ)Sδ]�δ and İδ = �δ . Thus{
τ ∗
δ (r, θ) = τδ(r, θ)+ 2Nπ + δωδ(Iδ(r, θ))+ δ S̃1

δ (r, θ),
I ∗
δ (r, θ) = Iδ(r, θ)+ δ S̃2

δ (r, θ),
(A.18)

where{
S̃1
δ (r, θ) = R1

δ (r, θ)+ [ω′
δ(Iδ(r, θ))Kδ(r, θ)+ ωδ(Iδ(r, θ))Sδ(r, θ)]�δ(r, θ),

S̃2
δ (r, θ) = R2

δ (r, θ)+ �δ(r, θ).

By (4.4), (A.3), (A.5) and (A.17), we obtain

‖S̃i
δ‖C5(A1)

≤ K̃i (‖ϕ1
δ ‖C5(A) + ‖ϕ2

δ ‖C5(A) + ‖�δ‖C5(A) + δ), (A.19)

for i = 1, 2, with K̃i independent of δ.
The mapping Ψδ ◦ f : A1 → R × R is given by Ψδ ◦ f (r, θ) = (I ∗

δ (r, θ), τ
∗
δ (r, θ)) and,

denoting by (I, τ ) the independent variables in A2, we have

(I ′, τ ′) = g(I, τ ) = (I ∗
δ (Ψ

−1
δ (I, τ )), τ ∗

δ (Ψ
−1
δ (I, τ ))).

This identity, together with (A.18), allows us to obtain the expansion of the proposition with
Si
δ = S̃i

δ ◦ Ψ−1
δ . It is easy to see that

‖Si
δ‖C5(A2)

≤ C‖S̃i
δ‖C5(A1)

‖Ψ−1
δ ‖5

C5(A2)
,

where C is a constant independent of δ. An application of Proposition A.1 ends the proof. �

3. The Proof of Theorem 4.1. To prove Theorem 4.1, we give a version of the small twist
theorem, whose proof is similar to that of Theorem 3.6 in [18] and is omitted.

Proposition A.5. Let f̄ ∈ M(A) be a mapping with a lift f that can be written in the form{
θ ′ = θ + 2Nπ + δαδ(r)+ δφ1

δ (r, θ),
r ′ = r + δφ2

δ (r, θ),

where δ ∈ (0, 1) is a parameter and

αδ ∈ C5[a, b], lim sup
δ→0+

‖αδ‖C5[a,b] < +∞, lim inf
δ→0+ min

r∈[a,b]
dαδ
dr
(r) > 0,

φ1
δ ∈ C5[a, b], φ2

δ ∈ C4[a, b].
Then there exist constants ε > 0 and Δ > 0 such that if δ < Δ and

‖φ1
δ ‖C5(A) + ‖φ2

δ ‖C4(A) < ε,

the map f̄ has an invariant curve.

Theorem 4.1 is now a consequence of Proposition A.5. We apply the latter to the mapping
described in Proposition A.3 to find an invariant curve of g = Ψδ ◦ f ◦ Ψ−1

δ in A2. According
to [4], this curve has rotation number α0 and can be expressed in the form I = ψδ(τ), where
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ψδ is a 2π-periodic function of class C3 such that ψ ′
δ is small. So Ψ−1

δ (ψδ(τ ), τ ) is an invariant
curve of f̄ , which is defined implicitly by the equation

Iδ(r, θ) = ψδ(τδ(r, θ)).

It also has rotation number α0, and can be explicitly described as r = μ(θ) by the implicit
function theorem and (4.4), where μ independent of δ. This proves the first remark after
Theorem 4.1. �
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